
1872 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012

Graph Weight Allocation to Meet
Laplacian Spectral Constraints

S. Yusef Shafi, Murat Arcak, and Laurent El Ghaoui

Abstract—We adjust the node and edge weightings of graphs using
convex optimization to impose bounds on their Laplacian spectra. First,
we derive necessary and sufficient conditions that characterize the
feasibility of spectral bounds given positive node and edge weightings.
Synthesizing these conditions leads naturally to algorithms that exploit
convexity to achieve several eigenvalue bounds simultaneously. The
algorithms we propose apply to many graph design problems as well as
multi-agent systems control. Finally, we suggest efficient ways to accom-
modate larger graphs, and show that dual formulations lead to substantial
improvement in the size of graphs that can be addressed.

Index Terms—Convex optimization, graph Laplacians, linear matrix in-
equalities, multiagent systems.

I. INTRODUCTION

A well-studied tool for characterizing the interconnection topology
of a network of distributed agents is the graph Laplacian matrix [1]. In
particular, the spectrum of the Laplacian contains useful information
about the dynamics of the network. For example, the smallest posi-
tive eigenvalue of a Laplacian, known as the algebraic connectivity, or
Fiedler eigenvalue [2], is a common measure of how well connected a
network is [3]–[6]. On the other hand, the largest eigenvalue must be
sufficiently small for stability of discrete-time consensus algorithms
[4], [7], and for continuous-time formation control algorithms when
agent dynamics can be destabilized by high gain feedback [8].

We present a scheme to enforce constraints on the Laplacian spec-
trum by treating both node and edge weights as decision variables.
Let �� be the �th-smallest eigenvalue of the Laplacian, whose eigen-
values are ordered from least to greatest. Given � � ��� � � � � �� and
�� � �, the lower eigenvalue bound assignment problem is to guar-
antee �� � ��. Likewise, given � � ��� � � � � �� and �� � �, the
upper eigenvalue bound assignment problem is to guarantee �� � ��.
Our goal is to achieve individual upper and lower bounds for several
Laplacian eigenvalues simultaneously. We show how these bounds can
be recast as linear matrix inequality constraints [9] that can be applied
using semidefinite programming.

Convex optimization solutions to several graph problems are
well-documented in the literature, including fastest distributed linear
averaging (FDLA) [10], minimization of total effective resistance on a
graph [11], fastest mixing Markov chains [12] and processes [13], and
Fiedler eigenvalue maximization through vertex positioning [14]. In
FDLA [10], a particular interconnection structure for a discrete system
with symmetric interconnections is specified. The number of iterations
required for linear averaging is minimized by finding a particular

Manuscript received March 25, 2011; revised March 28, 2011 and March
28, 2011; accepted October 14, 2011. Date of publication December 26,
2011; date of current version June 22, 2012. This work was supported in
part by the National Science Foundation under Grants ECCS-0852750 and
ECCS-1101876 and the Air Force Office of Scientific Research (AFOSR)
under Grant FA9550-11-1-0244. Recommended by Associate Editor Y. Hong.

The authors are with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley CA 94720 USA (e-mail:
yusef@eecs.berkeley.edu; arcak@eecs.berkeley.edu; elghaoui@eecs.berkeley.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2011.2181795

weight distribution that assigns iterative update laws for each node’s
state. The goal in many resistor network problems [11] is to minimize
the total effective resistance on a graph by assigning different weights
representing resistances to the links connecting the nodes of an elec-
trical network. The aim for fastest mixing Markov chains [12] and
processes [13] is to find the optimal transition probabilities between
states to reach a stationary distribution as quickly as possible. Finally,
vertex positioning [14] aims to find the optimal locations of vertices,
corresponding to edge weights, in order to maximize the Fiedler
eigenvalue.

Our approach is unique when compared to previous literature on op-
timization of the Laplacian spectrum because it is applicable to any se-
lection of eigenvalues, and assigns weights independently to both nodes
and edges. As demonstrated in the paper, joint tuning of node and edge
weights is an especially powerful tool that goes beyond the commonly-
used edge weighting strategies for achieving spectral constraints.

