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Abstract. In this paper, the unsteady Navier-Stokes Takagi-Sugeno (T-S) fuzzy 

equations (UNSTSFEs) are represented as a differential algebraic system of 

strangeness index one by applying any spatial discretization. Since such 

differential algebraic systems have a difficulty to solve in their original form, 

most approaches use some kind of index reduction. While processing this index 

reduction, it is important to take care of the manifolds contained in the 

differential algebraic equation (DAE) /singular system (SS) for each fuzzy rule. 

The Navier-Stokes equations are investigated along the lines of the theoretically 

best index reduction by using several discretization schemes. Applying this 

technique, the UNSTSFEs can be reduced into DAE. Optimal control for 

Navier-Stokes T-S fuzzy system with quadratic performance is obtained by 

finding the optimal control of singular T-S fuzzy system using Simulink. To 

obtain the optimal control, the solution of matrix Riccati differential equation 

(MRDE) is found by solving differential algebraic equation (DAE) using 

Simulink approach. The solution of Simulink approach is equivalent or very 

close to the exact solution of the problem. An illustrative numerical example is 

presented for the proposed method.  

Keywords: Differential algebraic equation, Matrix Riccati differential 

Equation, Navier-Stokes equation, Optimal control and Simulink. 

1   Introduction 

    A fuzzy system consists of linguistic IF-THEN rules that have fuzzy antecedent 

and consequent parts. It is a static nonlinear mapping from the input space to the 

output space. The inputs and outputs are crisp real numbers and not fuzzy sets. The 

fuzzification block converts the crisp inputs to fuzzy sets and then the inference 

mechanism uses the fuzzy rules in the rule-base to produce fuzzy conclusions or fuzzy 

aggregations and finally the defuzzification block converts these fuzzy conclusions 

into the crisp outputs. The fuzzy system with singleton fuzzifier, product inference 

engine, center average defuzzifier and Gaussian membership functions is called as 

standard fuzzy system [18]. 
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Two main advantages of fuzzy systems for the control and modelling applications 

are (i) uncertain or approximate reasoning, especially difficult to express a 

mathematical model (ii) decision making problems with the estimated values under 

incomplete or uncertain information [20]. Stability and optimality are the most 

important requirements in any control system. For optimality, it seems that the field of 

optimal fuzzy control is totally open. 

    Singular systems contain a mixture of algebraic and differential equations. In that 

sense, the algebraic equations represent the constraints to the solution of the 

differential part. These systems are also known as degenerate, descriptor or semi-state 

and generalized state-space systems. The system arises naturally as a linear 

approximation of system models or linear system models in many applications such 

as electrical networks, aircraft dynamics, neutral delay systems, chemical, thermal 

and diffusion processes, large-scale systems, robotics, biology, etc., see [3,4,5,11]. 

     As the theory of optimal control of linear systems with quadratic performance 

criteria is well developed, the results are most complete and close to use in many 

practical designing problems. The theory of the quadratic cost control problem has 

been treated as a more interesting problem and the optimal feedback with minimum 

cost control has been characterized by the solution of a Riccati equation. Da Prato and 

Ichikawa [6] showed that the optimal feedback control and the minimum cost are 

characterized by the solution of a Riccati equation. Solving the Matrix Riccati 

Differential Equation (MRDE) is a central issue in optimal control theory. The needs 

for solving such equations often arise in analysis and synthesis such as linear 

quadratic optimal control systems, robust control systems with H2 and H -control 

[22] performance criteria, stochastic filtering and control systems, model reduction, 

differential games etc. One of the most intensely studied nonlinear matrix equations 

arising in Mathematics and Engineering is the Riccati equation. This equation, in one 

form or another, has an important role in optimal control problems, multivariable and 

large scale systems, scattering theory, estimation, detection, transportation and 

radiative transfer [7]. The solution of this equation is difficult to obtain from two 

