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Abstract—Network coding-based storage has recently received a
lot of attention in the network coding community. Independently,
another body of work has proposed integrity checking schemes for
cloud storage, none of which, however, is customized for network
coding storage or can efficiently support repair. In this work, we
bridge the gap between these currently disconnected bodies of
work, and we focus on the (novel) advantage of network coding
for integrity checking. We propose NC-Audit – a remote data
integrity checking scheme, designed specifically for network coding-
based storage cloud. NC-Audit provides a unique combination of
desired properties: (i) efficient checking of data integrity (ii) efficient
support for repairing failed nodes (iii) full support for modification
of outsourced data and (iv) protection against information leakage
when checking is performed by a third party. The key ingredient
of the design of NC-Audit is a novel combination of SpaceMac, a
homomorphic MAC scheme for network coding, and NCrypt, a novel
CPA-secure encryption scheme that is compatible with SpaceMac.
Our evaluation of a Java implementation of NC-Audit shows that an
audit costs the storage node and the auditor only a few milliseconds
of computation time, and lower bandwidth than prior work.

I. INTRODUCTION

Fundamental to cloud computing is the ability to store user
data reliably on the storage cloud. If the original data consists of
K packets, an (N,K) maximum distance separable (MDS) code
can be used to produce N packets, which are stored individually
on N storage nodes, thus tolerating up to (N −K) node failures.
Network coding (NC) has been shown to achieve the minimum
repair bandwidth, i.e., much less than K packets, which is re-
quired to reconstruct the original data [1], [2]. The key ingredients
of NC-based distributed storage include (i) subpaketization, i.e.,
each storage node stores subpackets (or blocks) that are linear
combinations of blocks that form the original data, and (ii)
subpacket mixing when repairing. An example is given in Fig. 1.
However, repair bandwidth is only one aspect of cloud storage.

Another practical aspect, which has not previously received
attention in the network coding community, is integrity checking
of the data stored on the cloud. Data can be lost or corrupted for
various reasons without the user being aware of it. For example,
storage errors, such as torn writes [3] and latent errors [4], may
damage the data in a way that is not detected. Data storage
providers also have incentives to cheat: e.g., some providers do
not report data loss incidents in order to maintain their reputation
[5]–[7]. This problem is further exacerbated in NC-based systems
because corrupted data on one storage node can propagate to
many other nodes during the repair process. Therefore, it is
important for the user to be able to audit the integrity of the
data stored on the cloud.

However, considering a large file stored on the cloud, the ability
to audit this file regularly may be out of the ability or budget of
users with limited resources [7], [8]. Therefore, users often resort
to a third party to perform the audit on their behalf [5], [7],
[9], [10]. In this case, it is important that the auditing protocol
be privacy-preserving, i.e., should not leak the data to the third
party [7], [11]. Users may leverage encryption to protect their
data before outsourcing it [10]. However, data encryption should
be complementary and orthogonal to integrity checking protocols.
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Fig. 1. Repairing a failed node [1]: The original data consists of four blocks:
b1,b2,b3 and b4. A (4, 2) MDS code is used such that any 2 nodes can be
used to restore the original data. Note that the repair involves combining blocks
b3 and b4 and the repair bandwidth consists of 3 blocks instead of 4, which is
needed to reconstruct the whole data.

Although there is a rich literature on auditing protocols for
cloud storage in general [5]–[7], [9]–[17], there have been very
few auditing protocols for NC-based distributed storage systems
[18], [19]. However, these are generic in the sense that they do
not specifically exploit network coding properties for efficient
integrity checking [18]. Furthermore, they do not efficiently
support repair or data dynamics [18], and do not prevent data
leakage [18], [19].

In this work, we propose a symmetric key-based cryptographic
protocol, called NC-Audit, to check for the integrity of data
stored on a NC-based distributed storage system. To the best of
our knowledge, this is the first scheme proposed for NC-based
systems that possesses all the following properties:

(i) Efficient Integrity Checking: The integrity check incurs a
small bandwidth and computation overhead (few millisec-
onds). It guarantees that, with high probability, the storage
provider passes the integrity check if and only if it possesses
the data. The proposed protocol also supports unlimited
number of checks.

