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Abstract—In many domains of embedded systems, the increas-
ing performance demands are tackled by increasing performance
capacity through the use of multicore technology. However,
adding more processing units also introduces the issue of task
allocation — decisions have to be made which software task
to run on which core in order to best utilize the hardware
platform. In this paper, we present an optimization mechanism
for allocating tasks to cores of a soft real-time embedded system,
that aims to minimize end-to-end response times of task chains,
while keeping the number of deadline misses below the desired
limit. The optimization relies on a novel heuristic that proposes
new allocation candidates based on information how tasks delay
each other. The heuristic was evaluated in a series of experiments,
which showed that it both finds better allocations, and does it in
fewer iterations than two heuristics that we used for comparison.
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I. INTRODUCTION

Most computer systems in use today are embedded sys-
tems. Their presence is ubiquitous, as they are used in industry,
entertainment, transport, medicine, communication, commerce,
etc. An aspect that they share with general-purpose computer
systems is a constantly increasing performance intensity. They
include more complex functionality than ever, while having to
be reliable, flexible, maintainable and robust. At the same time,
functionality that had traditionally been realized in hardware is
instead being implemented in software (e.g., software defined
radio [1]). There is a trend to cope with the increasing
performance demands by increasing the number of processing
units, for instance by using multicore technology. A multicore
processor is a single chip with two or more processing units
called cores, that are coupled tightly together in order to
keep power consumption reasonable. While enabling a larger
performance capacity, increasing the number of processing
units also opens up an issue of how to best allocate software
modules (in the embedded system domain typically referred
to as tasks) to the available cores, in order to best utilize the
hardware platform. Depending on the performance aspect of
interest, the allocation can have a substantial impact on the
performance. An intuitive example is allocating too many tasks
to a core — the core will be overloaded and the tasks will miss
their deadlines.

A possible approach for finding out whether a partic-
ular allocation yields satisfactory performance could be to

implement, deploy and run the system in order to collect
performance measurements. However, in order to avoid rede-
ployment, which can be time consuming and costly, a preferred
approach would be to predict the performance early in the
development process, in line with what software performance
engineering advocates [2]. The idea is to use models of the
system under development to obtain performance predictions
with sufficient accuracy, already prior to the implementation,
and thus get an indication whether a particular allocation is
good or bad in terms of performance. Also by using models,
we can test the performance of a large number of candidate
allocations in much shorter time than we could by performing
measurements on a running system.

In our previous work [3], we presented a prototype model-
based framework for allocating tasks to a soft real-time
multicore embedded system. In this paper, we describe an
enhanced version of the framework that now provides support
for automatically optimizing task allocation with respect to
end-to-end response times and deadline misses. At the center
of the optimization process is a novel heuristic that guides
the iterative search for a good allocation. The heuristic uses
a so called delay matrix, which contains information how
tasks delay each other, to propose a new candidate allocation
for assessment in the next iteration of the optimization. We
illustrate the efficiency of the heuristic by running a series
of experiments in which we compare it to two reference
heuristics.

The paper is organized as follows. Section II sets the
context of the work by giving a short overview of the domain
and the aforementioned framework. Sections III and IV are the
core of the paper, they describe the optimization mechanism
and the new heuristic, respectively. Section V presents the
experiments conducted in order to evaluate the heuristic.
Section VI presents related work, before Section VII concludes
the paper and discusses future work.

II. BACKGROUND AND CONTEXT

In this section we specify the domain of the work and
briefly outline our model-based framework for allocating soft-
ware tasks in a multicore embedded system. The framework
was presented in [3], and it is the context within which we
perform task allocation optimization. In other words, response
time optimization and the novel heuristic we present in this
paper constitute a part of the framework.

