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Abstract— Control of miniature mobile robots in unconstrained
environments is an ongoing challenge. Miniature robots often
exhibit nonlinear dynamics and obstacle avoidance introduces
sigificant complexity in the control problem. Furthermore, minia-
ture robots have strict power and size constraints, drastically
reducing on-board processing power and severely limiting the
capability of digital implementations of nonlinear model predic-
tive controllers. To accommodate the demands of this application
area, we describe the architecture of a mixed-signal mobile robot
control system using randomized receding horizon control. We
compare the proposed mixed-signal implementation with purely
digital control systems in terms of power requirements and
precision and find that the mixed-signal implementation offers
significant reductions in power consumption at an acceptable loss
of precision.

I. INTRODUCTION

Advances in sensing, actuation and battery technology have

allowed for the development of very small robots (sub-cm3).

However, on-board computation for small platforms has been

limited by available micro-controllers, which are relatively

large, consume significant power, and are too slow for some

applications (such as flying micro robots). In this paper we

propose a mixed-signal architecture implementing receding

horizon control (RHC) strategies on small robotic platforms

under significant power and space constraints. The architecture

is designed for the control of a differential-drive miniature

robot such as the one shown in Fig. 1. RHC controllers are

highly adaptable to changing environments and can be used

in a wide variety of systems. Our mixed-signal architecture is

based on a randomized search of the allowable control inputs

(actions) which can potentially be fast, small and low power

compared to digital systems.

A. Overview of Receding Horizon Control

Receding horizon control (also known as model predictive

control) is a class of control strategies in which the control

input (action) at time k is obtained by solving a finite horizon

optimization problem that models the system’s current state

and future behavior of the system. The solution to this problem

is a finite sequence of control actions, but only the first
element is applied to the real system. At the next time step

k + 1, the procedure is repeated (see Fig 2). The repetition

of this procedure effectively “closes the loop,” providing

updated information about the current system state to the

controller. When the system state is not immediately available,

an estimator that relies on sensor measurements is used.
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Fig. 1. Miniature robot platform. AAA battery shown for reference.
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Fig. 2. Overview of receding horizon control. At each time instance a finite
solution is found, but only the first element is applied to the sytem.

In order to implement RHC, the future behavior of the

robot must be simulated using a model of its dynamics. The

approximate behavior of the discretized system is given by:

xk+1 = f(xk,uk) (1)

where f : Rn × R
m → R

n. Based on the knowledge (or an

estimate) of the current state xk, the controller needs to find

a control sequence uN
k = [u1|k, · · · ,uN |k] that minimizes a

cost given by:

JN (k) =

N∑
j=1

g(xj|k,uj|k) (2)

where the stage cost g : Rn × R
m → R is convex and xj|k

satisfies (1) with x0|k = xk. The cost is used to set the

objective of the robot, and usually penalizes deviation from

a desired state and power consumption. Moreover, the states

and control actions are constrained in that:

xj|k ∈ Xk, uj|k ∈ U (3)
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for all time instances j ∈ {1, ...N}. For robotics applications

(3) represents obstacle constraints and is allowed to change

over time and actuation constraints. Moreover, the final state

in the horizon has to satisfy a terminal constraint (which

guarantees stability):

xN |k ∈ X
T
k (4)

for some set XT
k , which can be tuned to achieve a desirable

performance. Finally, once a solution is found, only the first

element u1|k is implemented. At the next time step k + 1,

the process is repeated with knowledge of xk+1 (or an

estimate x̂k). This recursive procedure results in a sequence

of control actions given by: [u1|0,u1|1, · · · ,u1|k, · · · ]. For a

comprehensive survey on RHC, see [1].

B. Randomized RHC

Each finite horizon subproblem is usually solved using

numerical algorithms, which enables RHC strategies to handle

“hard” problems. This, however, poses a challenge: the time

alloted for the controller to decide on a control action is limited

by the sampling period of the system dynamics. For this

reason for many years RHC was used only for problems whose

dynamics were slow enough so that the optimization program

had time to reach an acceptable solution. Many different ways

of coping with this real-time constraint have been suggested.

Most methods are beyond the processing capabilities of a state-

of-the-art microcontroller [2], [3]. We propose an alternate

solution addressing real-time processing constraints using a

mixed-signal architecture.

Our architecture performs a randomized search in the space

of allowed control inputs. Randomized strategies have been

suggested in [4] that use control Lyapunov functions, which

may not be available. When using a randomized approach, it is

practically impossible to find an optimal solution. Therefore,

we need to accept feasible solutions that are not optimal, but

still stabilize the system. In [5], it is shown that feasibility

is sufficient for stability if we impose an extra constraint on

the cost. For this architecture, we consider that the added

stabilizing cost constraint is given by:

h(Jk) ≤ 0 (5)

where the function h : R �→ R can be tuned to achieve a

desirable performance.

