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State of the Art in Vehicle Active Suspension
Adaptive Control Systems Based on
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Abstract—This paper reviews computational-intelligence-
involved approaches in active vehicle suspension control systems
with a focus on the problems raised in practical implementations
by their nonlinear and uncertain properties. After a brief intro-
duction on active suspension models, the paper explores the state
of the art in fuzzy inference systems, neural networks, genetic
algorithms, and their combination for suspension control issues.
Discussions and comments are provided based on the reviewed
simulation and experimental results. The paper is concluded with
remarks and future directions.

Index Terms—Active suspension systems, adaptive control,
computational intelligence, intelligent control.

I. INTRODUCTION

A SUSPENSION system is one of the important compo-
nents of a vehicle, which plays a crucial role in handling

the performance and ride comfort characteristics of a vehicle.
A suspension system acts as a bridge between the occupants of
a vehicle and the road on which it rides. It has two main func-
tionalities. One is to isolate the vehicle body with its passengers
from external disturbance inputs, which mainly come from
irregular road surfaces. It always relates to riding quality. The
other is to maintain a firm contact between the road and the tires
to provide guidance along the track. This is called handling per-
formance. In a conventional passive suspension system, which
is composed of only springs and dampers, a tradeoff is needed
to resolve the conflicting requirements of ride comfort and good
handling performance. The reason is that stiff suspension is
required to support the weight of the vehicle and to follow the
track; on the other hand, soft suspension is needed to isolate the
disturbance from the road. Hence, there exists a significantly
growing interest in the design and control of active suspension
systems for automotive engineers and researchers over the past
three decades. An active suspension system is characterized by
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employing certain kinds of suspension force generation, such as
pneumatic, magnetorheological, or hydraulic actuators. Practi-
cal applications of active suspension systems have been facili-
tated by the development of microprocessors and electronics
since the middle 1980s [1]–[3]. Related surveys on theories
and applications of active suspension control systems (ASCSs)
were provided in 1997 [4], [5], with fast-growing computa-
tional intelligence methodologies significantly driving recent
advances in this research area over the past decade.

The design of a vehicle ASCS is a long-standing control
engineering problem, which is rooted in multiple-parameter
optimization at real-time requirements. This includes ride com-
fort, body motion, road handling, and suspension travel [6].
Ride comfort directly relates to the acceleration sensed by
passengers; body motion means that bounce, pitch, and roll of
sprung mass are created by cornering, acceleration, or decel-
eration; road handling is associated with the contact forces of
tires and the road surface; and suspension travel refers to the
displacement between a sprung mass and an unsprung mass. It
is a challenging issue for one active suspension system to si-
multaneously optimize all four sets of parameters. Hence, how
to handle related tradeoffs is crucial for the successful design
of an ASCS. Research over the past three decades has shown
that a linear optimal control scheme provides an efficient way
to design an active suspension system that can improve both
vehicle ride and handling performance [4], [5]. This is based
on the assumption that there exists a perfect (broad-bandwidth)
actuator, which can generate the required force fast enough,
and the system can be linearized within some opera regions.
However, a real vehicle suspension system is inherently non-
linear, even with some uncertainties. Therefore, adaptive con-
trol schemes have to undertake the role of providing self-tuning
feedback gains and to take the aforementioned four sets of
parameters into account to ensure optimal operation of the sys-
tem in different driving conditions and road surfaces [7]–[11].

A classical form of the adaptive scheme for a vehicle active
suspension system was introduced in the late 1980s by Hac [7].
This is the starting point of the adaptive control scheme, in
which a set of feedback gains are varied by the change of
power spectral density (PSD) of terrain roughness obtained by
processing the measurement data. Another comparison of adap-
tive linear quadratic Gaussian (LQG) and nonlinear controllers
for active suspensions was presented by Gordon et al. [9].
A model reference adaptive control scheme was proposed by
Alleyne et al. [12], which resulted in better performance than
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TABLE I
COMPARISON OF CAPABILITIES OF DIFFERENT ADAPTIVE METHODOLOGIES [21]

the active suspension system with a nonadaptive controller
and a passive suspension system. Furthermore, in this paper,
10%–30% variances of sprung mass and stiffness coeffi-
cients were examined to check the adaptation capability based
on a single degree-of-freedom (DOF) quarter-vehicle model.
Sunwoo and Cheok proposed an explicit adaptive control for
an active suspension system that is based on a self-tuning
controller design [8]. It consisted of online low-order recursive
parameter estimation, closed-form algebraic gain computation,
and manipulation of the control parameters. Some other works
on adaptive control of active suspension systems can be found
in [13]–[15]. Up to this point, most researchers have dealt
with a linear model to develop control laws or use an adaptive
control scheme to conquer the limited nonlinear properties of
suspension systems. However, if the system is highly nonlinear
over the range of operation, its adaptive schemes may show
severe limitations. For instance, if a wheel stroke is so strong
that the stiffness of a suspension is beyond the linear range, it
might be practically impossible to identify parameters through
ordinary identification [15]–[17]. In the early 1990s, many
studies began to consider nonlinearities, uncertainties, and un-
modeled parts of a real suspension system, which requires the
use of a nonlinear model and some nonlinear forms of control
scheme [12], [18]. In practice, these nonlinear models made
ASCSs so complex and too challenging to employ.

In industrial applications, control engineers often have to
deal with complex systems, having multiple-variable and
multiple-parameter models with, perhaps, nonlinear coupling.
The conventional approaches for understanding and predicting
the behavior of such systems based on analytical techniques
can be proved to be inadequate, even at the initial stages
of establishing an appropriate mathematical model [19]. The
computational environment used in such an analytical approach
is perhaps too categorical and inflexible to cope with the
intricacy and the complexity of real-world industrial systems.
It turns out that in dealing with such systems, one has to
face a high degree of uncertainty and tolerate imprecision.
Trying to increase precision can be very costly. Thanks to the
significant development of soft computing or computational
intelligence over the past decades, it has provided alternative
ways to nonlinear system modeling and control. Generally
speaking, the principal constituents of computing intelligence
include fuzzy logic (FL), artificial neural networks (ANNs),
and evolutionary computing (EC). FL is mainly concerned with
imprecision and approximate reasoning, ANNs mainly with

learning and curve fitting, and EC mainly with global optimiza-
tion based on natural selection and genetics. These intelligent
computing methodologies have resulted in the development of
the “intelligent control” field, which consists of novel control
approaches based on FL, ANNs, EC, other techniques induced
from artificial intelligence and their combination. These meth-
ods provide an extensive freedom for control engineers to deal
with practical problems of vagueness, uncertainty, or impre-
cision. Convincingly, these intelligent methods are good can-
didates to alleviate the problems associated with ASCSs [20].
Although, in hard computing, imprecision and uncertainty are
undesirable properties, computationally intelligent approaches
are also known, as soft computing provides the tolerance for
imprecision and uncertainty, which is exploited to achieve a
practically acceptable solution at a reasonable cost, tractability,
and high machine intelligence quotient. Zadeh argued that soft
computing, rather than hard computing, should be viewed as the
foundation of machine intelligence. A complete comparison of
their capabilities in different application fields was constructed
by Fukuda and Shimojima in Table I, together with those of
control theory and artificial intelligence [21].