As described in the previous section, it is desirable to



be able to predict the performance of a system already at
design-time. That way design faults which lead to performance
issues can be caught early, prior to the implementation, when
it is cheaper and simpler to correct them [4]. In general,
performance is an umbrella term capturing many aspects that
determine whether an allocation of tasks to cores is considered
good or bad, including for instance throughput, the number of
deadline misses, memory consumption, energy consumption,
reliability, maintainability, security, etc. This work primarily
targets soft real-time systems, i.e., systems where timing is
crucial for the correct execution, but where occasional deadline
misses are tolerated (as opposed to hard real-time systems
where an absence of deadline violations must be guaranteed for
the worst-case scenario). The performance metrics we focus
on are end-to-end response times, the number of deadline
misses and core load. Since these metrics depend heavily on
the dynamic interplay between tasks, and since we focus on
average performance (rather than a worst-case scenario), they
cannot be derived analytically from task parameters. Instead,
we obtain the metrics by simulating a model of the system.

Figure 1 illustrates our task allocation framework. As
part of the complex manual functional design activity, the
system designer defines software and hardware models of the
system under development. The software of the system is
specified as a collection of tasks and the connections between
them. Tasks can be periodic or event-driven, and each task
has a number of parameters: priority, best- and worst-case
execution time and period (for periodic tasks). The hardware
specification describes the execution platform, including the
number of available cores, the type of scheduler each core
runs, and the delays of accessing local and global memory,
respectively. In addition to the software and hardware models,
the system designer can (but does not necessarily need to,
therefore the dashed line in Figure 1) specify a number of
initial affinity specifications to be tested by the framework.
An affinity specification (or allocation) is a mapping between
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Fig. 1: Task allocation framework

the software and hardware models, defining to which core each
task is allocated.

The software model, hardware model and possibly initial
affinity specifications are input into an optimization cycle,
where each iteration generates a new allocation candidate,
transforms the input models into a simulation model, exe-
cutes it, derives relevant performance metrics, and determines
whether the new allocation was an improvement of the best
allocation found thus far. When the cycle stops, the framework
outputs the best allocation it was able to find, which is
then used as a specification for subsequent implementation
activities.

III. END-TO-END RESPONSE TIME OPTIMIZATION

In this section we describe how this general task allocation
framework is instantiated for optimizing end-to-end response
times of task chains.

Allocating tasks to cores is a bin packing like problem.
Bin packing is an NP-hard problem [5], i.e., no algorithm is
known that can find the optimal solution in polynomial time.
Furthermore, an inherent property of design-time model-based
analysis — when detailed property values valid for the running
system are typically unknown — is that the analysis methods
use estimates and approximations. Having this in mind, rather
than finding the optimal solution, our goal for optimizing task
allocation to multicore embedded systems is to find a good
allocation quickly (in as few iterations as possible).

As mentioned in the previous section, in the current work
we focus on the following three performance metrics: end-to-
end response times, the number of deadline misses and core
load. The goal of the optimization is to reduce the average end-
to-end response times of particular task chains, while keeping
the total number of deadline misses in the system below a
certain limit. A task chain represents a chain of execution
flow, and is defined by a periodic task and the event-driven
tasks it triggers in sequence. Information about which chains
to optimize and what is the allowed limit of deadline misses is
specified by the system designer as part of the software model.

The pseudocode of the optimization algorithm is shown
in Listing 1. The algorithm starts by generating a simulation
model, by means of model transformation, from a software
model, a hardware model and an affinity specification. A sim-
ulation model is an executable model that captures the dynamic
interaction between the tasks on the same core and across
cores, respectively, as defined by the affinity specification. In
each step of the simulation, on every core the corresponding
scheduler checks which of the tasks allocated to the core
are ready for execution, and based on their priorities grants
execution to one of them. This pattern is then repeated for a
number of simulation steps. The simulation duration can be
defined by the system designer or computed automatically by
the framework. By executing the simulation model, we obtain
simulation data. As we envision the framework to support
multiple analyses, the raw simulation results can hold data
necessary for deriving various metrics. More details about the
model transformation and simulation can be found in [3].