(ii) Efficient Support for Repair and Data Dynamics: The
repair of failed nodes and the changes made to the data
(including update, append, insert, and delete operations)
require negligible bandwidth (no data download) and com-
putation (sub milliseconds) to maintain the metadata used
by the integrity checking.

(iii) Efficient Privacy Protection: A third party auditor cannot
learn any information about the user data through the
checking protocol, except for the metadata used by the
integrity checking. This privacy preserving property incurs
a small bandwidth (0.4%) and computation overhead (few
milliseconds).

We would like to emphasize that, independently of (iii), (i) and
(ii) together are already useful and of interest to users who prefer
to audit the data themselves; furthermore, NC-Audit is the first
protocol that possesses (i) and (ii) at the same time. NC-Audit
is the first auditing scheme that fully exploits network coding by
design. The key ingredient of NC-Audit is a novel combination
of SpaceMac – a homomorphic authenticator that was previously
specifically designed for network coding, and NCrypt – a novel
encryption scheme that exploits random linear combinations so
as to be compatible with SpaceMac (Section IV-D).

We implemented NC-Audit in Java, utilizing our previous
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Fig. 2. Parties and Steps Involved in NC-Audit.

implementation of SpaceMac [20]. Our evaluation of NC-Audit
shows that it has very low computation overhead: when perform-
ing an audit, both the storage node and the TPA only need to
spend a couple of milliseconds.

The rest of the paper is organized as follows. In Section II, we
discuss related work. In Section III, we formulate the problem and
describe the threat model. In Section IV, we describe the auditing
framework and the key building blocks of NC-Audit (SpaceMac
and NCrypt) before presenting NC-Audit itself. We also show
how NC-Audit efficiently supports repair and data dynamics. In
Section V, we analyze the security of NC-Audit. In Section VI, we
evaluate its bandwidth and computational efficiency. In Section
VII, we conclude.

II. RELATED WORK

The benefits of network coding for distributed storage has been
first formalized by the work of Dimakis et al. [2]. An excellent
survey on recent advances in NC-based storage systems can be
found at [1]. One of the first implementations of NC-based storage
cloud is NCCloud by Hu et al. [21]. A wiki on NC-based storage
cloud is maintained at [22].

In [19], Dikialotis et al. proposed an integrity checking scheme
for NC-based storage cloud which requires a very small amount
of bandwidth. The key technique for reducing the amount of
bandwidth is to project blocks on a small random vector. This
technique requires communicating with multiple nodes to perform
a single check while our work does not.

In [18], Chen et al. proposed a cryptographic integrity checking
scheme for NC-based storage. This scheme adopts the symmetric-
key based integrity checking scheme that Shacham and Waters [9]
proposed for regular cloud storage with minor modification, thus
not exploiting network coding for efficient checking. In addition,
the scheme in [18] neither supports data dynamics nor privacy-
preserving auditing.

There has been a rich body of work on integrity checking for
remote data [5]–[7], [9]–[17], known as Proof of Retrievability
or Proof of Data Possession. These works, however, are not
customized for NC-based storage systems and do not efficiently
support coding operations and repair of failed nodes. Other
security problems for NC-based storage include securing blocks
when repairing [23]–[26] as well as defense against pollution
attacks [27].

III. PROBLEM FORMULATION

A. System Model and Operations
Fig. 2 illustrates an overview of the system. We consider a

cloud storage service that involves three entities: a user, NC-
based storage nodes, which make up the storage cloud, and a

third party auditor (TPA). The user distributes her data on the
storage nodes and may also dynamically update her data. The
user resorts to a TPA to check for the integrity of her data stored
at each node; at the same time, she does not want the TPA to
learn about her data. We adopt the storage model in [21] where the
user is responsible for maintaining the data stored at each storage
node. Our work, however, is also applicable to the scenario where
there is a cloud service provider who is independent from the user
and is responsible for maintaining the storage cloud.

The user follows the following basic steps to store her data on
the storage cloud. We adopt the notations used in [28]. Denote
the original file by F . The user first divides F into m blocks,
b̂1, · · · , b̂m. Each block is a vector in an n-dimensional linear
space Fnq , where F is a finite field of size q. To facilitate the
decoding, the user augments each block b̂i with its m global
coding coefficients. The resulting blocks, bi, have the following
form:

bi = (—b̂i—,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ Fn+mq .

