
CONSENSUS-BASED DISTRIBUTED PARTICLE FILTERING ALGORITHMS FOR
COOPERATIVE BLIND EQUALIZATION IN RECEIVER NETWORKS

Claudio J. Bordin Jr.

UFABC, Brazil
claudio.bordin@ufabc.edu.br

Marcelo G. S. Bruno

Instituto Tecnológico de Aeronáutica, Brazil
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ABSTRACT

We describe in this paper novel consensus-based distributed
particle filtering algorithms which are applied to cooperative
blind equalization of frequency-selective channels in a net-
work with one transmitter and multiple receivers. The pro-
posed algorithms employ parallel consensus averaging itera-
tions to evaluate the product of some node-dependent quanti-
ties across the receiver network, thus eliminating the need for
message broadcasts beyond each receiver’s local neighbor-
hood. Additionally, parallel minimum consensus iterations
are used to assess the convergence of the quantized consen-
sus averages and ensure accordingly the coherence of particle
sets across the different network nodes. We verify via com-
puter simulations that the consensus-based schemes exhibit
a small performance gap compared to both centralized and
communication-intensive broadcast solutions.

Index Terms— Distributed Algorithms, Particle Filters,
Blind Equalization, Consensus Averaging.

1. INTRODUCTION

The ubiquity of sensor networks where each node is equipped
with computing and communication capabilities has stimu-
lated the development of distributed algorithms for solving a
variety of problems. We consider here a setup where a single
transmitter broadcasts a sequence of discrete-valued symbols
to a network of multiple remotely located receivers. Rather
than forwarding the local observations to other nodes or to
a data fusion center, we aim instead at deriving algorithms
in which the different nodes process their own local obser-
vations independently, but also cooperate with each other to
approximate the optimal estimate of the transmitted sequence
given all measurements in the network.

Previous distributed filtering algorithms are mostly lim-
ited to linear estimation frameworks [1], [2], being not ideally
suited for distributed equalization of digital broadcast chan-
nels, as the optimal MAP estimate of the transmitted data se-
quence may significantly differ from the LMMSE estimates
obtained by conventional adaptive or Kalman filters. That
limitation may be circumvented by using nonlinear particle
filters that converge asymptotically in the number of particles

to the desired MAP estimate. The development of distributed
particle filters has been hindered, however, by the fact that,
unless further approximations are made, all nodes must ob-
tain the same set of particles and weights. To comply with
this restriction, most methods developed so far [3],[4], [5] rely
on broadcast of messages across the network, an undesirable
feature in many scenarios with communication constraints.

In this paper, we eliminate the broadcast requirement by
introducing new consensus-based, fully distributed particle
filtering algorithms. The algorithms employ consensus aver-
aging [6] to evaluate the product of some node-observation-
dependent probability densities across the receiver network,
assessing the convergence of quantized approximations to
those quantities at all nodes via minimum consensus [7]. An
alternative consensus-based approach to distributed particle
filtering was introduced in [8] in the context of a target track-
ing application. Unlike our work, reference [8] assumes that
the parameters of the observation models are perfectly known
at every node and uses both a different distributed importance
function and a different consensus strategy.

The remaining text is organized as follows: in Sec. 2 we
describe the problem setup, briefly introducing in Sec. 3 a
centralized particle filter approach to its solution. In Sec-
tion 4, we present the new consensus-based distributed par-
ticle filter schemes (CB-I and II), whose performance is as-
sessed in Sec. 5. Our conclusions are summarized in Sec. 6.

2. PROBLEM SETUP

Denote by {bn} an independent, identically distributed (i.i.d.)
binary bit sequence and by {xn}, xn ∈ {±1}, the corre-
sponding differentially encoded symbols. We assume that the
observations yr,0:n � {yr,0, . . . , yr,n} at the r−th node of a
network of R receivers are obtained as the output of the addi-
tive noise frequency-selective FIR channel

yr,n = h
H
r xn + vr,n , (1)

where hr ∈ C
L×1 is a vector with the (time-invariant) chan-

nel impulse response terms, xn � [xn . . . xn−L+1]
T , and vr,n

represents an i.i.d zero-mean complex Gaussian random pro-
cess of variance σ2

r .
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The unknown, random parameters hr and σ2
r , 1 ≤ r ≤

R, are assumed to be independent for r �= s, and dis-
tributed a priori as σ2

r ∼ IG(σ2
r |α;β) and hr | σ2

r ∼
NL(hr|0; Iσ

2
r/ε

2), where NL and IG denote respectively
an L−variate Gaussian and an inverse Gamma p.d.f., and
{α, β, ε} are the model’s hyperparameters.

