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Abstract In recent years there has been a surge of interest in context modeling for
numerous applications in computer vision. The basic motivation behind these diverse
efforts is generally the same—attempting to enhance current image analysis tech-
nologies by incorporating information from outside the target object, including scene
analysis as well as metadata. However, many different approaches and applications
have been proposed, leading to a somewhat inchoate literature that can be difficult
to navigate. The current paper provides a ‘roadmap’ of this new research, including
a discussion of the basic motivation behind context-modeling, an overview of the
most representative techniques, and a discussion of specific applications in which
contextual modeling has been incorporated. This review is intended to introduce
researchers in computer vision and image analysis to this increasingly important
field as well as provide a reference for those who may wish to incorporate context
modeling in their own work.

Keywords Computer vision · Object recognition · Objects in context ·
Context modeling

1 Introduction

This paper surveys recent work in the area of context modeling in computer vision.
It presents a structured overview of the most representative context modeling
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techniques available in the literature and discusses their applications—especially in
object detection, localization, and recognition—and implications for future research
in related topics.

The primary goal of this paper is to provide a user-friendly, readable, and broad
overview of the field of context modeling to readers who are not yet familiar with
this relatively new topic in computer vision (and its many recent developments).
Hence, the paper compiles the most representative efforts in the field and organizes
the knowledge of the topic in a way that should provide perspective and allow the
reader to make informed choices as to where to learn more about the topic and find
associated research resources.

The chief motivation for preparing this paper was the growing interest in the
topic of “objects in context” in both human and computer vision during the past
ten years. On the human-vision research side, the role of context in object recog-
nition continues to be a topic of intense study, about which many subtle details
(and their underlying mechanisms) remain to be discovered and well understood.
From a computer vision perspective, there seems to be general agreement among
researchers and practitioners that the time is ripe for solutions that somehow model
and leverage the role of context on classical computer vision tasks, particularly object
recognition.

The paper is structured as follows: Section 2 discusses the importance of context
in human vision and provides an overview of the most representative research
efforts and findings from neuroscience, cognitive psychology, and associated fields;
Section 3 presents background information on early efforts to model context in
computer vision solutions as well as several ways to classify different types of context
available in the literature; Section 4 discusses in detail the prominent role of spatial
knowledge in contextual reasoning; Section 5 reflects upon the potential implications
of such research efforts to the future of computer vision; and Section 6 presents
concluding remarks. The paper also includes an Appendix—targeted at readers who
are interested in doing research in this field—which contains practical information
about research groups, datasets and open-source code related to context modeling in
computer vision.

2 The importance of context in human vision

This section presents an overview of the role of context in human visual processes,
particularly object recognition. It summarizes key studies and insights on the role of
context in human vision and presents a list of open questions that are driving the
research efforts in this field.

2.1 Background

The human ability of detecting and recognizing objects and performing a broad range
of visual tasks in a wide variety of situations, despite considerable amount of clutter,
occlusions, changes in illumination and viewpoint, is a remarkable trait of our visual
system, one that is still far for being completely understood, modeled, or matched
by computer vision solutions. The process of object recognition—the ability to assign
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a label, name, or category to an object in a scene, based on the optical information
available from such scene—has been the subject of intense study in human vision
research.

Object recognition is inherently complex and has been investigated from the
viewpoints of neurophysiology, behavioral psychology, brain imaging studies, etc.
While the past several decades have seen significant progress concerning the nature
of the input to the human visual system, which seems to consist of a diverse set
of primitive visual features (e.g., colors, intensities, edges, orientations), the means
by which this input is integrated and matched to a stored representation remains a
matter of controversy (see [86] for a recent review). That is, the puzzle of human
object recognition remains largely unsolved.

The majority of research on human object recognition has considered objects
shown in isolation of any surrounding scene. However, more recently there has been
an influx of compelling evidence that object recognition doesn’t happen in isolation,
i.e., the process of recognizing one object in a scene can be influenced by the presence
of other objects as well as by the overall context of the scene. Contrary to visual
search experiments, in which the target is surrounded by distractors—a case in which
the context hinders performance of the task—, in most real-world object recognition
tasks, the context provides a rich source of information that can help improve the
performance of the task.

Figure 1 shows an example of object recognition task in which the context
surrounding the object of interest plays a significant role in the recognition process.
The image on the left is virtually impossible to recognize in isolation. However,
the same image, shown in context on the right (circled) is easy to identify for our
visual system. The kind of degradation shown in Fig. 1—and the potential role of
context in overcoming it—is not relegated to artificially manipulated images but
is highly pervasive, occurring under numerous ‘real world’ conditions such as poor
illumination, distant viewing, peripheral viewing and occlusion by other objects. In
many of these cases, the visual system appears to use context to overcome poor
quality of the target image.

Fig. 1 An object viewed in isolation is unrecognizable (left) while it can be readily identified in its
contextual scene (right)
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We conclude this subsection with an operational definition of context: in this
paper, we adopt and expand the definition provided by [122] and call context
“any information that might be relevant to object detection, categorization and
classification tasks, but not directly due to the physical appearance of the object,
as perceived by the image acquisition system.” Let us examine this definition in
more detail, since it has guided—to some degree—the way this paper was written
and structured. Starting from the phrase “any information”, it usually means visual
information available within the scene but outside the boundaries of the object of
interest; in some cases, it also includes non-visual information, such as geographical
data (e.g., location at which the picture was taken, expressed in GPS coordinates) ,
annotation data (e.g., tags added to the image by the user), and others (e.g., camera
settings, weather information, etc.). Regarding visual tasks, most of the paper is
devoted to object detection, categorization and classification tasks, but in Section 5.2
we expand the field to include other applications of context modeling as well. Finally,
the “physical appearance of the object, as perceived by the image acquisition system”
refers to the object’s visual contents and features, as encoded by the human visual
system (HVS) or a set of image processing and computer vision algorithms, which
indirectly alludes to the fact that we are fully aware of the fundamental problem
of vision—the ability to perceive a rich 3D world from a series of incomplete 2D
projections, each of which could have been created by infinitely many variations of
3D scenes. However, the goal of this paper is to consider how context may facilitate
processing based on currently available image processing techniques, even without
first solving some of the basic problems in the field.

2.2 Contextual priming in human object detection and recognition

As mentioned above, within the human vision literature, the majority of theoretical
research on object detection and recognition has followed Marr’s [74] program in
which identification proceeds in a bottom-up fashion, based on the locally visible
properties of individual objects. However, a substantial degree of empirical work has
considered the role of context in facilitating visual object recognition. For example, a
large number of studies have reported an effect in which objects presented within
an appropriate contextual setting are recognized more rapidly than those viewed
in an inappropriate context. Typically, these studies use a paradigm in which an
image or drawing of a complex scene (such as a parking lot) is displayed quickly
after which subjects must decide whether a particular target object was present in the
image or not. Overall, these studies suggest a facilitatory effect of context on object
identification that can occur at two basic levels: semantic (e.g., a tractor and a barn
can both appear in a farmer scene, but an octopus is not consistent with that type of
scene [11–13, 26, 44, 85, 94], and spatial relations (e.g., a patch of sky is expected to
appear above a patch of grass) [11, 28, 54, 94]. For example, in a well-known series of
experiments, Biederman [11] examined performance in a detection task as a function
of the number of ‘violations’ between a target object and the scene in which it was
(briefly) presented. These violations included unexpected spatial relations, based on
the size or position of the target object relative to other objects in the scene as well as
violations in the semantic relations, based on the expected likelihood of a particular
object appearing a specific scene. Overall, he found that as violations across these
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categories increased, performance in the detection task declined. However, the
extent and nature of contextual facilitation of object recognition in this and other
studies remain controversial with the majority arguing that the advantage reflects
an advantage in perceptual or cognitive processing of the target object while others
believe it reflects a ‘response bias’ in which subjects are guessing the correct answer
after perceptual processing has been completed [52, 61]. It is important to note that all
of these studies use stimuli that are fully recognizable even without context, making
the nature of the role of context in performing recognition difficult to identify.
Indeed, a number of the above studies employed a paradigm in which context does
not, by design, provide any task-relevant information—for example cases in which
subjects must decide which of two objects (both of which are consistent with a
contextual scene) were present in the scene [5, 61]; under these circumstances, the
role of context, if any, is highly indirect.

Contextual information has also been found to improve performance in detecting
a target object amidst high degrees of visual clutter–that is, during visual search. A
number of studies have found that people learn stable spatial relationships between
objects and their respective contexts leading to a reduction in search for the target
object. This phenomenon, referred to as ‘contextual cueing’, has been demonstrated
both for standard letter-grid visual search stimuli, such as searching for a ‘T’ in a
field of ‘L’s [22–24, 43] as well as realistically rendered 3-dimensional environments
[14, 15]. In general, contextual cueing has been thought to depend on more efficient
allocation of attention to probable regions of the scene. However, this interpretation
has recently been challenged by studies which suggest that contextual cueing may de-
pend on perceptual/decision processes, similar to the kinds of contextual facilitation
effects described above, rather than attentional guidance [70]. Other recent research
has suggested that both types of phenomena may be present. Note that standard
contextual cueing experiments depend on specific target/context relations (e.g., a
letter’s location in a grid) learned during the course of an experiment. However,
people can also learn more general scene/object relations based on their experience
in the real world. Using eye-tracking during visual search of naturalistic scenes,
Hidalgo-Sotelo et al. [53] found that the allocation of early fixations is guided by prior
knowledge of the locations of objects within a general scene category (e.g., fixating
at street level to find people) while the use of specific scene/object relations learned
across repetitions (i.e. standard contextual cueing) appears afterwards, perhaps
reflecting a different mechanism.