In the next step of the optimization algorithm, from the
raw simulation data, we parse the metrics relevant for the



Listing 1: The optimization algorithm

optimizeAllocation(sw_model, hw_model,
initial_affinity_specs) {

for (i = 1 to NUMBER_OF_RESTARTS) {
affinity_spec = initial_affinty_specs[i];
best_allocation = null;
for (j = 1 to NUMBER_OF_OPTIMIZATION_STEPS) {

simulation_model = transform(sw_model, hw_model,
affinity_spec);

raw_simulation_results = simulate(simulation_model,
NUMBER_OF_SIM_STEPS);

allocation = derivePerformanceMetrics(
raw_simulation_results, affinity_spec);

if (betterOrEqual(allocation, best_allocation)) {
best_allocation = allocation;

}
affinity_spec = generateNewAffinitySpecification(

best_allocation, sw_model);
}
if (betterOrEqual(best_allocation,

overall_best_allocation)) {
overall_best_allocation = best_allocation;

}
}
return getAffinitySpecification(overall_best_allocation);

}

optimization: end-to-end response times and the number of
deadline misses for task chains, and information about task
delays. Core load is a metric not obtained by simulation, but
rather calculated statically for each core, based on the tasks
allocated to the core, their rate of triggering and their average
execution times. The metrics and their corresponding affinity
specification are contained in the allocation object shown in
Listing 1. Having obtained the metrics, we are now able to
compare the current allocation to the best one found so far.
If the current allocation is at least as good as the best one
found so far, it becomes the new best allocation. Allocations
are compared in the following way. A feasible allocation (i.e.,
an allocation where the total number of deadline misses is
below the given limit) is better than an infeasible one. Of
two infeasible allocations, the one with less deadline misses is
better. Of two feasible allocations, the better allocation is the
one with the lower end-to-end response times of the chains
being optimized.

In the following step, based on the best allocation so
far and guided by our heuristic, we generate a new affinity
specification, that is used as input in the next iteration. This
forms the inner loop of the algorithm, which repeats model
transformation, simulation, metrics derivation and generation
of a new candidate. Since a new affinity specification is
obtained by making a small modification to the best one
found thus far, the inner loop performs local search around
one starting allocation. In order to avoid getting stuck in a
local optimum, this optimization cycle is repeated for several
starting allocations (the outer loop in Listing 1). A set of
starting allocations can be provided by the system designer and
expanded by a number of random starting allocations generated
by the framework. When the outer loops terminates, it outputs
the best affinity specification it was able to find.

IV. THE DELAY MATRIX HEURISTIC

Next we focus on the heuristic used to generate a new
affinity specification (Listing 2). It is based on the following

Listing 2: The delay matrix heuristic

generateNewAffintySpecification(allocation, sw_model) {
if (isFeasible(allocation)) {

chain_of_interest = selectChainToOptimize(sw_model);
} else {

chain_of_interest = selectChainBasedOnDeadlineMisses(
allocation);

}
delay_matrix = getDelayMatrix(allocation);
task_to_move = selectProblematicTaskForChain(delay_matrix,

chain_of_interest);
old_affinity = getAffinity(task_to_move, allocation);
new_affinty = selectCoreWithLowLoad(allocation,

old_affinity);
affinity_spec = getAffintySpecification(allocation);
affinity_spec = moveTask(affinity_spec, task_to_move,

new_affinty);
if (random() <= TASK_SWITCH_PROBABILITY) {

task_to_switch = selectRandomTaskFromCore(newAffinty);
affinity_spec = moveTask(affinity_spec, task_to_switch,

old_affinity);
}
return affinity_spec;

}

principle: the most problematic task on a core is: (i) the task
that considerably delays the tasks on the chain we are optimiz-
ing, and/or (ii) a task from the chain we are optimizing that
is considerably delayed by the other tasks. When proposing a
new affinity specification, the heuristic takes the best affinity
specification found thus far, and moves such a problematic task
to a core that has low load.

