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Abstract— In this work, multiple radar waveforms are si-
multaneously transmitted, emitted from different ”virtual”
antennas. The goal is to process the returns in such a way that
the overall ambiguity function is a sum of ambiguity functions
better approximating the desired thumbtack shape. A 4×4
example involves two spatially separated antennas with each
able to transmit and receive simultaneously on two different
polarizations. The 4×4 unitary design dictates the scheduling
of the waveforms over the four virtual antennas over four PRIs
(Pulse Repetition Intervals), and how the matched filtering
of the returns over four PRIs is combined in to achieve
both perfect separation (of the superimposed returns) and
perfect reconstruction. Perfect reconstruction means the sum
of the time-autocorrelations associated with each of the four
waveforms is a delta function. Conditions for both perfect
separation and perfect reconstruction are developed, and a
variety of waveform sets satisfying both are presented.

I. INTRODUCTION

In active sensing systems, the objective is to design a

communication system that allows one to learn the envi-

ronment, which could be one or more moving targets in

the case of a radar. In a radar system, the transmitted

waveforms are reflected by the target and the reflected returns

are then processed at the receiving end to determine the

location(delay) and speed(doppler) of the target. Therefore,

it is desired to transmit a waveform that provides good

resolution in terms of the delay-doppler properties of the

radar returns. This is characterized by the use of ambiguity

functions, which measure the delay doppler correlation of the

received waveforms with the actual transmitted waveform.

The ambiguity function [1] of a waveform s(t) is given by

χ(τ, υ) =

∞∫
−∞

s(t)s∗(t − τ)e−j2πυtdt (1)

where τ and υ are the delay and the doppler shift respec-

tively. A perfect radar waveform would have the ambiguity

function of the form

χ(τ, υ) = δ(τ)δ(υ) (2)
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which means that the spike in the ambiguity function would

correspond to the correct delay and doppler properties of the

target. Construction of waveforms possessing an ambiguity

function of this form is a difficult problem in applied

mathematics. However, it is not always necessary for the

transmitted waveforms to have a thumbtack shaped ambigu-

ity function, particularly if there is only one target or if there

are multiple targets that are reasonably well separated in the

delay-doppler domain.

In [2], Howard et al. proposed a new multi-channel radar

scheme employing polarization diversity for getting multiple

independent views of the target. This work is based on

processing the transmitted waveform matrix at the receiver

in a manner that allows us to separate the transmitted wave-

forms at the receiver and exploit the diversity inherent in an

active sensing environment due to its multipath nature. The

waveform separation was achieved through the use of Golay

complementary sequences [3]. In this paper, multiple radar

waveforms are simultaneously transmitted from different

”virtual antenna” elements where each antenna element is

a transceiver. The goal is to achieve a thumbtack shaped

ambiguity function in the delay domain. The use of the

term ”virtual antenna” here can also include simultaneous

beams formed from the same aperture but pointed to different

angles, or beams pointed to the same angle but formed from

different sub-apertures. We present an example of a 4 × 4
system with two dually polarized transceivers. A 4×4 unitary

design dictates the scheduling of the waveforms over the four

virtual antennas over four PRIs (Pulse Repetition Intervals)

and it tells us how the matched filtering of the returns over

four PRIs are combined in such a way so as to achieve both

perfect separation (of the superimposed returns) and perfect

reconstruction. Perfect reconstruction implies that the sum

of the time-autocorrelations associated with each of the four

waveforms is a delta function. Conditions for both perfect

separation and perfect reconstruction in the delay domain are

developed, and a variety of waveform sets satisfying both are

presented. Biorthogonal methods are then introduced that can

achieve both perfect reconstruction and perfect separation

with adaptive waveforms that are matched to the propagation

environment.