We call bi source blocks and the space spanned by them source
space, denoted by Π. We use aug(bi) to denote the coefficients
of bi. Typically, n� m, and this presentation is also called the
n-extended version of a storage code [19].

The user then creates a number of encoded blocks using an
appropriate linear coding scheme for the desired reliability, e.g.,
an array MDS evenodd code is used Fig. 1. Each encoded block is
a linear combination of the source blocks. Note that if an encoded
block e equals

∑m
i=1 αi bi, then the last m coordinates of e are

exactly the coding coefficients αi’s. These encoded blocks are
then distributed across the N storage nodes of the storage cloud.
Let M be the number of encoded blocks stored at a storage node.
In the example given in Fig. 1, m = 4, N = 4, and M = 2.

B. Threat Model
We adopt the threat model considered in [11], [16]. We consider

semi-trusted storage nodes who behave properly and do not
deviate from the prescribed protocol. However, for their own
benefits, the nodes may deliberately delete rarely accessed user’s
data. They may also decide to hide data corruptions, caused by
either internal or external factors, to maintain reputation. For
clarity, we focus our discussion on a single storage node except
when discussing the repair process.

Similar to [11], we assume that the TPA, who is in the
business of auditing, is reliable and independent. The TPA has
no incentives to collude with the user or the storage node during
the auditing process. The TPA, however, must not be able to
learn any information about the user’s data through the auditing
process, aside from the metadata needed for the auditing.

In summary, the threat model includes a malicious storage
node, who wants to hide data corruption, and a TPA, who wants
to learn about the user’s data. We assume that both the node and
the TPA are fully aware of all the cryptographic constructions
and protocols used; however, their runtime is polynomial in the
security parameter.

IV. AUDITING SCHEME

A. Definitions and Auditing Framework
We follow the literature on integrity checking of remote data

[5], [9]–[11], [13] and adapt the common framework for our
privacy-preserving auditing system. In particular, we consider an
auditing scheme which consists of four algorithms:



• KeyGen(1λ) → (k1, k2) is a probabilistic key generation
algorithm that is run by the user to setup the scheme. It takes a
security parameter, λ, as input and outputs two different private
keys, k1 and k2. k1 is used to generate verification metadata,
and k2 is used to encrypt the possession proof.

• TagGen(e, k1) → t is a probabilistic algorithm run by the
user to generate the verification metadata. It takes as input a
coded block, e, a private key, k1, and outputs a verification
data of e, t.

• GenProof(k2, (e1, · · · , eM ), (te1
, · · · , teM

), chal) → V is
run by the storage node to generate a proof of possession.
It takes as input a secret key, k2, coded blocks stored at the
node, e1, · · · , eM , their corresponding verification metadata,
te1
, · · · , teM

, and a challenge, chal. It outputs a proof of
possession, V , for the coded blocks specified in chal.

• VerifyProof(k1, chal, V )→ {1, 0} is run by the user in order
to validate a proof of possession. It takes as inputs a secret key
k1, a challenge, chal, and a proof of possession V . It returns 1
(success) if V is the correct proof of possession for the blocks
specified in chal and 0 (failure) otherwise.
An auditing system can be constructed from the above algo-

rithms and consists of two phases:
• Setup: The user initializes the security parameters of the system

by running KeyGen. The encoded blocks are prepared as de-
scribed in Section III-A. The user then runs TagGen to generate
verification metadata for each encoded block. Afterwards, both
the encoded blocks and verification metadata are uploaded to
the storage node. The encoded blocks are then deleted from the
user’s local storage. Finally, the user sends metadata needed to
perform the audit to the TPA.

• Audit: The TPA issues an audit message, i.e., a chal, to the
storage node to make sure that the node correctly stores
its assigned coded blocks. The node generates a proof of
possession for the blocks specified in chal by running GenProof
and sends the possession proof back to the TPA. Finally, the
TPA runs VerifyProof to verify the possession proof it receives.

B. Basic Scheme and Key Techniques

Next, we describe the basic scheme [5] and then describe how
we improve this basic scheme to arrive at our proposed scheme.