In each step of the optimization, the heuristic starts by
identifying a chain of interest for that particular step. If the
best allocation found so far is feasible, the chain of interest
is selected among the ones the system designer chose to be
optimized. On the other hand, if the best allocation found so
far is infeasible, the heuristic will prioritize minimizing the
number of deadline misses over minimizing the response time.
Therefore, the chain of interest for an infeasible allocation is
randomly selected among the ones that have deadline misses,
with the probability of choosing a particular chain being
proportional to the number of deadlines missed by the chain.

Having identified the chain of interest, the heuristic chooses
a task to be relocated to a different core. This is done based
on the delay matrix, a structure that holds information how the
tasks delayed each other during the simulation. We define task
delaying in the following way: in each step of the simulation,
the task that gets executed delays all the other tasks that were
ready for execution on the same core. The more a task delayed
the tasks in the chain of interest, and the more a task in the
chain of interest was delayed, the higher the probability it will
get picked for relocation to a different core.

After identifying the task to be relocated, the heuristic
decides where to place the task. This is done using core load
— the less a core is loaded, the bigger the chance the task will
be moved there.

In addition to relocating a task from one core to another, the
heuristic occasionally performs a task switch. This addresses
particular situations where all cores are close to fully loaded. In
such cases, simply moving a task would result with an infeasi-
ble allocation. The probability of task switching is defined by
the system designer as a parameter of the optimization. Having



moved a problematic task to a different core as described
above, a random task is picked from the new core and moved
to the original core of the problematic task.

Next we look into more detail how the delay matrix is
used to choose a task to be relocated. The algorithm is given in
Listing 3 and will be explained using a simple example system
with four tasks: tasks T1, T2 and T4 are periodic, while task T3

is triggered by task T2. The T2–T3 chain is the current chain of
interest. Let us assume that the simulation and analysis resulted
with the delay matrix shown in Table Ia. The matrix is read in
the following way: task T1 delays T2 for a total of 50 units,
T1 delays T3 for 20 units and so on. One unit of delay means
a task delayed another task during one step of the simulation.
The chain of interest is marked with gray in the table.

According to the algorithm shown in Listing 3, for each
task a delay parameter is calculated — it corresponds to how
much the task delays all the tasks in the chain of interest.
Additionally, if the task itself belongs to the chain of interest,
its delay parameter is increased by the amount it is delayed by
all the other tasks. For task T1 the delay parameter is 70 — 50
for delaying task T2 plus 20 for delaying task T3. For task T2

the delay equals to 50 — it does not delay the other task in the
chain (T3), but it is delayed by task T1 by 50 units. Similarly,
the delay for task T3 is 20 and for task T4 it is 0. The delay
parameters for all the tasks are normalized, i.e., divided by the
sum of all delays (in this case 140). The normalized delays
represent the probabilities of selecting a particular task as the

Listing 3: Identifying a problematic task using the delay matrix

selectProblematicTaskForChain(delay_matrix,
chain_of_interest) {

delay_sum = 0;
foreach task in tasks {
delay = 0;
foreach task2 in chain_of_interest {

delay += delay_matrix[task][task2];
}
if (belongsTo(task, chain_of_interest)) {

foreach task2 in tasks {
delay += delay_matrix[task2][task];

}
}
delay_info = addPair(delay_info, task, delay);
delay_sum += delay;

}
foreach task in tasks {
probability = getDelay(delay_info, task) / delay_sum;
prob_info = addPair(prob_info, task, probability);

}
selected_task = selectRandomWithProbabilities(prob_info);
return selected_task;

}

TABLE I

(a) Delay matrix

T1 T2 T3 T4

T1 — 50 20 40
T2 0 — 0 25
T3 0 0 — 0
T4 0 0 0 —

(b) Resulting probabilities

Delay Prob.
T1 70 50%
T2 50 35.71%
T3 20 14.29%
T4 0 0%

problematic one — the more it cumulatively delays and is
delayed, the bigger the chance it will be picked for relocation.
The resulting probabilities in this particular example are shown
in Table Ib.