Under these hypotheses, we aim at developing a recur-
sive method for obtaining smoothed MAP estimates b̂n−d =
argmaxbn−d

p(bn−d|y1:R,0:n), where d ≥ 0 and y1:R,0:n �

{y1,0:n . . . yR,0:n}.

3. CENTRALIZED SOLUTION VIA PARTICLE
FILTERS

Particle filters allow one to approximate the posterior proba-
bility mass function (p.m.f) of the transmitted bits as

p(bn−d|y1:R,0:n) ≈

Q∑
q=1

w(q)
n I

{
bn−d = b

(q)
n−d

}
, (2)

where I{·} denotes for the indicator function, Q the num-
ber of particles b

(q)
n , sampled from an importance function

π(·), and w
(q)
n are the importance weights. Exploiting that

each distinct bit sequence b
(q)
−L:n−1 uniquely defines a corre-

sponding state sequence x
(q)
0:n, the so-called optimal impor-

tance function [9] can be written as π(bn|b
(q)
−L:n−1, y1:R,0:n)

= p(xn | x
(q)
0:n−1, y1:R,0:n), which can be determined as

p(xn | x
(q)
0:n−1, y1:R,0:n) =

p(xn,x
(q)
0:n−1, y1:R,0:n)∑

xn
p(xn,x

(q)
0:n−1, y1:R,0:n)

.

(3)
The importance weights can in turn be recursively propa-
gated [9] as

w(q)
n ∝ w

(q)
n−1

∑
xn

p(xn,x
(q)
0:n−1, y1:R,0:n)

p(x
(q)
0:n−1, y1:R,0:n−1)

. (4)

From the a priori independence of the unknown parameters
for each receiver’s channel, one deduces [5] that

p(x
(q)
0:n, y1:R,0:n) ∝

R∏
r=1

p(x
(q)
0:n, yr,0:n). (5)

Finally, under the assumptions of Sec. 2, one can show after
some algebraic manipulations [9] that

p(x
(q)
0:n, yr,0:n) =

∫
R+

∫
CL

p(x
(q)
0:n, yr,0:n,hr, σ

2
r) dhr dσ2

r

∝ |Σ(q)
n |

[
β(q)
r,n

]−αn

, (6)

where Σ
(q)
n , β(q)

r,n, and αn can be recursively computed via

αn = αn−1 + 1, (7)

β(q)
r,n = β

(q)
r,n−1 + ‖e(q)r,n‖

2/γ(q)
n , (8)

h̄
(q)
r,n = h̄

(q)
r,n−1 +Σ

(q)
n−1x

(q)
n (e(q)r,n)

∗/γ(q)
n , (9)

Σ
(q)
n = Σ

(q)
n−1 −Σ

(q)
n−1x

(q)
n (x(q)

n )HΣ
(q)
n−1/γ

(q)
n , (10)

with α−1 = α, β(q)
r,−1 = β, h̄(q)

r,−1 = 0, Σ(q)
−1 = Iε−2, e(q)r,n �

yr,n − (h̄
(q)
r,n−1)

H
x
(q)
n , and γ

(q)
n � 1 + (x

(q)
n )HΣ

(q)
n−1x

(q)
n .

3.1. Cooperative Approach

Substituting (5) into (3), the expression of the optimal impor-
tance function can be rewritten as

p(xn|x
(q)
0:n−1, y1:R,0:n) =

∏R

r=1 λ
(q)
r,n(xn)∑

xn

∏R

r′=1 λ
(q)
r′,n(xn)

(11)

where λ
(q)
r,n(xn) � p(xn,x

(q)
0:n−1, yr,0:n). Likewise, plugging

in (5) into (4) leads to the weight update rule

w(q)
n ∝ w

(q)
n−1

∑
xn

R∏
r=1

λ
(q)
r,n(xn)

λ
(q)
r,n−1(x

(q)
n−1)

. (12)

The DcPF-II algorithm in [5] is an exact decentralized im-
plementation of (11)-(12). Despite its asymptotic optimality
in the number of particles, that algorithm has the undesirable
feature of relying on broadcasting particle-dependent quanti-
ties across the receiver network.