The Basic Scheme. During the Setup phase, the user precomputes
a message authentication code (MAC) tag, ti, for each coded
block, ei, using a secret key, k1, and a standard MAC scheme,
e.g., HMAC. She uploads both the tags and the coded blocks
to the storage node and sends k1 to the TPA. During the Audit
phase, to verify that the node stores ei correctly, the TPA issues
a request for ei. The node then sends ei and its tag ti to the
TPA. The TPA can use k1 and ti to check for the integrity of
ei. Although providing possession checking, this scheme suffers
from many drawbacks:
• It is inefficient in both computation and communication, i.e.,

the computation and bandwidth overhead increases linearly in
the number of checked blocks.

• It does not efficiently support repair [1], [2]: it requires the
user to download all the coded blocks to be stored at the new
node then compute the verification tag for each of the block,
essentially re-setting up the storage node.

• It violates privacy as the TPA learns the blocks. Note that
a straightforward way to provide privacy is to encrypt the
response block using a standard encryption scheme, e.g., AES.

However, in this way, the TPA will not be able to verify the
integrity of the original block from the encrypted block.

Key Techniques. We improve the basic scheme to arrive at our
proposed scheme by leveraging (i) a homomorphic MAC scheme
and (ii) a customized encryption scheme that exploits random
linear combinations.

In particular, we adopt SpaceMac, a homomorphic MAC
scheme that we previously designed specifically for network
coding [20], [29]. We use SpaceMac to generate verification tags.
With SpaceMac, the integrity of multiple blocks can be verified
with the computation and communication cost of a single block
verification, thanks to the ability to combine blocks and tags.
SpaceMac also facilitates repair as verification metadata at a
newly constructed node can be computed efficiently from existing
metadata at healthy nodes.

We custom design a novel encryption scheme, called NCrypt, to
protect the privacy of the response blocks. NCrypt is constructed
in a way that a response block, even when encrypted, can be
used by the TPA for the integrity check. NCrypt employs the
random linear combination technique of network coding to be
compatible with SpaceMac verification. NCrypt is semantically
secure under a chosen plaintext attack (CPA-secure). Next, we
describe SpaceMac and NCrypt in detail.

C. The Homomorphic MAC: SpaceMac

In prior work, we designed SpaceMac and used it to combat
pollution attacks in network coding [20], [28]–[30]. Here, we
use SpaceMac to support the aggregation of file blocks and tags.
SpaceMac consists of a triplet of algorithms: Mac, Combine,
and Verify. The construction of SpaceMac uses a pseudo-random
function (PRF) F1 : K1 × (I × [1, n + m]) → Fq , where K1 is
the PRF key domain and I is the file identifier domain.
• Mac(k, id, e) → t: The MAC tag t ∈ Fq of a source block or

encoded block, denoted by e ∈ Fn+mq , under key k, can be
computed by the following steps:
– r← (F1(k, id, 1), · · · , F1(k, id, n+m)) .
– t← e · r ∈ Fq .
• Combine((e1, t1, α1), · · · , (e`, t`, α`))→ t: The tag t ∈ Fq of

e
def
=

∑`
i=1 αi ei ∈ Fn+mq is computed as follows:

– t←
∑`
i=1 αi ti ∈ Fq .

• Verify(k, id, e, t) → {0, 1}: To verify if t is a valid tag of e
under key k, we do the following:
– r← (F1(k, id, 1), · · · , F1(k, id, n+m)) .
– t′ ← e · r .
– If t′ = t, output 1 (accept); otherwise, output 0 (reject).

Lemma 1 (Theorem 1 in [29]). Assume that F1 is a secure
PRF. For any fixed q, n, m, SpaceMac is a secure (q, n,m)
homomorphic MAC scheme.

We refer the reader to [29] for the security game and proof
of SpaceMac. If the user computes the verification tags for the
source blocks using Mac, then the storage node can compute
a valid MAC tag for any encoded block using Combine. The
security of SpaceMac guarantees that if a block, e′, is not a linear
combination of the source blocks, then the storage node can only
forge a valid MAC tag for e′ with probability 1

q . The security
when using ` tags is 1

q`
. Also, for clarity, we focus on a single

file F and thus omit the file identifier id used by the above three
algorithms in our subsequent discussion.