The remainder of the paper is organized as follows. Section II in-
troduces preliminary results in linear algebra and spectral graph theory
that are necessary for our analysis. Section III outlines a general op-
timization framework that enables upper and lower bounds on sev-
eral Laplacian eigenvalues simultaneously based on node and edge
weighting. Section IV presents sample problems that can be formu-
lated and solved using the methods of Section III. Section V explores
applications to multi-agent systems. Larger graphs are addressed in
Section VI with dual formulations of the optimization framework de-
veloped in Sections III and IV.

II. PRELIMINARIES

We review the following results from linear algebra, which we will
use in Section III. The first result concerns the eigenvalues of a product
of two matrices ([15, Theor. 1.3.20]):

Lemma 2.1: Let � � ��� , 	 � ���, and
 � �. Then �	 and
	� have m identical eigenvalues with �	 having
 � � additional
eigenvalues at zero.

The next lemma follows from the Courant-Fischer theorem, which
characterizes the eigenvalues of a symmetric matrix ([15, Coroll.
4.3.23]):

Lemma 2.2: If � � ��� is symmetric and if ���� � � for all
vectors � � � in a
-dimensional subspace, then � has at least

nonnegative eigenvalues.

Definition 2.3: The square matrices � and 	 are ��������� if
	 � ���� for some square, nonsingular �.

The following lemma is known as Sylvester’s Law of Inertia ([15,
Theor. 4.5.8]):

Lemma 2.4: Let �� 	 � ��� be symmetric matrices. � and 	

are congruent if and only if � and 	 have the same inertia, i.e., the
same number of positive, negative, and zero eigenvalues.

An inequality due to Sylvester characterizes the relationship between
the eigenvalues of two matrices and their products ([16, Section 3.5]):

Lemma 2.5: Given two matrices � � ��� and 	 � ���, the
following inequality holds:

����	�
 � ����		
� �

� ����	�	
 � �
� �����	�
� ����		
��

We next review notions from spectral graph theory that are essen-
tial to this paper. A graph � � �	�� �
 is a collection of nodes �
and a corresponding set of edges �. In this paper, we consider undi-
rected graphs, where two nodes are connected when there exists an
edge incident to both. A graph itself is connected if there exists a se-
quence of edges connecting any pair of nodes in the graph. Given an
undirected graph �	�� �
 with � nodes and � edges, an incidence

0018-9286/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012 1873

matrix � � ��� is an � � � matrix, each of whose columns, in-
dexed by � � �� � � � � �, represents an edge in � linking nodes ��
and �� in � , with ����� � �, ����� � ��, and ����� � � for
all 	 ��
� �. We note that the incidence matrix is not unique for an
undirected graph, and choice of orientation does not change our re-
sults. We denote by � � ��� the � � � nominal Laplacian, and
by �� � �
�� the edge-weighted Laplacian, where
 � � is the
diagonal edge weighting matrix. We denote by �	 � ����
��

the node- and edge- weighted graph Laplacian (henceforth weighted
Laplacian), where � � � is the diagonal node weighting matrix.

We first recall key facts about Laplacian matrices [1]. The matrices
� and �� are symmetric positive semidefinite, with at least one eigen-
value at zero corresponding to an eigenvector �� � ���

�
���� � � � ��� .

If the graph represented by � or�� is connected, then � or ��, respec-
tively, has exactly one eigenvalue at zero. Although �	 is not sym-
metric in general, its eigenvalues possess properties similar to those of
� and ��:

Lemma 2.6: Every eigenvalue of �	 � ����
�� is real and
nonnegative. If �	 represents a connected graph, then all eigenvalues
of �	 , excepting one at zero, are positive.

Proof: A similarity transformation brings �	 to the symmetric
form ���
����

��
�, and so all eigenvalues of �	 are real. Further-
more, the symmetric matrices���
����

��
� and�� are congruent,
and hence Lemma 2.4 guarantees that all eigenvalues of �	 are non-
negative. When �� represents a connected graph, and, thus, has only
one eigenvalue at zero, Lemma 2.4 implies that all eigenvalues of �	 ,
excepting one at zero, are positive.