points of view. One is nonlinear and the other is in matrix form. Most general 

methods to solve MRDE with a terminal boundary condition are obtained on 

transforming MRDE into an equivalent linear differential Hamiltonian system [8]. By 

using this approach, the solution of MRDE is obtained by partitioning the transition 

matrix of the associated Hamiltonian system [17]. Another class of methods is based 

on transforming MRDE into a linear matrix differential equation and then solving 

MRDE analytically or computationally [12,15,16]. However, the method in [14] is 

restricted for cases when certain coefficients of MRDE are non-singular. In [8], an 

analytic procedure of solving the MRDE of the linear quadratic control problem for 

homing missile systems is presented. The solution K(t) of MRDE is obtained by using 

K(t)=p(t)/f(t), where f(t) and p(t) are solutions of certain first order ordinary linear 

differential equations. However, the given technique is restricted to single input. 

    Simulink is a MATLAB add-on package that many professional engineers use to 

model dynamical processes in control systems. Simulink allows creating a block 

diagram representation of a system and running simulations very easily. Simulink is 

really translating block diagram into a system of ordinary differential equations. 

Simulink is the tool of choice for control system design, digital signal processing 
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(DSP) design, communication system design and other simulation applications [1]. 

This paper focuses upon the implementation of Simulink approach to compute 

optimal control for linear singular fuzzy system. 

    Although parallel algorithms can compute the solutions faster than sequential 

algorithms, there has been no report on Simulink solutions for MRDE. This paper 

focuses upon the implementation of Simulink approach for solving MRDE in order to 

get the optimal solution. This paper is organized as follows. In section 2, the 

statement of the problem is given. In section 3, solution of the MRDE is presented. In 

section 4, numerical example is discussed. The final conclusion section demonstrates 

the efficiency of the method. 

2   Statement of the Problem 

In computational fluid dynamics, a typical example of the equations of gas 

dynamics under the assumptions of incompressibility is the Navier Stokes equation 

[19]. It consists of as many differential equations as the dimension of the model 

indicates and the condition of incompressibility, see e.g.[13]: 

                                               u = –u. +  u – p + f 

                                                t                                                                         (1) 

                                                0 = .u 

These equations, together with the appropriate initial and boundary conditions, are yet 

to be solved in x [0,T], where  is a bounded open domain in R
d
 [d = (2 or 3) 

dimension of the model] and T the endpoint of the time interval. Two dimensional 

cases are considered here for easy computation and simplification. The results are 

valid for a three dimensional model as well. The domain of reference is assumed to be 

rectangular. This is indeed a restriction. But, at the exact places, it will be pointed out, 

whether some techniques may be generalized to other domains or not. 

After applying the method of lines (MOL), i.e. carrying out a spatial discretization 

by finite difference or finite element techniques, the equations in (1)  can be written as 

a differential algebraic system. 

                                               Mu (t) = K(u)u(t) –Bp(t) +f(t)                            (2) 

                                                       0 = B
T
u(t) 

See [2]. Here u(t), p(t) and f(t) are approximations to the time and space dependent 

quantities u, p and f of (4). The matrix M is symmetric and positive definite. Quantity 

B stands for discrete gradient operator, while K(u) represents linear and nonlinear 

velocity terms. 

The DAE (2) is of a higher index (i.e. non-decoupled), since pressure p does not 

appear in the algebraic condition. If we assume that B is a full column rank, then the 

differentiation index is two. Since p is only determined up to an additive constant, B 

has, in general, a rank deficiency which causes the undeterminedness of at least one 

solution component. The concept of the differentiation index can not be applied to 

such systems. Kunkel and Mehrmann [9] have generalized the index concept to the 

case of over and underdetermined DAEs. Their so called strangeness index (or s-

index)   is the number of additional block columns needed in the derivative array 

[10] that can filter out a strangeness free system by transformations from the left. This 
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system then represents a DAE of differentiation index one with possibly 

undetermined components or a system of ordinary differential equations. Therefore,   

is one lower than the differentiation index if the system is a DAE of at least 

differentiation index one without undeterminedness. For ordinary differential 

equations (differentiation index zero),  is defined as zero. 

