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a b s t r a c t

The Competitive Coding (CompCode) scheme, which extracts and codes the local dominant orientation
as features, has been widely used in finger knuckle print (FKP) verification. However, CompCode may lose
some valuable information such as multiple orientation and texture of the FKP image. To remedy this
drawback, a novel multiple orientation and texture information integration scheme is proposed in this
paper. As compared with CompCode, the proposed scheme not only considers more orientations, but also
introduces a multilevel image thresholding scheme to perform orientation coding on each Gabor filtering
response. For texture features extraction, LBP maps are first obtained by performing Local Binary Pattern
(LBP) operator on each Gabor filtering response, and then a similar coding scheme is applied on these LBP
maps. Finally, multiple orientation and texture features are integrated via score level fusion to further
improve FKP verification accuracy. Extensive experiments conducted on the PolyU FKP database show
the effectiveness of the proposed scheme.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Biometrics authentication is drawing more and more attention,
and is much more preferable and reliable to those applications
concerning high security, such as building access control, airport,
e-banking, computer system login, and national ID card. In the
past decades, researches have exhaustively studied various kinds
of biometrics traits, including face, fingerprint, iris, palmprint,
hand vein, voice, gait, etc. Furthermore, hand-based biometrics
identifiers have been attracted considerable attention in the
biometrics community. Techniques, such as palmprint [1–12],
hand geometry [13], fingerprint [14–18], hand vein [19], have
been developed and investigated in literature.

Recently, researchers have reported that finger-knuckle-print
(FKP), the inherent skin pattern of the outer surface around the
phalangeal joint of one0s finger, is highly unique and can serve as a
distinctive biometric identifier for online personal verification
[12,20–29]. Fig. 1(a) shows the FKP image acquisition device and
the use of the system in [20–24]. After an FKP image is captured
(Fig. 1(b)), the region of interest (ROI) is extracted from it for
feature extraction and matching. Fig. 1(c) and (d) shows the ROI of

two FKP images from different fingers. One can see that FKP ROI
images from different fingers have clear difference.

Both Feature extraction and matching also play important roles
in FKP based verification system. In [20], Zhang et al. adopted the
Gabor filter based competitive coding (CompCode) scheme, which
was originally designed for palmprint recognition [2], to extract
and code the local orientation information as FKP features. Later,
this scheme was extended by combining the magnitude informa-
tion extracted by Gabor filters [21]. In [22], the Fourier transform
based band-limited phase only correlation (BLPOC) was adopted to
extract the transform coefficients as the global features of FKP
images for matching. In the local-global information combination
(LGIC) scheme [23], the local orientation was taken as the local
feature while the Fourier transform coefficients were taken as the
global feature. This scheme achieved very promising accuracy for
FKP verification. In [25], real Gabor filter was used to enhance the
FKP image and then the scale invariant feature transform (SIFT)
was applied to extract features. An adaptive steerable orientation
coding (ASOC) scheme was proposed in [26], where high order
steerable filters were first employed to extract continuous orienta-
tion feature map, and then the multilevel image thresholding
method was used to code a FKP image. In [24], a set of phase
congruency induced local features were defined. By fusing these
local features in the matching score level, the proposed local
feature integration (LFI) scheme led to much better results than
other local feature based methods such as CompCode [20] and
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improved CompCode [21]. Recently, Riesz transforms are utilized
to encode the local patterns of biometric images [12]. The experi-
ments in [12] show that the proposed methods achieve quite
similar verification accuracies with CompCode while need much
less time at the feature extraction stage.

The orientation based coding approaches have many merits such
as high accuracy, robustness to illumination variations and fast
implementation. These algorithms share a common “competition”
rule: the image is first convolved with several filters with different
orientations. Then the “dominant” orientation is determined by some
criterions. By simply coding the local orientation of the FKP, accep-
table verification accuracy could be obtained with high matching
speed. However, the line structures in FKP images are very complex.
Multiple lines may intersect at some regions. If only one “dominant”
orientation is extracted in these regions, much valuable discrimina-
tory information will be lost.

