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Abstract 
In spite of extensive research of uncertainty issues in different fields ranging from computational 
biology to decision making in economics, a study of uncertainty for cloud computing systems is 
limited. Most of works examine uncertainty phenomena in users’ perceptions of the qualities, 
intentions and actions of cloud providers, privacy, security and availability. But the role of uncertainty 
in the resource and service provisioning, programming models, etc. have not yet been adequately 
addressed in the scientific literature. There are numerous types of uncertainties associated with cloud 
computing, and one should to account for aspects of uncertainty in assessing the efficient service 
provisioning. In this paper, we tackle the research question: what is the role of uncertainty in cloud 
computing service and resource provisioning? We review main sources of uncertainty, fundamental 
approaches for scheduling under uncertainty such as reactive, stochastic, fuzzy, robust, etc. We also 
discuss potentials of these approaches for scheduling cloud computing activities under uncertainty, and 
address methods for mitigating job execution time uncertainty in the resource provisioning. 
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1 Introduction 
The cloud computing is widely acknowledged by practitioners and researchers as a valid solution 

for data storage and processing in both business and scientific computing. While having many 
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advantages cloud computing still has many drawbacks, especially in the areas of security, reliability, 
performance of both computing and communication, to list just a few. They are strengthened by the 
uncertainty, which accompanies all of these shortcoming. The vast majority of the research efforts in 
scheduling assumes complete information about the scheduling problem and a static deterministic 
execution environment. However, in the cloud computing, services and resources are subject to 
considerable uncertainty during provisioning. We argue that the uncertainty is the main hassle of cloud 
computing bringing additional challenges to end-users, resource providers, and brokering. They 
require waiving habitual computing paradigms, adapting current computing models to this evolution, 
and designing novel resource management strategies to handle uncertainty in an effective way.  

There is a research on cloud computing examining the uncertainty phenomena in users’ 
perceptions of the qualities, intentions and actions of cloud providers, privacy, security, availability, 
etc. among other aspects of cloud computing (Trenz et al., 2013). But still, the role of uncertainty in 
the resource and service provisioning, provider investment and operational cost, programming models, 
etc. have not yet been adequately addressed in the scientific literature.  

There is a variety of types and sources of uncertainty. Table 1 describes some of them and briefly 
explain their impact on service provisioning: dynamic elasticity, dynamic performance changing, 
virtualization with loosely coupling applications to the infrastructure, resource provisioning time 
variation, inaccuracy of application runtimes estimation, variation of processing times and data 
transmission, workload uncertainty, processing time constraints (deadline, due date), effective 
bandwidth variation, and other phenomena. 

Workload in such an environment can be changed dramatically. It is difficult to estimate runtime 
of jobs accurately, improve prediction by historical data, prediction correction, prediction fallback, etc. 
(Ramírez et al., 2011). The performance can be changed due to sharing of common resources with 
other VM. It is impossible to get exact knowledge about the system. Parameters like an effective 
processor speed, number of available processors, or actual bandwidth are changing in time. Elasticity 
has a higher repercussion on the quality of service, but adds a new factor of uncertainty.  

Uncertainty may be presented in different components of the computational and communication 
process. Important questions are: how particular dynamic computation and communication 
characteristics affect the efficiency; how these characteristics can be used to mitigate uncertainty 
meeting desired QoS constraints; how corresponding optimization problem can be solved in efficient 
way; how to deliver scalable and robust cloud behavior under uncertainties and specific constraints, 
such as budgets, QoS, SLA, energy costs; etc. It is important to study different stochastic, adaptive, 
reactive, knowledge-free, etc. resource provisioning algorithms considering effective alternatives to 
known deterministic optimization technologies while keeping QoS. 

In most existing solutions, it is assumed that behavior of VMs and services is predictable and 
stable in performance. On actual cloud infrastructures, these assumptions do not hold. While most 
providers guarantee a certain processor speed, memory capacity, and local storage for each 
provisioned VM, the actual performance is subject to the underlying physical hardware as well as the 
usage of shared resources by other VMs assigned to the same host machine. It is also true for 
communication infrastructure, where actual bandwidth is very dynamic and difficult to guarantee.  