The sub-optimality relaxation changes each optimization

problem to the problem of finding one (any!) feasible solution.

Here a feasible solution is a finite sequence uf that satisfies

(3), (4), (5). The high-level description of the proposed algo-

rithm is as follows:

1) Set k = 0
2) Estimate xk.

3) (Randomly) generate a candidate solution uN
k .

4) Propagate states N steps using (1).

5) Check constraints (3), (4) and (5). If check fails, return

to step 3.

6) Implement u1|k. Set k = k + 1. Return to step 2.

In the subsequent sections, we propose a mixed-signal

architecture to implement randomized RHC for a differential-

drive two-wheeled robot.

II. SYSTEM ARCHITECTURE

For the RHC miniature robot controller, we assume that

xk = (xk, yk, θk) and uk = (ulk, urk), where n = 3 and

m = 2. U is the space of all feasible motor controls.

The overall system architecture implementing RHC on a

miniature differential drive robot is in Fig. 3. Primary sensor

input comes from a distance-only sensor using Time Differ-

ence of Arrival [6]. An observer (Extended Kalman Filter,

EKF) maps these observations into changes in the system

state space (x, y, θ). The random trajectory generator uses

multiple random number generators (RNG) and feeds them

into an analog shift register, effectively creating a piecewise

constant control signal with fixed time period T between

steps but random step values. Such control signals are easy

to replicate with the motor controller using pulse width mod-

ulation (PWM). The dynamics simulator enables feedforward

control and testing of candidate control signals by modeling

the equations of motion of the vehicle. There are obstacle

avoidance constraints using the IR sensors and stability or

performance constraints using information from the dynamics

simulator. The constraint and cost checker determines how

feasible the candidate control signal is. Once a feasible control

has been found, the first element of the control sequence will

be sent to the motor controller for execution.
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Fig. 3. System-level design of a mobile robot with RHC

A. Random Number Generator & Shift Register

To sample the control space, we randomly generate Xi ∼
N (μi, σ

2
i ), so that u is parameterized by a collection of

random variables Xi. In order to produce random variables

that are approximately normal in distribution, the system will

use several compact, Bernoulli true random number generators

(RNG) based on amplified thermal noise [7]. These RNG’s
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are combined using a digital to analog converter (DAC) to

produce an analog random variable, which has a distribution

similar to the Gaussian random variable. To have N steps in

the piecewise constant signal, 2 RNGs will be fed into two

parallel to serial analog shift registers each of length N (one

for each motor controller).

B. Simulation of System Dynamics

In order to implement RHC, one must model system state

dynamics. We have developed a mixed-signal kinematic model

that maps motor commands to estimated and predicted changes

in position in Euclidean Space (SE(2)). Specifically, given

piece-wise continuous functions of time, we would like to

solve the nonlinear differential equations of motion (6). Closed

form solutions of (x, y, θ) exist for piecewise constant (υ, ω)
which can be implemented directly in a digital system (7):

⎡
⎣
ẋ
ẏ

θ̇

⎤
⎦ =

⎡
⎣
υ cos θ
υ sin θ
ω

⎤
⎦ (6)

⎡
⎣
xk+1

yk+1

θk+1

⎤
⎦ =

⎡
⎣

υk

ωk
(sin θk+1 − sin θk) + xk

υk

ωk
(cos θk − cos θk+1) + yk
ωk(tk+1 − tk) + θk

⎤
⎦ (7)

In an analog system, it is preferable to directly solve (6)

given the fewer operations required to model the nonlinear

system dynamics. At the computational level, this will re-

quire 4 signal scaling elements, two summing nodes, three

integrators, two trigonometric function blocks and two signal

multipliers (see Fig. 4). Translinear circuits offer significant

computational capability and will be used to approximate trig

functions [8]. It is important to note that since we wish to solve

the equations of motion in faster than real time, the circuits

representation of time will be much faster (by several orders of

magnitude) than the real world clock. The required precision

of these components will be discussed later.

C. Constraint Checker and Cost Tracker

The two primary pathways for constraints checking are

for obstacle avoidance and stability/performance. Information

from the dynamics simulator plus the control signal can be

used to assess the convergence of the robot to the desired

state. First, controller should progressively shrink the region

of acceptable terminal conditions over time, using (8):

‖[xk yk]
′‖ < β‖[x0 y0]

′‖ (8)

0 < β < 1 in (8) remains fixed, scaling the size of the

ball geometrically over time, and ‖ · ‖ is a (convex) norm.