III. CONVEX CHARACTERIZATIONS OF UPPER AND LOWER

EIGENVALUE CONSTRAINTS

Our goal is to find node and edge weighting matrices � and
 ,
respectively, to assign individual lower and upper bounds for several
eigenvalues of�	 simultaneously. Let ����	� denote the �-th smallest
eigenvalue of �	 . Given �� � � �, define the sets of indices 	��
����
and 	��
���� with each 	 � �� � � and 	 � �� � � an integer
contained in 		� �
. Define the sets of positive scalars 	�

���� and
	��
����. We wish to see if there exist � and
 that satisfy the con-
straints in the following problem:

��
 ��

������� �� �
 ��	� ��
 �
 � �� � � � � �

�� ��	� ��� � � � �� � � � � �� (1)

A. Bounding Eigenvalues From Below

Given� � � and�
 � �, we wish to design node and edge weights
� and
 , respectively, such that �
��	� � �
. We note that by
itself, the lower eigenvalue bound �
��	� � �
 can be enforced
by scaling � by �
�����
 or
 by �
��
���. However, when
the graph optimization problem imposes upper eigenvalue constraints
as in (1) or objective functions, this approach would likely be infea-
sible. In contrast, our results make it possible to apply several upper
and lower eigenvalue bounds at once. To begin, we construct a linear
matrix inequality enforcing the eigenvalue constraint, making use of
the following lemma:

Lemma 3.1: Suppose that � � �, �
 � �����
��� is a full
column rank matrix whose columns are orthogonal, and � is a sym-
metric matrix. If ��

��
 � �, then �
��� � �.
Proof: The result follows immediately from Lemma 2.2: the sub-

space spanned by the columns of �
 is � � � � � dimensional, so
�
��� � �.

The next theorem provides a sufficient condition in the form of a
linear matrix inequality constraint to enforce lower eigenvalue bounds:

Theorem 3.2: Let �
 be as in Lemma 3.1. The constraint

��

��� � �
���
 � � (2)

implies that �
��	� � �
.
Proof: First, we note by Lemma 3.1 that if (2) holds, then the

matrix �� � �
� has at most � � � negative eigenvalues. By con-
gruence, ���
����

��
� � �
� has at most �� � negative eigen-
values, which means that the symmetric positive semidefinite matrix
�� ���
����

��
� has at most �� � eigenvalues less than �
.
Similarity of �	 to �� implies that �	 has at most �� � eigenvalues
less than �
, implying that �
��	� � �
.

We now present a convex feasibility program that enforces the lower
eigenvalue bound sufficient linear matrix inequality condition of The-
orem 3.2, as follows:

��
 ��

������� �� ��

��
�� � �
���
 � �

� � ��
 � �� ��

�������� (3)

Theorem 3.2 provides only a sufficient condition to imply �
��	� �
�
, because the choice of�
 is arbitrary. We now present a necessary
and sufficient condition enabled by a specific choice of �
:

Theorem 3.3: The inequality �
��	� � �
 holds if and only if
��

��� � �
���
 � �, where �
 � �����
��� is the matrix

whose columns are the eigenvectors corresponding to the � �� � �
largest eigenvalues of �� � �
� .

Proof: Necessity follows from Theorem 3.2. To prove sufficiency,
suppose that �
��	� � �
. By similarity, �� � ���
����

��
�

has the same spectrum as�	 . Then ����
� has at most ��� nega-
tive eigenvalues. By congruence, so does ����
� . Considering the
projection matrix �
��

, it follows that ��� � �
���
��

 must

have exclusively nonnegative eigenvalues. Lemma 2.1 then implies that
��

��� � �
���
 � �.
Theorem 3.3 is the basis for an iterative procedure presented in

Section IV-A that allows for improved performance when the con-
straints of (3) are paired with an objective.