To handle the aforementioned problems in traditional domi-
nant orientation coding scheme, a novel multiple orientation
coding scheme is first proposed in this paper. As compared with
CompCode, the proposed method tries to use all the orientation
information generated from the Gabor filtering responses rather
than only “dominant” features. The multilevel image thresholding
method [26] is introduced to perform orientation coding on each
Gabor filtering response. Then all the coded maps are combined in
the matching stage.

To the best of our knowledge, there is no investigation about
texture information that has been reported for FKP verification in
literature. We can make full use of this information to further
improve the FKP verification accuracy. For texture feature coding,
the conventional LBP [30] method is first performed on each Gabor
filtering response, and then the similar thresholding based coding
method is used on these LBP maps. Zhang et al. [11] pointed
out that the fragile mask can be used for improving palmprint
verification performance. A location in a palmprint0s code map
is consistent if it has the same value for most images of that
palmprint; otherwise, it is fragile. In this paper, we find that the
fragile location is also existed in FKP images. Therefore, in coding
stage, fragile masks are evaluated and used. For matching, the
modified Hamming distance is calculated by masking out these
fragile locations. The texture information can bring complemen-
tary discrimination for improving FKP verification performance.
We thus integrate the multiple orientation and texture informa-
tion via score level fusion.

Comparative experiments on the PolyU finger-knuckle-print
database [31] show that the proposed multiple orientations coding
scheme can obtain comparative performance with state-of-the-art
methods and the proposed integration scheme, which integrates
orientation and texture information, can further improve the
verification accuracy.

The rest of this paper is organized as follows. Section 2
briefly reviews the CompCode scheme and indicates its problems.
Section 3 presents the proposed feature extraction, matching and
the integration scheme. Section 4 performs extensive experiments,
and Section 5 concludes the paper.

2. Brief review of competitive coding (CompCode)

Gabor filters have been widely used for extracting orientation
or edge information in face, iris, fingerprint, palmprint, as well as
FKP verification systems. A 2D Gabor filter is usually defined as

Gðx; yÞ ¼ exp �1
2

x02

s2
x
þy02

s2
y

 ! !
Uexpði2πf x0 Þ ð1Þ

where x
0 ¼x � cos θþy � sin θ, y

0 ¼ �x � sin θþy � cos θ, f is the
frequency of the sinusoid factor, θ is the orientation of the normal
to the parallel stripes, and sx and sy are the standard deviations of
the 2D Gaussian envelop.

Let GR be the real part of a Gabor filter, and IROI be an FKP ROI
(region of interest) image. With a bank of Gabor filters sharing the
same parameters, except the parameter orientation, at each loca-
tion IROI(x,y), the dominant orientation feature can be extracted
and coded as follows:

CompCodeðx; yÞ ¼ arg min
j

fIROIðx; yÞnGRðx; y; θjÞg ð2Þ

where * stands for the convolution operation, and θj¼ jπ/6, j¼
{0,…,5}. Obviously, each CompCode(x,y) is assigned as an integer
within 0–5.

For matching two CompCode maps P and Q, the normalized
Hamming distance based angular distance is commonly adopted [2]:

d¼
∑Rows

x ¼ 1∑
Cols
y ¼ 1hðPðx; yÞ;Q ðx; yÞÞ

3S
ð3Þ

Fig. 1. (a) The FKP image acquisition device; (b) a typical FKP image; and(c), (d) two FKP ROI images from different fingers.
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where S is the area of the code map, and

hðα; βÞ ¼ minðjα�βj;6�jα�βjÞ; α; βAf0;…;5g ð4Þ
By using the “min” rule, CompCode only uses one “dominant”

orientation, which may lose some discriminative information in
intersectant region with many lines.

3. Multiple orientation and texture feature extraction

3.1. Motivation

The CompCode scheme has merits of simplicity and speediness,
and leads to acceptable accuracy in FKP verification [20,21,23]. For
coding, 6 Gabor filtering responses are competed through the
“min” rule, resulting in only one “dominant” orientation. The code
value is assigned as the orientation along which the smallest
response is obtained. However, multiple lines may intersect at
some regions of the FKP image. Such “dominant” based method
may lose much valuable structural information for FKP verifica-
tion. Fig. 2(a) and (b) shows an example region where multiple
lines intersect. Fig. 2(c) plots the curve of Gabor filtering response
versus orientation for the local region in Fig. 2(b). We can see
that several valleys imply several orientations in this local region.
If only one orientation is kept, much valuable discriminatory
information will be lost.