II. POLARIZATION DIVERSITY CODE DESIGN

For a 2×2 system, it has been shown in [2] that for a

dually polarized antenna, the OSTBC (Orthogonal Space-

Time Block Coded) [4] Golay complementary waveform

matrix

S =
[

e1[n] −e∗2[−n]
e2[n] e∗1[−n]

]
(3)
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achieves perfect separation at the receiver. We can extend this

idea to the 4×4 case which comprises two dually polarized

antennas. We use one Golay pair and the time reversed

version of this pair to make four waveforms. The transmitted

waveform matrix is given by

S̃1 =
[

S −S∗

S S∗

]
(4)

where

S∗ =
[

e∗1[−n] e∗2[−n]
−e2[n] e1[n]

]
(5)

The perfect separation is achieved by observing that

S̃1∗S̃∗
1 =

[
S ∗ S∗ + S∗ ∗ S S ∗ S∗ − S∗ ∗ S
S ∗ S∗ − S∗ ∗ S S ∗ S∗ + S∗ ∗ S

]
= 2αI2×2

(6)

These transmitted waveforms are coupled to the receiver
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Fig. 1. ROC Curves for baseline, 2x2 and 4×4 systems

through a channel matrix given by

H =

⎡
⎢⎢⎣

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44

⎤
⎥⎥⎦ (7)

where hij is the channel coefficient from the ith transmit

antenna to the jth receive antenna. Since the waveforms are

perfectly separated at the receiver, we can employ energy

detection to detect the presence of the target. In order to

perform target detection, we stack the columns of the 4×4

channel coefficient matrix into a vector T which is given

under different hypotheses [5] as:

T =
{

Eth + n : H1

n : H0
(8)

where h is a 16 × 1 vector of the i.i.d channel coefficients

each with variance σ2, Et is the energy of the transmitted

waveform and n is the white noise with variance N0. The

likelihood ratio detector is an energy detector that computes

the energy in the received vector under both hypothesis and

is given by

‖T‖2
> γ (9)

where γ is the detection threshold. The probability of false

alarm PF and probability of detection PD for this case are

given by

PF (γ) =
15∑

k=0

(
γ

2N0

)k
e

−γ
2N0

k!
(10)

PD(γ) =
15∑

k=0

(
γ

2(Etσ2 + N0)

)k
e

−γ

2(Etσ2+N0)

k!
(11)

A comparison of the receiver operating curves (ROC) for

the 4×4 (Polarization-Spatial Diversity), 2x2 (Polarization

Diversity) and baseline systems is given in Figure 1.

III. CONDITIONS FOR PERFECT SEPARATION

Consider a set of waveforms satisfying

e1[n] ∗ e∗1[−n] + e2[n] ∗ e∗2[−n] + e3[n] ∗ e∗3[−n]
+e4[n] ∗ e∗4[−n] ∝ δ[n]

(12)

We schedule these waveforms over space-time as given

by the following matrix, where the rows represent spatial

dimensions and columns represent temporal dimensions.

E =

⎡
⎢⎢⎣

e1[n] e∗2[−n] e3[n] e∗4[−n]
−e2[n] e∗1[−n] −e4[n] e∗3[−n]
−e3[n] e∗4[−n] e1[n] −e∗2[−n]
−e4[n] −e∗3[−n] e2[n] e∗1[−n]

⎤
⎥⎥⎦ (13)

We assume that the channel does not change for the duration

of the waveforms that constitute the matrix E. The received

waveform matrix R is given by

R = E ∗ δ[n − D] ∗ H (14)

where D is the propagation delay and * denotes convolution.

Let us define E∗ as

E∗ =

⎡
⎢⎢⎣

e∗
1
[−n] −e∗2[−n] −e∗3[−n] −e∗4[−n]

e2[n] e1[n] e4[n] −e3[n]
e∗3[−n] −e∗4[−n] e∗1[−n] −e∗2[−n]
e4[n] e3[n] −e2[n] e1[n]

⎤
⎥⎥⎦ (15)

We process the received waveform matrix R by E∗, i.e.