From a cognitive neuroscience perspective, a number of recent studies have
suggested that the brain may encode contextual information, based either on as-
sociations between objects and scenes as well as the relations between semantically
related objects. Bar and Aminoff [7] and Bar [6] found that viewing individual objects
that are generally strongly associated with a particular context (e.g., a stove, which
is associated with a kitchen) elicited strong responses in brain areas (particularly
the parahippocampal cortex, or PHC) that are believed to be involved in encoding
locations and spatial landmarks [6]. More recently, Gronau et al. [46] found that
PHC activation was specifically elicited when objects were shown in their appropriate
spatial relation to other objects (e.g., a mirror above a dresser). These findings have
led some researchers to suggest that the PHC is specifically involved in encoding
contextual relations. However, these findings are preliminary and the precise role of
context in individual object recognition has still not been determined.
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2.3 Contextual facilitation in recognizing degraded images

There is, in summary, a large body of evidence suggesting that contextual information
impacts the efficiency of object detection and recognition tasks and “a general
consensus that objects appearing in a consistent or familiar background are de-
tected more accurately and processed more quickly than objects appearing in an
inconsistent scene [81]”. However, as noted, virtually all of the previous research
concerning the role of context on object recognition has considered visual stimuli
in which the target object is fully recognizable to human observers in isolation
(i.e. even without context). The role of context under these conditions is indirect
and thus has often been difficult to characterize. An important type of contextual
facilitation in human vision not addressed by these studies is in the recognition of
degraded stimuli. Under these circumstances, context can provide direct information
not available from the image of the target object itself. For example, Selfridge [99]
produced a well-known demonstration in which letters made ambiguous by artificial
‘ink blotches’ covering critical features, may be identified based on the context of
the word in which they appear. A similar finding was described by Bar and Ullmann
[8], in which segments of stylized drawings could not be identified in isolation of
the rest of the image. Perhaps the most convincing source of evidence, however,
comes not from experiments using artificial stimuli but simple observations of human
performance for realistic images. One of the most popular and compelling examples
of the role of context in object recognition under poor conditions has been provided
by Antonio Torralba [110] and became known as “the multiple personalities of
a blob” (Fig. 2). In these images, the same gray blob can be interpreted as a
plate, bottle, cell phone, car, pedestrian, or shoe, depending on the context. (Each

Fig. 2 The multiple
personalities of a blob (from
[113])
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circled blob has identical pixels, but in some cases has been rotated.) Interestingly,
recent research has demonstrated that this type of contextual facilitation can cause
degraded stimuli to evoke a similar brain response in object-specific brain areas
as non-degraded image, given the appropriate contextual surrounding [25]. This
may suggest that context-facilitated object recognition and ‘standard’ recognition
depend on the same neural mechanisms and may not represent distinct cognitive
processes.

From an experimental standpoint, very little work has addressed the role of
context as a source of disambiguation of degraded stimuli. Recently, Barenholtz [9]
compared performance in a recognition comparing cases in which a target object
was shown in isolation, where a target object was shown in a recognizable setting
(e.g., a kitchen) unfamiliar to the subject and cases in which the target was shown
in the subject’s own home. This study used a ‘pixelation’ method in which the
selected image region was divided into a grid of equally sized, square checks each
of which contained the average value (color and luminance) of all of the screen
pixels contained within its boundaries (Fig. 3). The size of the check determined
the resolution of the image and was used as a measure of ‘information’ in the image.
Using this method, Barenholtz found that the effect of context was profound: in the
generic context condition (i.e. when the context was not familiar to the subject),
people required about four times less visual information while in the condition in
which the context was the subject’s own home, they required almost 20 times less
information! These results suggest that context can itself provide a great deal of
information, over and above the appearance of the target object, that may be used
for recognition.

While both the behavioral and neurophysiological studies described above used
artificial forms of degradation, the human visual system must contend with poor
image quality under numerous ‘real world’ conditions such as poor illumination,
distant viewing, peripheral viewing and occlusion by other objects. In addition,
visual identification often takes place at multiple scales and it is often possible to
label regions of an image that contain very little visual information, if seen in the
appropriate context. For example, we can identify a pupil or a nostril in a photograph
of a face, even when the images these features produce are highly generic and would
not be recognizable in isolation, even without blurring (Fig. 4). Again, it is clear that

Fig. 3 Stimulus example from
[9]. The number of pixels per
image check provides a
measure of information in
the image
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Fig. 4 Context aids in the
recognition of non-degraded
stimuli as well. The small
image on the left is difficult to
identify as a nostril outside of
the context on the right

the human visual system must solve the local problem based on the global context.
Thus, it appears that context-based recognition is most likely the norm, rather the
exception.

2.4 Scene and object recognition: forest before the trees?

We have defined context as any information not due to the appearance of a target
objects, including other objects in the scene as well as non-visual information. How-
ever, the global scene (e.g., a kitchen) in which an object appears may play a special
role in contextual facilitation. While scenes are ultimately made up of collections of
objects, some researchers have suggested that scene analysis operates before, and
independently of, individual object recognition, based on global properties of images
[45, 76, 98]. In this case, identifying the category of a scene (e.g., a kitchen or a
mountaintop) might precede object recognition and serve to facilitate it. There are
a number of sources of evidence for specialized scene recognition. First, people are
able to extract the conceptual ‘gist’ of a scene even under very brief presentations
[32, 89, 90, 109] and from a blurred image [98]. In addition, certain brain regions
appear to be selective for places, rather than things (e.g., the Parahippocampal ’place
area’) [29, 30]. There is also some evidence that people can extract certain truly
global properties from an image such as the mean size [4, 19, 20] and center of
mass [1] of simple stimuli such as circles. However, currently it is unclear whether
scene categorization depends on global information rather than identifying critical
objects. One important thing to note is that human observers do not typically face
the challenge of determining a scene category very frequently. In everyday life,
the category of the scene in which one is embedded is typically highly stable and
also highly predictable from past experience (e.g., entering through your office door
will not likely yield a farm scene). Thus, while it is likely that the contextual scene
influences object detection and identification, it is not certain that scene perception
itself is a critical part of this equation.

2.5 Context modeling, attention, and saliency

Another important potential role for context is in the allocation of visual attention,
which is necessary in order to overcome the ‘overload’ of information available
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in a scene. Models of human behavior generally assume that there are two basic
mechanisms driving the allocation of visual attention (typically accompanied by
eye movements). ‘Exogenous’ attention is bottom-up, driven by features of the
stimulus itself. This includes ‘involuntary’ orienting to abrupt changes in the image,
such as the introduction of a new object [127, 128]. It can also include ‘voluntary’
orienting to regions of high contrast with regard to some ‘low-level’ property of
the image such as luminance, color or orientation [118], leading to the notion of
a ‘saliency map’ [64, 67]. ‘Endogenous’ attention, on the other hand, is based on
top-down mechanisms such as previous expectations—e.g., the belief that important
information will be present in a location—or goals of the observer, such as following
instructions to attend to a specific region [88]. Endogenous attentional shifts may
depend on higher-level properties, such as shifting attention between the people in
a room. The role of contextual information in attentional allocation seems to fall
somewhere in the middle of these two models of attention. On one hand, employing
context often relies on a higher-level of processing—for example, incorporating
relational information [22–24, 42, 43] or identifying the objects in a scene [14, 15]—
which is typically not incorporated in models of exogenous attention. On the other
hand, unlike standard endogenous attention, context may influence attention even
without explicit awareness of the information [14, 15, 22–24, 42, 43].

Recent studies of attentional allocation while viewing familiar scenes present
a complex interaction between top-down and bottom-up processes [81]. Torralba
[111, 116] proposes a model of contextual cueing for attention guidance based on
global scene identification and local saliency. In this model, the input image is
analyzed in two parallel pathways: the local pathway computes typical image saliency
and can be used to perform object recognition on the basis of local appearance.
The global pathway computes global image statistics in order to identify the scene
category, which serves to predict the presence or absence of objects as well as to
predict their location, scale, and appearance before exploring the image. This in turn
is used to modulate the allocation of the local pathway, based on prior probabilities
associated with the identified scene.