This paper reviews recent intelligent control approaches for
active suspension systems. The paper is organized as follows.
Section II gives a revisit on the modeling of an active suspen-
sion system. Section III reviews adaptive fuzzy control meth-
ods. Section IV presents adaptive fuzzy sliding-mode control
(SMC) approaches. Section V revisits neural-network-based
control systems, and Section VI presents adaptive genetic algo-
rithm (GA) control methods. Section VII describes combination
methods based on neural networks (NNs), fuzzy inference,
and GAs. Finally, we conclude the paper in Section VIII with
discussions and future work.

II. BACKGROUND

A vehicle body is generally a rigid body with six-DOF
motions shown in Fig. 1 [5]; it consists of longitudinal, lat-
eral, heave, roll, pitch, and yaw motions. These motions are
restricted by suspension geometries in vehicles and are more
or less coupled with one another. Moreover, as the suspensions
have a mechanical structure with unsprung mass, coupling
also occurs between the sprung and unsprung masses. Re-
gardless of such coupling problems, the reduced-order math-
ematical model is useful for designing an ASCS. Therefore,
a quarter-vehicle model or a half-vehicle model is often used
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Fig. 1. Six-DOF vehicle model [5].

for the theoretical analysis and design of active suspension
systems [4], [5].

In this section, a linear quarter-vehicle model and a linear
half-vehicle model of an active suspension system are intro-
duced. Their linear quadratic (LQ) controllers are designed
based on the models; practical active suspension system models
are also analyzed in terms of nonlinear properties and uncertain
dynamic disturbances.

A. Active Suspension System Linear Models and Control

1) Quarter-Vehicle Active Suspension System Modeling and
LQ Control Design: The quarter-vehicle model was initially
developed to explore active suspension capabilities and gave
birth to the concepts of skyhook damping and fast load level-
ing, which are now being developed toward actual large-scale
production applications. In this paper, we define

mb quarter body mass (or sprung mass) (in kilograms);
mw wheel mass (or unsprung mass) (in kilograms);
Ks suspension spring stiffness (in newtons per meter);
Kt tire stiffness (in newtons per meter);
c damping coefficient (in newton seconds per meter);
G0 road roughness coefficient (in cubic meters per cycle);
U0 vehicle original forward velocity (in meters per

second);
f0 low cutoff frequency (in hertz);
z0 road displacement (in meters);
zw wheel displacement (in meters);
zb body displacement (in meters);
fa actuator force (in newtons).
The quarter-vehicle model is shown in Fig. 2. The dy-

namic differential equations of this suspension system can be
represented as

mbz̈b = fa + c(żw − żb) + Ks(zw − zb) (1)

mwz̈w = −fa−c(żw−żb)−Ks(zw−zb)−Kt(zw−z0). (2)

The road surface is a natural changing condition for a vehicle.
For better riding comfort, a perfect road surface model is neces-
sary to design vehicle ASCS. There are many possible ways to
analytically describe the road inputs, which can be classified
as shock or vibration [4]. Shocks are the discrete events of
relatively short duration and high intensity, e.g., a pronounced

Fig. 2. Two-DOF quarter-vehicle model.

TABLE II
ROAD ROUGHNESS VALUES CLASSIFIED BY ISO

(DEGREE OF ROUGHNESS S(Ω) × 10−6)

bump or pothole on an otherwise smooth road. Vibrations, on
the other hand, are characterized by prolonged and consistent
excitations that are called “rough” roads. In this section, the
rough road is considered. The International Organization for
Standardization (ISO) has proposed a series of standards of
road roughness classification using PSD values (ISO 1982), as
shown in Table II. Due to the ISO, the road displacement PSD
can be described as

G(n) = G(n0)
(

n

n0

)−w

. (3)

Here, n is the space frequency (m−1), and time frequency f
is f = nv (v is the vehicle speed), n0 is the reference space
frequency, G(n) is the road displacement PSD, G(n0) is the
road roughness coefficient shown in Table II, and w is the linear
fitting coefficient, which is always w = 2. Then, based on the
standard road surface description, the road surface input model
has been built through an inform filter by Gaussian white noise
and successfully used in many presented works [6], [22]. The
equation of road surface input is

ż0 = −2πf0z0 + 2π
√

G0U0w0 (4)

where f0 is the low cutoff frequency, G0 is the road roughness
coefficient, and w0 is a Gaussian white noise.

Equations (1), (2), and (4) are combined to give the state
space representation of the quarter-vehicle model

Ẋ =AX + BU + FW (5)

Y =CX + DU (6)
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where

X = [ żb żw zb zw z0 ] (7)

Y = [ z̈b z̈w zw − zb zw − z0 ] (8)

U = [fa],W = [w0]. (9)

Based on the proposed model, linear optimal control theory
is used to design the active suspension controller here. To obtain
better handling performance and riding comfort, the perfor-
mance index can be written as a weighted sum of mean-square
values of output performance variables, including body acceler-
ation, wheel-to-body displacement, and dynamic tire deflection.
The weight coefficients are q1, q2, and q3. Therefore, we have

J = lim
T→∞

1
T

T∫
0

{
q1(zw−zb)2+ q2(zw−z0)2+ q3z̈

2
b

}
dt. (10)

Changing (10) into a general matrix format, it becomes

J = lim
T→∞

1
T

T∫
0

[XTQX + UTRU + 2XTNU ]dt (11)

where Q, R, and N can be obtained from (1), (2), and (4).
Assuming that an optimal state observer, i.e., a Kalman filter,
is available to get a satisfactory estimation of state vector X̂ ,
based on the separation theorem, an optimal control force is