Φ = R ∗ E∗ (16)

and we want

Φ = αI (17)

where α is a constant. Since the waveforms satisfy (12), we

have

Φ[n−D] =

⎡
⎢⎢⎣

δ[n − D] 0 −φ[n − D] 0
0 δ[n − D] 0 φ[n − D]

φ[n − D] 0 δ[n − D] 0
0 −φ[n − D] 0 δ[n − D]

⎤
⎥⎥⎦

(18)

where

φ[n] = −e3[n] ∗ e∗1[−n] + e∗4[−n] ∗ e2[n]
+e1[n] ∗ e∗3[−n] − e∗2[−n] ∗ e∗4[−n]

(19)
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We refer to Φ[n] as the key matrix. Now, we can see that

φ[n] is conjugate symmetric. i.e.

φ[−n] = −φ∗[n] (20)

which implies that if φ[n] is real valued, then

φ[0] = 0 (21)

We can write φ[n] as

φ[n] = (−e3[n] ∗ e∗1[−n] + e1[n] ∗ e∗3[−n])
+ (e∗4[−n] ∗ e2[n] − e∗2[−n] ∗ e∗4[−n])

(22)

From this, we can see that if all waveforms exhibit conjugate

symmetry. i.e.

ei[n] = e∗i [−n] for i = 1, 2, 3, 4 (23)

then

φ[n] = 0 (24)

and we achieve perfect separation. Now, consider waveforms

that are time-reversed versions of each other, i.e.

ei[n] = e∗i+1[−n] for i = 1, 3 (25)

In this case, we also have

φ[n] = 0 (26)

Therefore, if the waveforms meet the conditions described

above in addition to their respective autocorrelation functions

summing to a delta function, we would achieve perfect

separation at the receiver.

IV. WAVEFORM FAMILIES BASED ON KRONECKER

PRODUCTS

In this section, we explore waveform familes that possess

some of the properties outlined in the previous section. The

waveform design is based on the Kronecker products [6] of

appropriately chosen sequences.

A. Golay Complementary Sequences

Consider two pairs of complementary Golay sequences

ε1[n] ∗ ε∗1[−n] + ε2[n] ∗ ε∗2[−n] = N1δ[n] (27)

ε3[n] ∗ ε∗3[−n] + ε4[n] ∗ ε∗4[−n] = N2δ[n] (28)

We form the transmitted waveforms of these sequences using

the Kronecker product as

e1[n] = ε1[n] ⊗ ε3[n] (29)

e2[n] = ε1[n] ⊗ ε4[n] (30)

e3[n] = ε2[n] ⊗ ε3[n] (31)

e4[n] = ε2[n] ⊗ ε4[n] (32)

Consider forming the autocorrelation

r[m] = re1e1 [m] + re2e2 [m] + re3e3 [m] + re4e4 [m] (33)

Since

z[n] = x[n] ⊗ y[n] ⇒ rzz[m] = rxx[m] ⊗N ryy[m]
(34)

We have that

r[m] = rε1ε1 [m] ⊗N rε3ε3 [m] + rε1ε1 [m] ⊗N rε4ε4 [m]
+ rε2ε2 [m] ⊗N rε3ε3 [m] + rε2ε2 [m] ⊗N rε4ε4 [m]
= N1N2δ[m]

(35)

where ⊗N is the modulo N Kronecker product. From this, we

see that the Kronecker product preserves the autocorrelation

properties of the original sequences in this case. However,

these waveforms don’t satisfy the conditions listed in section

3. Let us look at the main and off diagonal sequences of

the key matrix of these waveforms by considering two real

valued Golay pairs of length 8 and 10 respectively. The main

diagonal sequence in the key matrix is shown in Figure 2(a)

and the off diagonal sequence φ[n] as given in the key matrix

is shown in Figure 2(b). From these figures, we see that while

the main diagonal term is non-zero only at the correct lag

value, we do have residual cross-terms in the off diagonal

sequence. We also observe that the off diagonal sequence

is anti-symmetric, which means that it does not affect the

correlation peak at the true lag value, even though φ[n] is

not identically zero in this case.
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Fig. 2. (a) Main diagonal sequence: delta function (b) Off diagonal
sequence: non-zero values are present

B. Barker Codes

Consider two Barker Sequences

b1[n] = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1} (36)

b2[n] = {0, 1, 1, 1,−1,−1,−1, 1,−1,−1, 1,−1, 0} (37)