A pool of virtualized, dynamically scalable computing resources, storages, software, and services 
of cloud computing add a new dimension to the service delivering problem. The manner in which the 
service provisioning can be done depends not only on the service property and resources it requires, 
but also users who share resources at the same time. The management of cloud infrastructure is a 
challenging task. Reliability, security, quality of service, and cost-efficiency are important issues in 
these systems. Available cloud models do not adequately capture uncertainty, inhomogeneity and 
dynamic performance changes inherent to non-uniform and shared infrastructures. To gain better 
understanding of the consequences of a cloud computing uncertainty, we study resource and service 
provisioning problems related with existing cloud infrastructures such as hybrid federation of public, 
private and community. 
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2 Uncertainty 
In spite of extensive research of uncertainty issues in different fields in the past decades ranging 

from physics, computational biology to decision making in economics and social sciences, a study of 
uncertainty for cloud computing systems is still not available. There are numerous types of 
uncertainties associated with cloud computing, and one ought to account for aspects of uncertainty in 
assessing the efficient service provisioning. Mitigating impact of uncertainty on the performance, 
reliability, safety, and robustness of cloud systems is rapidly growing research topic. Uncertainty 
analysis should become an essential part of design of resource and service provisioning strategies. 

This paper presents our understanding of how to model cloud computing with uncertainty 
addressing resource provisioning in hybrid private-public cloud environment, dynamic self-adaptive 
distributed brokering, elastic clouds, and optimization of related problems to deliver robust resource 
management solutions, where the main objective is not to find an absolute optimum but rather 
solutions that behave good and insensitive to different uncertainties. High performance objectives 
could leads to too risky execution policies. 

Uncertainty can be viewed as the difference between the available knowledge and the complete 
knowledge. It can be classified in several different ways according to their nature (Tychinsky, 2006): 
(1) The long-term uncertainty is due to the object is poorly understood and inadvertent factors can 
influence its behavior; (2) Retrospective uncertainty is due to the lack of information about the 
behavior of the object in the past; (3) Technical uncertainty is a consequence of the impossibility of 
predicting the exact results of decisions; (4) Stochastic uncertainty is a result of probabilistic 
(stochastic) nature of the studied processes and phenomena, where the following cases can be 
distinguished: there is a reliable statistical information; the situation is known to be stochastic, but the 
necessary statistical information to assess its probability characteristics is not available; a hypothesis 
on the stochastic nature requires verification; (5) Constraint uncertainty is due to partial or complete 
ignorance of the conditions under which the solutions have to be taken; (6) Participant uncertainty 
occurs in a situation of conflict of main stakeholders: cloud providers, users and administrators, where 
each side has own preferences, incomplete, inaccurate information about the motives and behavior of 
opposing sides; (7) Goal uncertainty is associated with conflicts and inability to select one goal in the 
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Effective performance  ● ● ● ●   ● ● ● ● ● ● ● ● ● 
Effective bandwidth ●  ● ● ●  ● ● ● ●  ● ● ● ● ● 
Processing time  ● ● ● ●   ● ● ● ● ● ● ● ● ● 
Available memory ●  ● ● ● ● ● ● ● ● ●   ● ● ● 
Number of processors  ● ●  ●  ● ● ● ● ●   ● ● ● 
Available storage ●   ● ● ● ● ● ● ●    ● ● ● 
Data transfer time ●   ● ●   ●      ● ● ● 
Resource capacity  ● ●   ● ● ●  ●    ● ● ● 
Network capacity ●   ●  ● ● ●      ● ● ● 

Table 1. Cloud computing parameters and main sources of their uncertainty 
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decision or building multi objective optimization model. It addresses the problem of competing 
interests and multi-criteria choice of optimal decisions under uncertainty; (8) Condition uncertainty 
occurs when a failure or a complete lack of information about the conditions under which decisions 
are made; (9) Objective uncertainty occurs when there is no ambiguity when choosing solutions, there 
is more than one objective function to be optimized simultaneously, and there exists a possibly infinite 
number of Pareto optimal solutions. 

These uncertainties can be grouped into: parameter (parametric) and system uncertainties.  
Parameter uncertainties arise from the incomplete knowledge and variation of the parameters, for 

example, when data are inaccurate or not fully representative of the phenomenon of interest. They are 
generally estimated using statistical techniques and expressed probabilistically. Their analysis 
quantifies the effect of input random variables on model outputs. It is an integral part of reliability-
based and robust design. The efficiency and accuracy of probabilistic uncertainty analysis is a trade-
off issue. This type of uncertainty is not reducible since it is a property of the system itself. 