V. EXPERIMENT

A series of experiments were conducted to evaluate the
efficiency of the delay matrix heuristic. Here we describe the
experiment setup and experiment results, in their respective
subsections. We used two reference heuristics to compare the
delay matrix heuristic against: random and load. The former
proposes a new allocation candidate by taking a random task
from a random core of the best allocation found so far, and
moving it to a random other core. The latter heuristic tries to
balance the load evenly among the cores. In each step of the
optimization, it moves a random task from a random core with
high load to a random core with low load. The more a core is
loaded, the higher the chance that a task belonging to it will be
moved, and equivalently, the less a core is loaded, the higher
the chance that the task chosen for relocation will be moved
there.

A. Experiment setup

We ran allocation optimization using the delay matrix,
random and load heuristics, respectively, on four representative
systems covering scenarios of both low and high load in the
system, and scenarios of both short and long task chains. We
used two software architectures (shown in Figure 2), one with
short chains and one with long chains, and varied the load
in both cases, giving in total 4 tested systems (see Table II).
The load was changed by scaling the best-case and worst-case
execution times of the tasks by a factor of 2.

Each system consists of 30 tasks and 4 cores, which makes
a total of 430 possible allocation candidates. All the cores use a
preemptive priority scheduler. Since we identified in previous
work that there is no significant difference in communication
duration when communicating tasks run on the same core
versus when they run on separate cores [6], the simulations
used the same cost for accessing global and local memory.

In the system with short chains, the tasks are organized
into 5 chains consisting of 3 tasks, 5 chains of 2 tasks and 5
chains with a single task (Figure 2a). The system with long
chains has 2 chains of 10 tasks, 1 chain of 5 tasks and 5 single-
task chains (Figure 2b). All tasks within one chain have the
same priority. One chain in the middle of the priority span was
chosen for optimization in each system (marked with grey in
Figure 2). The feasibility limit was set to 0, meaning that an
allocation was considered feasible only in the case when no
chain deadlines were missed.

TABLE II: Experiment systems and their load

Best-case load Worst-case load
Low load, short chains 0.40 0.47
Low load, long chains 0.36 0.42
High load, short chains 0.80 0.94
High load, long chains 0.72 0.84
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Fig. 2: Experiment systems

All the optimization runs started from the same starting
allocation, where the tasks were distributed evenly among
the four available cores. 4 systems and 3 different heuristics
gave 12 optimization runs. Each optimization run executed
for 150 steps. In other words, each optimization run tested
150 allocation candidates beginning with the same starting
allocation. The 12 optimization runs were repeated 100 times,
in order to be able to draw conclusions about the general per-
formance of the heuristics. The probability of task switching
was set to 30%, for all three heuristics. Both the probability of
task switching and the number of steps for each optimization
run were chosen arbitrarily. Additional experiments would be
necessary to be able to reason about possible rules of thumb
for these parameters.

B. Experiment results

The results of the experiments are summarized in Tables
III and IV and in Figures 3, 4, 5 and 6.

The tables show the number of feasible final allocations,
the average feasibility point, and the average final response
time for the optimized chain, for each of the 4 systems and 3
heuristics. The number of feasible final allocations tells how
many of the 100 repetitions of the optimization runs ended with

TABLE III: Experiment results, low load

(a) Short chains

Random Load Delay matrix
Number of feasible final allocations 100 100 100

Average feasibility point 0 0 0
Average final RT 10.44 10.52 10.24

(b) Long chains

Random Load Delay matrix
Number of feasible final allocations 100 100 100

Average feasibility point 0 0 0
Average final RT 35.41 35.62 35.18

a feasible allocation as the best one. A feasibility point is the
step in an optimization run when the first feasible allocation
was found. The table shows the average feasibility point for
the 100 optimization runs for each system and heuristic. Since
each optimization run had 150 steps, the average feasibility
point is in the interval between 0 and 150. The average final
response time is based only on the optimization runs that ended
with a feasible allocation.