U = −R−1BTPX̂ = −KX̂ (12)

where K represents the gain matrix, and P is the solution of
the following classical algebraic Riccati equation:

PA + ATP − (PB + N)R−1(BTP + NT) = −Q. (13)

2) Half-Vehicle Active Suspension System Modeling and LQ
Control Design: The half-vehicle model including pitch and
heave modes was represented to simulate the ride characteris-
tics of a simplified whole vehicle, which leads to a significant
improvement in ride and handling [23]. Letting f and r denote
the front and rear and x and z be the longitudinal forward
direction and vertical up direction in this paper, we have the
following definitions:

df distance from the front axle to the center of gravity
(in meters);

dr distance from the rear axle to the center of gravity
(in meters);

Ib pitch inertia (in kilogram square meters);
zf0 road displacement at the front wheel (in meters);
zr0 road displacement at the rear wheel (in meters);
zwf front-wheel displacement (in meters);
zbf front-body displacement (in meters);
zwr rear-wheel displacement (in meters);
zbr rear-body displacement (in meters);
faf front-actuator force (in newtons);
far rear-actuator force (in newtons).
The half-vehicle model is shown in Fig. 3. With the assump-

tion of a small pitch angle, the following equations are obtained:

zbf = zb − df · θ zbr = zb + dr · θ. (14)

Fig. 3. Half-vehicle suspension model.

From (14), the pitch angle can be written as

θ =
zbr − zbf

df + dr
(15)

and hence, the model equations of motion can be written as
follows:

z̈wfmwf =−Ktf (zwf −zf0)

−[faf + cf (żwf −żbf )+Ksf (zwf −zbf )] (16a)

z̈wrmwr =−Ktr(zwr − zr0)

−[far+cr(żwr−żbr)+Ksr(zwr−zbr)] (16b)

z̈bmb =faf + cf (żwf −żbf ) +Ksf (zwf − zbf )

+far + cr(żwr − żbr) + Ksr(zwr − zbr) (16c)

θ̈Ib = − df [faf +cf (żwf −żbf )+Ksf (zwf −zbf )]

+ dr [far+cr(żwr−żbr)+Ksr(zwr−zbr)] . (16d)

Substituting (14) into (16c) and (16d), we have the following:

z̈bf =

(
1

mb
+

d2
f

Ib

)
[faf +cf (żwf − żbf )+Ksf (zwf −zbf )]

+
(

1
mb

− dfdr

Ib

)
[far+cr(żwr−żbr)+Ksr(zwr−zbr)]

(17a)

z̈br =
(

1
mb

− dfdr

Ib

)
[faf +cf (żwf −żbf )+Ksf (zwf −zbf )]

+
(

1
mb

+
d2

r

Ib

)
[far+cr(żwr − żbr)+Ksr(zwr−zbr)] .

(17b)

Using filtered white noise w1 and w2 as the road inputs, the road
input equations for the front and rear wheels, respectively, are

żf0 = − 2πf0zf0 + 2π
√

G0U0w1 (18a)

żr0 = − 2πf0zr0 + 2π
√

G0U0w2. (18b)
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So far, we have a state vector as given in (19), shown at
the bottom of the page. Combining vehicle model equations
of motion equations (15), (16a), (17a), and (17b) and road
input equations (18a) and (18b), the system model and output
equation in state space form are obtained as

Ẋhalf = ÃXhalf + B̃Uhalf + F̃whalf (20a)

Yhalf = C̃Xhalf + D̃Uhalf + vhalf (20b)

where Ã, B̃, C̃, D̃, and F̃ are differential equation coefficient
matrices, Xhalf is the state vector, Yhalf is the output vector,
Uhalf is control input matrix, whalf is the road inputs, and Vhalf

is measurement noise. Here, Yhalf is defined in (21), shown at
the bottom of the page, and Uhalf and whalf are defined in (22),
shown at the bottom of the page. Based on the proposed model,
linear optimal control theory is used here to design the active
suspension controller. To obtain better handling and riding
comfort, the performance index can be written as a weighted
sum of mean-square values of output performance variables,
including body acceleration, wheel-to-body displacement, and
dynamic tire deflection. The weight coefficients are ρ1, ρ2, q1,
q2, q3, and q4. Therefore, we have

J = lim
T→∞

1
T

T∫
0

[
q1(zwf − zf0)2 + q2(zbf − zwf )2 + ρ1z̈bf

+q3(zwr − zr0)2 + q4(zbr − zwr)2 + ρ2z̈br

]
dt. (23)

Similar to the quarter vehicle, the optimal LQ control can be
solved from the Riccati equation.

B. Nonlinearity and Unmodeling Dynamic Description of an
Active Suspension System

Many researchers have dealt with a linear model in develop-
ing control laws. However, considering the inherent nonlinear-
ities and uncertainties, it is not sufficient to represent the real
system with a linear model, as in Sections II-A1 and A2. In
the early 1990s, many studies began to consider nonlinearities,
uncertainties, and unmodeled parts of a real suspension system,
which required the use of a nonlinear model and some adaptive
or robust form of control scheme [4], [8], [9], [12], [13],
[15], [24], [25]. In this section, the nonlinear properties are
introduced, and the general nonlinear models of suspension
systems are carried out.

As Hrovat remarked, for many operations, the linear system
approximation was appropriate; however, there were some sit-
uations that amplify the nonlinear effects [4]. One is created by
discrete-event disturbances such as single bumps or potholes,
which can cause a highly nonlinear phenomenon. Another is
dry friction. Based on the quarter-vehicle model shown in
Section II-A1, Kim and Ro modeled the connecting forces (e.g.,
spring force and damping force) as nonlinear functions using
measured data [15]. In Kim and Ro’s paper, the nonlinear spring
properties mainly have two aspects. One is the bump stop that
restricts the wheel travel within a given range and prevents the
tire from contacting the vehicle body. The other is the strut
bushing that connects the strut with the body structure and
reduces harshness from the road input. These two nonlinear
effects can be included in the spring force fs with nonlinear
characteristics versus suspension rattle space (zw − zb). Based
on the measured data in [15], Kim and Ro modeled the spring
force fs and the damping force by the high-order polynomial
functions. The spring force was described as a third-order
polynomial function as follows:

fs = fsl + fsn = k1∆x + (k0 + k2∆x2 + k3∆x3) (24)

where fsl is the linear part of the spring force, and fsn is
the nonlinear part of the spring force. The coefficients can be
obtained by fitting the experimental data.