As illustrated in Section 2, a bank of Gabor filters with different
orientations is convolved with the FKP image. Since we want to
keep the multi-orientation characteristics of FKP images, one
intuitive idea is to fully capture all the 6 Gabor filtering responses.
For each filtering response, we can use some rule to code it. These
6 coded responses are then combined together for matching. In
addition, the texture information can be incorporated into our
proposed scheme, which may provide additional discrimination
for FKP verification. In the following subsection, we will first
introduce the strategy for extracting and matching the multiple

orientation and texture features. Then, a simple yet useful score
level fusion scheme is introduced to fuse them.

3.2. Multiple orientation coding (MoriCode) for orientation feature
extraction

Let Rj¼ IROI *GR(θj) be the Gabor filtering response of an FKP ROI
image IROI to the jth (j¼0,1,…,5) Gabor filter with orientation θj, as
defined in Eq. (1). In the proposed scheme, all these 6 responses
are fully used, differing from that in CompCode. Both considerable
storage and significant computational cost are needed when
directly using of these continuous responses for FKP representa-
tion and matching. Thus, a quantization method is required for
filtering response coding.

The quantization on a single filtering response image can
be regarded as a multilevel image thresholding process. A key
issue for multilevel thresholding is the determination of the
multi-thresholds, and histogram based self-adaptive (HSA) tech-
nique is widely used for this task. Without loss of generality, let0s
focus on the multi-thresholds learning on response R0. The multi-
thresholds learning of other response maps can be conducted
similarly. Let N be the number of response classes, C1, C2,…,CN be
the corresponding classes and r1, r2,…,rN�1 be the thresholds
needed to be learned respectively. Let us define class Ck¼
{φ|φA[rk-1, rk]}, where kA[2…N�1]. C1 and CN are defined
as C1¼{φ|φA[min(R0), r1]}, CN¼{φ|φA(rN�1, max(R0)]}, where
min(R0) and max(R0) are the minimum and maximum of filtering
response R0.

The histogram h(φ) shows occurrences frequency of the response
φ in the response map, and the normalized histogram is denoted as
p(φ)¼h(φ)/S with S the size of response map. Fig. 3(d) shows the
histogram of filtering response in Fig. 3(b) (denoted as red dotted
lines). For the kth (kA[2…N�1] response class Ck, statistical proper-
ties such as the probability of the class, the mean and the variance
of the class can be computed as wk ¼∑φACk

pðφÞ, μk ¼∑φACk

ðpðφÞUφ=wkÞ and s2
k ¼∑φACk

ðpðφÞU ðφ�μkÞ2=wkÞ. The optimal
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Fig. 2. (a) An FKP ROI image; (b) cropped and enlarged images with intersected lines; and (c) Gabor filtering responses versus orientation.
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multi-thresholds are found by minimizing the following criterion
called within-class variance:

½rn1; rn2;…; rnN�1� ¼ arg min ∑
N

k ¼ 1
wks2

k

 !
ð5Þ

DP-SMAWK algorithm presented in [32] is employed to find the
optimal thresholds (i.e. r1

*, r2
*,…,rN�1

*), and then the optimal
classes are C1

*, C2*,…,CN*. It should be noted that for each response
map Rj, we can get different optimal classes duo to the difference
of the corresponding response histogram.

After obtaining the optimal classes C1
*, C2

*,…,CN* for each
response map, the quantization is then performed on the original
response map for orientation feature coding. For each response
value α in the response map, its final coded value is given as
follows:

CodeðαÞ ¼ modðfkj½α�ACn

k ;1rkrNg;NÞ ð6Þ
Obviously, the code value is within 0 to N�1. Some coded

examples are shown in Fig. 4, where (a) and (b) are different
images captured from the same class while (c) is an image taken
from another different class. From Fig. 4(d)–(f), we can see that the
codes from the same class have strong similarity, while the codes
from different class have significant difference. The above obser-
vation indicates that the codes have strong discrimination.
It should be noted that each image actually has 6 such code maps
since 6 Gabor filters with different orientation are used.