L1 norms are preferable for circuit implementation because

they are simpler and operate well over a wide dynamic range.

Absolute value circuits for use in the L1 norm do not require

current scaling unlike squaring circuits for the L2 norm used

in quadratic costs. In order to guarantee stability, one must also

bound the cost JN (k) < c, where c is a tuning parameters that

may change for each iteration of the RHC strategy

In addition, IR proximity sensors positioned around the

robot detect any obstacles blocking the robot’s trajectory. The

IR sensors feed directly into the constraint checker, effectively

“short-circuiting” the controller to run in a fail-safe mode upon

imminent collision, increasing the flexibility of RHC strategies

for mobile robot control.

III. ANTICIPATED PERFORMANCE: ANALOG VS. DIGITAL

A. Circuit Power

The power consumption requirements will differ for the

analog and digital implementations of the simulator. From the

system diagram, we can approximate the power consumption

of the analog circuit by estimating the number of bias currents

required. We assume the use of Gilbert cells for signal

multiplication, an operational amplifier with a capacitor for

integration, and the equivalent of five differential pairs in

circuits used to approximate trigonometric functions [8]. This

requires a total of 14 bias currents. Assuming Ibias = 100nA,

VDD = 5V, and 10μs to 1ms of circuit operation time, the

analog circuit consumes 70pJ to 7nJ,

For the digital system, we assume that the closed form

solutions to the equations of motion (6) are implemented

on a microcontroller comparable to the TI MSP430 with a

hardware multiplier. (7) requires 11 multiplications, 1 division,

and 12 additions using Taylor series expansion. We assume

that each operation takes five clock cycles ignoring memory

access costs. In addition, we also ignore the limiting case

of ωk → 0, which would further increase the complexity of

the digital implementation. Dramatically greater computational

costs would occur if time-stepping approximations were used

to solve the equations of motion. The energy required to

perform the computation is independent of the clock, but

assuming 100μA/MHz, VDD = 3V and a 32 MHz clock, the

equations of motion can be solved in 0.1μs consuming about

35nJ of power.

B. Circuit Precision

For the analog circuit, we assume that each of the compo-

nents have a linear distortion error, i.e. σ < 1% [9]. Assuming

that the errors are independent, and compound at each stage

as a summation of Gaussian random variables, the maximum

depth of the circuit is 5 stages so the circuit error would be

bounded by a 2.2% error where σsystem =
√∑N

i=1 σ
2
i . This

would result in a lower bounded signal to noise ratio (SNR)

of 45/1, where SNR = 1
σ . To achieve an SNR of 100/1, the

RMS error of all stages would need to be < 0.4%.

The SNR of the digital circuit is determined by the number

M of bits used in the circuit. 8 bit calculations result in a

maximum theoretical SNR of 256/1, where SNR = 2M .

This SNR can be scaled exponentially by a linear increase in

the number of bits and power consumed [10] but subsequent

operations would not necessarily scale linearly.

C. Summary

The previous analysis suggests that the analog implemen-

tations can model the system dynamics with significantly less
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Fig. 4. System-level design of analog robot kinematics simulator highlighting signal flow and primary computational blocks.
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Fig. 5. Simulated example of the proposed architecture.

power usage. However, with digital systems, greater precision

can be achieved efficiently by increasing the bit length of the

signal. Therefore, analog systems are well suited for fast, low

power, but less precise computations, which is applicable to

problems in robotics.

IV. SIMULATION

We developed a system-level simulation of the proposed

architecture in Fig 3, including obstacles. The robot must

track the position of a single beacon and move to its location

avoiding obstacles. Measurement uncertainty, model parame-

ters and system noise were extracted from sensor and motor

calibration experiments on the platform shown in Fig. 1 and

were incorporated into the simulation. Fig. 5 shows an example

trajectory generated by the controller.

The RHC algorithm is sensitive to the distribution of the

control variables that are randomly selected. Picking trajecto-

ries in either the motor speed space (ul, ur) or the robot body

speed space (υ, ω) will also bias the simulation. For example,

a small imbalance in selecting motor speeds for a robot with

a small wheelbase can cause the robot to spin quickly if care

is not taken.

V. CONCLUSION

The mixed-signal randomized RHC controller satisfies the

strict design requirements of a miniature mobile robot. De-

tailed analysis of the dynamics simulator suggests that an

analog or mixed-signal implementation can dramatically re-

duce power consumption at an acceptable loss in precision.

Reductions in power consumption using a mixed-signal imple-

mentation compared to a digital implementation will decrease

from 35nJ to 70pJ-7nJ per odometry computation. The change

in SNR of 255/1 for 8 bit computations to the specified SNR

of 100/1 for mixed signal circuits is an acceptable loss in

precision.
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