2.6 Summary

Overall, there is a great deal of evidence that context facilitates object recognition
in the human visual system. While the precise nature of this facilitation remains
somewhat murky, a number of lessons may be drawn from this research with
implications for computer vision. First, there is no doubt that context can pro-
vide information about the likelihood of specific objects being present in a scene
(even according to the ‘response bias’ interpretation of contextual facilitation of
Henderson and colleagues). In addition, it is clear that context can serve to dis-
ambiguate degraded images that cannot be recognized in isolation. In short, con-
text provides critical information which can serve to supplement the information
available from the object itself. While the precise scope of contextual facilitation
in human vision remains somewhat controversial, there is incontrovertible evidence
that context can, in some cases, provide critical information for object identification.
Since this is an indisputable aspect of human visual perception, it should be modeled
and incorporated into computer vision solutions.
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3 Foundations of contextual modeling in computer vision

3.1 Early work

The realization that context plays a crucial role in human visual processes such
as scene understanding and object recognition has motivated computer vision
researchers to attempt to model and emulate such knowledge and behavior in
computer vision systems and solutions.

The work by Yakimovsky and Feldman [124] is probably the earliest reference in
the computer vision literature in which the authors employ contextual information
to solve a classical image processing problem, in that case, image segmentation.
Yakimovsky and Feldman present a “theoretical framework for a general system
incorporating context dependence in a region analyzer” [124]. Their framework
employs Bayesian decision theory techniques and uses problem-dependent informa-
tion (semantics) to solve the image segmentation problem. Their goal is to obtain
a partition of the input image and interpretation for the segments (regions) and
boundaries so as to maximize the likelihood of having the right interpretation, e.g.,
that a segment interpreted (labeled) as ‘sky’ is above another one named ‘hill’.

The next wave of early references to the use of context in computer vision can
be found in the work of Strat, Fischler and colleagues [37, 103, 105–108] and a few
others (e.g., [75]) in the early 1990s.

These early efforts usually consisted of hand-engineered, pre-defined, if-then
rules, which attempted to emulate common expert knowledge in a narrow domain.
However, these earlier methods were limited in their ability to deal with the uncer-
tainty of real world scenes, which became the main focus of more recent systems,
which typically rely on statistical models that are fit to data, as we shall see later in
this paper.

3.2 Types of context

In this subsection we present a summary of different attempts to organize the
interpretations and types of context into meaningful groups and categories available
in the literature. There is no universal agreement or taxonomy on this topic. What
follows are some representative examples of classification of types of context (and
associated contextual modeling techniques).

3.2.1 Semantic, spatial, and scale contexts

Galleguillos and Belongie [39] refer to three main types of contextual information
that can be exploited in computer vision solutions:

– Probability (semantic) context: refers to the likelihood of an object being found
in some scenes but not in others. From the point of view of modeling, the
semantic context of an object can be expressed in terms of its probability of co-
occurrence with other objects and its probability of occurrence in certain scenes.

– Position (spatial) context: corresponds to the likelihood of finding an object in
some positions and not others with respect to other objects in the scene.

– Size (scale) context: exploits the fact that objects have a limited set of size
relations with other objects in the scene.
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From a computational modeling viewpoint, Galleguillos and Belongie [39] ob-
serve that scale context might be the hardest relation to access, because it requires
a more detailed information about the objects in the scene, consisting of the iden-
tification of at least one other object in the setting as well as the processing of spatial
and depth relations between the target object and other object(s). They also claim
that semantic context is implicitly present in the other two types of context—spatial
context and scale context—, although it can be obtained from a wide variety of other
sources, such as strongly labeled training data and external knowledge bases.

3.2.2 Things and stuf f

An alternative terminology was proposed by Heitz and Koller who introduced a
“Things and Stuff” (TAS) context model [51]. In their work, the terms ‘stuff’ and
‘things’ (originally introduced by Forsyth et al. [38]) are used to distinguish “material
that is defined by a homogeneous or repetitive pattern of fine-scale properties, but
has no specific or distinctive spatial extent or shape” (stuf f ) from “objects with
specific size and shape” (things). Heitz and Koller claim that “classifiers for both
things or stuff can benefit from the proper use of contextual cues”. Consequently,
they present four possible categories of context-modeling techniques:

– Scene-Thing context: refers to models which allow “scene-level information,
such as scale or ‘gist’, to determine location priors for objects”.

– Stuff-Stuff context: captures notions such as “sky occurs above sea” and “road is
likely to appear below building”.

– Thing-Thing context: considers models that take into account the co-occurrence
of objects, and encode, for example, that a tennis racket is more likely to co-occur
with a tennis ball than with a lemon (see [93]).

– Stuff-Thing context: enables texture regions within the scene to add predictive
power to the detection of objects present in the scene.

3.2.3 SBC and OBC

Rabinovich and Belongie [92] have proposed a classification of contextual models
for computer vision (in general) and object recognition (in particular), consisting
of: models with contextual inference based on the statistical summary of the scene
(which they refer to as Scene Based Context models—SBC) and models representing
the context in terms of relationships among objects in the image (Object Based
Context—OBC). When comparing their classification terminology with that of Heitz
and Koller [51], they underscore the fact that “neither the SBC nor the OBC models
explicitly separate thing from stuff” and defer the formulation of SBC and OBC
models in terms of a “thing vs. stuff formalism” to a future time, when the “thing vs.
stuff distinction becomes more rigorous”.

3.2.4 A broader view of context

Divvala et al. [27] start from the definition of context as “any and all information that
may influence the way a scene and the objects within it are perceived” [104]. They
compile a list of the many different sources of context that have been discussed in
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the literature, and add some of their own, resulting in a broader and longer list, as
follows:

– Local pixel: “captures the basic notion that image pixels/patches around the
region of interest carry useful information” [27]. Examples of local pixel context
include: image segmentation, object boundary extraction, and several object
shape/contour models.

– 2D scene gist: refers to models that use global statistics of an image to capture
the “gist” of a scene (e.g., [79]).

– 3D geometric: corresponds to models that attempt to capture the coarse 3D
geometric structure of a scene, or its ‘surface layout’ (e.g., [58]), which can then
be used to reason about supporting surfaces, occlusions, and contact points.

– Semantic: used to indicate the kind of event, activity, or other scene category
being depicted as well as the presence and location (spatial context) of other
objects and materials in the scene.

– Photogrammetric: related to several aspects of the image acquisition process,
including intrinsic camera parameters (e.g., focal length and lens distortion) as
well as extrinsic ones (e.g., camera height and orientation).

– Illumination: “captures various parameters of scene illumination, such as sun
direction, cloud cover, and shadow contrast” [27].

– Weather: used to “describe meteorological conditions such as current/recent
precipitation, wind speed/direction, temperature, season as well as conditions of
fog and haze” [27].

– Geographic: refers to information about the actual location of the image (e.g.,
GPS coordinates), or more generic information such as terrain type (e.g., tun-
dra, desert, ocean), land use category (e.g., urban, agricultural), elevation, and
population density, among others.

– Temporal: captures “temporally proximal information, such as time of capture,
nearby frames of a video (optical flow), images captured right before/after the
given image, or video data from similar scenes” [27].

– Cultural: refers to biases and intentions involved in the processes of taking
pictures (e.g., framing, focus, subject matter) and selecting datasets, among
others.

The list above includes contextual aspects that can be captured from other sources,
i.e., it reaches far beyond what can be captured from visual input alone.

4 Spatial knowledge and contextual reasoning

A common point of agreement between all previous taxonomies is the prominent
role of spatial knowledge in contextual reasoning. All the key entities in a 3D
physical scene are localized (e.g., objects, cameras, light sources) and this assertion is
consequently also correct in the image space. Each object of interest in a given image
is supposed to fit into reasonable spatial relationships with other related objects or,
more generally, with the overall indoor or outdoor environment. Notwithstanding
that many definitions of context coexist, the context primarily gives access to these
spatial relationships and prior knowledge.
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All the spatial entities playing a role in computer vision may be involved in these
spatial interactions. This is true both in the image domain (e.g., pixels, edges, patches,
superpixels, regions, segments and their related descriptors) and in the geometric
domain (points, lines, surfaces, volumes and their algebraic representations).

Interpixel relations are extensively used with pixel attributes ranging from color
[36] to appearance descriptor [121] or semantic labels [69].

Pairwise relations between patches [101], regions, or segments [41] are at least as
important as statistics between pixels. There is indeed a strong tendency to consider
regions as the basic contextual entity, since the spatial extension of a physical object
in image space is naturally an image region. The spatial extent of the regions may
depend upon the use case: bounding boxes for object localization, patches for early
part detection, object-shaped regions for things segmentation, amorphous segments
for stuf f representation.

Global image features are also crucial for top-down reasoning about the overall
scene appearing in an image. The ‘gist’ [113] is perhaps the most famous example
of global statistics that capture a discriminative summary of the whole image by
applying filter-banks. Whilst the gist is 2D, a coarse 3D layout of the scene [49] is
also an alternative spatial entity to constrain scene-object relations.

In order to reason qualitatively about the 3D relation between the scene and a
camera, properties such as vanishing points, parallel lines [49], and horizon line [59]
can be detected. Furthermore, qualitative reconstructions of the environment from a
single image can be based on surfaces [58] or 3D blocks [47].

Of course, the interactions between all these spatial entities ultimately have an
echo in the semantic domain by establishing relations between objects or object parts.
In the next section we review the major spatial relations and priors effectively used
in context modeling and contextual reasoning.