B. Bounding Eigenvalues From Above

Given � � � and �� � �, we wish to design node and edge weights
� and
 , respectively, such that ����	� � ��. We construct a linear
matrix inequality enforcing this eigenvalue constraint. The analysis is
similar to that of the previous section, and so the proofs are omitted.

Theorem 3.4: Let �� � ��� be a full column rank matrix whose
columns are orthogonal. The constraint

��
� ���� � ����� � � (4)

implies that ������ � ��.
We now present a convex feasibility program that enforces the upper

eigenvalue bound sufficient linear matrix inequality condition of The-
orem 3.4, as follows:

��
 ��

������� �� ��
� ���� � �
�� ��� � �

� � ��
 � �� ��

�������� (5)

As in the case of bounding eigenvalues from below, Theorem 3.4 pro-
vides only a sufficient condition to imply ����	� � ��. The following
theorem gives a necessary and sufficient condition enabled by a spe-
cific choice of ��:

Theorem 3.5: The inequality ����	� � �� holds if and only if

�
� ���� � ���
� � �, where
� � ��� is the matrix whose

1874 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012

columns are the eigenvectors corresponding to the � smallest eigen-
values of ��� � ��.

An iterative procedure presented in Section IV-B employs Theorem
3.5 and allows for improved performance when the constraints of (3)
and (5) are paired with an objective. A special case of Theorem 3.5 is
when � � �. In this case, the �� that satisfies Theorem 3.5 is a square,
orthogonal matrix, and thus the eigenvalues of ��� ��������� ���
and ��� � ���� are equal by Lemma 2.1. Theorem 3.5 therefore
simplifies to the following corollary:

Corollary 3.6: The inequality ������ � �� holds if and only if
��� � �� � �.

IV. EXAMPLES OF GRAPH DESIGN PROBLEMS

We provide two sample problems that can be addressed by com-
bining (3) and (5), demonstrating the flexibility of our formulation to
impose individual constraints on several eigenvalues simultaneously.
In our numerical examples, we require that all node and edge weights
be contained in ��	 ����, where �
 � is a small positive parameter that
guarantees that the largest and smallest weights do not have too great a
relative difference. Smaller values of � increase the number of feasible
� and � matrices, making it more likely that any given constraint set
is feasible, but run the risk of numerical loss of precision with very
large differences in individual node and edge weightings. We perform
our numerical examples using CVX, a package for disciplined convex
programming [17], [18], and the SDPT3 interior point solver [19].

A. Minimizing the Largest Eigenvalue Given a Minimum Connectivity
Constraint

In formation control problems (see, e.g., Section V), it is desirable to
have a lower bound on �� to ensure adequate convergence time while at
the same time imposing an upper bound on �� for stability. We present
the problem of minimizing the largest eigenvalue ������ of a graph
given the requirement ������ � ��, making use of (3) and (5) as well
as including upper and lower bounds on the entries of � and � , as
follows:

�	
	�	��
����	

�

������ �� ���� � ���� � �

��
� ����� � ������ � �

���
 �� � �
	 ���
 � � � �
 � �	 � �	���
��� (6)

The problem is quasiconvex for any �� �
�������. To find the op-

timal � � ��������� for the problem, we perform a bisection on
the interval ���	 ������, where in each iteration, a convex feasibility
problem is solved for the value of� given by the bisection. As discussed
in Section III-A, an arbitrary choice of�� may lead to conservatism in
the optimal � achieved. To improve the value of �, we propose Algo-
rithm 1, which makes use of Theorem 3.3 and updates ��.

Algorithm 1 Iterative Updates for ��

1: � �
 , � �
 , � � �.

2: repeat

3: Set �� to be the matrix whose columns are the eigenvectors
corresponding to the �� � largest eigenvalues of ���� � ��� .

4: Solve (6) and update � , � .

5: until ��
 � �
��� � � OR (������ � ��� AND �	
��� � �)
OR (������ � ��� AND �	
��� � �).

Fig. 1. Chain graph with � nodes.