The system (2) is of a higher index, namely s-index 1. Such systems have a 

difficulty to solve in their original form because of the differential and algebraic 

components and strangeness [9]. It would be appropriate to remove this strangeness 

before solving the DAE. In most of the Navier-Stokes solution techniques, this is 

done without explicitly mentioning that an index reduction is carried out. If the index 

reduction is omitted, the results may become unsatisfactory, especially in the unsteady 

case. In [21], examples are computed when a steady state is reached and it is stated 

that satisfactory smoothness is achieved. But, this is completely impractical, if long 

time computations are carried out. 

A characterization is also guaranteed by the concept of s-index when the DAE has 

an unique solution. However, this is not the main advantage of this approach over the 

usual concept of the differentiation index. The biggest progress seems to be that [9] 

provides a way to reformulate the higher index DAE as a strangeness free system with 

the same dimension and same solution structure as the original system. In other 

words, it is possible to rewrite a DAE of higher index in a so called normal form of s 

index zero. This form not only reflects the manifold included in the original system 

but also all the hidden manifolds. Thus, using strangeness free normal form, a 

consideration of all manifolds is ensured which makes this approach superior over 

other index reduction variants. Moreover, the derivative term is not transformed so 

that no errors in time are caused by the index reduction strategy for Navier Stokes 

equations. By this index reduction process, the linear differential algebraic system of 

arbitrary s-index ,                            

                                                     E x (t)=A(t)x(t)+f(t),    

under suitable assumptions [10] can be transformed into strangeness free normal form 

by means of utmost .3+2 rank decisions. This procedure is described in [9]. 

Consider the two dimensional Navier-Stokes (T-S) fuzzy equations 

                                     u = –ui. +  ui – p + fi(t) 

                                     t                                                                                  (3) 

                                       0 = .ui 

The above equation can be transformed into singular T-S fuzzy system using the 

method described in [9]. The singular time-invariant system by taking fi(t) = 0 in (3) 

                                    Ei x (t)=Aix(t)+Biu(t),   x(0)=x0,                                    (4)                                        

 

where the matrix Ei is singular,  x(t)  R
n
 is a generalized state space vector and u(t) 

 R
m

 is a control variable. Ai  R
nxn

 and Bi R
nxm

 are known coefficient matrices 

associated with x(t) and u(t) respectively, x0 is given initial state vector and m ≤ n. 

In order to minimize both state and control signals of the feedback control system, 

a quadratic performance index is usually minimized: 

      tf 

J= ½  x
T

(tf)Ei
T

SEix(tf)+ ½  [x
T

(t)Qx(t)+u
T

(t)Ru(t)]dt, 
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      0 

where the superscript T denotes the transpose operator, S R
nxn

 and Q R
nxn

 are 

symmetric and positive definite (or semidefinite) weighting matrices for x(t), R R
m 

xm
 is a symmetric and positive definite weighting matrix for u(t). It will be assumed 

that |sEi-Ai| ≠ 0  for some s. This assumption guarantees that any input u(t) will 

generate one and only one state trajectory x(t). 

If all state variables are measurable, then a linear state feedback control law 

                                             u(t)= – R
– 1

 Bi
T
 Ki(t)Eix(t), 

where Ki(t) R
nxn

 is a symmetric matrix and the solution of MRDE. 

 

    The relative MRDE for the linear singular fuzzy system (4) 

Ei
T

Ki (t)Ei + Ei
T

Ki(t)Ai + Ai
T

Ki(t)Ei +Q  – Ei
T

Ki(t) BiR
– 1

Bi
T

Ki(t)Ei = 0            (5)            

with the terminal condition Ki(tf)= Ei
T
SEi. In the following section, the MRDE (5) is 

going to be solved for Ki(t) in order to get the optimal solution. 