We form the transmitted waveforms as

e1[n] = b1[n] ⊗ b2[n]
e2[n] = e∗1[−n]
e3[n] = b2[n] ⊗ b1[n]
e4[n] = e∗3[−n]

(38)

These waveforms satisfy one of the conditions for perfect

separation given in section II but their autocorrelation func-

tions don’t sum to a perfect delta function. The diagonal and

off-diagonal autocorrelation sequences are given in Figure

3(a) and 3(b). Unlike the Golay complementary codes, these

sequences are not identically zero except at the true lag

position in the main diagonal. However, the off diagonal

28
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Fig. 3. (a) Main diagonal sequence: some of values around the main lobe
are non-zero (b)Off diagonal sequence is identically zero

terms are identically zero because of the fact that these

waveforms are time-reversed versions of each other.

C. Conjugate Symmetric Transmit Waveforms

In this section, we look at waveforms that exhibit con-

jugate symmetry. An important aspect in the design of

conjugate symmetric waveforms is their DFT (Discrete

Fourier Transform) properties. Since the DFT of a conjugate-

symmetric sequence is real valued, the use of conjugate-

symmetric sequences enables 2x2, 4×4 and 8x8 waveform

scheduling according to OSTBC for real designs [4]. Figure
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Fig. 4. (a) Impulse response of the quarter-band filter (b) Frequency
response of the four quarter-band filter waveforms
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Fig. 5. (a) Main diagonal sequence is close to a delta function (b) Off
diagonal sequence is identically zero

4(a) shows the SRRC (Square Root Raised Cosine) quarter-

band filter impulse response given by

h(t) =
4αt
T cos

(
(1+α)πt

T

)
+ sin

(
(1−α)πt

T

)
πt
T

[
1 − (

4αt
T

)2
] (39)

In order to make four conjugate symmetric waveforms using

the pulse waveform given by (39), we sample the pulse with a

sampling interval Ts = T
4 . The combined frequency response

of these waveforms is shown in Figure 4(b). The main and

off diagonal sequences of the key matrix for these waveforms

are given in Figure 5(a) and 5(b). We see from these figures

that these waveforms are almost perfectly separable, with

some minor disturbances in the main diagonal due to the

time limiting of the SRRC waveforms.

D. Combination of Golay Codes and Half Band Filters

In the previous section, we created waveforms with

quarter-band filters that achieved perfect separation. In this

section, we form transmit waveforms through the Kronecker

product of Golay codes with half-band SRRC filters. The

transmit waveforms are given by
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Fig. 6. (a) Main diagonal sequence resembles a delta function (b) Off
diagonal sequence is identically zero

e1[n] = g1[n] ⊗ h1[n]
e2[n] = g1[n] ⊗ h2[n]
e3[n] = g2[n] ⊗ h1[n]
e4[n] = g2[n] ⊗ h2[n]

(40)

where gi[n] are the Golay codes and hi[n] are the half-

band filters. The main and off diagonal sequences of the key

matrix are shown in Figures 6(a) and 6(b) . We see that the

Kronecker product formed from the combination of Golay

sequences with half-band filters possess excellent separation

properties.

V. DATA DEPENDENT WAVEFORM DESIGN

So far, we have discussed waveform design without con-

sidering the effects of clutter and interference. In a physical

active sensing environment, we desire to transmit waveforms

that depend on the clutter and interference environment, e.g.,

waveforms that are orthogonal to the clutter subspace. Let the

transmitted waveform and the receiver processing matrices

be given by

ET =

⎡
⎢⎢⎣

e1[n] f∗
2 [−n] e3[n] f∗

4 [−n]
−e2[n] f∗

1 [−n] −e4[n] f∗
3 [−n]

−e3[n] f∗
4 [−n] e1[n] −f∗

2 [−n]
= e4[n] −f∗

3 [−n] e2[n] f∗
1 [−n]

⎤
⎥⎥⎦ (41)