4.1 Spatial relations

4.1.1 Occurrence

Co-occurrence is one of the simplest approaches to introduce relationships between
objects in a visual scene [17, 41, 93, 120]. Contextual interactions such as “cars
appear on roads” can be translated directly in contextual relations between object
labels. In this case, the presence of a certain object class in an image (e.g., a road)
statistically influences the presence of a target object (e.g., cars). It is straightforward
to build context matrices to count co-occurrence of labels given a dataset where
many objects are labeled. Such co-occurrence matrices can easily be translation-
and rotation-invariant and regularly show robustness to affine and pose changes
[120]. It is also well known that certain objects (e.g., computer monitors, beds)
occur more frequently in some places (e.g., offices and bedrooms, respectively) [113].
Starting from these learned co-occurrence statistics, Rabinovich et al. [93] devised
interaction potentials for Condition Random Field (CRF) in order to measure
contextual agreement between detected objects. It is interesting to notice that the
terms “semantic context” and “co-occurence” are sometimes used interchangeably
[41]. The statistical model proposed by Carbonetto, Freitas and Barnard [17] also
learns co-occurrence between concepts (e.g., image caption words). However in
their model, Markov Random Field (MRF) interaction potentials are estimated
only between neighboring image segments (e.g., object blobs). More so than
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co-occurrence, such potentials also describe the ‘next to’ relationship between object
labels. Wang et al. [121] give a formal definition of co-occurence and occurrence
functions. These functions provide a probability distribution of labels over different
regions centered around a given labeled pixel. Perhaps the most interesting idea in
this scheme is to relate two independent sets of labels by using occurrence (and not
only co-occurence). This integrates both shape and appearance labels into a shape
and appearance context descriptor.

The occurrence analysis can be also made between object parts (e.g., detecting
nose and mouth as part of a face). In this case again, the relative position of the
parts is crucial [33]. Fink and Perona [36] detect faces by using both the individual
detections of M parts/entities (left eye, right eye, mouth, nose, entire face) and
their spatial arrangements. Hence, they treat M entities at each boosting iteration
and compute M maps that give the likelihood of each entity appearing in different
positions in the image. Combining face parts is made possible by using all the
likelihood maps as additional input channels for subsequent boosting iterations.
Consequently, the likelihood map for eye detection can be used to further detect
mouth, and likelihood maps for face detection can be helpful to detect multiple faces,
since faces tend to be horizontally aligned in the considered data set. Practically, the
famous rectangle contrast features (from Viola and Jones [119]) are used as weak
learners to select relevant arrangements of spatial entities and filter out non-relevant
ones. A large contextual window is used to analyze such co-occurrence and spatial
relations. Another similar approach is brought by Perko and Leonardis [87], in which
horizontal alignments between pedestrians in street scenes are learned by estimating
a 2D probability distribution of other pedestrian locations given a pedestrian in the
center of the image.

4.1.2 Spatial arrangements

As previously suggested, the relations between spatial locations of objects lead to
additional arrangement constraints (“car appears on roads”) and go beyond the co-
occurrence relationships. Spatial expressions in natural languages are a good way
to describe such relations that often turn out to be rather qualitative (e.g., “object
A is around object B”) rather than quantitative (or metric). These relations can be
expressed and used both in 2D (image space) or in 3D (object space).

We first distinguish three classes of qualitative 2D relations:

(i) direction relations;
(ii) distance relations; and

(iii) topological relations.

Direction relations (i) express the direction of one object (the primary object)
relative to another (the reference object). Such relations can be defined if a frame of
reference is known. Usually the cardinal directions (E,N,S,W) and their refinements
(NE, NW,SW, SE) can be used (tacitly) as an extrinsic frame of reference. One can
also assume an intrinsic orientation of reference in the image space (so that we can
talk, for example, of an object being to the “left” of a building). The relative vertical
positions (“above”, “below”) are frequently used and judged discriminative enough
to detect object in conventional dataset like PASCAL where as horizontal positions
do not necessary carry much discriminative information.
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Distance relations (ii) can be divided into two major categories: those which
provide measurements on some absolute scale and those which provide relative
measurements. In normalized image spaces some distances can be expressed in terms
of (absolute) pixels (e.g., “object A is about 200 pixels away from object B”). Heitz
and Koller [51] also cite some human knowledge e.g., “cars park 20 feet away from
buildings” that highlight the limitation of 2D spatial reasoning with a single image—
since a 3D (geo)metric context would be required to capture that relation. More
frequently, relative measurements lead to 2D qualitative relations such as “close”,
“far”, or “equidistant”. Determining the correct scale and associated thresholds for
such relations is a difficult task in the general case, yet tractable in domain-specific
applications.

Topological relations (iii) describe the relationship between an object and its
neighbors. Formally defined by considering interior, boundary and exterior of an
object, intersection relations such as “touches”, “overlaps” , “contains” (in, inside),
and “crosses” are often used in practice. Some authors also propose a slightly
nuanced version (“encloses”) of the simpler relation “contains” [69, 101]. One should
also notice that the simplest topological relation is when two regions/objects are
“disjoint”.

Of course, all these spatial arrangements can be further combined. For instance
Singhal et al. [101] use “far above” and “far below” to mix direction and distance
relations. They also mingle “left” and “right” relations and introduce a weaker
“beside” relation. In their TAS model, Heitz and Koller [51] also combine all types
of relation (eight directional relations, two different distances, and a topological “in”
relation) to generate many candidate relationships (25, to be exact) from which they
extract the most useful ones.

As mentioned earlier, the main weakness of 2D qualitative spatial arrangements
lies in the fact that the correct scale of the relationships must be detected or learned
a priori. Recent works on “geometric context” [47, 50, 97] that attempt to infer
qualitative 3D reconstruction from a single image may provide a solution. If a 3D
context is recovered, the appropriate scale may be easier to determine. In addition,
3D relationships can be also stated between volumes: 3D pairwise depth relations
[47] such as “in front” and “behind” have been used along with 3D support relations
such as “supports”, “(is) supported by”. The relations “front”/“behind” can be
interpreted as order relations.

It is interesting to note that order relationships involving the size of the consid-
ered objects/regions are rarely cited in the literature. For instance, relations such
as “larger”/“smaller” or “greater than/less” are not frequently used in contextual
object detection or scene understanding. This may reflect the fact that true size (as
opposed to apparent size) can only be determined based on a recovering 3D depth
information.

4.1.3 The discriminative alternative

From the computational point of view, there are multiple possible representations
of the previously discussed types of relations by generative models or processes.
Carbonetto et al. [17] and Galleguillos et al. [41] use interaction potentials for MRF
and CRF respectively, Heitz and Koller [51] activate or not each relation by using
indicator variables in their TAS model, Gupta et al. [47] visualize their relations in
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a 3D parse graph. In these approaches, one might say that the spatial relations are
handled explicitly.

These approaches, although promising, can be challenged by the alternative dis-
criminative approach where the spatial relations are treated implicitly by classifiers.
Both co-occurrences and spatial arrangements can be learned by using sampling
patterns [87, 120–122]. The first step in such discriminative approaches is to compute
many features at each pixel location during the learning stage. The basic assumption
is that contextual information can be stored as layered images or feature maps.
As an example, Wolf and Bileschi [122] consider a 20 dimensional feature vector
by concatenating color and texture features, semantic labels and relative position
measurements, at each pixel location. More recently Perko et al. [87] also integrate
geometric feature maps [57] and saliency maps. At this stage an initial natural image
is converted into an image containing many layers of information.

The second step consists of extracting a context descriptor given a candidate
object location. A sampling pattern can be designed to collect the contextual
layered informations at predefined locations centered around the candidate object.
Biologically inspired, polar sampling patterns [87, 120, 122] are popular. For instance,
Wolf and Bileschi [122] use 40 relative polar locations (multiple radii and multiple
orientations) and then concatenate their 20 dimensional features to finally output a
40 × 20 = 800 dimensional context descriptor.

In support of techniques working at the descriptor level, Zheng and colleagues
[120] argue that such polar sampling offers greater flexibility in capturing different
types of context (including thing-thing, thing-stuf f, etc.) and in representing many
existing spatial relations (including “inside”, “outside”, “left”, etc.). Since feature
vectors naturally covary between the sampling locations, such context descriptors,
fed into well-chosen classifiers, allow such systems to exhibit important correlations
and discriminant signals for object detection. Simultaneously, irrelevant relations and
unhelpful signals with respect to the visual task are automatically ignored by learned
classifiers.

These advantages probably explain why the work by Wolf and Bileschi [122]
has been followed up by several other authors: Wang et al. [121] have introduced
a sampling pattern made of concentric square rings, while Zheng et al. [120] have
also proposed a polar geometric structure but use dense SIFT extractions in radial
bins, whereas Perko et al. [87] have recently reused a multiscale version of the initial
sampling pattern of Wolf and Bileschi [122].

4.2 Shape and location priors

In this section we discuss shape and location priors that complement the already rich
spatial knowledge that can be used to recognize objects and understand visual scenes.