System uncertainties arise from an incomplete understanding of the processes that control service 
provisioning, for example, when the conceptual model of the system used for service provisioning 
does not include all the relevant processes or relationships. It is reducible if more information is 
obtained. It can be modeled by probability theory, evidence theory, possibility theory, and fuzzy set.  

Robust system synthesis minimizes the impact of uncertainties on the system performance. It has 
traditionally been performed by either a probabilistic approach or a worst case approach. Both 
approaches treat uncertainty as either random variables or interval variables. In reality, uncertainty can 
be a mixture of both. Monte Carlo simulation can be used to perform robustness assessment under an 
optimization framework. The probabilistic approach is considered as the most rigorous approach to 
uncertainty analysis and its mitigating due to its consistency with the theory of decision analysis. 

3 Objective Functions 
In this section, we present examples of objective functions of the scheduling in stochastic environment 
(Table 2) to and how to evaluate the quality of the solutions. Let job  must be processed for  units of 
time, where  is a random variable. Let  be the expected value of the processing time of job , 
and  be a particular realization of . We can assume that all random variables of processing times 
are stochastically independent and follow discrete probability distributions, and w.l.o.g. that  is 
integral value and that all release dates  and deadlines  are integral.  

 
Following (Megow et al., 2005), a stochastic policy  is a -approximation ( -competitive), for 

, if for all problem instances , , where  and  denote 
expected metric values obtained by  and an optimal offline policy, respectively. The solution of a 
stochastic scheduling problem is not a schedule, but a so-called scheduling policy that makes 

Expected total weighted completion time   
Expected mean turnaround time   

Expected mean waiting time   

Expected mean bounded slowdown   

Expected total weighted tardiness   
Expected makespan   

Table 2. Examples of the objective functions in stochastic environment 
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scheduling decisions at time points  without information about the future, e.g. actual  of the jobs 
that have not yet been completed by time . Let  and  be the completion time and weight 
(importance, priority) of job , respectively. The goal is to minimize the objective function in 
expectation. These functions can be grouped into: regular objective functions, which are non-
decreasing in job completion time such as total weighted completion time, total weighted number of 
tardy jobs, maximum lateness, and so on, and non-regular objective functions, such as expected 
earliness/tardiness, completion time variance, and general costs (Cai et al., 2014). These metrics are 
commonly used to express the objectives of different stakeholders (end-users, resource providers, and 
administrators). Robustness guarantees degradation (within the bounds of the tolerable variation in the 
system feature) despite fluctuations of the the environment and system parameters (Ali et al., 2003). It 
is also can be measured by standard deviation, differential entropy, etc. (Canon et al., 2010). 

4 Related Work 

4.1 Programming Uncertainty 
Uncertainty understanding has to lead to discoveries in how to design cloud applications in 

efficient way. Most of cloud applications require availability of communication resources for 
information exchange between tasks, with databases or end users. However, providers might not know 
the quantity of data that can be managed, or quantity of computation required by tasks. For example, 
every time when a user requires a status of a bank account, it could take different time for its delivery. 

Only few approaches take communication requirements into consideration and often in a highly 
abstract manner. Moreover, if applications are to utilize the Cloud, their execution environment is not 
known at development time - the number of available machines, their location, their capabilities, the 
network topology, and effective communication bandwidth cannot be known ahead. In general, an 
execution environment differs for each program/service invocation. To deal with this dynamics, either 
programmers must explicitly write adaptive programs or cloud software must deal with the 
uncertainty. 

The user adaptive solutions are based on enormous programming effort. For an effective 
utilization of the Cloud, the programs must be decoupled from the execution environment. Programs 
should be developed for uniform and predictable virtual services, thus, simplifying their development. 
Cloud application model has to allow high level representation of computing and communication 
based on the nature of the problem, and independent of the executing environment. Mapping 
computation on machines, balancing the loads among different machines, removing unavailable 
machines from a computation, mapping communication tasks and balancing the communication loads 
among different links have transparently be provided by the runtime system.  