ER =

⎡
⎢⎢⎣

f∗
1 [−n] −f∗

2 [−n] −f∗
3 [−n] −f∗

4 [−n]
e2[n] e1[n] e4[n] −e3[n]

f∗
3 [−n] −f∗

4 [−n] f∗
1 [−n] f∗

2 [−n]
= e4[n] e3[n] −e2[n] e1[n]

⎤
⎥⎥⎦
(42)
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Fig. 7. (a) Discarding more singular values reduces the peak but removes
the unwanted non-zero values (b) Off diagonal sequence is zero if we discard
more singular values (c) Discarding fewer singular results in a higher peak
compared to (a) and removes the unwanted non-zero values (d) Off diagonal
sequence is not identically zero if we discard fewer singular values

The general problem can now be expressed as

ET ∗ δ[n − D] ∗ ER ∝ δ[n − D]I (43)

In order for the waveforms to satisfy (43), the following

conditions should be satisfied

φ[n] = −e3[n] ∗ f∗
1 [−n] + f∗

4 [−n] ∗ e2[n]
+e1[n] ∗ f∗

3 [−n] − f∗
2 [−n] ∗ e4[n] = 0

(44)

r[n] = e1[n] ∗ f∗
1 [−n] + e2[n] ∗ f∗

2 [−n]
+e3[n] ∗ f∗

3 [−n] + e4[n] ∗ f∗
4 [−n] ∝ δ[n]

(45)

We can express both these constraints in the form of a matrix

equation as

E′F =
[

E1 E2 E3 E4

−E3 −E4 E1 E2

]
⎡
⎢⎢⎣

f1
f2
f3
f4

⎤
⎥⎥⎦ =

[
δ[n − D]

0

]

(46)

where E′ is a 2(2N − 1) × 4N convolution matrix where the

rows represent the delayed and flipped waveform sequences.

This means that we have 2(2N − 1) equations in 4N un-

knowns and since there are more unknowns than the number

of equations, this system is under-determined and there are

multiple solutions. The best solution for our problem is the

one that maximizes

[
eT
1 eT

2 eT
3 eT

4

]
⎡
⎢⎢⎣

f1
f2
f3
f4

⎤
⎥⎥⎦ (47)

We saw in the case of the Kronecker products of Barker

codes that the main diagonal term had non-zero values

around the main lobe, even though they were very small.

We apply this analysis to the Kronecker products of Barker

codes. We do an SVD (Singular Value Decomposition) on

the matrix E′ constructed from Barker codes and apply a

threshold to the singular values. This lets us affect a trade-

off between the non-zero terms on the main diagonal and off

diagonal and the peak of the main diagonal at the true target

delay. Figure 7 shows the results for two-different thresholds.

We can see from here that if we discard a small number of

singular values, there is a peak loss of about 1.8dB (Fig 7(c))

and the off-diagonal terms are slightly higher (Fig(7(d)), but

there are no other non-zero terms in the main diagonal. If

we discard more singular values, the peak loss increases to

about 4.1 dB (Fig 7(a)) but there are no unwanted non-zero

terms in either the main diagonal or the off diagonal (Fig

7(b)). This shows the amount of flexibility we have with

the waveform design when we pose this problem in a more

general setting.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explored the problem of perfect wave-

form separation at the receiver in an active sensing envi-

ronment for the 4×4 case. We derived conditions that the

four waveforms need to satisfy in order to achieve perfect

separation at the receiver. We explored waveform families

that achieve perfect reconstruction at the receiving end. We

showed that Golay codes, Barker codes and quarter-band

filters possess good separation properties and if we construct

waveforms using a combination of these constituent wave-

forms through the use of Kronecker products, we can achieve

very good separation at the receiver. We also addressed

the problem of data dependent waveform design in which

the transmitted waveforms are dependent on the clutter and

interference present in the active sensing environment. We

showed that by controlling the number of singular values

of the waveform matrix, we can reduce interference at the

expense of detection performance.

In the future, we would explore the Doppler properties

of the waveform families described in this paper. We also

intend to explore the problem of designing data dependent

waveforms in more detail, both from the delay and the

Doppler perspective, as well as incorporate beamforming at

the transmitting and the receiving ends to be able direct the

illuminating beams in specific directions.
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