D. The Random Linear Encryption: NCrypt

To protect the privacy of the response file block, we need to
encrypt it. The encryption, however, needs to still allow for the
verification of the block. Here, we describe NCrypt, an encryption
scheme that is compatible with SpaceMac. In particular, NCrypt
will protect n − 1 elements of the response block while still
allowing SpaceMac integrity checking. Only n−1 elements rather
than n is protected is because of the technical constraint needed
to preserve the security guarantee of SpaceMac.

If x ∈ Fn+mq , then let x̄ ∈ Fn−1q denote the vector formed by its
first n− 1 elements. The construction of NCrypt uses two PRFs:
F2 : K2× ([1, n−1]× [1, n−1])→ Fq and F3 : K2× ({0, 1}λ×
[1, n − 1]) → Fq , where K2 is the PRF key domain. NCrypt
consists of three probabilistic polynomial time algorithms:
• Setup(k, r̄) → (p1, · · · , pn−1) run by the user to setup the

encryption scheme. It takes as input a secret key, k, and a
vector, r̄ ∈ Fn−1q . It outputs n − 1 elements in Fq , which are
called tagging elements and are used by the encryption. The
details are as follow:
– p̄i ← (F2(k, i, 1), · · · , F2(k, i, n− 1)), for i ∈ [1, n− 1].
– pi ← r̄ · p̄i, for i ∈ [1, n− 1].

• Enc(k, ē, (p1, · · · , pn−1)) → 〈c̄, (r, p)〉 run by the storage
node to encrypt n − 1 first elements of the response block. It
takes as input a secret key, k, vector formed by the first n− 1
elements of the response block, ē, and the tagging elements,
p1, · · · , pn−1. It computes the encryption, 〈c̄, (r, p)〉, of ē as
follows:
– Compute p̄i, i ∈ [1, n− 1], using key k as in Setup.
– Choose r uniformly at random: r R← {0, 1}λ.
– Compute the masking coefficients:
βi ← F3(k, r, i) ∈ Fq , for i ∈ [1, n− 1].

– Compute masking vector: m̄←
∑n−1
i=1 βi p̄i ∈ Fn−1q .

– Compute c̄← ē + m̄ ∈ Fn−1q .
– Compute p←

∑n−1
i=1 βi pi.

In essence, the data is masked with a randomly chosen vector
m̄ ∈ span(p̄1, · · · , p̄n−1).

• Dec(k, 〈c̄, (r, p)〉)→ ē takes as input a secret key, k, and the
cipher text, 〈c̄, (r, p)〉. The decryption is done as follows:
– Compute p̄i, i ∈ [1, n− 1], using key k as in Setup.
– Compute βi ← F3(k, r, i) ∈ Fq , for i ∈ [1, n− 1].
– Compute m̄←

∑d
i=1 βi p̄i ∈ Fn−1q .

– Compute ē← c̄− m̄ ∈ Fn−1q .

Theorem 2. Assume that F2 and F3 are secure PRFs and q
is sufficiently large (depending on λ), then NCrypt is a fixed-
length private-key encryption scheme for messages of length (n−
1)×log2 q that has indistinguishable encryptions under a chosen-
plaintext attack.

Intuitively, the security of NCrypt holds because m̄ looks
completely random to an adversary who observes a ciphertext
〈c̄, (r, p)〉 since it is computationally difficult for the adversary
to compute p̄i’s and βi’s without knowing the secret key k. We
refer the reader to [31] for the details of the proof.

E. The Privacy-Preserving Auditing Scheme: NC-Audit

Our symmetric-key based auditing protocol, denoted by
NC-Audit, is built from SpaceMac and NCrypt as follows:
• Setup phase:

– The user divides the file into m blocks of size n− 1 instead
of n and pads to each block a random element in Fq . This is

necessary as NCrypt encrypts only the first n−1 elements. We
still denote each padded block with its coding coefficients by
bi, i ∈ [1,m].
– The user runs KeyGen to generate MAC key, k1, and
encryption key, k2:
◦ KeyGen(1λ)→ (k1, k2): k1, k2

R← {0, 1}λ.
– The user then setups the encryption scheme by computing
the tagging elements, p1, · · · , pn−1:
◦ r̄← (F1(k1, 1), · · · , F1(k1, n− 1)).
◦ (p1, · · · , pn−1)← Setup(k2, r̄).