3.3. Multiple texture coding (MtexCode) for texture feature
extraction

Apart from the orientation features, the FKP images also have
many finer texture features, which may convey power discrimi-
native information. In this subsection, we will study the texture
information contained in the FKP image in detail.

In [30], Local Binary Pattern (LBP) histogram was proposed for
rotation invariant texture classification. LBP is a gray-scale texture

operator which characterizes the spatial structure of the local
image texture. It has also been successfully adapted to many
applications, such as face recognition [33], dynamic texture
recognition [34] and shape localization [35]. Given a central pixel
in the image, a pattern number can be computed by comparing its
value with those of its neighborhoods:

LBPP;R ¼ ∑
P�1

p ¼ 0
sðgp�gcÞ2p; sðxÞ ¼

1; xZ0
0; xo0

(
ð7Þ

where gc is the gray value of the central pixel, gp is the value of its
neighbors, P is the number of neighbors and R is the radius of the
neighborhood.

Suppose that the texture image is N�M. After identifying the
LBP pattern of each pixel (i, j), the whole texture image can be
represented by a histogram:

HðkÞ ¼ ∑
N

i ¼ 1
∑
M

j ¼ 1
f ðLBPP;Rði; jÞ; kÞ; kA ½0;K�

f ðx; yÞ ¼ 1 x¼ y
0 other

�
ð8Þ

where K is the maximal LBP pattern value.
To fully use the texture information from the 6 Gabor filtering

responses, like the work in [36], we conduct the LBP operator on
each Gabor filtering response. Thus, each response map is con-
verted to a LBP map. Fig. 3(c) shows examples of LBP maps for one
FKP image with configurations of P¼8, R¼1.

After getting the LBP maps, HSA technique based multilevel
image thresholding is also used for texture feature coding. The
coding process is similar as that in Section 3.2. First, the LBP
histogram is evaluated for each LBP map. Then, the DP-SMAWK
algorithm presented in [32] is employed to find the optimal
thresholds, and the optimal classes are C1

*, C2*,…,CN*. It should
be noted that the histograms in Section 3.2 are directly evaluated
on the Gabor filtering responses, while in this section they are
evaluated on the LBP maps. For each pattern α in the LBP maps, its
final code value is given by Eq. (6). Some coded examples are

… …
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Fig. 3. (a) An FKP ROI image; (b) its six Gabor filtering responses; (c) the corresponding LBP map of the responses in (b); and (d) the corresponding histogram of the map in
(b) or (c). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

G. Gao et al. / Neurocomputing 135 (2014) 180–191 183



shown in Fig. 4(g)–(i), from which we can see that the proposed
texture coding scheme can well characterize the texture informa-
tion contained in the FKP image.

3.4. Feature matching

As well as CompCode, the normalized Hamming distance based
angular distance is adopted for matching. Let P and Q be the
MoriCode (MtexCode) maps of two FKP ROI images respectively.
Their angular distance MoriD (MtexD) can be computed as follows:

MoriD ðMtexDÞ ¼
∑Rows

x ¼ 1∑
Cols
y ¼ 1∑

5
j ¼ 0GðPjðx; yÞ;Qjðx; yÞÞ

6U ðN=2ÞUS ð9Þ

where Pj (Qj) is the jth code map of P(Q), S is the area of the code
map and G(α,β) is defined as Eq. (4):

Gðα; βÞ ¼ minðjα�βj;N�jα�βjÞ; α; βAf0;…;N�1g ð10Þ
Obviously, MoriD (MtexD) is between 0 and 1. To overcome

imperfect preprocessing, multiple matches are performed by
translating one set of features in horizontal and vertical directions.
The ranges of the horizontal and the vertical translations are
empirically set as �9 to 9 and �4 to 4 in this paper.