Furthermore, the damping force fd was modeled as a second-
order polynomial function by fitting the measured data, which
is shown as follows:

fd = fdl + fdn = c1∆ẋ + c2∆ẋ2 (25)

where the fdl is the linear part, and the fdn is the nonlinear part
of the damper force; the coefficients can be obtained by fitting
the experimental data.

Except for the nonlinear properties presented by the spring
force and damping force, the vertical tire force was highly non-
linear, particularly when the load condition seriously changed.
Even the vertical tire force became zero when the tire lost
contact with the road. Kim and Ro modeled the tire force as

ftl = kt(z0 − zw), when (z0 − zw) > 0

ftn = 0, when (z0 − zw) ≤ 0

where ftl denotes the linear tire force, and ftn denotes the
nonlinear tire force.

Xhalf = [ żbr żwr żbf żwf zbr zwr zbf zwf zr0 zf0 ]T (19)

Yhalf = [ z̈bf zbf − zwf zwf − zf0 z̈br zbr − zwr zwr − zr0 ]T (21)

Uhalf =
[

faf

far

]
, whalf =

[
w2

w1

]
(22)
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Fig. 4. Adaptive FLC scheme in [29].

To show the effect of the asymmetric tire stiffness on the
response of the quarter-car model, some simulation results were
shown to investigate the effect of nonlinear tire force under
the different amplitudes of road input [15]. From the results,
it was clear that vehicle nonlinearities should be considered in
developing a more accurate system model, from which a more
reliable control algorithm can be developed.

In this paper, two kinds of suspension system nonlinear
models are provided for controller design and performance
analysis. Considering the nonlinearity shown by (24) and (25),
the active suspension system can be written as a multiple-
input–multiple-output (MIMO) nonlinear model

Ẋ = F (X) + BU + d (26)

where F (X) is a nonlinear function, including the nonlinear
force fs, ft, and fd, U is the input of the suspension system,
and d is the unknown external disturbances.

The other nonlinear model can be described as a hybrid
model with a linear part and a nonlinear part

Ẋ = AX + BU + d̃ (27)

where AX + BU is the linear model of the suspension system
based on fsl, fdl, and ftl, and d̃ represents the nonlinear and
uncertain model of the suspension system.

III. ADAPTIVE FUZZY CONTROL

The control performance of a traditional controller greatly
depends on the accuracy of the known system dynamic model,
according to Section II-A1. To meet practical requirements
in an active suspension system, it is crucial to derive or to
identify an appropriate model for the traditional controller
design. Estimating uncertain effects is even more challenging
due to the random noise occurred by road inputs. Hence, some
model-free intelligent controllers were introduced to solve these
problems, e.g., the FL controller (FLC) [26]–[30]. The FLC
is credited with being an adequate methodology for designing
robust controllers that are capable of delivering satisfactory
performance in the face of uncertainty and imprecision. As a
result, the FLC has become a popular approach to nonlinear
and uncertain system control in recent years.

There are different ways to construct FLCs for vehicle
suspension control, with the most common method being to
construct the FLCs by eliciting the fuzzy rules and its mem-
bership functions based on experts’ knowledge or experience.
The common problem that occurs then is that they cannot fully
handle or accommodate for the linguistic and numerical uncer-
tainties associated with changing and dynamic natural changing
road inputs as they use precise fuzzy sets. To overcome this
weakness, adaptive FLCs were designed to self-tune the fuzzy
rules or membership functions [26]–[29], [31], [32]. Recently,
with the development of type-2 fuzzy reasoning and control
theory [33]–[35], Cao et al. [36] has studied the adaptive type-2
fuzzy control and optimization on an active suspension system.
In this section, the adaptive FLC designs and applications on
active suspension systems are reviewed.

The key components of an FLC are a set of linguistic fuzzy
control rules and an inference engine to digest these rules.
These fuzzy rules offer a transformation between the linguistic
control knowledge of an expert and automatic control strategies
of an actuator. Every fuzzy control rule is composed of an
antecedent and a consequent. The structures and parameters of
control rules dominate the performance of fuzzy control. From
the control point of view, it is crucial that related parameters or
structures are modified automatically by evaluating the results
of fuzzy control. For instance, Huang et al. [29] proposed an
adaptive FLC for an active suspension system. This adaptive
FLC scheme is shown in Fig. 4. The inputs of FLC are the ver-
tical position error and error change of the vehicle sprung mass.
Its output is the control voltage increment. The antecedent
membership functions consist of 11 equal triangular-type func-
tions. The voltage increment membership function is a set of
15 equal triangular-type functions. Its self-tuning property is
implemented by adjusted scaling factors S1, S2, and S3. That is
to say that the membership functions are adapted to improve the
FLC performance. Its 121 fuzzy rules are employed to suppress
the sprung mass vibration amplitude due to road inputs.

To evaluate the fuzzy control system, a two-DOF quarter-
vehicle suspension model was established. The suspension
mechanism includes a spring mass and a hydraulic control
loop. A hydraulic servo system is used to generate various road
surfaces, and an optical linear scale and a linear potentiometer
were employed to measure the sprung mass and road surface
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vertical displacements, respectively. Based on this realistic sus-
pension model, the dynamic response of the active suspension
system was provided for vehicle ride performance on a rough
concave–convex road with 25-mm obstacles. The maximum
displacement of the vehicle body is less than 5 mm, and it
converges within 0.5 s. The control signal was very smooth
and easy to employ in the practical vehicle. However, its
adjusted scaling factors were chosen by experiments and many
simulations, which limit the flexible and adaptive abilities of
the adaptive FLC. To overcome this problem, researchers have
compensated these types of adaptive FLCs by employing non-
linear optimal algorithms; they employed a GA and/or ANNs
to self-tune the parameters of their membership functions and
fuzzy rules. These kinds of adaptive FLC will be covered in
Section VII.