– Afterward, the user computes a tag for each source block bi
using Mac algorithm of SpaceMac:
◦ tbi = Mac(k1,bi).

– MAC tags of encoded blocks are computed by the Combine
algorithm of SpaceMac: Assume e =

∑m
i=1 αi bi, then

◦ TagGen(e, k1)→ te: te =
∑m
i=1 αi tbi .

– Finally, the user sends the encoded blocks, e1, · · · , eM , their
tags, te1

, · · · , teM
, the tagging elements, p1, · · · , pn−1, and the

encryption key, k2, to the storage node. The user also sends
the coding coefficients, aug(e1), · · · , aug(eM), and the MAC
key, k1, to the TPA. We assume that the user uses private and
authentic channels to send k1 and k2 while using an authentic
channel for sending the other data. The user then keeps the
keys and the coding coefficients (for repair) but delete all other
data. Note that the storage overhead of the user and the TPA
is O(mMN), which is negligible compared to the outsourced
data O((n+m)MN) since n� m.

• Audit phase:
– The TPA chooses a set of indexes of blocks to be audited,
I ⊆ [1,M ], and chooses the coefficients for these blocks
uniformly at random: αi

R← Fq, i ∈ I. The challenge includes
the indexes of the blocks and their corresponding coefficients:
◦ chal = {(i, αi)|i ∈ I}.

– GenProof run by the node to generate the proof of storage,
V , is implemented as follows:
◦ Compute the aggregated block: ê =

∑
i∈I αi êi. Parse ê

as (ē, e(n)).
◦ Compute the aggregated tag: t =

∑
i∈I αi tei .

◦ Encrypt block: 〈c̄, (r, p)〉 ← Enc(k2, ē, (p1, · · · , pn−1)).
The node then sends V = (〈c̄, (r, p)〉, e(n), t) back to the TPA.
– VerifyProof run by the TPA to verify the proof V is
implemented as follows:
◦ Compute coefficients of ê: aug(e) =

∑
i∈I αi aug(ei).

◦ Let c = (c̄ | e(n) | aug(e)), “|” denotes augmentation.
◦ Return result of Verify(k1, c, t+ p).

Correctness. The correctness of NC-Audit is guaranteed by the
following theorem. Its security is proved in Section V.

Theorem 3. If the storage node follows NC-Audit and computes
the aggregated response block using the uncorrupted blocks, then
the TPA will accept the proof.

Proof: Let r = (F1(k, 1), · · · , F1(k, n+m)). Note that c =
(c̄ | e(n) | aug(e)) = ((ē+m̄) | e(n) | aug(e)) = e+(m̄ | 0, · · · , 0).
Thus, in the Verify, t′ = c ·r = e ·r+m̄ · r̄ = t+

∑n−1
i=1 βi p̄i · r̄ =

t +
∑n−1
i=1 βi pi = t + p. Therefore, Verify returns 1. Hence, the

TPA accepts the proof.

F. Efficient Support for Repair and Data Dynamics
Repair. When there is a node failure, the user creates a new node
to replace this node. Based on the coding coefficients of the coded
blocks at the remaining nodes, the user instructs these nodes to



send appropriate coded blocks to the new node. The new node
then linearly combines them, according to the user instruction,
to construct its own coded blocks. This new node may construct
the same coded blocks that the failed node had (exact repair), or
completely different coded blocks (functional repair) [1].

Using NC-Audit, the verification tags of the newly constructed
blocks at the new node do not need to be computed by the user. In
particular, the healthy nodes can send along the verification tags of
the coded blocks that they send to the new node. The new node
can use Combine to generate tags corresponding to the coded
blocks that it needs to construct. As a result, with NC-Audit,
there is no cost, in term of both bandwidth and computation of
verification metadata, to the user when repairing a failed node.

Data Dynamics. NC-Audit efficiently supports changes that the
user may want to make to their outsourced data, including block
update, block delete, block append, and block insert. The users
can carry on these updates without the need of downloading data
blocks. For the interest of space, we only discuss block append,
which is the most important operation of NC-based storage cloud,
and refer the reader to [31] for the details on how NC-Audit
supports the other operations.
• Block Append: Assume that the user want to append a source

block bm+1 to the system that has m source blocks. It first
compute the tag tbm+1 of bm+1 under k1 using Mac. Then, it
sends tbm+1

to all storage nodes that have coded packets that
involve bm+1.