We note that when � and � are identity and �� is initialized as in
Algorithm 1, the columns of �� are orthogonal both to each other and
to ��. In our implementation, we choose � to be very small, and the
effective stopping criteria are the conditions on � and � involving
�. The parameter � can be tuned by being made smaller or larger to
achieve improved or worsened values of �with the resulting difference
��
��
��� relatively smaller or larger, respectively, when the algorithm
terminates.

1) Numerical Example: For an unweighted chain graph with
twenty nodes obeying the structure of Fig. 1, we have ����� �
������ and � � ������������ � ��������. We set � � ����,
and apply our method to reduce �. For the first three experiments,
(6) was solved with �� set to be a matrix whose � � � columns
are orthogonal to ��. The lower eigenvalue bound was set to be
�� � �����. Solving for edges only, with nodes weighted to iden-
tity, produced no re-weighting of edges, and so � was unchanged.
In contrast, solving for nodes only, with edges weighted to identity,
resulted in � � ��������. Simultaneous optimization with both the
nodes and edges as decision variables produced a marked improve-
ment to � � �������. Allowing �� to vary in accordance with
Algorithm 1 described above resulted in � � ����� . By setting
� � ����, we achieved � � ������.

B. Minimizing the Gap Between �� and ����

We consider graphs with clusters, that is, groupings of densely con-
nected nodes with sparse external links. The Laplacian of a graph with
� clusters exhibits, in addition to the first eigenvalue at zero, ��� addi-
tional eigenvalues close to zero. Thus, in such graphs, there is a gap be-
tween the first � eigenvalues and the rest. Examples of systems obeying
the clustered structure have been studied in building sensor networks
[20] and power systems [21], where distributed estimation algorithms
are increasingly prevalent. The gap in the eigenvalues may be undesir-
able because it leads to a two-time-scale behavior in the convergence
of these algorithms [22].

To obtain uniform convergence rates for nodes in different clusters,
we maximize �� while requiring ���� � ����, and in so doing,
minimize the gap between ������ and ��������. Additionally, we
fix ������ � ��, so that the rest of the spectrum of the weighted
Laplacian does not deviate far from its original location. The problem
is solved with a bisection to maximize � on the interval ������	 �����.
We impose upper and lower bounds on the entries of � and � , and
introduce �� �

������� and ���� � ������� defined according
to Theorems 3.2 and 3.4, respectively. We now write the quasiconvex
problem, with � � �����������, as follows:

���	�	��
����	

�

������ �� ��� � ���� � �

��
� ����� � ����� � �

��
��������� ����� ����� � �

���
 �� � �
	 ���
 � � � �
	 �	 � �	���
��� (7)

We can realize significant improvements in reducing the gap between
������ and �������� by employing Algorithm 2, an iterative proce-
dure similar to Algorithm 1 of Section IV-A.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012 1875

Fig. 2. Eight-node graph with two clusters.

Algorithm 2 Iterative Updates for ��, ����

1: � � � , � � � , � � �.

2: repeat

3: Set �� to be the matrix whose columns are the eigenvectors
corresponding to the �� � largest eigenvalues of 	�	� �
�� .

4: Set ���� to be the matrix whose columns are the eigenvectors
corresponding to the ��� smallest eigenvalues of
���� �	�	� .

5: Solve (7) and update � , � .

6: until ��� � ����� � � OR (������ 	
�� AND �
���� 	
)
OR (������ 	
�� AND �
���� 	
).

1) Numerical Example: Consider the eight node graph with
two clusters in Fig. 2. Such a graph, with identical weights, ex-
hibits a significant gap between
� and
�. We have the relation

�����
���� 	 ����
��, with the eigenvalues of the unweighted
graph at �������� ������� ������� ������� � � � � ������� �������.

Our goal is to reduce the gap
�����
���� by increasing the
second eigenvalue while bounding the third and eighth eigenvalues
from above. To do so, we employ Algorithm 2, iteratively updating both
�� and �� while requiring
����� � ������ and
����� � ������
and setting
 	 ����. We find the optimal value
����� 	 ������,
with
������
����� 	 �.

