
Coordination of Security Levels for Internet Architectures

Eduardo B. Fernandez
Dept. of Computer Science and Eng.

Florida Atlantic University
Boca Raton, FL 33431, USA

ed@cse.fau.edu

Abstract
Internet systems provide a variety of ways to
exchange information, contain large amounts
and variety of data, and have become quite
complex, making them vulnerable to attacks from
determined hackers. There are many products
used currently to stop these attacks but they
suffer from lack of completeness, they only apply
to one type of attack. Several mechanisms are
needed for a comprehensive defense but this
incurs in the problem of their lack of
coordination, which can be exploited for attacks.
We propose a way to coordinate different
mechanisms based on a unified object-oriented
modeling approach and a hierarchical
architecture whose layers define the scope of
each security mechanism.

1. Introduction
 Internet systems are very complex, they

involve a variety of machines, operating systems,
languages, and applications exchanging
information using a rather simple protocol. They
provide a variety of functions and every day new
ways of use are being found. The complexity of
the systems involved and the limitations of the
typical protocols used provide ample
opportunities for hackers to attack these systems
[Bou98].

Current systems incorporate a variety of
mechanisms to thwart attackers, e.g.,
cryptographic protocols, intrusion detection
methods, authorization systems, etc. [Gar97]
Each mechanism is geared to stop some specific
type of attacks, is typically produced by a
different vendor, and there is no coordination
between different mechanisms. This lack of
coordination can be exploited to attack the
system, a knowledgeable hacker can exploit
interactions between systems which are not well
checked. To make things worse, some surveys
[Atk97], give the misleading impression that
Internet security is only a problem of network

security and ignore the rest of the system. In fact,
the Internet has brought upon a fusion of internal
and external systems, and its security problems
cannot be considered in isolation of the involved
internal systems. From current statistics one can
see that more than a half of the attacks come
from internal users [NYT98].

Object-oriented design has introduced a
systematic way of developing software [Rum91].
Less known, is its ability to model existing
systems.

We propose here a methodology to coordinate
security mechanisms that should increase total
system security. The idea is to define abstract
hierarchical architectural levels and to model all
mechanisms in a uniform way using an object-
oriented approach. The modeling includes the
definition of mappings between the elements of
the models at each level. Authorization
restrictions are defined at the application level
and enforced by the lower levels, that implement
the appropriate mappings.

Section 2 describes a hierarchical architecture
and indicates where the current security
mechanisms fit. Section 3 shows the types of
object-oriented models that we need at each
level, while Section 4 describes mappings
between levels and an ideal embodiment of these
ideas. We end with some conclusions and ideas
for future work.

2.Architectural levels and security
mechanisms

It is possible to visualize the structure of a
computer system as a hierarchic set of layers or
levels. Many interpretations of the layers are
possible, e.g., the layers correspond to the levels
of the structure of the software/hardware
architecture. In particular, in earlier work we
defined a security layer [Lan77], a fault tolerance
layer [Anc88] and a refined set of security layers
[Fer96]; that is, we have concentrated on layers

that correspond to nonfunctional aspects of an
application. A detailed set of nonfunctional
layers was shown in [Fer95]. We consider here
further aspects of this multilevel hierarchy that
can be exploited for Internet security.

In the case of the Internet we can interpret
these layers as shown in Figure 1. We have left
out real-time and fault tolerance aspects and we
concentrate on those aspects relevant to security.

Security mechanisms normally are applied to
one or more of these layers:

� At the physical or network layer,
cryptographic protocols may be applied
[Opp97]. Several sublayers may be
involved, using different cryptographic
protocols, e.g., SSL.

� At the OS layer we have memory protection
and file rights [Tan96]. The complete OS
can be protected from external access using
firewalls [Opp97]. Internal firewalls can
control departments or other company
divisions. Languages such as Java let users
download programs from other nodes in the
network; these programs may become
security threats, for example compromising
files [Kov97].

� At the DMBS layer, many authorization
models have been proposed [Ber94, Fer93].
These protect the data at a granularity that
can cover specific data values.