For a specific location in the Gabor filtering response, if its
response has a large magnitude, the corresponding location will
likely be consistent (i.e., have much orientation information). On
the contrary, if the response is close to zero, the corresponding
location will likely be fragile (i.e., have less orientation informa-
tion). These fragile locations will contribute less to the matching,
and in some cases may increase the matching distance of the

images from the same class. If we can remove these locations in
the matching stage, the matching accuracy can be improved. Two
examples are shown in Fig. 5(a), where the locations with small
response are marked with blue rectangle.

Based on the above analysis, we use a simple method to figure
out the potential locations that have small response. Denote by Rj
the filtering response of an FKP ROI image to the jth (j¼0,1,…,5)
Gabor filter with orientation θj. The magnitude values contained
in the matrix Rj can be sorted to identity p percent smallest ones.
The locations containing p percent smallest magnitude values
are considered fragile and represented as zeros while others are
considered consistent and represented as ones. We use a separate
matrix named fragility mask fj to store the value one and zero.
Thus, fj (x,y) indicates whether the value Rj (x,y) is consistent or
not. Examples of fragility masks are shown in Fig. 5(d). For
comparison, we also show the corresponding response Rj. In
Fig. 5(b), the first two are different images captured from the
same class while the last two are images captured from another
different class. The images are convolved with GR(θ0). It needs to
be noted that each image actually has 6 such fragility masks since
6 Gabor filters are used and p¼25%.

Eq. (9) gives equal weight for all locations in a code map.
However, not all of the locations in a code map are equally useful.
According to this consideration, we try to mask out these less
useful locations when compute the Hamming distance. With this
modification, the matching in a comparison is based on fewer
locations, but each location used is more important.

The modified Hamming distance can be computed as follows.
Suppose that P and Q are two Moricode (MtexCode) maps. Their

Fig. 4. (a) and (b) are the different images taken from the same class while (c) is taken from a different class; (d)–(f) are the 6 orientation coded maps for (a)–(c) respectively;
(g)–(i) are the 6 texture coded maps for (a)–(c) respectively.
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fragility mask matrices are f and g, respectively. Then, the modified
Hamming distance, denoted by MoriDM (MtexDM), is defined as

MoriDM ðMtexDMÞ

¼
∑Rows

x ¼ 1∑
Cols
y ¼ 1∑

5
j ¼ 0GðPjðx; yÞ;Qjðx; yÞÞ \ ðf jðx; yÞ \ giðx; yÞÞ

6U ðN=2ÞU∑Rows
x ¼ 1∑

Cols
y ¼ 1f jðx; yÞ \ giðx; yÞ

ð11Þ

where Pj (Qj) is the jth code map of P(Q), fj (gj) is the jth mask
of f(g), G(Pj,Qj) is defined as Eq. (10), and \ means the bitwise
“AND” operation.

3.5. Integration of orientation and texture Features

The two features described in Sections 3.2 and 3.3 reflect
different local information contained in an FKP image. Thus, we
can expect higher verification accuracy by assembling information
from the two features together, which can be achieved by a score
level fusion. Suppose that we have obtained the matching distance
MoriDM and MtexDM by matching the multiple orientation and

texture features of two images respectively. The two distances can
be fused together to get the final matching distance.

There are a lot of rules for fusion, such as the Simple-Sum (SS)
rule, the MIn-Score (MIS) rule, the MAx-Score (MAS) rule and
the Matcher-Weighting (MW) rule [37]. In our case, MoriDM and
MtexDM can be considered to be obtained from two different
matchers, matcher 1 (multiple orientation based matcher) and
matcher 2 (multiple texture based matcher). We use the MW rule
in this paper. In the MW rule, weights are assigned according to
the equal error rate (EER) obtained on a training dataset by diffe-
rent matchers. Denote by ek the EER of the two matchers, k¼1,2.
Then, the weights corresponding to matcher k can be calculated as
follows:

wk ¼ 1= ∑
2

k ¼ 1

1
ek

 !
=ek ð12Þ

where 0rwkr1 and w1þw2¼1. Obviously, weights are inversely
proportional to the corresponding EERs. Then, the final matching

Fig. 6. Framework of the proposed multiple orientation and texture integration scheme.