Assume a storage node has a coded packet e =
∑m
i=1 αi bi,

where e = (e1, · · · , en+m), then e old tag is te =∑m
i=1 en+i tbi . The representation of e after a block is ap-

pended to the system is e′ = (e1, · · · , en+m, 0). Thus te′ =∑m
i=1 en+i tbi + 0 · tbm+1 = te. Assume αm+1 of bm+1 is

added to e′ after the append, then the storage node can compute
new tag of e′′ = (e′ |αm+1): te′′ = te′ + αm+1 tbm+1

.
Finally, the user must send the new coding coefficients,

aug(e1), · · · , aug(eM), of the new coded packets at the storage
node to the TPA. The exact coefficients depend on how the
coding scheme of the system handles append.

V. SECURITY ANALYSIS

A. Data Possession Guarantee
When using SpaceMac in NC-Audit, some information about

r in the SpaceMac construction are available to the adversary. In
particular, the storage node knows the following n−1 equations:
p̄i · r̄ = pi , i ∈ [1, n − 1]. The following theorem states that
even when these n− 1 equations are exposed, SpaceMac is still
a secure homomorphic MAC.

Theorem 4. Assume that F1 is a secure PRF. For any fixed q,
n, m, assume that a probabilistic polynomial time adversary A
knows any n−1 linearly independent vectors, p̄1, · · · , p̄n−1, and
any n− 1 constants, p1, · · · , pd, such that p̄i · r̄ = pi, where r is
used in the construction of SpaceMac. The probability thatA wins
the SpaceMac security game, denoted by Adv[A,SpaceMac],
is at most PRF-Adv[B, F1] + 1

q , where PRF-Adv[B, F1] is the
probability of an adversary B with similar runtime to A winning
the PRF security game.

The proof of this theorem is provided in [31]. The following
theorem summarizes data possession guarantee of NC-Audit.

Theorem 5. With probability at least 1− 2
q , the storage node can

only pass a check if and only if it possesses the blocks specified
in the challenge of the check.

This is a consequence of Theorem 4. For the interest of space,
we refer the reader to [31] for the formal proof. NC-Audit actually
provides a stronger data possession guarantee. It ensures that
the user can extract the data stored on the storage node just
by collecting responses of the node from the checking protocol.
The following theorem, which states the proof of retrievability of
NC-Audit, is based on the theoretical framework of [13] (derived
from [10] and [9]).

Theorem 6. Assume that the storage node responses correctly
to a fraction 1 − ε of challenge uniformly, where ε < 1

2 .
The user can extract e1, · · · , eM by performing γ challenge-
response interactions with the storage node with high probability
(depending on γ, ε, and q).

The proof is also provided in [31].

B. Privacy-Preserving Guarantee

We summarize the privacy guarantee of NC-Audit in the
following theorem.

Theorem 7. From the response of the storage node, the TPA does
not learn any information about the outsourced data, except for
the information that could be derived from the MAC tag.

The claim is a direct consequence of Theorem 2 and the fact
that the padding element is chosen randomly. We stress that
the information derived from the MAC tags are not sufficient
to derive the outsourced data. To be concrete, each tag is a
weighted sum of symbols belonging to the same block. Also,
the outsourced data consists of m×n field symbols, which could
be considered as unknowns of a system of linear equations, and
the knowledge given by the tags and the MAC key only gives n
linearly independent equations.

VI. PERFORMANCE EVALUATION

A. Bandwidth Overhead

Integrity Checking: For each audit round, the major communi-
cation cost is the cost of sending the proof of possession from
the storage node to the TPA, which is dominated by the size
of the (encrypted) data bock. Thanks to homormophic property
of SpaceMac, blocks in the challenge can be aggregated. We
achieve similar bandwidth overhead compared to prior schemes
for integrity checking of cloud data [7], [9], [11], [18], i.e., the
proof of possession for multiple blocks contains only a single
block (of size varying from 4 KB [5] to 1.6 MB [18]).