4.2.1 Shape priors

Intershape relations and shape priors are fundamental types of spatial knowledge for
object detection, due to the fact that shape is perhaps the most important feature of
an object. In order to improve object detection, many queries can be used: Is object
A similar to object B? Do they have nearly the same shape? Is object A a part of
object B? Does an object seem like a chair, a table, a plane? Therefore many authors
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have studied and still use shape context [10, 121]. We review three main approaches
for modeling shape priors at both object and scene levels.

Firstly, many recent papers [35, 72, 82–84] propose methods for learning object
shape models and shape alphabets by analyzing the arrangement of edge features
such as the pairwise interactions between edge features or the relative positions of
edge features with respect to the centroid of the shape. As an example Ferrari et al.
[35] present a family of scale-invariant local shape features formed by short chains of
connected contour segments. Detecting faces by multiplying the window hypotheses
over pixel locations at many scales works fine if the interior part of the target object
is discriminant enough. Unlike faces, other objects category like the ones handled by
Ferrari et al. can be more easily detected by using their boundaries.

Second, learning deformable shape models for part-based detector is also becom-
ing very popular. Felzenszwalb and colleagues [33] use star-structured deformable
part models (e.g., shape grammars) and associated cascade of part detectors. Yang
et al. [125] define a part-based model of shape prior hierarchically. At the elementary
level, the simplest shape prior is a soft segmentation mask (or alpha-matte) which
records the probability of a pixel belonging to the object at some location relative
to the detection center. Then shape priors are further refined as a mixture of parts
models and depend of the object pose (e.g., side vs. frontal cars). Shape priors
have indeed a fundamental role when tackling interleaved object recognition and
segmentation. Obj Cut [68] is perhaps one of the most influential works in this area:
the key idea is to introduce a part-based model as a prior knowledge of object shape
to supervise grouping-based segmentation.

As our third step, we finally put the emphasis on geometric context viewed
as a global shape prior at scene level. The influential work of Hoiem et al. on
geometric context [57] introduces a rough 3D sense of scene geometry as a key
contextual component. They consider outdoor images and define three semantic
classes associated with the ground, the sky and the vertical entities like buildings,
trees etc. This typology of outdoor surface classes can be viewed as the main prior
knowledge in their statistical learning approach. The major idea is to map stable
image segments to the main planar surfaces of an outdoor environment. Practically
each superpixel [34] of a single image is classified leading to three likelihood
maps, one for each class (e.g., ground, sky, and vertical surfaces such as buildings).
Additionally, vertical planar surface elements are further labeled with their 3D
orientation. Texture- and edge-based features are used to provide such orientation
cues. The interest of such a work is at least threefold. First, the labeled images can be
directly used as contextual features [87]. Second, the labeled images can be “popped-
up” to qualitatively reconstruct a coarse scaled 3D model of the scene from a single
image. To perform such a 3D elevation, a key problem is to cut and fold the labeled
image properly and this explains why occlusion reasoning [60] has been extensively
studied by the same team. Third, a rough 3D scene geometry can interplay with
low level object detectors [59]. In this particular work [59], Hoiem and colleagues
make a step forward and infer simultaneously object labels (e.g., pedestrian or car
detections), qualitative 3D geometry (e.g., labeling and orientation for sky, ground,
vertical surfaces in street scenes) and camera viewpoint. A coarse 3D estimation of
the scene geometry along with an approximate camera viewpoint naturally lead to
prior knowledge about where a pedestrian or a car might be both in 3D world and in
the 2D image space.
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Hedau, Hoiem and Forsyth [50] address the case of indoor scenes with the same
approach based on the fitting of a coarse 3D geometric model to room images. The
shape prior for the room’s geometry is basically composed of perpendicular surfaces
(labeled as “walls” and “floor”) leading to a 3D box layout. Then, object detections
are performed “inside the box”. Reasoning again in the 3D space, the sliding
window strategy for object detection is generalized as a sliding 3D cuboid procedure.
Therefore beds (frequently occurring in rooms) can be detected and located as 3D
parallelepipeds by integrating both appearance and geometric coherence. Outdoor
scenes can be treated as well by introducing the cuboid shape prior for building
detection [47].

4.2.2 Location priors

These last cited works suggest the importance of location priors in contextual
reasoning. Without paraphrasing previous parts of our discussion, we now briefly
recall to the reader a few solutions to represent and encode object location priors
in computational models. First of all, it is well known that Torralba’s ‘gist’ can be
used to predict the vertical location of object classes. This is called location priming
[113]. Less influenced by human perception aspects, Wolf and Bileschi [122] propose
a much simpler position descriptor that allows a simple classifier to learn a wide
variety of position priors. In their context descriptor, Wolf and Bileschi [122] simply
employ ten features to calculate at each pixel, namely the distance to ten predefined
positions spread over the image. They report good results with this straightforward
position prior applied to street scenes.

Information about the camera’s location is also a key component of the geographic
context [27, 48]. The geolocation of the camera can naturally be used to infer
prior knowledge about the observed scene. The tagged images from the internet
and associated keywords are booming sources of contextual informations for some
real life applications like automatic image annotation. As an additional significant
example, the third eye (e.g., contextual satellite images) [73] also provides impressive
power of understanding only given the GPS coordinates (e.g., metadata) attached
to an image. The role of the camera position is finally fundamental in determining
the actual object detection scale depending on the distance between the observer
and the object. Scale selection is a really difficult problem in image understanding.
Qualitative 3D reasoning has a great potential in this domain: Hoiem et al. [59]
manage to select detection scale for pedestrians or cars by introducing a prior on
camera height (1.67 m as an average eye level for an adult) and on horizon line
position.

4.3 Contextual reasoning

Contextual reasoning consists of integrating appearance processing and the afore-
mentioned spatial relations or prior knowledges to solve a rich set of visual tasks.
Among them, we would like to cite object presence and counting problems along
with position and scale detection subproblems, image segmentation, scene lay-
out approximation, depth estimation and qualitative reconstruction, and semantic
interpretation.
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4.3.1 Principled integration of context and appearance

We first discuss basic strategies to integrate appearance and contextual information
while focusing on object detection applications.

In Section 4.1.1 we discussed the work of Rabinovich et al. [93] that uses co-
occurence context to reduce ambiguity in object appearance by using other objects
in presence. The idea behind this contextual association is to define context as a
function of previously recognized objects. As a consequence, a possible architecture
to combine appearance and context is to first build multiple detectors: some for
the related objects, others for the target objects. The outputs of the related object
detectors then help to visually detect target objects: for instance they may help
to infer their likely presence and/or likely location. The limiting factor in this
approach is that estimating the context can be as arduous as detecting each related
object. In their critical survey, Wolf and Bileschi recommend avoiding this approach.
According to their domain-specific—limited to street scenes—experiments, accurate
context can be determined from low-level early visual features [122].

Another very simple way to combine contextual cues and appearance signals is
to put them together in a feature vector. As an example of such an approach, Wolf
and Bileschi [122] simply concatenate semantic labels (boolean presence variables
indicate if each pixel is over a building, a road, the sky etc.) and low level appearance
information before training classifiers in a purely discriminative framework (see
Section 4.1.3).

More generally, context can be used as a post-filtering or pre-filtering component
in an object detection procedure. On one hand, numerous modeling attempts [93,
101, 120] use the context as a post-processing technique: the candidate objects are
first detected by an appearance-based approach and then false positives are filtered
out by using context information. In this case, a low threshold must be associated
with the appearance detector to ensure that most of the true positives are passed on
to the second stage. On the other hand, Wolf and Bileschi [122] propose to use a
rejection cascade to combine appearance and context cues. In one version of their
work a context-based descriptor is first used and acts as a preliminary filter before an
appearance detector. Pixels are passed to the appearance detector if and only if they
are classified as plausible according to the context. This is one of the rare examples
where context is used as a pre-filtering technique.

4.3.2 Probabilistic fusion

In order to combine appearance and contextual cues in a mathematically sophis-
ticated way, many probabilistic models have been proposed. Generally speaking,
most of them employ a MAP-like approach by maximizing, at test time, a pos-
terior confidence score which combines a prior detection score with a contextual
confidence score given a candidate region/window for detecting an object. This
approach usually comes along with the aforementioned post-processing approach
(first detect candidate objects with appearance-based descriptors and then filter out
the false positives contextually). In other words, the prior detection score is an output
of the recognition system and the second term introduces semantic structure and/or
contextual constraints.
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Generally speaking a probabilistic fusion model attempts, at test time, to maximize
a general criterion that can be expressed as:

posterior confidence score ∝ prior detection score × contextual confidence score

(1)

We first discuss the prior detection score term. Very often it comes from a
common sliding window object detector. Mostly cited detectors are publicly avail-
able (HOG, UocTTI, boosting approaches). Such discriminative detectors generally
output a conditional probability that a candidate window Wi extracted from an image
I contains the ith target object labeled as Oi: P(Oi|Wi). In their empirical comparison
of multiple context representations, Divvala et al. [27] explicitly decompose the
detection score assigned to an image I in three terms related to object presence
P(Oi|I), location P(xi|Oi, I) and size P(hi|xi, Oi, I), respectively. This distinction
is very interesting because the object presence probability can be generalized for
multiple instances of the same object class. Torralba et al. [113] call this problem
object counting. The associated probability can be written P(ON

i |I) where N ∈
{0, 1, 2, 3–5, 5–10, >10}. When multiple object classes can be independently detected
the detection score is simply a product

∏
i P(Oi|Wi). In their maximum margin

context model (MMC), Zheng et al. [120] also introduce an importance factor α such
that the prior detection score = P(Oi|Wi)

α . For α > 0, the larger is the importance
factor, the more important the prior detection score is and the lower contextual
confidence tends to be. It should be noted that in some cases the outputs from a
recognition algorithm are not probabilities, e.g. in the case of SVM outputs. A logistic
regression function [51] can then be fitted to map a margin score to the desired
domain. A more empirical normalization using robust statistics is also recommended
by Perko et al. [87].