Fig. 5. (a) The marked locations with small response; (b) the first two are different images taken from the same class while the last two are taken from another different
class; (c) The corresponding filtering responses for (b); and (d) The corresponding fragility masks for (c). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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distance integrating orientation and texture features is calculated as

d¼w1 UMoriDMþw2 UMtexDM ð13Þ

3.6. Summary of the proposed method

In Sections 3.2 and 3.3, we fully capture the multiple orientation
and texture information for feature coding and matching. In the
proposed method, an FKP image is modeled by the following steps:
(1) An input FKP ROI image is transformed to obtain multiple Gabor
filtering responses (GFRs) by applying multi-orientation Gabor filters;
(2) Histograms are evaluated to obtain optimal multi-thresholds. For
orientation feature extraction, the histogram is calculated directly on
GFRs. While for texture feature extraction, each GFR is first converted
to LBP map, then histogram is evaluated based on these LBP maps;
(3) Multilevel image thresholding based coding is performed on GFRs
and LBP maps based on the optimal multi-thresholds respectively.
Meanwhile, fragility masks are evaluated. The overall framework of
the proposed approach is illustrated in Fig. 6.

4. Experimental results and discussions

4.1. FKP database and the test protocol

In the previous work [20–24,31], an FKP database was estab-
lished. This database consists of the cropped FKP region of interest
(ROI) images of 4 fingers (the left index, the left middle, the
right index and the right middle) from 165 volunteers. Each finger
knuckle was asked to provide 12 samples from two separated

sessions with 6 samples per session, giving a total of 165�
4�12¼7920 samples from 660 (i.e., 165�4) fingers. The images
from the first session were taken as gallery set while the images
from the second session were taken as the probe set. To obtain
statistical results, each image in the probe set was used to match
all the images in the gallery set. A genuine matching was counted
if the two images come from the same finger; otherwise, an
imposter matching was counted.

The equal error rate (EER), which is the point when the false
accept rate (FAR) is equal to the false reject rate (FRR), is used to
evaluate the verification accuracy. The decidability index d [38] is
used to measure how well the genuine and the imposter distance
are separated. Denote the mean of the genuine (imposter) match-
ing distances as μ1 (μ2), the standard deviation of the genuine
(imposter) matching distances as s1 (s2), d is defined as follows:

d¼ jμ1�μ2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

1þs2
2Þ=2

q ð14Þ

Furthermore, by adjusting the matching threshold, a detection
error tradeoff (DET) curve, which is a plot of false rejection rates
(FRR) against false acceptance rates (FAR) for all possible thresh-
olds, is vividly used to evaluate the overall verification accuracy of
the system.

4.2. Determination of the parameters

In our proposed method, the quantization number N, the
number of neighbors P (or the radius of the neighborhood R)
and the percent p need to be tuned. Parameters were tuned based
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Fig. 7. EER versus different parameter settings: (a) and (b) The quantization number N; (c) the number of neighbors P; and (d) the percent p.
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on a sub-dataset containing images from the first 165 FKP fingers
and the tuning criterion was that parameters that led to a lower
EER would be chosen. Fig. 7 shows the EER value versus different
parameter settings performed on R0 for illustration. Thus, the
parameters used in this paper were set as N¼8 for orientation
coding, P¼8, R¼1, N¼6 for texture coding and p¼25%. Moreover,
fusion weights w1 and w2 can be calculated using Eq. (12).

4.3. Effectiveness of the fragility masks

We will compare the verification accuracies obtained by using
MoriD, MoriDM and MtexD, MtexDM respectively to verify the
effectiveness of the fragility masks. Experiments are conducted
on a sub-dataset containing the first 165 FKP fingers.

The EER and d are listed in Table 1. From the results we can see
that by masking out fragile locations in code maps, the EER could
be reduced from 1.782% to 1.413% and 2.305% to 2.243%. The drop
of EER is 20.71% ((1.782�1.413)/1.782) and 2.69% ((2.305�2.243)/
2.305), which demonstrates that the verification accuracy could be
significantly improved by using the fragility masks.