IV. ADAPTIVE FUZZY SMC

SMC currently enjoys a wide variety of application areas
such as general motion control applications and robotics,
process control, aerospace applications, and vehicle active sus-
pension systems. The main reason for this popularity is its
attractive properties, including good control performance for
nonlinear systems, applicability to MIMO systems, and well-
established design criteria for discrete-time systems. Note that
its most significant property should be its robustness. Loosely
speaking, when a system is in a sliding mode, it is insensitive
to parameter changes or external disturbances [37]. However,
SMCs also suffer from the following disadvantages in practical
applications. First, SMCs suffer from the problem of chatter-
ing, which is the high-frequency oscillations of the controller
output that is brought by the high-speed switching for the
establishment of a sliding mode. Chattering is very undesirable
and dangerous in practice because it may excite unmodeled
high-frequency dynamics, resulting in unforeseen instabilities.
Second, an SMC is extremely vulnerable to measure noise since
its input depends on the sign of a measured variable that is
very close to zero. Third, the SMC may employ unnecessarily
large control signals to overcome the parametric uncertainties.
Last, there is difficulty with the calculation of what is known
as the equivalent control. The integration of an FL system in
an SMC has been witnessed in many successful applications
where an attempt to relieve the implementation difficulties of
the SMC are made via the addition of the FL system [37]–[39].
On the other hand, some significant research has originated due
to different difficulties, i.e., the difficulties in carrying out a
rigorous stability analysis of FLCs.

The design of an SMC involves two steps. The first step
is to select switching hyperplanes, called sliding surfaces, to
describe the desired dynamic characteristics of a controlled
system. The second step is to design discontinuous control
such that the system enters a sliding surface and remains in it.
Regarding the system given by (26), the sliding surface S is
selected generally as

S(X) = GX = 0 (28)

where S(X) denotes a set of switching hyperplanes, and G is a
constant q × n matrix to be determined.

Fig. 5. Effects of parameters G and K [37].

The main object in an SMC is to force the system states to
the sliding surface. Once the states are on the sliding surface,
the system errors converge to zero with error dynamics dictated
by the matrix G. More details about the sliding-mode controller
design can be found in [37]. Here, the total control of SMC is
given as

U = Ueq + Usw (29)

where Ueq is the equivalent control, and Usw is always called
the switch control.

Generally speaking, two steps are required for an SMC
design: 1) One is to select an approximation model such that
the system trajectory exhibits desirable behavior when confined
to the model, and 2) the other is to find feedback gains so
that the system trajectory intersects and stays on the approx-
imation model. In practical systems, these conditions will be
constrained. Over the last two decades, FL has been employed
to improve SMC in terms of efficient and practical issues. Two
types of fuzzy SMC are introduced in this section. They are
employed to solve two SMC weaknesses, i.e., alleviating SMC
chattering and modeling the nonlinear or uncertain characteris-
tics of practical systems.

A. Alleviating SMC Chattering

FL is employed to self-tune the discontinuous switching
control law to overcome the chattering phenomenon in SMC.
Consider the switching control law in terms of (29), which
has two parameters G and K to be optimized [37]. Their
effects on system performance are shown in Fig. 5. Parameter
G determines the slope of the sliding line, which means that
the larger the G, the faster the system response. Due to the fact
that an overlarge value of G can cause overshoot or instability,
it would be advantageous to adaptively vary its slope in such a
way that the slope is increased as the magnitude of its error gets
smaller. The curve labeled “1” corresponds to the case when K
is large. The system states reach the sliding line in a short time
but overshoot it by a considerable amount. The curve labeled
“2” reflects the case with a small K parameter. Neither curve 1
nor 2 is desired. Curve “3” can be obtained via fuzzy adaptive
algorithms in which parameter “K” is increased only when the
states are close to its sliding line.

For instance, Chen-Sheng et al. proposed a fuzzy adaptive
sliding-mode controller for an active suspension system [40].
The proposed quarter-car active suspension model was defined
as (27). For the design of the SMC, a reduced-order dynamic
model was used, and the state variables were x1 (the suspension
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deflection) and x2 (the sprung mass velocity). Its sliding surface
was defined as

S(X) = GX = x2 + λx1 = 0, λ > 0. (30)

Likewise, the SMC Ueq and UN were chosen as follows:

Ueq = b−1 [−a1x1 − (a2 + λ)x2] , UN = b−1Ksgn(S).
(31)

Note that the actual inputs of the proposed fuzzy adaptive
SMC controller are S, and its derivation is Ṡ. The output was
the hitting control. Fuzzification and defuzzification stood for
an interface between the crisp values of the reality and the
linguistic values of the inference. The controller was organized
at two levels. At the basic level, the conventional fuzzy control
rule sets and inference mechanism were constructed to generate
a fuzzy control scheme. At the supervising level, the control
performance was evaluated to modify system parameters, par-
ticularly to adaptively tune its scaling factors. The proposed
fuzzy control rules were outlined in [40].

To investigate an active suspension performance based on
the aforementioned fuzzy SMC, a pseudorandom disturbance
road input was employed to test the robustness of the controller
under the condition that the spring mass disturbance was in-
creased by 30% and that the damping coefficient and the spring
stiffness were decreased by 30% from the nominal values. The
simulation results demonstrated that the controlled suspension
deflection was smaller than its counterpart of a linear quadratic
regulator optimal control but larger than that of a conventional
SMC. Regarding the riding quality, the fuzzy SMC achieved the
best performance of sprung mass acceleration. The simulation
results also illustrated that the road-handling ability maintained
by the fuzzy SMC outperformed that of an LQ controller and
a conventional SMC. Similar conclusions were also drawn for
the perturbed conditions.

Additionally, Zhang et al. also proposed a fuzzy adaptive
sliding-mode controller for an active suspension system [20].
The main difference from Chen-Sheng et al.’s research is the
way in which a sliding surface is constructed. In Zhang et al.’s
paper, the sliding surface was constructed on the basis of
conventional sliding surface s and its derivative ṡ as follows:

σ = ṡ + λs (32)

where λ was a positive value, and its Lyapunov stability condi-
tion must be satisfied as follows:

V̇ = σσ̇ < 0. (33)

The equivalent control can be obtained as

U̇eq = − (GB)−1 [(GA + λG)AZ+(GA+λG)BU ] (34)

U̇N = − (GB)−1εsgn(σ). (35)

Then, the SMC control output was achieved as

U̇ = U̇eq + U̇N . (36)

Fig. 6. Fuzzy adaptive controller scheme in [20].

Finally, this led to the controller output

U(n) = U(n − 1) + U̇(n). (37)

The scheme of fuzzy adaptive tuning controller is shown in
Fig. 6. The simulations in the time and the frequency domains
were carried out on a quarter-car active suspension system.
In the time-domain analysis, the comparison between an LQG
controller and the fuzzy adaptive SMC controller showed that
the proposed controller can significantly decrease its sprung
mass acceleration from the peak value to zero. However, the
proposed fuzzy adaptive SMC simultaneously needed higher
active forces than the LQG controller. In the frequency-domain
analysis, the fuzzy adaptive SMC improved the frequency
response from the road input to the sprung mass acceleration,
particularly in the frequency range of 4–8 Hz. Based on ISO
2361, the human body is very sensitive to vertical vibration
in the frequency range of 4–8 Hz. That is to say that the
proposed controller can significantly improve the ride quality.
Considering the existence of uncertain parameters, the sprung
mass was assumed to change in a bounded range of ±50%. The
simulation results demonstrated that the maximum acceleration
of the active suspension using the proposed controller was, on
average, 54% smaller than a passive suspension system.