V. APPLICATION TO MULTI-AGENT SYSTEMS

We now apply the results of Section IV-A to multi-agent systems
whose feedback structure is described by a graph Laplacian.

Each of the � subsystems possesses identical dynamics, as follows:

�� �
��� 	 ��� ����
�� 	 ����

(8)

and is controlled according to the feedback law

�� 	 ����
�

���

��������� � ��� (9)

where � � � �� , � � � �� , and � � � �� , with �� and
�	 the dimension of the state space and input and output, respectively.
�� denotes the neighbors of agent �, that is, the other agents whom
agent � senses. We assume that the individual plants are stable or can be
stabilized by local state feedback (see the numerical example below).
Therefore, we assume that � is Hurwitz. �� denotes entry � of the
diagonal node weighting matrix � , while ������ denotes the entry of
the edge weighting matrix� that corresponds to the edge linking nodes
�� and �� . The block diagram of the system is shown in Fig. 3, with each

Fig. 3. Block diagram of the multi-agent system (8)–(9).

subsystem �� having input given by (9). We let � 	 ���� � � � � � �
�
� �

� ,
and rewrite (8) and (9) as

�� 	 ��� 	 � � �� 	 ������� (10)

As a consequence of the identical dynamics of each subsystem, the
system can be decoupled into � identical subsystems by a change
of coordinates using the basis of eigenvectors of �� [3]. Let � be a
change-of-coordinates matrix that diagonalizes �� and let � be the
diagonal matrix of eigenvalues of �� . Then � 	 ������ . Now let
� 	 � 	 � , and let �� 	 � ���. In the new coordinates, the dynamics
are given by

��� 	 ��� 	 � �� 	 �������� (11)

and, thus, the eigenvalues are determined from the characteristic poly-
nomials of � �
������� , � 	 �� � � � � �. This means that the multi-
agent system can be analyzed as � decoupled feedback systems with
constant gain
�����, � 	 �� � � � � �. In particular, larger Laplacian
eigenvalues imply higher gains for these decoupled systems, which
is often undesirable. For example, if the transfer function ���� �
� ���� has non-minimum phase zeros or relative degree higher than
two, high gain will result in right half plane poles, rendering the multi-
agent system unstable. The largest eigenvalue minimization method of
Section IV-A can mitigate this instability by finding a node and edge
weighting such that the spectrum of �� spectrum falls within a range
specified by design requirements.

1) Numerical Example: We consider formation control for four
planar vertical takeoff and landing, or PVTOL, aircraft, as described
in [23]. We model the state of the aircraft by its lateral position, �, ver-
tical position �, and its roll, �. The equations of motion, in input-output
linearized form, are given by the following:

�� 	��

�� 	��
�� 	
����
� � � ��� ��� � �
� ����� (12)

The zero dynamics of the system are unstable and the system is non-
minimum phase

�� 	
�� �
� �� (13)

We assume that the aircraft are in hover operation and are stabilized
vertically, so we discard � and ��, the vertical thrust input. We set
 	
��� and see that the linearized dynamics around � 	 �, � 	 � are:

�� 	

� � � �

� � � �

� � � �

� � �� �

� 	

�

�

�

��

� 	

��

�

�

�

�

� (14)

The input to each aircraft is dictated by the input term of (8), with the
graph structure of a four node chain. We choose a state feedback � 	
� � �
������ ������� ������� �, which renders � 	 �� � ��
stable. To achieve a reasonable response time and to maintain stability,

1876 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012

Fig. 4. PVTOL formation of four aircraft with unweighted, scaled graph. Each
row represents a snapshot in time in ascending order. Each aircraft’s maximum
roll angle and amplitude of deviation from the desired relative position increases
in time, indicating instability.