� At the application layer we can define
authorizations using the conceptual model of
the system and Role-Based Access Control
[San96].

In fact, authorization constraints should be
defined at the application layer and mapped
downward to the lower layers, which enforce
them [Fer93]. Under the application layer, a
variety of software packages or DBMSs apply
the security constraints [Rie98]. The application
authorization constraints are the basis of the
coordination of all the lower-level mechanisms.
It makes no sense to define rights directly at the
low levels because these cover only specific
layers and can be easily bypassed.

3. OO models at each level.

It is possible to model the mechanisms at each
level using an object-oriented notation such as
UML [Rum98]. We have shown in earlier work

models of this type for authorization rules and
for a complete DBMS [Fer93]. We also
developed models for more specific software
systems, e.g., hypertext document security
[Fer98]. It is also possible to model in this way
hardware configurations or even the structure of
processors and processes.

We start by defining authorization rules from
use cases [Fer97]. This is an application of Role-
Based Access Control, where the actors are
given the rights they need to perform their
duties. These rights are then applied to the OOA
class and state models, as shown in Figure 2. In
this case they define that a manufacturing
employee (MfgEmp), can cut (reserve
components) and pick components for a shop
order, while an OrderEntryEmployee can create
shop orders.

Figure 1. Security levels

Figure 2 shows an authorization rule at the
application level. In particular, a MfgEmp role is
showed having rights to access components and
shop orders. The application authorizations map
into some authorizations for a table in the
DBMS. In turn, these DBMS authorizations
define some file and memory rights for executing
processes at the OS/concurrency level. The
figure also shows how a downloaded applet that
determines Bill of Materials for orders receives
rights to access table ORDERS and other
resources from the Use Cases. At the OS level,
the rights of executing programs, including
applets, should be controlled with respect to use
of resources, e.g., memory or files.
Cryptographic controls at the hardware (storage

Employee

Mfg.Emp
.
.

.

. .

Cut

rights

BOM
applet

I/O driver
File
rights

ORDERS
 file

Encryption
ORDERS

STORAGE/NETWORK

APPLICATION

ORDERS

DATABASE

BOM
Applet

Remote site

Auth
 rules

User Cases

OP. SYS.
Executing
programs

Order

Mfg.
 Emp.

Component

rights

Roles

and network) level protect the information in
transit.

Figure 2. Authorizations

Figure 3 shows the generalized model, where
object-oriented diagrams, both static and
dynamic, describe specific security mechanisms
at each level. The addition of constraints can
make the models more precise. Either OCL
[War98], Z [Coo94], or a similar formal
language can be used. The dynamic model uses
statecharts but Petri nets can be used for more
detail. Use of the dynamic model allows the
definition of authorization rules with timing
restrictions and guards.

Figure 3. Object-oriented models of
security mechanisms

The use of purely formal methods at each
layer, as discussed in [Fer95], doesn’t seem a
good approach, because of their lack of intuitive
interpretation and their difficulty in describing
complex systems. As indicated above, a
combination of object-oriented diagrams with
OCL or Z constraints appears precise enough for
most restrictions as well as being intuitive.

Z or OCL also appear convenient to define
precisely the mappings from one level to
another. A class can be mapped to a whole table
or its attributes can be distributed in several
tables [Rum91]. Authorizations are defined as
associations in the conceptual model and are
stored in relational databases as special tables
[Cas94]. Note that there may be application
authorization rules that do not map to a DBMS
authorization, but map to a concept in a lower
level. Part of the Z mapping for the rules of
Figure 2 is as follows:

------------------- Rel_mapping --------------------
 Order : CLASS
 MfgEmp : CLASS
 ORDERS : table
--
 order.number Å ORDERS.number
 order.date Å ORDERS.issue_date
 MfgEmp Å order.cut Å MfgEmp

Å ORDERS.number(select),
Å ORDERS.issue_date(select)

--

This mapping uses an extended Z, where the
symbol -> indicates correspondence across levels
and the dot notation indicates either an attribute
of an object or a column in a table. Specifically,
the mapping shows here that order.number in the
application level maps to the column number in
table ORDERS, etc. The last line defines the
rights of manufacturing employees at the DBMS
level starting from their rights at the application
level. Here ORDERS.number(select) indicates
that the operation select can be applied to the
column ’number’ of table ORDERS. This
example needs to be generalized in the style of
[Woo79], where we mapped view authorizations
to conceptual model authorizations.