B. FL Controller Complementary to SMC for System
Nonlinearity and Uncertainty

Referring to a traditional SMC design, the equivalent control
law always depends on its system model, due to the fact that it
is very expensive to achieve an exact system model for a more
complex nonlinear system. A practical method for a nonlinear
problem is linearized around given operation points such that
the well-developed linear control theory can be applied to the
local region with apparent ease. However, this leads to the new
problem of how to aggregate each locally linearized model
into a global model that represents the corresponding nonlinear
system. FL offers a solution to the problem without the need
for a mathematical model and constant gain limitation [41].
Huang et al. [42] proposed an adaptive fuzzy sliding-mode
controller (AFSMC) for an active vehicle suspension system.
FL control was employed to approximate the nonlinear function
of equivalent control law Ueq. The voltage output of an actuator
in each sampling step was derived from fuzzy inference, instead
of from the nominal model at the sliding surface. It significantly
diminished the chattering phenomenon of the traditional SMC.
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The input signal of this type of FL control was sliding surface
variable S, in terms of its sprung mass position and velocity de-
viations. Its output signal was control voltage U , which was the
output of the hydraulic servo actuator. Its fuzzy input variable
S consisted of 11 equal-span triangular membership functions,
which were employed for the fuzzy output variable U through
11 fuzzy inference rules. The tunable consequent parameters
of those peaks of the triangular membership functions were
initialized with zero by default. A novel online parameter tuning
algorithm was proposed to adjust the consequent parameters
to monitor the system control performance. A quarter-car,
two-DOF active suspension system was designed and built to
investigate its dynamic performance and control effect. The
suspension system was tested under three different conditions.
One was a rough road with a 40-mm amplitude sinusoidal
wave; the other two were a rough concave–convex road with
a randomly dynamic 40-mm height and a rough road with a
random amplitude. The experimental results showed that the
proposed AFSMC had significantly suppressed the sprung mass
position oscillation amplitude. In addition, the control voltage
was smooth, and the converging speed was fast.

Additionally, Kucukdemiral et al. proposed an FL method to
handle the nonlinear system model and uncertain disturbance
for an active suspension system [43]. The control U was given
by u = ufz + uvs. uvs, denoting the switching control, which
improved by a boundary layer, alleviating the chattering; ufz

was obtained from the FL controller with the input S. To
evaluate the proposed controller, the simulation environment
was controlled as follows: Vehicle speed was 72 km/h, and
two types of road surfaces were employed for controller per-
formance evaluation, including a standard bump-type surface
profile with 10-cm length × 10-cm height and a random road
profile generated to simulate stabilized road with 1 cm × 1 cm
pebbles. Four types of controllers were employed on the ac-
tive suspension system. When the standard bump-type surface
profile was used, the proposed controller clearly produced the
shortest response time of 0.85 s and the lowest peak value of
0.4 cm. Under the condition of random road input, the AFSMC
had overwhelming success over other controllers. Furthermore,
since it has a single input FLC as the main controller, the rule
base of FLC drastically decreased when it was compared with
traditional FLCs.

V. ADAPTIVE NN CONTROL

Due to its nonlinear mapping and learning ability, NNs have
been one of dominant methods for designing robust, adaptive,
and intelligent control systems [44]. For further information on
NN control systems, see [45] and [46].

An adaptive nonlinear controller is required for the nonlin-
earity and uncertainty during operation in an active suspension
system. For instance, Guo et al. [47] designed an adaptive
controller with an NN-based identifier to control a semiac-
tive suspension with a magnetorheological damper based on a
quarter-vehicle model. The NN control system scheme is shown
in Fig. 7. In principle, the direct NN control takes the error
between the ideal reference signal and the system response as
the error of backpropagation. However, this error does not offer

Fig. 7. Scheme of indirect adaptive control based on NNs in [47].

good information for updating the weights of NNs because of
potential uncertainty on the nonlinear model with natural and
random disturbance. In Guo et al.’s paper, an indirect adaptive
NN control strategy was proposed to approximate the input
error. The structure of the NN controller is shown in Fig. 7. The
NNC was the NN controller, the NNI was the NN identifier,
and the TDL was tapped delay. Due to the unavailability of the
inverse model of the nonlinear dynamic system, not only did
the NNI trace the system response, but it also calculated the
backpropagation error for the NNC. The topological structure
of the NNC consisted of three layers with 4 × 9 × 1 nodes,
including one hidden layer. The NNI structure was the same
as the NNC. The sigmoid function served as the activation
function for both the hidden and output layers; clearly, the
backpropagation algorithm was used to update the weights.

To evaluate the adaptive NN-based control system, numerical
simulations and experiments were carried out for the quarter-
vehicle rig equipped with a magnetorheological damper. The
fundamental natural frequency of the quarter-vehicle model
was chosen as 1.8 Hz, and the road profile was given, based
on the road classification of the ISO database. The numerical
simulation and experiment results convincingly showed the
vertical acceleration of the vehicle body to be considerably
reduced with the indirect NNC than the traditional NNC. For
example, the root-mean-square acceleration of the vehicle body
subject to the random road disturbance of C grade was reduced
by 38.2% when the direct NNC was used and by 55% when
the indirect adaptive NNC was implemented in the numerical
simulation. In the comparison with passive suspension, the
semiactive suspension with indirect adaptive NNC reduced the
acceleration of the vehicle body under the sinusoidal road
excitation of C grade by 41% in the experiment. On the other
hand, the indirect adaptive NNC worked very quickly since the
NNs included only a single hidden layer, and the NNI received
good training before the experiments took place.