4.4. FKP verification results

In order to show and explain the performance of the proposed
scheme clearly, 3 experiments were conducted. We evaluated and
compared the performance of some state-of-the-art coding-based
feature extraction methods: CompCode [20], BOCV [6], ImComp-
Code&MagCode [21] and the proposed MoriCode&MtexCode.
Gabor filters used in CompCode, BOCV, ImCompCode&MagCode
and the proposed MoriCode&MtexCode were all of the form (1).
Also, for MoriCode, MtexCode and MoriCode&MtexCode, MoriDM

and MtexDM are used.

4.4.1. Experiment 1
In the first experiment, all classes of FKPs were used. Therefore,

there were 660 (165�4) classes and 3960 (660�6) images in the
gallery set and the probe set each in this experiment. Each image
in the probe set was matched against all the images in the gallery
set. Thus, the number of genuine matchings and imposter match-
ings are 23,760 and 15,657,840, respectively. The verification
accuracy is given in Table 2. The DET curves obtained by using
each evaluated methods are shown in Fig. 8(a).

From the experimental results shown in Table 2 and Fig. 8(a),
the following findings can be made. First, the MoriCode scheme
performs much better than the MtexCode scheme. Second,
since MoriCode could keep more orientation information than
CompCode, it could get better results than CompCode. Third,
the MoriCode&MtexCode scheme which integrates the multiple
orientation and texture information performs obviously better
than using any of them individually. This is because the texture
information can provide complementary discrimination. Distance
distributions of genuine matchings and imposter matchings
obtained by the proposed scheme are plotted in Fig. 8(b).

4.4.2. Experiment 2
As mentioned in Section 4.1, the FKP database contains images

from four types of fingers: left index fingers, left middle fingers,
right index fingers and right middle fingers. For each type of
FKPs, the probe and the gallery each contains 165 classes and
990 (165�6) images, and the number of genuine and imposter
matchings are 5940 and 974,160, respectively. DET curves for
different finger types and different verification methods are
shown in Fig. 9. Experimental results in terms of EER and d are
summarized in Table 3 for comparison.

Table 1
EER (%) and d by different schemes.

Method EER d

MoriD 1.782 4.1214
MoriDM 1.413 4.4538
MtexD 2.305 3.2225
MtexDM 2.243 3.2891

Table 2
EER (%) and d by different schemes in experiment 1.

Method EER d

CompCode[20] 1.386 4.4302
BOCV[6] 1.833 4.1251
ImCompCode&MagCode[21] 1.210 4.5224
MoriCode 1.201 4.7321
MtexCode 1.816 3.4520
MoriCode&MtexCode 1.048 4.4014
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Fig. 8. (a) DET curves for experiment 1 by different schemes; (b) distance distribution of genuine matchings and imposter matchings with the proposed
MoriCode&MtexCode in experiment 1.
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From the experimental results, we can see that for left fingers,
the proposed MoriCode scheme performs obviously better than
CompCode, BOCV and ImCompCode&MagCode. For right fingers,
the proposed MoriCode scheme has similar performance with
CompCode. By integrating the multiple orientation and texture
information, the proposed MoriCode&MtexCode scheme has the
best performance among all of the listed methods in all types of
fingers in terms of EER. The drop of EER is 29.51%, 22.84%, 13.70%
and 9.53% respectively, which clearly clarify the superiority of the
proposed MoriCode&MtexCode.

4.4.3. Experiment 3
In Sections 4.4.1 and 4.4.2, we only list the fused results

obtained by using MW rule. In this subsection, we compared the
performance of the commonly used MIN, MAX, SS and MW rules.

The EER values obtained by using different fusion rules are listed
in Table 4. From Table 4, we can see that the lowest EER is obtained
by the MW rule. The MW rule uses more information with a
training dataset, thus it works better than the MIN, NAX and
SS rules.
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Fig. 9. DET curves for FKPs from (a) left index fingers; (b) left middle fingers; (c) right index fingers; and (d) right middle fingers.

Table 3
EER (%) and d by different schemes in experiment 2.