Once we have defined the models at each
level and their interlevel mappings we can look
for patterns that correspond to secure system
structures. Patterns have proved to be very useful
in object-oriented design to help developers use
well-tried designs. Figure 4 shows a pattern at
the application level that makes use of an

Employee

ShopOrder

create
cut
pick

OrderEntryEmp MfgEmp

create

cut
pick

Rights

Rights

*

*

*

*

o

o. m

data

crypto

o.m.r.
. . .

s

t

o. a

. . .

t

ring

processor

.

.

{a>t1}

{t2>a>t1}process

aggregation structure. It shows that the class
CEO (a singleton) controls Dept. Heads, which,
in turn, control Project Leaders. The CEO has
global rights on the company, Dept. Heads have
rights on departments and project leaders have
rights on projects. Also, the CEO rights include
the rights of Dept. Heads and so on down the
aggregation hierarchy. This kind of patter
simplifies the work of security administrators,
who do not need to define each individual right.

Figure 4. A security pattern

4. Conclusions

Internet systems are complex and their
complexity is increasing through the use of use
of components off the shelf (COTS) [Lin98],
XML, and agents [Kar97]. Distributed systems,
combining technologies such as CORBA and
DCOM with the Internet are increasingly used.
All this will bring new security problems.
Without a unified view of security across all the
system levels, security vulnerabilities will be
exploited by hackers. Our unified model is an
attempt to put some structure in what is now a
chaotic combination of many diverse
mechanisms.

These concepts can be applied in different
ways:
q To define new secure architectures. For

example, we proposed in [Fer98] a 3-layer
approach using a hardware-based web server
designed according to the following
structure:

� A view/presentation layer, distributed across
user browsers.

� A model layer, stored in the web server.

� A storage layer.

This server would also require a strong operating
system such as HP’s Virtual Vault [Zho98], as
well as cryptographic protocols. Its layers would
be coordinated using the models described here.

q To complement a system-wide
administration structure, such as the one
described in [Ess98]. This system
coordinates heterogeneous security systems
at the user level, while our proposal takes
the coordination to the lower levels.

The ability to model security mechanisms has
already been demonstrated, what we need is a
precise way to map mechanisms across levels in
a generalized way. While it is very difficult to
guarantee that the more detailed lower levels
enforce the policies, we should at least guarantee
that the concepts at each level are properly
mapped. We are not dealing here with the design
of new systems that have to be provable secure
but we are considering existing products that
need to work together. Another interesting
direction is the use of reflection to provide
security at specific layers [Anc98], a reified level
could be controlled from a higher level.

5.Acknowlegments

The comments of the referees were very useful
to improve this paper.

6. References

Anc88 M. Ancona, A. Clematis, G. Dodero, E. B.
Fernandez, and V. Gianuzzi, "A system architecture
for fault tolerance in concurrent systems", Computer,
Vol. 23, No 10, October 1990, 23-32.

Anc98 M. Ancona, W. Cazzola, and E. B. Fernandez,
"Reflective authorization systems: Possibilities,
benefits, and drawbacks", in Secure Internet
programming: Security issues for distributed and
mobile objects, J. Vitek and C. Jensen (Eds.), Springer
Verlag, 1999.

Atk97 R. Atkinson, "Toward a more secure Internet",
Computer, January 1997, 57-61.

Ber94 E. Bertino and H. Weigand, "An approach to
authorization modeling in object-oriented database
systems", Data and Knowledge Engineering, 12,
1994, 1-29.

Bou98 A. Boulanger, "Catapults and grappling
hooks: The tools and techniques of Information

CEO Company

Dept. Head Department

Project Leader Project

rights

rights

rights

1 1

1 1..*

1 1..*

*

* *

*

warfare", IBM Sys. Journal, vol. 37, No 1, 1998, 106-
114.