VI. GA-BASED ADAPTIVE OPTIMIZATION AND CONTROL

GAs, which are one kind of stochastic global optimiza-
tion technique, have been successfully applied in a variety
of research and industrial fields, particularly in optimization
and control [48]–[56]. For instance, GAs have demonstrated
their effectiveness in multipeak problems with local opti-
mum solutions with approval in robust search around complex
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spaces. The main difference between GAs and conventional
optimization and search procedures are the following: 1) They
work with a coding set of the parameters and not the parameters
themselves; 2) they search from a population of points and
not a single point and are capable of handling large search
spaces; and 3) they use probabilistic transition rules, rather than
deterministic ones [37]. However, it also needs to be pointed out
that the main disadvantage of GAs is that the optimal speed is
too slow to use in real-time applications.

Considering the control strategy in active suspension sys-
tems, Baumal et al. [52] utilized the GA in a five-DOF half-
vehicle model. In their research, all the involved parameters
were comprised into one constraint optimal description with
eight unknown parameters and seven constraints, which means
that the active control and passive mechanical parameters,
respectively, were the designed variables to be optimized. Two
active elements provided forces proportional to the absolute
vertical velocity of the points on the car body directly above
the rear and front wheels. These devices, which are character-
ized by proportionality constants cf and cr, were known as
skyhook dampers. The design variables were the set {x} =
{k1, c1, k3, c3, cr, k4, c4, cf}. Moreover, the constraints were
obtained from the three performances of vehicle suspension
systems: 1) ride comfort; 2) road-holding ability; and 3) the
suspension working space. Two constraints were for the body
acceleration and the seat acceleration. The other five constraints
were for the seat, suspension, and tire deflections. Given the
optimized initial set, there were three steps to implement the
GA. The algorithm stopped when the maximum fitness design
comprised at least 30% of a newly created generation. The
reproduction stage itself was a simulation of the survival-of-
the-fittest designs. Moreover, to improve the efficiency of the
GA, the binary strings and fitness values for each unique design
of the current generation were stored in a linear search lookup
table. If a design string in the next generation matched one in
the table, then the fitness did not have to be recalculated. This
significantly avoided GAs’ weakness by improving computing
time, particularly for expensive fitness evaluations. With five
independent runs of the GA, the optimal values were obtained
and compared with the local optimization search technique
and the passive suspension design. The results showed that
the proposed GA can carry out the best parameters with the
least computing time among the three methods. The active
and passive suspension system seat acceleration responses were
compared to evaluate its dynamics performance. The response
of the active system showed that the road disturbance had
little effect on the seat acceleration and indicated that GAs had
strong potential to incorporate global optimization methods for
suspension system design.

Tsao and Chen [55] also proposed an active suspension force
controller using GAs with maximum stroke constraints based
on their former research [53], [54]. In contrast to the traditional
approach, the maximum absolute values of suspension strokes
were employed in the objective function to achieve better
ride comfort within the stroke limitation. GA was employed
to search for the parameters of damping ratios and spring
constants to achieve an optimum tradeoff among ride comfort,
handling quality, and suspension stroke limitation, simulta-

neously. Two driving conditions were tested on the active force
controller. One was a steep ramp road with forward speed
V = 10 m/s, and the other was a sinusoidal bump road with
V = 40 m/s. The simulations were carried out for the three
cases in each driving condition. Each case was ended after 500
generation runs. The comparisons of the performance among
these cases showed that the proposed force controller using GA
achieved great ride and handling quality, while the suspension
stroke was restricted to be less than or equal to the passive
system. In terms of the dynamic performance, the heave and
pitch angle motions of the suspension system were shown and
compared with the passive suspension system. In particular,
considering the comparison of the suspension displacement, the
summation of the quadratic values of the suspension displace-
ments in the active system was larger than that of the passive
suspension. However, the maximum displacement was smaller,
and the vibration had been absorbed during the transient period.
These results can explain why the maximum absolute value,
instead of the summation quadratic form of suspension dis-
placement, can achieve better performance.

VII. ADAPTIVE CONTROL INTEGRATION

Control strategies are reviewed in this section based on the
combination of presented methodologies in previous sections.

A. Adaptive Neuro-Fuzzy Control

Much attention has been paid to the combination of NNs
and fuzzy systems [57] with a focus on combining fuzzy
systems with NN learning techniques, particularly for the
NN–fuzzy controller. The advantage is that the fuzzy systems
can compensate the tuning ability of their rules by using the
learning algorithms of NNs; on the other hand, the NN sys-
tem can also improve the transparency and interpretability by
rule-based fuzzy reasoning construction. Generally speaking,
an NN–fuzzy system can be viewed as a special three-layer
feedforward NN, and the fuzzy rules are trained by an NN
algorithm. With both advantages of NN and FL, the neuro-fuzzy
system had been successfully employed to solve a wide range
of industry problems, particularly on nonlinear and uncertain
systems.

For instance, Dong et al. employed an adaptive NN–fuzzy
controller for a quarter-vehicle magnetorheological suspension
system [58]. This controller consisted of a fuzzy neural network
controller (FNNC) and a time-delay controller (TDC). The
FNNC calculated the control force according to the error and
the change of the error; the TDC was an NN model that
predicted compensation for the suspension’s time delay. For
the quarter-vehicle model, the input was the damper force, the
output was the sprung mass vertical acceleration, and the road
input was treated as a disturbance. In the FNNC scheme, where
two linguistic variables were input into the network and seven
fuzzy sets were defined for each input as NB, NM , ZE,
PS, PM , and PB in the first layer, the second layer included
14 neurons to correspond to all the fuzzy sets, and the third
layer contained 49 neurons to do the fuzzy reasoning based on
the defined fuzzy rules. The simulation and experimental results
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showed that the proposed FNNC with TDC can significantly
reduce the acceleration peak value and decreased by 42.3% in
comparison to a passive suspension system.

Additionally, Wu et al. proposed a fuzzy controller based
on the neuro-fuzzy model for a half-vehicle active suspension
system [59]. The half-vehicle active suspension was modeled
as a nonlinear system including heave, pitch, and motion of the
front and rear wheels. The proposed neuro-fuzzy network was
a self-organizing inference network with six layers to derive the
corresponding Takagi–Sugeno (T–S) fuzzy model. The learning
structure included both precondition and consequence identi-
fication of fuzzy IF–THEN rules. Based on supervised learning
algorithms, the parameters of linear equations in the consequent
parts were adjusted by recursive least squares algorithms, and
the parameters in the precondition part were adjusted by a back-
propagation algorithm to minimize a given cost function. Based
on the T–S fuzzy model, a fuzzy controller was designed to get
the optimal active force. The simulation results showed that the
proposed optimal fuzzy controller can improve the ride comfort
by minimizing both the displacements and accelerations of the
vehicle center and the pitch angle simultaneously.