The second term in the general equation (1) varies considerably among different
approaches in the literature. We review some important types of contextual
confidence score.

Rabinovich et al. [93], mainly study co-occurrences between objects (e.g., con-
textual agreement between the labels assigned to image segments). In a CRF
framework, interaction potentials φ between segment labels form their contextual
confidence term proportional to exp

( ∑
i, j φ(Oi, O j)

)
. Galleguillos et al. [41] do the

same except that the interaction potentials φk are redefined for each of the four
pairwise spatial relationships k they consider.

In their probabilistic Things And Stuf f (TAS) model, Heitz and Koller build
a context by linking the detection of objects (e.g., ‘cars’) with the presence of
unsupervised image segments (e.g., automatically detected stuff clusters representing
‘road’ appearances). For that purpose, they use a set of indicator variables Ri, j,k to
indicate whether the detection of object Oi in presence of a stuff/contextual segment
Sj are related by a likely spatial relationship k (e.g., the kth relation might be the
‘above’ relation). Hence their contextual confidence score first tries to maximize a
conditional probabibilty

∏
j,k P(Rijk|Oi, Sj) and simultaneously (by independence) a

joint probability (e.g., a generative model) to classify each extracted image feature Fj

as a stuff segment Sj:
∏

j P(Sj, Fj).
Torralba and colleagues [113] use the scene ‘gist’ g as a global image feature

to build a twofold probabilistic contextual confidence score. The gist provides ‘top-
down’ information that allows one to predict: 1) how many object instances should
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be present; and 2) where they might be located. The prior detection score ci is first
converted in a local gaussian likelihood P(ci|Oi) and combined in closed form with
a another local gaussian likelihood term which represents the expected location xi

given the candidate object class and the gist P(xi|Oi, g). Then presence and counting
priors are further integrated in two steps. The type of scene (e.g., street, highway,
forest etc.) is first predicted from the gist as done by Quattoni and Torralba [91]).
And, given the scene category, the plausible number of object instances within each
considered object class is then integrated in the contextual confidence score.

As previously stated, Hoiem et al. [59] detect objects (e.g., presence Oi, location
xi, and size hi for the ith object) while estimating a qualitative 3D geometry
gi around each object [57] and a camera viewpoint C. They first integrate the
prior detection score, the mutual dependency between the object scale and the
viewpoint and a prior on viewpoint: P(Oi, xi|I)P(hi|CI)P(C). The two last terms
participate in the contextual confidence evaluation. Additionally a local geometry
evidence P(gi|I) and the geometric consistency between the object surface and
nearby surfaces P(gi|Oi) are properly associated to complete the contextual term.
Similar models integrating geometry estimation and object detection have been
recently proposed for indoor scenes [50] and outdoor scenes [47]. In both cases 3D
shape priors are provided to detect prominent objects in the scene by simultaneous
integration of appearance and geometric hints.

In their MCC model, Zheng et al. [120] use a very innovative ‘context positiveness
function’ to serve as a contextual confidence score. This function explicitly measures
the risk of using contextual information tackling the issue of decision-making for
contextual reasoning.

Beyond independence assumptions, Perko and Leonardis [87] compare several
ways to combine appearance and contextual features. They first assume that prior
detection scores and context confidence scores are statistically independent and they
simply fuse them by multiplications (1). In their setting, the detection performance is
decreased by such a naive fusion. It turns out that all their contextual cues (geometry,
texture, saliency, co-occurrence) are not equally relevant and that the independence
assumption is obviously false. For instance saliency maps, used to contextually focus
on salient regions when searching for an object, are useless and contaminate the
fusion. In their subsequent test they explicitly model the dependencies between
the appearance scores and the contextual confidence scores using a kernel density
estimation (KDE) for the associated joint densities. They report better results in that
case, empirically showing that local appearance and contextual informations are non
independent.

In our description and review of selected probabilistic models to combine ap-
pearance and contextual informations we have focused, for readability reasons, on
assessment criteria. In their recent survey paper on this topic, Galleguillos and
Belongie [39] take another route—complementary to ours—and present two main
classes of machine learning techniques (e.g., classifiers and graphical models) as the
most popular way to learn the probabilistic relation between appearance and context.

4.4 Summary and implications

In this section, we have shown that state-of-the-art context representations are
mostly related to spatial knowledge. We have kept the discussion within the domain
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of still-image understanding and intentionally did not discuss the temporal dimension
and associated cues. Within our scope of investigation, we do believe that spatial
relations, along with shape and location priors are prominent in computational
aspects. In some sense, the critical survey of Galleguillos et al. [39] confirms our
claim, since they conclude that spatial and scale context involve using all forms of
contextual information in the scene and that semantic context is implicitly present in
spatial context. If we admit that the formal representation of spatial arrangements
and relations to priors is the key, we further think that decision taking about context
will be a major challenge for future works. The first idea is that context is efficient
when appearance is weak. So before using context we have to formally detect
when signals are degraded and when appearance is deficient. Selecting the adapted
strength of contextual constraints is linked with assessing appearance expressiveness.
This issue is still open in our opinion. Furthermore, recent papers that we reviewed
[41, 51] highlight the need for automatically learning the best and most discriminative
contextual relations to be used. Combining spatial relations sequentially or globally
for contextual reasoning is probably limited. A better way might be to select active
and useful relationships given a context performance metric. Wolf and Bileschi
[122] measure the context performance by quantifying how much aid is given to
subsequent stages in the detection process. Rabinovich et al. formally define both
confidence and amibiguty of a segment labeling by considering a distance between
the best labeling and the second best given a segment [93]. More sophisticated
definitions of visual ambiguity might be a necessary ingredient of real context
performance metrics. In this domain, the MCC model by Zheng et al. [120] is
interesting since it is basically built to reduce such an ambiguity criterion. Finally the
integration of multiple sources of context will lead to many papers in the upcoming
years. The holistic scene understanding problem will be intensively revisited by
integrating recent progresses in object detection, image segmentation and scene
reconstruction.

5 Implications and applications

5.1 Implications

The understanding of how visual processes and tasks such as visual search, object
detection, recognition, classification, and autonomous navigation—among many
others—are strongly influenced by contextual cues is crucial to the advancement of
the state of the art in both human and computer vision research. Such understanding
may lead to better, i.e., more robust and reliable, computational models of the
contextual influences caused by a quick understanding of the scene (after having
captured its gist) and/or mutual relationships among objects in the scene.

As the field of contextual modeling matures, researchers will have to start working
on answers to relevant associated questions, such as:

– How can we measure success in context modeling? While learning about and
incorporating contextual information in computer models provides a distinct set
of hurdles and challenges, the goal of context modeling is ultimately to improve
performance in a functionally useful application. Thus, simply demonstrating
that contexts can be learned and/or modeled does not provide a good metric
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for the utility of such a model. Nevertheless, it may be necessary to consider
the inherent strengths of a system generically, without regard to a specific
application, since it is likely that a good model will be useful for multiple
applications.

– What is the appropriate input of a context modeling algorithm? In theory the
input could consist of raw images, segmented images and/or labeled images
and could also include metadata such as keywords or tags. In addition, a
model could use the image data in order to extract a scene category—as in
Torralba’s model. Alternatively, in some circumstances the scene category could
be provided beforehand as a form of metadata as well. For many applications
(e.g., robotics), the environment in which a system is implemented is often highly
constrained and predictable and it might not be necessary to perform scene
analysis independently prior to implementing the context model. However, other
applications, such as web-based image search, might require scene analysis at the
front-end of the system.

– What is the appropriate level of scene category for modeling the context? Any
given scene image may be categorized at many levels, including basic-level
categories (e.g., outside/inside, home/office) mid-level categories (a children’s
bedroom; a doctor’s office) as well as highly specific, unique categories (my
own bedroom). The choice of scene category may well vary depending on the
particular application and the environment in which it will be employed.

5.2 Applications

Contextual information plays a significant role in object detection, localization, and
recognition tasks. In this subsection we look at other computer vision tasks and
research areas that may benefit from contextual information, particularly:

– Semantic event recognition
– Visual search and retrieval
– Context-aware image annotation and photo management systems
– Autonomous navigation

5.2.1 Semantic event recognition

Luo and colleagues [65, 73] have proposed a system that combines visual cues from
the picture with its geographical positioning systems (GPS) information, available
as metadata. The longitude and latitude coordinates corresponding to the picture
location are used to obtain satellite images of the environment in which the picture
was taken, providing a “third eye” above the scene and its objects.