Fig. 5. PVTOL formation of four aircraft with weighted graph. Each row repre-
sents a snapshot in time in ascending order. Each aircraft’s maximum roll angle
and amplitude of deviation from the desired relative position of the aircraft de-
crease in time as it converges to formation.

we wish to contain the eigenvalues of the weighted Laplacian in the
interval ���� ����. In particular, the upper bound of this interval guar-
antees a damping ratio greater than 0.6. For the unweighted Laplacian,
we have � � ����	�����	 � ��
�
�, which means that scaling the
Laplacian by a constant � � �������	 to meet the lower eigenvalue
constraint �����	 � �� will violate the upper eigenvalue constraint
�����	 � ��� and lead to instability as illustrated in Fig. 4. In con-
trast, applying the node and edge weights found by applying Algorithm
1 results in an improvement to � � ������. We show simulation re-
sults with the new weights in Fig. 5.

VI. DUAL FORMULATION OF THE QUASICONVEX LARGEST

EIGENVALUE MINIMIZATION PROBLEM

Popular interior point methods, such as SDPT3 [19], when applied
to the convex problems derived Section IV, are limited as to the size of
graph they can handle, breaking down for many graphs with more than

several tens of nodes. We show how using Lagrangian dual formula-
tions enables our eigenvalue optimization framework to accommodate
graphs with several hundred nodes and edges. In the following exposi-
tion, we derive the dual of the largest eigenvalue minimization problem
of Section IV-A.

We begin with the convex problem solved as part of the solution to
the largest eigenvalue minimization problem. We denote by ��� �� the
trace inner product of two matrices of appropriate dimension. We set
� � ������� to be a matrix with columns orthogonal to each other
and to ��. The convex problem we dualize is

�
�� 	�

������� �� �
 � �	�� � �

�� ��	�� �
	� � �

 � �
� 	 � ��
� 	 �
������� (15)

To derive the dual problem, we note that the Lagrangian function is

��	�
��� �� �� � 	 � � ��� �
 ��	�� �

� ����� ��	�� �
	��

� �� ��
���
	� ���	��
��
���		�

(16)

We seek to obtain a finite minimization of the Lagrangian function with
respect to
 and 	 . Thus, minimizing (16) with respect to
 yields
the constraint:

�
��� ��� ��	 � � (17)

where we have defined a new variable �� � ���� , from which we
observe that ���� � �. Likewise, minimizing the Lagrangian with
respect to 	 yields the constraint:

�
����� �� � ��	�	 � �� (18)

To express the nullspace constraint on �� as a single equality constraint,
we begin by defining the matrix� � ��� to be� � ���

�
� , and state

and prove the following lemma:
Lemma 6.1: Let� be a positive semidefinite matrix. Then��� � �

if and only if ����� � �.
Proof:

��� � � 	
 �
�
���� ��

	
 ���������	 � � 	
 ����� � ��

Combining the constraints found by minimizing (16) with respect to

 and 	 , we now write the resulting dual problem, where we have
eliminated the slack variable �:

���
�
 �
������

�
�
��

������� �� �
����� �� � ��	�	 � �

�
��� ��� ��	 � �

� ����� ��

�� �� � �� � � �� (19)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 7, JULY 2012 1877

TABLE I
RANDOM GRAPHS WITH � NODES AND � EDGES

TABLE II
CHAIN GRAPHS WITH � NODES

The dual problem we have derived explicitly separates semidefinite
matrix variables and linear variables as well as limits the growth of
the number of equality constraints to scale linearly with the number of
nodes and edges in the graph. Solving it using interior point methods
is reasonably fast for graphs with up to 1000 edges, meaning that in
addition to being substantially faster than the primal formulation, the
dual formulation can accommodate significantly larger graphs.

We compare the performance of the SDPT3 algorithm on the primal
and dual problems. The goal is to find feasible � and � matrices
for (15) and (19) given �. We characterize the performance in terms
of CPU runtime in seconds on an Intel Quad Core 2 Duo 2.2 GHz
system with 8 GB of RAM. In Table I, we consider random graphs
with � nodes,� edges, and parameter �, while in Table II, we consider
chain graphs with � nodes with � � �. While the primal formulation
cannot accommodate chain graphs with more than 65 nodes, the dual
formulation can accommodate graphs with more than 650 nodes, an
order of magnitude improvement.