If we focus only on the systems with low load, we see
that all three heuristics have an average feasibility point of
0 (Table III). This is because of the fact that already the
starting allocation for these runs happened to be feasible, due
to the low load in the system and the equal distribution of the
tasks to all cores. Starting an optimization run from a feasible
allocation means that the run will always identify a feasible
allocation as the best one. Therefore, all three heuristics have
the maximum possible number of feasible final allocations. All
three heuristics have managed to minimize the response time
of the chosen chain to a similar average value, with the values
found by the delay matrix heuristic being slightly lower.

Figures 3 and 4 present in more detail the impact of the
heuristics on the systems with low load. Each point in the
diagrams shows the average value of the 100 optimization runs

TABLE IV: Experiment results, high load

(a) Short chains

Random Load Delay matrix
Number of feasible final allocations 25 25 54

Average feasibility point 109.72 101.76 84.69
Average final RT 75.00 75.24 69.07

(b) Long chains

Random Load Delay matrix
Number of feasible final allocations 38 44 38

Average feasibility point 101.11 101.14 85.42
Average final RT 88.81 89.55 87.79
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at the corresponding optimization step. Even though all three
heuristics end up with a roughly similar response time value
after 150 optimization steps, it is clear that the delay matrix
heuristic converges much faster than the other two, and gets
close to the final value already after roughly 30 optimization
steps.

Shifting focus to the systems with high load, from Table IV
we can see that the delay matrix heuristic both finds a slightly
lower average final response time, and that it finds a feasible
allocation faster than the two other heuristics. Also, in the case
of the system with short chains, it identified more feasible
allocations as the best ones.

The optimization runs for the systems with high load are il-
lustrated with two separate diagrams in Figures 5 and 6 — one
diagram up to the feasibility point and one from the feasibility
point onwards. This was necessary due to the fact that up to
the feasibility point, the optimization process tries to minimize
the number of chain deadline misses, while only from the

feasibility point onwards does it try to minimize the chain
response times, as explained in Section IV. The values shown
in the diagram before the feasibility point give the number of
chain deadline misses, while the values in the diagram after the
feasibility point give the response time of the chosen chain. As
feasibility points are different for different optimization runs,
rather than showing the absolute optimization steps, the x-axes
of the diagrams after the feasibility point show the optimization
steps relative to the feasibility point denoted by N. Also, since
not all optimization runs ended up with a feasible allocation,
the diagram values after the feasibility point represent an
average of less than 100 values (while the diagram values
before the feasibility point represent an average of exactly 100
values).

Looking at Figures 5a and 6a, the trend is again clear, and
confirms what the average feasibility points show — that the
delay matrix heuristic minimizes deadline misses faster than
the two other heuristics. Similarly, from Figures 5b and 6b,
we can see that our heuristic minimizes response times faster,
and ends up with an overall lower response time.

VI. RELATED WORK

As we tackle both architecture optimization and task allo-
cation, we present related work from these two perspectives.

Architecture optimization in general is a very broad area of
research, covering different domains (e.g., embedded systems,
enterprise systems), different phases of system development
(design-time versus run-time), different quality attributes (e.g.,
cost, energy, safety, reliability, timing), using different ar-
chitecture representations (e.g., standard modeling languages,
custom modeling languages, graphs, matrices) and allowing
different levels of freedom (e.g., allocation, software com-
ponent selection, hardware component selection, scheduling).
Architecture optimization of embedded systems done at early
phases of development typically aims to find near-optimal
architectures, since finding the optimal ones is usually not
feasible within reasonable time, due to the large search space.
Design-time architecture optimization is typically supported
by model-based analysis, which is the source of the metrics
relevant for optimization, and paired with a search technique,
which can either be general-purpose (e.g., genetic algorithm)
or problem-specific (as is our delay matrix heuristic). The
latter try to leverage domain specific knowledge about the
optimization problem to guide the search process to a better
solution and/or in less iterations than the former, but at the
expense of being applicable to a smaller set of problems.
The literature survey by Aleti et al. [7] provides an in depth
overview of the field or architecture optimization (not limited
to embedded systems or design-time). However, none of the
approaches are specifically tailored for multicore soft real-time
systems.