Their work made three significant contributions to the state of the art in semantic
event recognition: (i) it launched a novel way to use satellite aerial images, through
geotagging, to recognize a picture-taking environment from above (rather than
at ground level); (ii) it demonstrated the effectiveness of a new vision algorithm
that uses both structure and color features to characterize different environment
categories, and multiclass AdaBoost to achieve reliable recognition in spite of the
large variability (e.g., due to weather conditions) in the satellite images; and (iii) it
combined satellite image-based recognition with classical vision-based ground image
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recognition into a robust integrated detection system in which each of the two views
contributes to improved recognition capabilities.

5.2.2 Visual search and retrieval

There have been several attempts at using contextual information to improve the
performance of content-based image retrieval (CBIR) systems. The introduction of
the color correlogram descriptor (a color-based descriptor that takes into account
the spatial relations of local properties) by Huang et al. [62] is often regarded as the
earliest attempt in “context-based CBIR”.

Examples of more recent work include Amores, Sebe, and Radeva [2], in which
they proposed a context-based framework for medical image retrieval on the grounds
of a global object context based on the mutual positions of local descriptors. Their
approach was tested using intravascular ultrasound images, with better quantitative
results than the baseline method by Huang et al. [62]. In [3], they have introduced
a novel type of image representation—the Generalized Correlogram (GC)—and
represented each visual object using a constellation of GCs, where each GC encodes
information about some local part and the spatial relations from this part to others
(i.e., the part’s context). The proposed matching scheme exploits that representation
and takes into consideration the spatial coherence between the matching of local
parts. The GCs are spatially quantized using the log-polar spatial quantization
originally proposed by Belongie et al. [10], which makes the correlogram more
sensitive to local context.

Approaching context from a broader view, which includes tags, geospatial infor-
mation, and other types of metadata has become a dominant topic in recent years. In
a recent presentation,1 Jain coined a new term (contenxt) to represent the confluence
of content (data) and the context in which it is presented. Jain is among many
who claim (and hope) that the modeling and use of context in visual information
retrieval systems will help narrowing the infamous “semantic gap” problem [102]
that permeates the field.

Other contemporary representative efforts that use context information—in a
broad sense—to improve visual search and classification tasks include, among many
others:

– ContextSeer [126], a system that re-ranks text-based image search results based
on informative context cues that are automatically selected by the system;

– the work by Kennedy and Naaman [66], in which a combination of tags, visual
features, and geolocation information is used to automatically select representa-
tive landmark pictures and discard non-representative ones.

5.2.3 Context-aware image annotation and photo management systems

There have been a number of very recent efforts that attempt to bring context
awareness to image annotation and organization tasks. These efforts use the term
“context” in a broader way and usually refer to contextual information gathered
from sources external to the visual contents of the images, e.g., image tags, image
file metadata, and GPS coordinates.

1http://www.slideshare.net/jain49/contenxt-100407

http://www.slideshare.net/jain49/contenxt-100407
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Cao et al. [16] have developed a system for annotation of collections of personal
photos that exploits the contextual information naturally implied by each photo’s
associated GPS and time metadata. First, they employ a constrained clustering
method to partition a photo collection into event-based subcollections. Subsequently,
they use conditional random field (CRF) models to exploit the correlation between
photos based on: (i) time-location constraints; and (ii) the relationship between
collection-level annotation (i.e., events) and image-level annotation (i.e., scenes).
The authors claim that by employing such a multilevel annotation hierarchy, their
system addresses the problem of annotating consumer photo collections that requires
a more hierarchical description of the customers’ activities than do the simpler image
annotation tasks.

O’Hare, Smeaton and colleagues [77, 78] have developed MediAssist, a system for
browsing, searching and semi-automatic annotation of personal photos, which takes
into account both image content and the context in which the photo is captured. This
semi-automatic annotation includes annotation of the identity of people in photos
based on a combination of context and content. It proposes language modeling
and nearest neighbor approaches to context-based person identification, in addition
to novel face color and image color content-based features (used alongside face
recognition and body patch features).

5.2.4 Autonomous navigation

Siagian and Itti [100] have proposed a simple, biologically plausible, context-based
scene recognition algorithm that captures the “gist” of a scene using a multiscale
set of early-visual features, which are shared with a model of visual attention and
encoded as a low-dimensional signature vector. The low-computational complexity
of their approach makes it attractive to mobile robotics applications, e.g., clas-
sification of scenes and buildings in a campus environment, under which it has been
successfully evaluated [100]. In the proposed system, sharing raw features between
the ‘gist feature extraction’ block and the saliency model helps increase localization
resolution by using salient cues to create distinct signatures of individual scenes and
establish finer points of reference that may not be differentiable by gist alone.

6 Concluding remarks

In this paper we presented a survey of context modeling approaches in computer
vision and some of their applications. All the previously discussed vision tasks and
applications are notably arduous since they are intrinsically linked with the inverse
problem that lies at the core of human and computer vision. A possible approach
to overcome the inverse vision problem is to increase the sources of information
used to recover real-world properties of a scene and make educated decisions about
what they contain. The multiple contextual cues reviewed in this paper have the
potential to play a significant role in this process. The emerging computational
models of context recently proposed in the literature show great promise in enabling
better solutions to many precise vision problems such as: object detection, object
localization, and 3D structure estimation.

However, at the current stage of research, it is by no means settled what the
correct model of context is and how it can best be leveraged in enhancing computer
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vision. Indeed, existing implementations of context modeling have only provided
marginal improvements over previous technologies. Nonetheless, the enthusiasm
with respect to this approach is not based on the success of early results but rather
on the relative lack of success in computer vision using standard, non-contextual,
techniques combined with the clear role contextual knowledge appears to play in
human vision. Whether context turns out to be the ‘missing link’ in bridging the wide
chasm in performance between artificial and biological vision remains to be seen.
However, at the current moment it appears to be our best bet.

In the upcoming years, a leitmotiv within the computer vision community will
probably be the holistic scene understanding problem which is, more than an inverse
problem, a collection of inverse problems. Recovering the 3D layout of the scene,
categorizing the scene, segmenting the image, recognizing the objects and identifying
events are mutually dependent inverse subproblems which, combined, might interact
to parse the semantic content of visual images.
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Appendix: Resources for researchers in the field

In this appendix we provide a brief survey of some of the most prominent research
groups working on context modeling in computer vision and associated topics, as well
as associated resources, such as datasets and open-source code.

Research groups

Torralba, Oliva, et al.

The work by Torralba,2 Oliva3 and colleagues at MIT is among the most repre-
sentative efforts in combining human behavioral and computational research on
topics related to the broad themes of “visual scene understanding” and “object
recognition”.

The paper by Oliva and Torralba [79] in which they introduce the spatial envelope
as a global descriptor capable of capturing the ‘gist’ of a scene and demonstrate that
it can be used to distinguish among eight different categories of natural scenes has
sparked tremendous interest in the computer vision research community and can be
considered the seminal reference at the beginning of the most recent wave of work
on the topic of context modeling. Other essential papers include [45, 53, 80, 81, 95,
98, 110–116].

Many project-related resources are also available online, including:

– MATLAB code, datasets, and examples of results for the “spatial en-
velope” scene representation [79]: http://people.csail.mit.edu/torralba/code/
spatialenvelope/. Images for each of the eight scene categories can also be
downloaded from http://cvcl.mit.edu/database.htm.

2http://web.mit.edu/torralba/www/
3http://cvcl.mit.edu/Aude.htm

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://cvcl.mit.edu/database.htm
http://web.mit.edu/torralba/www/
http://cvcl.mit.edu/Aude.htm
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– Datasets and examples of results for the “Place and scene recognition from
video” project [114]: http://www.cs.ubc.ca/∼murphyk/Vision/placeRecognition.
html.

– Datasets, tools, and examples of results for contextual priming for object detec-
tion [117]: http://web.mit.edu/torralba/www/carsAndFacesInContext.html.

– MATLAB code, datasets, tools, and examples of results for contextual guid-
ance of eye movements and attention in real-world scenes [116]: http://
people.csail.mit.edu/torralba/GlobalFeaturesAndAttention/.

Efros, Hoiem et al.

The research by Efros,4 Hoiem (currently at University of Illinois at Urbana-
Champaign)5 and colleagues at Carnegie Mellon University has led to some of the
most influential practical applications of the latest computer vision techniques to the
problem of modeling and reconstructing 3D scenes and using contextual information
to improve the performance of object detection and recognition solutions.