(Kliazovich et al. 2013) propose new model CA-DAG of cloud computing applications by 
introducing communication awareness, which overcomes shortcomings of existing approaches and 
allows to mitigate uncertainty in more efficient way. It is based on a Directed Acyclic Graph, which 
along with computing vertices has separate vertices to represent communications. Such a 
representation allows making separate resource allocation decisions, assigning processors to handle 
computing jobs and network resources for information transmissions. The proposed communication-
aware model creates space for optimization of many existing solutions to resource allocation as well as 
developing completely new scheduling schemes of improved efficiency. The program is represented 
by a DAG . The set of vertices  is composed of two non-overlapping 
subsets  and . The set  represents computing tasks, and the set  represents 
communication tasks of the program.  

A computing task  is described by a pair  with the number of instructions  (amount 
of work) that has to be executed within a specific deadline . A communication task  
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is described by parameters , and defined as the amount of information  in bits that has to 
be successfully transmitted within a predefined deadline . Positive weights  and 

 represent the cost of computing at the node , and cost of communication at the node 
, respectively. The set of edges  consists of directed edges  representing 

dependence between node , and node . It helps to define the execution order of tasks, 
which exchange no data. The main difference between communication vertices  and edges  is 
that  represents communication tasks occurred in the network, making them a subject to 
communication contention, significant delay, and link errors. The edge set  corresponds to the 
dependences between computing and communication tasks defining the order of their execution. 

4.1 Resource Provisioning 
A key dimension of scheduling policies concerns with how to map a set of tasks to a set of 

resources. Typically, there are two ways: static scheduling and dynamic scheduling. In the static 
approach, detailed information about job and processor characteristics, and network’s topology 
characteristics are known in advance making possible to achieve a near optimal schedule for some 
problems. The static approach makes a schedule only when a task is ready (Rodriguez et al., 2003). 
Unfortunately, the performance of cloud resources is hard to predict, because these resources are not 
dedicated to one particular user, and, besides, there is no knowledge of network’s topology.  
Furthermore, in general, due to the virtualization technique, it is impossible to get exact knowledge 
about the system. Effective characteristics are changing over the time. Therefore, providers are always 
searching how to improve the management of resources to ensure Quality of Service (QoS).  

The shifting emphasis towards a service-oriented paradigm led to the adoption of SLAs as a very 
important concept. The use of SLAs is a fundamentally new approach for job scheduling. With this 
approach, schedulers are based on satisfying QoS constraints regardless uncertainty. The main idea is 
to provide different levels of service (SL), each addressing different set of customers to guarantee job 
delivery time depending on the SL. Based on the models in hard real-time scheduling, 
(Schwiegelshohn and Tchernykh, 2012) introduce a simple model for job allocation and scheduling, 
where each SL is described by a slack factor and a price for a processing time unit. If the provider 
accepts a job it is guaranteed to complete by its deadline. The authors theoretically analyze the single 
(SM) and parallel machine (PM) models subject to jobs with single (SSL) and multiple service levels 
(MSL). The analysis is based on the competitive factor, which is measured as the ratio between the 
income of the infrastructure provider obtained by the scheduling algorithm and the optimal income. 
Algorithms are based on the adaptation of the preemptive EDD (Earliest Due Date) algorithm for 
scheduling the jobs with deadlines.  

To show the practicability and competitiveness of the algorithms, (Tchernykh et al., 2014, Lezama 
et al., 2013) conduct a study of their performance and derivatives using simulation. The authors take 
into account an important issue that is critical for practical adoption of the scheduling algorithms, the 
use of workloads based on real production traces of heterogeneous HPC systems. 

4.2 Load Balancing 
One of the possible technique to solve problems of the computing and communication imbalance 

associated with uncertainty is the load balancing that allows to improve resource allocation. For 
efficient load balancing, it is important to define: the notions of the system underload/overload; who 
and when initializes load balancing; number of jobs to be migrated; time slot used for migration; 
number of VMs chosen for migration, etc. It helps to achieve a high resources utilization and quality 
of service by efficient and fair allocations of computing resources.  