Repairing and Updating: As shown in Section IV-F, when using
NC-Audit, the user does not need to download any data block to
repair failed nodes or update the outsourced data. This stands in
stark contrast with the state-of-the-art scheme for NC storage [18].
In this scheme, the user needs to download the amount of data
equal to the amount that the remaining healthy nodes need to send
to the newly constructed node, i.e., equal to the repair bandwidth.
Furthermore, the scheme in [18] does not support data dynamics.

Encryption: The amount of additional bandwidth to support
encryption is small. In particular, NCrypt requires the storage
node sends with the encrypted block, c̄, the random value, r, of
size λ (typically 80 bits [5]), and the tagging element, p, and
the random padding element, e(n), which are both of size log2 q.
These are negligible when compared to the block size: n log2 q.
E.g., 0.3% for q = 28, n = 4× 210.
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Features
Public-key audit Public-key audit Symmetric-key audit Symmetric-key audit
No NC-based repair No NC-based repair NC-based repair Efficient NC-based repair
No data dynamics Data dynamics No data dynamics Data dynamics
No privacy protection Privacy protection No privacy protection Privacy protection

Bandwidth
Audit Overhead 1 data block 1 data block 1 data block 1 data block
Repair Overhead N/A N/A Repair bandwidth for a node 0*
Updating Overhead 0* N/A N/A 0*
Encryption Overhead N/A 0* N/A 0*

Computation
Security 80-bit
Parameters 300 blocks per challenge, 4 KB block size
Testbed Configuration 1.86 Ghz CPU, 2GB RAM 2.8 Ghz CPU, 32 GB RAM
Storage Node Overhead 270 ms 273 ms 3.19 ms 4.69 ms
TPA Overhead 491 ms 493 ms 2.76 s 0.73 ms

TABLE I
Comparisons of different remote data integrity checking schemes. 0* indicates no data block needs to be downloaded by the user to support the feature. N/A means

not applicable due to the lack of support.

B. Computational Overhead

To evaluate the computational overhead of NC-Audit, we first
analyze the dominating cost of each operation in NC-Audit. Due
to lack of space, we refer the reader to [31] for the detailed anal-
ysis. Here, we present our evaluation from real implementation.

Implementation: We implement NC-Audit in Java to compare
its performance with recent schemes [11], [15], [18]. For a fair
comparison with [11], [15], we use q = 28 and ` = 10 to provide
80-bit security and set block size to 4 KB (n = 4 × 210), m =
500, and the number of blocks indicated by a challenge to C =
300. We implement finite field multiplications in F28 by using
table look-ups and additions by using XORs. We use our previous
Java implementation of SpaceMac [20] to compute, combine, and
verify tags. We also precompute values that do not depend on the
challenges, such as, PRF calls and masking vectors.

Table I compares both the bandwidth and computational over-
head of different remote data integrity checking schemes. The
reported numbers for [15] and [11] are taken from [11]. (The
overhead of the scheme in [15] is similar to the public-key based
scheme in [9].) We refer the reader to [11] for the detailed setup.
We implement the checking scheme in [18] ourselves. We refer
the reader to the Appendix A in [18] for the detailed description
of this scheme. For [18], we use AES with CBC mode from Java
crypto library to decrypt coefficients. Each number reported for
NC-Audit and the scheme in [18] is the average of 100 runs on
a computer with 2.8 Ghz CPU and 32 GB RAM.

Table I shows that NC-Audit manages to achieve top bandwidth
efficiency while having very small computational overhead. The
computational overhead of NC-Audit is orders of magnitude
smaller than those of [15] and [11]. This is because NC-Audit
is symmetric-key based while the schemes in [15] and [11] are
public-key based and make heavily use of expensive bilinear
mapping operations. We also note that the scheme in [18]
achieves similar storage node overhead to NC-Audit as it is
also symmetric-key based. However, due to the cost of executing
C × m = 150, 000 coefficient decryption, the overhead of the
TPA is much larger than ours, in the order of seconds.

VII. CONCLUSION

In this paper, we propose NC-Audit, a remote data integrity
checking scheme for NC-based storage cloud. NC-Audit is built
based on a homomorphic MAC scheme custom made for network
coding, SpaceMac, and a novel CPA-secure encryption scheme,
NCrypt. NC-Audit allows for efficient integrity checking, supports
repair of failed node and data dynamics (including block update,
delete, insert, and append), and prevents leakage of the outsourced
data when the audit is done by a third party.
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