Method Left index Left middle Right index Right middle

EER d EER d EER d EER d

CompCode[20] 1.884 4.2167 1.883 4.4005 1.445 4.2599 1.175 4.4316
BOCV[6] 2.202 3.9873 2.299 3.3664 1.892 4.0342 1.647 3.9051
ImCompCode&MagCode[21] 1.610 4.3550 1.650 4.4325 1.326 4.3302 1.097 4.5224
MoriCode 1.544 4.4565 1.689 4.5233 1.605 4.4550 1.244 4.6164
MtexCode 2.077 3.4257 2.078 3.4649 2.115 3.3222 2.055 3.4338
MoriCode&MtexCode 1.328 4.1174 1.453 4.0718 1.247 3.9427 1.063 4.1989

Table 4
EER (%) and d by different schemes in experiment 3.

Fusion rules All classes Left index Left middle Right index Right middle

MIN 1.201 1.544 1.689 1.605 1.244
MAX 1.775 2.059 2.066 2.092 2.042
SS 1.128 1.404 1.481 1.310 1.096
MW 1.048 1.328 1.453 1.247 1.063

The bold font indicates the best results.
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4.5. Storage and speed

It should be noted that the proposed MoriCode&MtexCode scheme
needs more storage space than CompCode. In the feature extraction
stage, 6 convolutions are needed, which is also needed for CompCode.
For each orientation, each feature point is represented by 4-bits for
MoriCode and 3-bits for MtexCode. Thus 24-bits and 18-bits are used
respectively. It is easy to see that MoriCode and MtexCode needs
8 times and 6 times storage compared with CompCode.

The FKP recognition software is implemented using the Visual
C#.Net 2010 on a ASUS K42D PC embedded AMD N830 processor
and 4 GB of RAM. The execution time for data preprocessing and
ROI extraction is 128 ms. The time for MoriCode&MtexCode-based
feature extraction and matching is 249 and 15 ms, respectively.
The total execution time for one verification operation is less than
0.5 s, which is fast enough for real-time applications. We believe
that with the optimization of the implementation, the system0s
efficiency could be much further improved.

4.6. Discussion

In section 4.4, we have evaluated the performance of the
proposed MoriCode, MtexCode and MoriCode&MtexCode for all
types of fingers. From the experimental results we found that
MoriCode perform similarly with CompCode for right fingers.

The reason may be that left fingers have more intersected lines
than that of right fingers. Fig. 10(a) shows four FKP ROI images from
four types of finger respectively. To illustrate this more intuitively, we
visualize the standard deviation (std) of the four types of finger as

follows. For each type of fingers, we first count the std of the 6 Gabor
filtering response for each FKP ROI image. Then the std of each type of
fingers can be obtained. For a specific location, if it has intersected
lines, the std for this location may be small and vice verse. The std for
each type of fingers is visualized in Fig. 10(b)–(e), from which we can
see that the std planes for left fingers (Fig. 10(b) and (c)) are relatively
flatter than that of right fingers (see Fig. 10(d) and (e)), which demon-
strate that the left fingers may have more intersected lines than that of
right fingers. WhenMoriCode is performed on right fingers, the multi-
orientation characteristics cannot be well revealed. Thus, MoriCode
may have similar performance with CompCode. Conversely, the left
fingers may have more intersected lines and MoriCode can well
extract multi-orientation information while CompCode cannot. Thus,
in such case, MoriCode performs better than CompCode.

5. Conclusions

This paper presents a novel multiple orientation and texture
information integration scheme for finger-knuckle-print (FKP) ver-
ification. For an input query image, its 6 Gabor filtering responses
are obtained. For multiple orientation feature extraction, each Gabor
filtering response is directly coded by using multilevel image thresh-
olding based quantization technique. For texture feature extraction,
Local Binary Pattern (LBP) operator is first performed on these
Gabor filtering responses and then multilevel image thresholding
based quantization technique is used on the LBP maps. The texture
information can provide extra discrimination for improving FKP
verification performance. For feature matching, the fragility masks,
which mask out the locations that have small responses, are
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Fig. 10. (a) Four FKP ROI images from four types of finger types; the visualization of std for (b) left index; (c) left middle; (d) right index; and (e) right middle.
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incorporated for efficient matching. The score level fusion scheme is
used to get our final matching score. Extensive experimental results
demonstrated that the proposed integration scheme performs better
than existing state-of-the-art methods.
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