Elastic load balancing algorithm distributes incoming traffic (VMs, requests, jobs) across 
multiples instances to achieve greater quality of service (González et al., 2013). It detects overloaded 
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resources and automatically reroutes traffic to underloaded resources. If all nodes of the cloud are 
overloaded then it can automatically scale up its request handling capacity in response to incoming 
traffic. When the cloud is underloaded then it can scale down. Capacity can be increased or decreased 
in real time according to the computing and network resources consumed. Elasticity allows handling 
unpredictable workload and avoid overloading. The admissibility of resources, when only limited set 
of resources is chosen for a job execution (Tchernykh et al., 2010), should also be taken into account 
in load balancing strategies to avoid job overload and starvation. The job migration can cause a huge 
communication overhead. The admissible factor limits such an overhead avoiding sending jobs to 
farther nodes. The admissible factor takes into account static factors such as the distance; and 
dynamics factors e.g. actual bandwidth and the traffic on the network. These characteristics are not 
considered in most of recent works because they are hard to quantify and vary depending on the 
applications. 

4.3 Adaptive Scheduling 
The scheduling of jobs on multiprocessors is generally well understood and has been studied for 

decades. Many research results exist for different variations of this single system scheduling problem. 
Some of them provide theoretical insights while others give hints for the implementation of real 
systems. However, the adaptive scheduling problem has rarely been addressed so far. Unfortunately, it 
may result in inefficient resource allocation and bad power utilization (Tchernykh et al., 2009).  

One of the structural reasons for the inefficiency in on-line job allocation is the occupation of 
large machines by jobs with small processor requirements causing highly parallel jobs to wait for their 
execution. To this end, (Tchernykh et al., 2008) introduce the admissible factor that parameterizes the 
availability of the sites for the job allocation. The main idea is to set job allocation constraints, and 
dynamically adapt them to cope with different workloads and Grid properties. First, the competitive 
factor of the adaptive on-line scheduling algorithm MLBa+PS with admissible job allocation that 
varies between 5 and infinity by changing the admissible factor was derived for specific workload 
characteristics. (Tchernykh et al., 2010) extended this result for a more general workload model with 
the competitive factor of 17. 

(Tchernykh et al., 2012) present 3-approximation and 5-competitive algorithms named MLBa+PS 
and MCTa+PS for the case that all jobs fit to the smallest machine, while derive an approximation 
factor of 9 and a competitive factor of 11 for the general case. The authors consider a scheduling 
model with two stages. At the first stage, jobs are allocated to a suitable machine, while at the second 
stage, local scheduling is independently applied to each machine. 

In a real scenario, the admissible factor can be dynamically adjusted in response to the changes in 
the configuration and/or the workload. To this end, the past workload and allocation results within a 
given time interval can be analyzed to determine an appropriate admissible factor. This time interval 
should be set according to the dynamics in the workload characteristics and in the configuration. One 
can iteratively approximate the optimal admissible factor. 

4.4 Knowledge-free Approach 
(Tchernykh et al., 2013) address non-preemptive scheduling problems on heterogeneous P2P grids, 

where resources are changing over time, and scheduling decisions are free from information of 
application characteristics. The authors consider a scheduling with task replications to overcome 
possible bad resource allocation in presence of uncertainty, and ensure good performance. They 
analyze energy consumption of job allocation strategies exploring the replication thresholds, and 
dynamic component deactivation. The main idea of the approach is to set replication thresholds, and 
dynamically adapt them to cope with different objective preferences, workloads, and Grid properties. 
The authors compare three groups of strategies: knowledge-free, speed-aware, and power-aware. First, 
they perform a joint analysis of two metrics considering their degradation in performance. Then, they 
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provide two-objective optimization analysis based on the Pareto optimal set, and compare twenty 
algorithms in terms of Pareto dominance. 

4.5 Scheduling with Uncertainty 
In recent years, probability theory and statistical techniques are incorporated into the scheduling to 

treat uncertainties from different sources. A comprehensive survey in this area, main results and 
tendencies can be found in the book (Sotskov and Werner, 2014). The approaches that use stochastic 
and fuzzy methods, and important issues of robustness and stability of scheduling are discussed. 