3   Simulink Solution of MRDE 

Simulink is an interactive tool for modelling, simulating and analyzing dynamic 

systems. It enables engineers to build graphical block diagrams, evaluate system 

performance and refine their designs. Simulink integrates seamlessly with MATLAB 

and is tightly integrated with state flow for modelling event driven behavior. Simulink 

is built on top of MATLAB.  A Simulink model for the given problem can be 

constructed using building blocks from the Simulink library. The solution curves can 

be obtained from the model without writing any codes. 

As soon as the model is constructed, the Simulink parameters can be changed 

according to the problem. The solution of the system of differential equation can be 

obtained in the display block by running the model. 

3.1.   Procedure for Simulink Solution  

Step 1. Select the required number of blocks from the Simulink Library. 

Step 2. Connect the appropriate blocks. 

Step 3. Make the required changes in the simulation parameters. 

Step 4. Run the Simulink model to obtain the solution. 

4   Numerical Example 

Consider the optimal control problem: 

Minimize                                                       tf 

J= ½  x
T
(tf)Ei

T
SEix(tf)+ ½  [x

T
(t)Qx(t)+u

T
(t)Ru(t)]dt, 

     0 
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subject to the linear singular fuzzy system R
i
 : If xj is Tji(mji, ji), i = 1, 2 and j = 1, 

2,3, then 

                                                    Ei x (t)=Aix(t)+Biu(t),   x(0)=x0 ,                               

 

where 

 

S=   1.1517  0.1517       Ei =      1     0           A1=      –1     1      

        0.1517      1         ,              0     0     ,                   0   –2      , 

 

 

A2=     –2     2           Bi =     0        R=1,  Q =      1    1 

            0    –4      ,               1    ,                         1    1    

The numerical implementation could be adapted by taking tf =2 for solving the 

related MRDE of the above linear singular fuzzy system with the matrix A1 . The 

appropriate matrices are substituted in MRDE. The MRDE is transformed into 

differentia algebraic equation (DAE) in k11 and k12. The DAE can be changed into a 

system of differential equations by differentiating the algebraic equation. In this 

problem, the value of k22 of the symmetric matrix K(t) is free and let k22=0. Then the 

optimal control of the system can be found out by the solution of MRDE. 

4.1.   Solution Obtained Using Simulink 

The Simulink model is constructed for MRDE. The Simulink model is shown in 

Figure 1. The numerical solution of MRDE is calculated by Simulink and displayed in 

Table 1. The numerical solution curve of MRDE by Simulink is illustrated in Figure 

2. 

 
 

Figure 1 : Simulink Model for MRDE 
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Figure 2: Simulink Curve for MRDE 

 
Table 1: Simulink Solution of MRDE         

                           t                                 k11                                        k12 

                    0.0                           0.0003                           -0.9997 

                    0.2                           0.0007                           -0.9993 

                    0.4                           0.0015                           -0.9985 

                    0.6                           0.0033                           -0.9967 

                    0.8                           0.0074                           -0.9926 

                    1.0                           0.0164                           -0.9836 

                    1.2                           0.0368                           -0.9632 

                    1.4                           0.0828                           -0.9172 

                    1.6                           0.1891                           -0.8109 

                    1.8                           0.4467                           -0.5533 

                    2.0                           1.1517                            0.1517 

Similarly the solution of the above system with the matrix A2 can be found out 

using Simulink. 

5   Conclusion 

The optimal control for Navier-Stokes fuzzy equations can be obtained by finding 

the optimal control for DAE. The optimal control is found out by solving MRDE 

using Simulink. To obtain the optimal control, the solution of MRDE is computed by 

solving Differential algebraic equation (DAE) using Simulink. The Simulink solution 

is equivalent to the exact solution of the problem. Accuracy of the solution computed 

by Simulink approach to the problem is qualitatively better. A numerical example is 

given to illustrate the proposed method. 
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