VII. CONCLUSION

The graph Laplacian is an indispensable tool for assessing the dy-
namics of a multi-agent system. In this paper, we have presented a novel
approach to impose bounds on the Laplacian spectrum. We have shown
how node and edge weights can be adjusted using convex optimization
to impose individual constraints on several eigenvalues simultaneously.
In future work, we will quantitatively characterize optimality gaps and
convergence properties for Algorithms 1 and 2. We plan to explore re-
lated problems such as synthesis of relative sensing networks [24]. We
are also examining first order methods [25], [26] that will allow us to
accommodate systems with thousands of agents.

REFERENCES

[1] F. Chung, Spectral Graph Theory American Mathematical Society,
1997.

[2] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Mathemat. J.,
vol. 23, no. 2, pp. 298–305, 1973.

[3] J. Fax and R. Murray, “Information flow and cooperative control of
vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp.
1465–1476, Sep. 2004.

[4] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[5] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[6] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug.
2000.

[7] M. Arcak, “Passivity as a design tool for group coordination,” IEEE
Trans. Autom. Control, vol. 52, no. 8, pp. 1380–1390, Aug. 2007.

[8] H. Bai and M. Arcak, “Instability mechanisms in cooperative control,”
IEEE Trans. Autom. Control, vol. 55, no. 1, pp. 258–263, Jan. 2010.

[9] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory Society for Industrial Math-
ematics, Philadelphia, PA, 1994.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. & Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[11] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of
a graph,” SIAM Rev., vol. 50, no. 1, pp. 37–66, 2008.

[12] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Rev., vol. 46, no. 4, pp. 667–689, 2004.

[13] J. Sun, S. Boyd, L. Xiao, and P. Diaconis, “The fastest mixing Markov
process on a graph and a connection to a maximum variance unfolding
problem,” SIAM Rev., vol. 48, no. 4, pp. 681–699, 2006.

[14] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian,” IEEE Trans. Autom. Con-
trol, vol. 51, no. 1, pp. 116–120, Jan. 2006.

[15] R. Horn and C. Johnson, Matrix Analysis. New York: Cambridge
Univ. Press, 1990.

[16] F. Gantmacher, The Theory of Matrices. New York: Chelsea Pub.
Co., 2000.

[17] M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex
Programming 2010 [Online]. Available: http://cvxr.com/cvx, 1.21

[18] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” Recent Adv. Learn. and Control, pp. 95–110, 2008.

[19] K. Toh, M. Todd, and R. Tutuncu, “SDPT3–A Matlab software package
for semidefinite programming,” Optimiz. Meth. and Softw., vol. 11, no.
12, pp. 545–581, 1999.

[20] J. Kim, M. West, E. Scholte, and S. Narayanan, “Multiscale consensus
for decentralized estimation and its application to building systems,” in
Proc. American Control Conf., 2008, pp. 888–893.

[21] J. Chow, Ed., Time-Scale Modeling of Dynamic Networks With Ap-
plications to Power Systems Berlin/Heidelberg, Germany, Springer-
Verlag, 1982.

[22] E. Biyik and M. Arcak, “Area aggregation and time-scale modeling
for sparse nonlinear networks,” Syst. & Control Lett., vol. 57, no. 2, pp.
142–149, 2008.

[23] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control.
Berlin/Heidelberg, Germany: Springer–Verlag, 1999.

[24] D. Zelazo and M. Mesbahi, “Graph-theoretic analysis and synthesis of
relative sensing networks,” IEEE Trans. Autom. Control, vol. 56, no. 5,
pp. 971–982, May 2011.

[25] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
Lagrangian methods for semidefinite programming,” Math. Programm.
Comput., vol. 3, no. 2, pp. 203–230, 2010.

[26] Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg, “Row by Row Methods
for Semidefinite Programming,” Tech. Rep. Dept. IEOR, Columbia
Univ., New York, 2009.