Uncertainty about the future is considered in two major frameworks: stochastic scheduling and 
online scheduling. Stochastic scheduling addresses problems in which the properties of tasks, e.g. 
processing times, due dates, and their arriving time are modelled as random variables, which exact 
values are not known until they arrived and are complete, respectively. Online scheduling is 
characterized by no knowledge of future jobs arriving. Decisions can be made each time when job is 
arrived. Only jobs that arrive before are known. 

(Megow, 2005, Megow et al., 2006, and Vredeveld, 2012) consider a model for scheduling under 
uncertainty that combines online and stochastic scheduling. Jobs arrive over the time and there is no 
knowledge about future jobs. Job processing times are assumed to be stochastic. As soon as a job 
becomes known, the scheduler knows only the probability distribution of the processing time. The 
authors address stochastic online scheduling policies on a single and identical parallel machines to 
minimize the expected value of the weighted completion times of jobs. The authors present a constant 
performance ratio of 2 for preemptive online stochastic scheduling to minimize the sum of weighted 
completion times on identical parallel machines. 

(Cai et al., 2011) prove the same bound of 2 for preemptive stochastic online scheduling problem 
on uniformly related machines with bounded speeds. (Cai et al., 2014) survey the main results on the 
problems with random processing times, due dates, machine breakdowns, considering different 
objective functions both regular, which are non-decreasing functions of job completion time, and non-
regular such as expected weighted earliness/tardiness. The authors discuss performance and risk 
measurements other than expectation, variance and stochastic orders that impact on the quantity of 
scheduling algorithms. 

Other class of scheduling problems with uncertain parameters is considered by (Kasperski et al., 
2014). Parameters are represented as vectors with all possible values that parameters may have with no 
probability distribution. The performance is measured by Minmax and Minmax regret criteria. 

Bi-objective analysis of robustness and stability of the scheduling under uncertainty is presented 
by (Gören et al., 2014). The authors consider total expected flow time and the total variance of job 
completion times as a robustness and stability measures, respectively. 

As already discussed, cloud scheduling algorithms is generally split into an allocation part and a 
local execution part. At the first part, a suitable machine for each job is allocated using a given 
selection criterion. In such a scheme, prediction of job execution time and queue waiting times is 
important to increase resorce allocation efficiency. 

Accurate job runtime prediction is a challenging problem. It is difficult to improve prediction by 
historical data, prediction correction, prediction fallback, etc. (Smith et al., 1998, Downey, 1997).  

(Kianpisheh et al., 2012) use historical information and apply different machine learning 
techniques including linear and quadratic regression, decision trees, support vector machine and k-
nearest neighborhood. (Smith et al., 1998) and (Ramirez et al., 2011) predict the runtimes using 
similarity of applications that have executed in the past. (Iverson et al., 1996) use a nonparametric 
regression technique, where the execution time estimate for a task is computed from past observations. 
(Ramírez et al., 2012) apply self-similarity and heavy-tails characteristics to create scalability models 
for high-performance clusters. The authors formulate resource allocation problem in presence of job 
runtime uncertainty, and propose novel adaptive allocation strategy named Pareto Fractal Flow 
Predictor (PFFP). They consider two steps for the runtime prediction. The first step models the site 
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queuing process as an aggregation of a series of self-similar variables to predict the execution times of 
jobs in a queue. The second step predicts the remaining execution time of the current job in a site, 
using conditional probability and heavy-tails. 

5 Conclusions 
The uncertainty is an important issue that affects computing efficiency bringing additional 

challenges to scheduling problems. It requires designing novel resource management strategies to 
handle uncertainty in an effective way. We address areas such as resource provisioning, application 
execution, and communication provisioning. They have to provide the capability to dynamically 
allocate, manage resources in response to changing demand patterns in real-time, and dynamically 
adapt them to cope with different workloads and cloud properties to ensure QoS. 

We review and classify cloud computing uncertainty, and discuss approaches to its mitigation. We 
highlight emerging trends, future directions in this field, role of uncertainty from providers, user and 
brokering perspectives; dynamic resource and service provisioning strategies; and programming, in 
presence of uncertainty. These challenges are of high complexity and keys to resource management 
decisions that users/resource providers are facing. Other important contributions is considering these 
problems in the light of their mapping to other challenges: stochastic scheduling, adaptive and 
knowledge free approaches, load balancing, etc.. Moreover, the challenge of defining a multi-criteria 
version of the problems is also discussed. 
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