Cas94 S. Castano, M. Fugini, G. Martella, and P.
Samarati, Database security, Addison-Wesley 1994.

Coo94 S. Cook and J. Daniels, "Let’s get formal",
JOOP, July-August 1994, 22-24 and 64-66.

Ess98 W.Essmayr, E.Kapsammer, R.R.Wagner, G.
Pernul, and A.M.Tjoa, "Enterprise-wide security
administration", Procs. 9th Intl. DEXA Wokshop, 1998,
267-272.

Fer93 E. B. Fernandez, M. M. Larrondo-Petrie and E.
Gudes, "A method-based authorization model for
object-oriented databases", Proc. of the OOPSLA 1993
Workshop on Security in Object-oriented Systems , 70-
79.

Fer95 E. B. Fernandez and R. B. France, "Formal
specification of real-time dependable systems", Procs.
ICECCS’95, 342-348.

Fer96 E. B. Fernandez et al., “High-level security
issues in multimedia / hypertext systems”, in
Communications and Multimedia Security II , P.
Horster (Ed.), Chapman & Hall, 1996, 13-24.

Fer97 E. B. Fernandez and J. C. Hawkins,
“Determining role rights from use cases”, Procs. 2nd

ACM Workshop on Role-Based Access Control,
November 1997, 121-125.

Fer98 E. B. Fernandez and K. R. Nair, “An abstract
authorization system for the Internet”, Procs. 9th Int.
Workshop on Database and Expert Systems Applics.
(DEXA ’98), 310-315.

Gar97 S. Garfinkel and G. Spafford, Web security
and commerce , O’Reilly and Assocs., Inc., 1997.

Har97 B. Hartman, "DCOM and CORBA --Secure
interoperability ? ", Distributed Object Computing,
July 1997, 47-49.

Kar97 G. Karjoth et al. , "A security model for
Aglets", IEEE Internet Computing, July-August 1997,
68-77. http://www.ibm.com/java/education/aglets

Kov98 L. Koved, A. J. Nadalin, D. Deal, and T.
Lawson, "The evolution of Java security", IBM Sys.
Journal, vol. 37, No 3, 1998, 349-364.

Lan77 T. Lang, E. B. Fernandez, and R. C. Summers,
"A system architecture for compile-time actions in
databases", Procs. 1977 ACM Annual Conf., 11-15.

Lin98 U. Lindqvist and E. Jonsson, "A map of
security risks associated with using COTS",
Computer, June 1998, 60-66.

NYT98 The New York Times, March 2, 1998,
“Threat to computers is often the enemy within”, C1-
C2.

Opp97 R. Opplinger, “Internet security : Firewalls
and beyond”, Comm. of the ACM, May 1997, 92-102.

Rie98 R. van der Riet, W. Janssen, and P. de
Gruijter, "Security moving from database systems to
ERP systems", Procs. 9th Intl. DEXA Workshop, 273-
280.

Rum91 J. Rumbaugh et al., Object-oriented modeling
and design, Addison-Wesley 1991.

Rum98 J. Rumbaugh, G. Booch, and I. Jacobson, The
Unified Modeling Language Reference Manual,
Addison-Wesley 1999.

San96 R. Sandhu et al., "Role-Based Access Control
models", Computer, vol. 29 , No 2, February 1996, 38-
47.

Tan96 A. S. Tanenbaum and A. S. Woodhull,
Operating systems: Design and implementation, (2nd

Ed.), Prentice-Hall 1996.

War98 J. Warner and A. Kloppe, The Object
Constraint Language: Precise modeling with UML,
Addison-Wesley 1998.

Woo79 C. Wood, R. C. Summers, and E. B.
Fernandez, "Authorization in multilevel database
models", Information Systems, vol. 4 No 2, 1979, 155-
161.

Zho98 Q. Zhong and N. Edwards, "Security control
of COTS components", Computer, June 1998, 67-
73.