4. CONSENSUS-BASED ALGORITHMS

Equations (11) and (12) can be rewritten respectively as

p(xn|x
(q)
0:n−1, y1:R,0:n) =

exp
(
Λ
(q)
n (xn)

)
∑
xn

exp
(
Λ(q)
n (xn)

) , (13)

w(q)
n ∝ w

(q)
n−1

∑
xn

exp
(
Λ(q)
n (xn)− Λ

(q)
n−1(x

(q)
n−1)

)
, (14)

where Λ
(q)
r,n(xn) � loge

(
λ
(q)
r,n(xn)

)
and Λ

(q)
n (xn) �

∑R

r=1

Λ
(q)
r,n(xn). The latter sum can be evaluated via 2Q parallel1

consensus averaging iterations [6] as

Λ(q)
n (xn) = lim

k→∞

Λ̃(k,q)
r,n (xn), ∀r (15)

where k is the consensus algorithm iteration index (indepen-
dent of n) and

Λ̃
(k,q)
r,n (xn) = Λ̃

(k−1,q)
r,n (xn)+∑

s∈N(r)

ars

(
Λ̃(k−1,q)
r,n (xn)− Λ̃(k−1,q)

s,n (xn)
)
. (16)

1Observe that one consensus algorithm must be employed for each of the

Q particles and each possible value of x(q)
n given x

(q)
n−1 (2, for binary signal).
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In (16), N(r) denotes the neighborhood of node r and ars are
real-valued weights such that ars ≥ 0, ∀ (r, s), and ars =

asr. By stacking the terms Λ̃
(k,q)
r,n (xn), r = 1, . . . , R, into a

long R× 1 vector Λ̃
(k,q)

n (xn), equation (16) may be rewritten
in compact matrix notation as

Λ̃
(k,q)

n (xn) = A Λ̃
(k−1,q)

n (xn) (17)

where A is, by construction, an R × R doubly stochastic
matrix whose rows and columns both add up to one. If the
weights ars are additionally chosen such that matrix A is
primitive then, as k → ∞, Ak converges [10] to a matrix
with identical entries equal to 1/R. It suffices then to initial-
ize (16) with the initial conditions Λ̃(0,q)

r,n (xn) � RΛ
(q)
r,n(xn)

to achieve the desired limit in (15).
In general, for any finite k, ε

(k,q)
r,n � Λ̃

(k,q)
r,n (xn) −

Λ
(q)
n (xn) �= 0. Therefore, a direct application of consen-

sus averaging would result in distinct values for the impor-
tance function and weights at each node for the same particle
q. This would, in general, result in distinct particle sets at
each node, even if synchronous sampling/resampling [3] is
employed, violating previous assumptions. To guarantee co-
herence in the particle sets across the network nodes, some
form of quantization step has to be used, as we describe in
the sequel.

4.1. CB-I Algorithm

In this Section, we propose a new technique for detecting con-
sensus. Let Q(·) denote a deterministic quantizer. At the node
r, one can evaluate the function

ι(k,q)r,n =

⎧⎨
⎩

1, if Q(Λ̃
(k,q)
r,n (xn)) = Q(Λ̃

(k,q)
s,n (xn)),

∀s ∈ N(r),
0, otherwise.

(18)
If ι(k,q)r,n = 1, ∀r (for a fixed k), the transitivity of the equal-

ity operator assures that Q(Λ̃
(k,q)
r,n (xn)) = Q(Λ̃

(k,q)
s,n (xn)),

∀r �= s. Therefore, if this condition is verified, one could
replace Λ

(q)
n (xn) in (13)-(14) with the quantized version of

Λ̃
(k,q)
s,n (xn) for any chosen s, yielding the same particle set

and weights at all nodes.
The latter convergence condition can be verified by run-

ning a parallel minimum consensus protocol [7]. Namely, it
suffices to verify whether min

r
{ι(k,q)r,n } = 1 for each particle q.

In turn, min
r

{ι(k,q)r,n } can be computed iteratively at each node

r using the recursion

ι̃(l+1,q)
r,n = min{ι̃(l,q)s,n }, s ∈ {N(r) ∪ r}, (19)

where ι̃
(0,q)
r,n = ι

(k,q)
r,n and l is a separate iteration index. Min-

imum (or Maximum) consensus iterations are guaranteed to
converge in at most D steps, where D is the diameter of the
network graph, i.e., the longest shortest path between any two

pair of nodes [7]. Therefore, if ι̃(D,q)
r,n = 1 at any node, one

can assure that consensus on the quantized sum of log densi-
ties has been achieved.

To avoid the need to perform D minimum consensus steps
for each average consensus step k, one can use the technique
introduced in [7], which consists of making l = k and reset-
ing the minimum consensus protocol at every D steps, i.e.,
making ι̃

(k,q)
r,n = ι

(k,q)
r,n , if mod (k,D) = 0. Note that this

procedure only allows one to check whether consensus has
been reached for k such that mod (k − 1, D) = 0.