Essential reading include [55–60]. Many project-related resources are also avail-
able, including:

– MATLAB code, datasets, and examples of results for the “Automatic Photo
Pop-up” project [56]: http://www.cs.uiuc.edu/homes/dhoiem/projects/popup/
index.html

– MATLAB code, datasets, and examples of results for the “Surface Con-
text” project [57, 58]: http://www.cs.uiuc.edu/homes/dhoiem/projects/context/
index.html

– Dataset for the “Putting Objects in Perspective” project [59]: http://www.
cs.uiuc.edu/homes/dhoiem/projects/pop/index.html

– Code and ground-truth data for the “Recovering the Spatial Layout of
Cluttered Rooms” project [49]: https://netfiles.uiuc.edu/vhedau2/www/Research/
research_spatialLayout.html

The Make3D team

The Make 3D project is another approach to learn depth and infer 3D model from
a single image. It was created by Saxena, Ng and their colleagues from Stanford 3D
reconstruction group [97]. Code and range image data for Make3D are available
at http://make3d.cs.cornell.edu/code.html.

Heitz and Koller

Heitz and Koller (Stanford University) are the proponents of the “Things and
stuff” (TAS) context model discussed earlier (Sections 3.2.2 and 4.3.2). Code
and image data associated with their work can be found at: http://ai.stanford.
edu/ gaheitz/Research/TAS/.

4http://www.cs.cmu.edu/~efros/
5http://www.cs.uiuc.edu/homes/dhoiem/

http://www.cs.ubc.ca/~murphyk/Vision/placeRecognition.html
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http://people.csail.mit.edu/torralba/GlobalFeaturesAndAttention/
http://www.cs.uiuc.edu/homes/dhoiem/projects/popup/index.html
http://www.cs.uiuc.edu/homes/dhoiem/projects/popup/index.html
http://www.cs.uiuc.edu/homes/dhoiem/projects/context/index.html
http://www.cs.uiuc.edu/homes/dhoiem/projects/context/index.html
http://www.cs.uiuc.edu/homes/dhoiem/projects/pop/index.html
http://www.cs.uiuc.edu/homes/dhoiem/projects/pop/index.html
https://netf/iles.uiuc.edu/vhedau2/www/Research/research_spatialLayout.html
https://netf/iles.uiuc.edu/vhedau2/www/Research/research_spatialLayout.html
http://make3d.cs.cornell.edu/code.html
http://ai.stanford.edu/~gaheitz/Research/TAS/
http://ai.stanford.edu/~gaheitz/Research/TAS/
http://www.cs.cmu.edu/~efros/
http://www.cs.uiuc.edu/homes/dhoiem/
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Grauman et al.

The work by Grauman6 and colleagues at University of Texas at Austin covers a
broad range of topics, from “learning and recognizing visual object categories” to
“scalable methods for content-based retrieval and visual search”.

Project-related resources include:

– Datasets and examples of results for the “Reading Between The Lines:
Object Localization Using Implicit Cues from Image Tags” project [63]:
http://userweb.cs.utexas.edu/~sjhwang/tags.html

– MATLAB code, supplementary materials, and examples of results for the
“Object-Graphs for Context-Aware Category Discovery” project [71]: http://
userweb.cs.utexas.edu/∼grauman/research/projects/objectgraph/objectgraph.
html

Belongie, Rabinovich, Galleguillos, et al.

The work by Belongie, Rabinovich, Galleguillos and colleagues at the Computer
Vision Laboratory in the Computer Science and Engineering Department at U.C.
San Diego has produced significant impact on the state of the art in the topic
of “Context Based Object Categorization”. Recommended reading include [39–
41, 92, 93].

Leonardis et al.

Leonardis7 and colleagues at the Visual Cognitive Systems Laboratory at the
University of Ljubljana have been working in the field of context-aware object
detection. For demonstration videos associated with the projects reported in [87],
visit: http://vicos.fri.uni-lj.si/roli/research/context-aware-object-detection/. Three ur-
ban image datasets (Ljubljana, Graz, and Darmstadt) can be downloaded from:
http://vicos.fri.uni-lj.si/downloads/.

Datasets

Experimental research on computational approaches for contextual modeling, ob-
ject, and scene recognition, should be extensively tested using representative images.
In recent years, several image collections have been made publicly available to the
research community, which brings many advantages such as time savings (capturing,
selecting, organizing, and annotating images is a very time consuming process) and
the ability to compare (i.e., benchmark) a new algorithm or framework against
previous approaches in the literature. In addition to proprietary image and video
collections, several recent experiments in this field have used one of the following
publicly available datasets:

– PASCAL Visual Object Classes (VOC) dataset [31] http://pascallin.ecs.soton.
ac.uk/challenges/VOC/

6http://userweb.cs.utexas.edu/~grauman/
7http://vicos.fri.uni-lj.si/alesl/
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http://userweb.cs.utexas.edu/~grauman/research/projects/objectgraph/objectgraph.html
http://vicos.fri.uni-lj.si/roli/research/context-aware-object-detection/
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The PASCAL VOC dataset consists of consumer photographs collected from
Flickr and associated ground truth annotation (including coordinates of the
rectangular areas delimiting an object of interest). The images are used in the
context of two principal challenges: object classification and object detection.
New datasets have been released each year since 2006. The images are organized
into 20 classes as follows:

– Person: person
– Animal: bird, cat, cow, dog, horse, sheep
– Vehicle: airplane, bicycle, boat, bus, car, motorbike, train
– Indoor: bottle, chair, dining table, potted plant, sofa, TV/monitor

The PASCAL VOC dataset has been used by Divvala and colleagues [27] and
Heitz and Koller [51], among others.
In spite of its great popularity and usefulness, the PASCAL dataset has been
deemed not suitable for experiments with context-based object recognition
algorithms by Choi et al. [18], because most images contain very few instances
of a single object category (more than 50% of the images contain only a single
object class) and also because objects’ bounding boxes occupy a large portion
(typically 20%) of the image.

– LabelMe dataset [96] http://labelme.csail.mit.edu/
The LabelMe dataset consists of an ever-growing collection of 180,000+ images
and associated annotations, contributed by its users in a collaborative way. The
images—and associated MATLAB code to process, query, and annotate them—
are publicly available and cover a wide range of topics and scenarios. One of
the main criticisms of the LabelMe dataset refers to the fact that the dataset is
incompletely labeled, since volunteer annotators are free to choose which objects
to annotate, and which to omit, leading to difficulties in establishing precision
and recall for detection and classification tasks [31]. Consequently, researchers
interested in using LabelMe for their experimental evaluations typically adopt
selected subsets of the database to use for training and testing, and ensure that
these subsets are completely annotated. Subsets of the LabelMe dataset have
been used by Oliva and Torralba [81], among others.

– SUN 09 dataset [18] http://web.mit.edu/~myungjin/www/HContext.html
A few months ago, a new dataset was proposed and made available to the
research community: the SUN 09 dataset, which contains 12,000 annotated
images covering a large number of scene categories (indoor and outdoors) with
more than 200 object categories and 152,000 annotated object instances. SUN
09 contains images collected from multiple sources (Google, Flickr, Altavista,
LabelMe) and does not include images of objects on white backgrounds or close-
ups, i.e., images in which there is no significant context information. It has been
annotated using LabelMe [96] by a single annotator and verified for consistency
[18].
In the SUN 09 dataset, the average object size is 5% of the image size, and
a typical image contains seven different object categories. In their evaluation,
Choi et al. demonstrate that SUN 09 contains richer contextual information
when compared to PASCAL VOC 2007, using the same 20 categories. They also
demonstrate that the contextual information learned from SUN 09 significantly
improves the accuracy of object recognition tasks, and can even be used to

http://labelme.csail.mit.edu/
http://web.mit.edu/~myungjin/www/HContext.html
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identify out-of-context (e.g., due to wrong pose, scale, or co-occurrence) scenes
[18].

– SUN dataset [123] http://groups.csail.mit.edu/vision/SUN/
The Scene UNderstanding (SUN) dataset was introduced earlier this year and
is targeted at research in scene classification, which has been customarily tested
on a fairly small (usually, 15 or less) number of semantic categories. The SUN
dataset contains 899 categories and 130,519 images. The number of images varies
across categories, but there are at least 100 images per category. Out of the
899 categories, in [123], the authors use 397 well-sampled categories to evaluate
numerous state-of-the-art algorithms for scene recognition and establish new
bounds of performance. All images, associated code, as well as training and
testing partitions are available for download at the URL indicated above.

– NUS-WIDE [21] http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
The NUS-WIDE is a publicly accessible image dataset created by the Lab for
Media Search at National University of Singapore (NUS). The dataset includes:

1. 269,648 images and the associated tags from Flickr, with a total number of
5,018 unique tags;

2. six types of low-level features extracted from these images, including 64-D
color histogram, 144-D color correlogram, 73-D edge direction histogram,
128-D wavelet texture, 225-D block-wise color moments and 500-D bag of
words based on SIFT descriptions; and

3. ground-truth for 81 concepts that can be used for evaluation.

Additionally, there are several web pages with lists of links to useful datasets for
computer vision, including:

– http://userweb.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm—main-
tained by Prof. Kristen Grauman (University of Texas at Austin)

– http://www.cs.ubc.ca/∼murphyk/Vision/objectRecognitionDatabases.html—
maintained by Prof. Kevin Murphy (University of British Columbia)

– http://www.cs.cmu.edu/~efros/courses/LBMV07/databases.htm—maintained by
Prof. Alexei Efros (Carnegie Mellon University)
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