B. Adaptive Genetic-Based Optimal Fuzzy Control

Due to the fact that IF–THEN rules in a fuzzy inference
system are not always available, automatic design methods and
rule acquisition procedures for fuzzy systems are required and
have been proposed mostly based on GA and/or NNs over the
past four decades. The key advantage of the hybrid system
combining GA and FL is that almost all the tasks of the fuzzy
system design can be accomplished automatically. Thanks to
the global optimal ability, FL parameters of inference rules and
membership functions are able to be determined by a hybrid
system itself. For GA–fuzzy control systems, see [60]–[63].

Nawa et al. studied a GA–fuzzy control system with the aid
of pseudobacterial GAs (PBGAs) and employed this controller
to an active suspension system. Its encoding method is demon-
strated in Fig. 8. Differing from the traditional canonical binary
encoding, the parameters were put into the chromosome, each
of which encoded the rules of the fuzzy system. Since every
rule contained the information of antecedent and consequent
variables, each chromosome encoded the parameters of the
membership functions. Triangular-type membership functions
were employed so that the parameters of the membership func-
tion were in pairs of center and width, as shown in Fig. 8. This
encoding method gave a high degree of freedom for the GA,
which can optimize the variables to be employed in the rules,
the rules themselves, and the parameters of membership func-
tions. Therefore, this encoding was desirable to simultaneously
evolve the rules and the membership functions, minimizing the
probability of arriving at a local optimal point.

The GA algorithm can be briefly described as follows:
1) generation of the initial population; 2) genetic operations—
mutation, evaluation, selection, and replacement; 3) crossover
and production of the new generation. An adaptive method was
used in a crossover operation instead of randomly deciding the
chromosomes’ cutting points. The adaptive crossover operator
took into account the moving average of the degrees of truth

Fig. 8. Example of the fuzzy system encoded in a chromosome in [64].

values of the fuzzy rules when deciding where to cut the
chromosome. The moving average was defined as the average
of the accumulated truth values of the rules. The accumulated
truth value of a fuzzy rule was the sum of the truth values for
each one of the entries in the training data, which was a measure
of quality. If a rule possessed a high value of accumulated
truth, it meant that the rule was intensively and frequently
triggered during the evaluation process. Consequently, this was
an indication of the utility and possible effectiveness of that
rule. On the other hand, if a rule possessed a low value of
accumulated truth, this was an indication that the rule did not
play an important role in the system. Four approaches were
employed on the semiactive suspension control system. The
first method was a GA with fixed membership functions, as
defined in [49]. The second method is a GA with the pos-
sibility of defining the membership functions and rules of a
fuzzy controller simultaneously. The third approach used the
PBGA with a traditional crossover operator, and the fourth
approach was the PBGA with adaptive crossover operation. The
simulation results showed the proposed adaptive PBGA fuzzy
controller worked well to find out better rules and obtained the
best performance of these four control strategies. The results
also indicated that this PBGA fuzzy controller focused more
on the actuation, but the encoding methods increased the total
number of membership functions in the system.

C. GA–NN Combined Control

A combination of a GA and an NN was employed to design
an active suspension controller by Tang and Zhang [65]. The
GA searched for the optimal acceleration of the vehicle body,
which served as the objective output of the NN control system.
The NN had two hidden layers, and the input, hidden, and
output neurons were 1, 10, 3, and 1, respectively. An adaptive
leaning rate was applied to decrease the training by keeping
the learning reasonably high, while ensuring stable learning.
The input of the NN was the time response of the acceleration
of the sprung mass; the objective output was the optimized
suspension control force. The proposed GA–NN combined
controller and an LQG controller were employed to evaluate
the control performance. The simulation results demonstrated
that the NNC with optimal acceleration parameters computed
by the GA-based optimization provided better ride comfort in
the time domain.

VIII. CONCLUDING REMARKS

Computational-intelligence-based adaptive control ap-
proaches are required due to the real-time, nonlinear, and
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uncertain nature properties of active suspension systems. This
paper provided an account of the state of the art of adaptive
ASCSs with intelligent methodologies. Their advantages and
disadvantages are concluded based on theoretical analysis,
analyzing simulations, and the experimental results of the
reviewed systems. In summary, the fuzzy control systems
with learning and adaptive capability can be used to solve
most modeling problems and the uncertain disturbance of
active suspension systems. However, the control stability
analysis is also a bottleneck for the application of fuzzy control
systems. A sliding-mode controller with an FL system has
been studied to integrate the advantages of transferring human
expert knowledge and stability verification. However, these
designs are always complex, and the tuning parameters are not
easily operated by the engineers. From the point of adaptive
ability, the NN and GA also have shown many advantages
in suspension systems by simulations and applications. In
addition, the combination of these methods hopes to bring
better performance. Simultaneously, these hybrid systems have
shown poor interpreting ability and are difficult to evaluate in
the same test case.

In what follows, we enumerate some open questions and
scientific problems that suggest future research.

1) Employing intelligent control based on the full-vehicle
model or 3-D model: Most of the reported research
on active suspension intelligent control has studied the
suspension performance under the quarter-vehicle or
half-vehicle model. A comprehensive consideration of a
full-car 3-D model will bring further distinct functional
and safety-related benefits. Furthermore, a full-vehicle
model will be convenient for the integration of other con-
trol subsystems such as brake control, steering control,
and antiroll control to a hybrid intelligent system and will
benefit the analysis of a unit vehicle performance.

2) Integration of multiobjective optimization methods and
FL reasoning: Considering the tradeoff between riding
comfort and road-handling quality, the optimal objective
will be changed with the requirements of different road
surfaces. Then, the adaptive multiobjective optimization
methods with high real-time computing efficiency need
to be researched, particularly for the application of race-
vehicle active suspension systems.

3) Pursuing the balance of accuracy and interpreting ability
in a hybrid ASCS such as NN–GA–fuzzy controllers,
GA-NN controllers, or NN–GA–fuzzy sliding-mode con-
troller: Although hybrid intelligent systems have been
widely investigated in many domains, their future will lie
in the careful integration of the best constituent technolo-
gies beyond simply combining individual methods.

4) Evaluating hybrid intelligent control methodology from
the perspective of practical applications: It is necessary
to build an evaluating system to compare the different
intelligent systems according to application requirements
such as computing cost, the number of tuning parameters,
and the interface to faulty diagnosis. The comparison
results will be beneficial to hybrid intelligent control
system applications and the direction of future research.
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