4.2. CB-II Algorithm

The algorithm CB-I suffers from the fact that there is no
obvious way to quantize Λ

(k,q)
r,n , since these quantities are

unbounded and their distribution is hard to determine a pri-
ori. Therefore, if an excessively fine quantization step is
employed, average consensus may take too long to converge.
On the other hand, if an overly coarse step is used, particle
filter performance may be affected.

To sidestep this limitation, we propose that consensus be
checked instead for the quantities

p̃kr (xn|x
(q)
0:n−1, y1:R,0:n) = Q1

⎛
⎜⎜⎝

exp
(
Λ̃
(k,q)
r,n (xn)

)
∑
xn

exp
(
Λ̃(k,q)
r,n (xn)

)
⎞
⎟⎟⎠ ,

(20)

w̃(k,q)
r,n =Q2

⎛
⎜⎜⎜⎝
w̃

(q)
r,n−1

∑
xn

exp
(
Λ̃(k,q)
r,n (xn)− Λ̃

(q)
r,n−1(x

(q)
n−1)

)

∑
q

∑
xn

exp
(
Λ̃(k,q)
r,n (xn)− Λ̃

(q)
r,n−1(x

(q)
n−1)

)

⎞
⎟⎟⎟⎠,

(21)
which, unlike Λ̃

(k,q)
r,n , are bounded real-valued numbers in the

interval [0, 1]. In (20) and (21), Λ̃(k,q)
r,n (xn) is propagated via

consensus averaging as in the CB-I algorithm. On the other
hand, w̃(q)

r,n−1 and Λ̃
(q)
r,n−1(x

(q)
n−1) denote the last unquantized

approximations obtained via consensus averaging at instant
n− 1.

5. SIMULATION RESULTS

The steady state performance of the proposed algorithm was
assessed via simulations consisting of 200 independent Monte
Carlo runs. In each realization, we computed the mean bit er-
ror rate (BER) as a function of EB/N0, transmitting a random
sequence of 300 i.i.d bits, with the first 150 bits discarded to
allow for convergence. For comparison, we ran with the same
setup the DcPF-II algorithm [5]. The simulated system has
R = 3 receiving nodes and the filters employed Q = 300
particles. All algorithms perform synchronized residual re-
sampling [3] at all iterations. The transmission channels hr
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have L = 3 coefficients, and were obtained by sampling in-
dependently in each realization and for each receiver from
a complex Gaussian p.d.f. N (0; Λ), Λ = diag(2, 1, 0.5),
and normalized so that ‖hr‖

2 = 1. The noise variances
were determined as σ2 = ‖hr‖2N0/EB . The model hy-
perparameters were set to α = 3, β = 0.1 and ε = 1. In
the following results, for all values of σ2, we assumed for
the CB-I algorithm Q(x) = [x], where [·] denotes rounding
to the nearest integer. For the CB-II algorithm we adopted
Q1(x) = Q2(x) = [Qx]/Q. The average consensus weights
{ars} employed were

A =
1

3

⎡
⎣ 2 1 0

1 1 1
0 1 2

⎤
⎦ .

The results are shown in Fig. 1. For comparison, we also
show in Fig. 1 the mean BER when the receivers operate in-
dependently and do not cooperate to improve their local sig-
nal estimate. The mean BER for the centralized Forward-
Backward algorithm with perfect knowledge of the channel
parameters is shown as a lower bound to performance. As
one may observe, the cooperative algorithms (DcPF-II, CB-I
and CB-II) outperform the isolated receivers. As expected,
the consensus-based algorithms exhibit a performance gap in
relation to the DcPF-II due to quantization.
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Fig. 1. Mean bit error rate (BER) estimated in 200 indepen-
dent runs.

6. CONCLUSIONS

We introduced in this paper two new consensus-based dis-
tributed particle filtering algorithms. The techniques de-
scribed in the paper can be applied to any filtering problem
with conditionally independent linear Gaussian observations
and discrete-valued variables. The two proposed algorithms
(CB-I and CB-II) quantize distinct particle-filter-related vari-
ables, leading therefore to different convergence behaviors.

In a cooperative blind equalization problem with multiple dis-
tributed receivers, the CB-I and CB-II algorithms exhibited
similar BER performances in simulated Monte Carlo exper-
iments. Both algorithms outperformed the non-cooperative
isolated receivers and showed a small performance loss com-
pared both to the centralized blind equalizer, which employs
a fusion center, and the optimal decentralized DcPF-II algo-
rithm from [5], which requires message broadcasting to the
entire network.
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