ArcheOpterix [8] is a framework for architecture optimiza-
tion of embedded systems modeled in AADL (Architecture
Analysis and Description Language) [9]. The quality attributes
it supports are reliability, performance and energy. Through its
extension called Robust ArcheOpterix [10], it can account for
uncertainty of design-time parameter estimates, and propose
architectures that reduce the impact of the uncertainties. It
supports several general-purpose search techniques including
genetic algorithms, Bayesian learning and hill climbing.
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Task allocation is typically addressed as a sub-problem of
scheduling real-time multicore systems. The approaches can
be grouped into partitioning (tasks are statically allocated to
cores and each core has its own scheduler), global scheduling
(tasks can move between cores, under the control of a global
scheduler) and hybrid scheduling (a combination of the two).
Our approach belongs to the first category. Being an NP-
hard problem (as mentioned in Section III), task allocation is
typically aided by search techniques. These are in turn paired
with schedulability analysis.

Early approaches for allocating tasks to a multiprocessor
were defined by Dhall and Liu [11] — rate monotonic next fit
scheduling and rate monotonic first fit scheduling. These try to
allocate tasks to cores using the next fit and first fit heuristics,

respectively, while keeping each core schedulable according to
rate monotonic scheduling. In other approaches, additional bin-
packing like heuristics (such as best fit, best fit decreasing, first
fit decreasing) have been combined with different scheduling
algorithms — these can be found in the survey by Davis
and Burns [12]. Also, problem-specific heuristics have been
developed for the purpose of task allocation. For example,
Nemati et al. [13] define a custom heuristic for allocating tasks
to a multicore platform in such a way that the total amount of
blocking time is reduced. Unlike our approach, which focuses
on soft real-time systems and combines a heuristic with model-
based simulation and analysis, these approaches focus on hard
real-time systems and combine heuristics with schedulability
analysis.



VII. CONCLUSION AND FUTURE WORK

We have presented our method for automatic optimization
of task allocation to soft real-time multicore embedded sys-
tems. In an iterative search process, by simulating different
allocation candidates, the method tries to find an allocation
where end-to-end response times of selected task chains are
minimized, while the number of deadline misses in the system
is kept below the desired limit. The search process relies
on a novel heuristic for proposing new allocation candidates.
The heuristic makes decisions on which task to relocate to a
different core based on a delay matrix — a structure which
holds information on how tasks delayed each other during
simulation.

In a preliminary experiment study, we have shown that
the heuristic exhibits promising results, and it fulfills the
goal of quickly finding a good allocation. The conducted
experiments demonstrated that the heuristic converges towards
a good allocation faster than two reference heuristics we used
for comparison. Also, our heuristic identified final allocations
which were on average slightly better than the final allocations
found by the two reference heuristics.

The planned future work has two separate tracks. One is
related to the optimization framework, and aims at extending
it with support for optimization based on additional types of
performance metrics. This involves changes to the simulation
model and defining new heuristics. The second track of future
work relates to the delay matrix heuristic and applying it to
additional types of systems, outside of our optimization frame-
work. We consider the heuristic also suitable for hard real-
time multicore embedded systems, and distributed embedded
systems. In the former case, instead of obtaining performance
metrics by simulation, it would be possible to obtain them
by analytically solving the system models. In the latter case,
task communication over the network is more expensive than
communication within the same node, therefore increasing
response times of chains that have tasks allocated to several
nodes, and consequently increasing delays between the tasks.
As our heuristic identifies delaying tasks as problematic, it
should group tasks that communicate a lot to the same node,
and thus reduce chain response times. For both types of
systems, we would first need to to find a suitable method for
obtaining performance metrics that the delay matrix heuristic
requires.
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