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Abstract

In this paper, we exploit channel diversity for opportunistic spectrum access

(OSA). Our approach uses instantaneous channel quality as a second criterion

(along with the idle/busy status of the channel) in selecting channels to use for

opportunistic transmission. The difficulty of the problem comes from the fact

that it is practically infeasible for a cognitive radio (CR) to first scan all chan-

nels and then pick the best among them, due to the potentially large number of

channels open to OSA and the limited power/hardware capability of a CR. As

a result, the CR can only sense and probe channels sequentially. To avoid colli-

sions with other CRs, after sensing and probing a channel, the CR needs to make

a decision on whether to terminate the scan and use the underlying channel or

to skip it and scan the next one. The optimal use-or-skip decision strategy that

maximizes the CR’s average throughput is one of our primary concerns in this

study. This problem is further complicated by practical considerations, such as

sensing/probing overhead and sensing errors. An optimal decision strategy that

addresses all the above considerations is derived by formulating the sequential

sensing/probing process as a rate-of-return problem, which we solve using opti-

mal stopping theory. We further explore the special structure of this strategy to
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conduct a “second-round” optimization over the operational parameters, such

as the sensing and probing times. The aggregate throughput performance when

a network of CRs coexist with primary radios is evaluated under homogeneous

and heterogeneous spectrum environments, respectively. We show through sim-

ulations that significant throughput gains (e.g., about 100%) are achieved using

our joint sensing/probing scheme over the conventional one that uses sensing

alone.

Keywords: opportunistic spectrum access, channel sensing and probing,

optimal stopping.

1. Introduction

1.1. Motivation

The benefit of opportunistic spectrum access (OSA) as a means of improving

spectrum utilization is now well recognized [36]. OSA aims at opening under-

utilized portions of the licensed spectrum for secondary re-use, provided that the

transmissions of secondary radios do not cause harmful interference to primary

radio (PR) transmissions. Because a secondary radio is supplied with more

channels than what it can use for a single transmission, a critical challenge in

OSA is to select real-time the channel that the secondary radios should use. In

this paper, we focus on distributed channel selection algorithms that provide a

secondary radio with the maximum possible throughput under the constraint

that PR transmissions are not negatively affected by this selection.

Cognitive radios (CRs) have been proposed as the enabling technology for

OSA [24]. The conventional way for a CR to select channels is to scan (sense)

channels and access the ones that are deemed idle. Although this approach

guarantees a safe (secondary) access to the spectrum, it generally does not give

optimal throughput performance. This is because the CR does not account for

the relative quality of an idle channel, and hence it may transmit over an idle

channel of poor condition, hampering the CR’s throughput.
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In this paper, we study a joint sensing/probing mechanism that achieves

higher throughput than the classic binary channel selection approach. Under

this scheme, a CR not only senses the binary status (idle/occupied) of a channel,

but also probes idle channels to decide the instantaneous maximum data rates

that can be supported on these channels. Such information is then used as a

second criterion for channel selection. This mechanism is motivated by the rich

channel diversity in CR environments, where signal fluctuations over various

channels become independent once the channel bandwidth is greater than the

coherence bandwidth of the signal. For example, in an IEEE 802.22 WRAN

(the first standard for CR networks (CRNs)), each channel occupies a 6-MHz

bandwidth, while the signal’s delay spread typically ranges between 100 ns and

10 µs [26], corresponding to a coherence bandwidth ranging from 16 KHz to 1.6

MHz (coherence bandwidth = 1/(2π × delay spread) [26]). Thus, it is possible

for a CR to exploit this multi-channel diversity by opportunistically selecting a

good channel for transmission1.
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Figure 1: Various channel scan and selection paradigms.

This work focuses on the operational aspects of the above mechanism. This

is in contrast to related works that study the conceptual aspects of multi-channel

diversity from a high-level mathematical standpoint and tend to ignore its oper-

ational details. Specifically, we account for the following practical considerations

in developing our mechanism. First, the instantaneous condition of a channel

1Without channel diversity, all idle channels exhibit comparable quality.
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is unknown to a CR until it is sensed and probed by that CR. Due to the po-

tentially large number of channels and the CR’s power/hardware limitations,

it is infeasible for the CR to first scan all channels simultaneously and then

pick the best among them. A CR’s channel sensing and probing can only be

conducted sequentially. After sensing and probing a channel, the CR needs to

decide whether to terminate the scan and use the last scanned channel, or to

skip it and scan the next one. To avoid collisions with PRs and other CRs,

a CR cannot recall (use) a channel it previously skipped without sensing and

probing it again, because of the staleness of previous sensing/probing outcome

(e.g., the channel may have been occupied by other CR or PR, or its quality has

changed). To better understand the above process, we illustrate various channel

scan/selection paradigms in Figure 1, among which sub-figure (c), i.e., sequen-

tial channel scan and non-recalled channel selection, is the one we pursue in

this work. Under this paradigm, the optimal use-or-skip decision strategy that

maximizes the CR’s average throughput is one of the key issues investigated in

this paper.

The above decision making process is further complicated when the CR’s

sensing and probing overheads need to be considered in each step. Empirical

data shows that sensing a channel takes tens of ms and probing a new one takes

from 10 to 133 ms, depending on the association and capture speed between the

transmitter and receiver after each channel hopping [2]. At the same time, to

reduce collisions with newly activated PRs, a CR’s continuous transmission over

an idle channel must be limited, e.g., in the order of hundreds of ms or at most

few seconds. After that, the CR needs to sense/probe channels again 2. As such,

the accumulated overhead after sequentially sensing/probing several channels

could be comparable with or even greater than the CR’s actual transmission

time. When such overhead is accounted for, the gain that may be potentially

achieved by looking for a slightly better channel than the currently scanned one

may not be justifiable.

2Probing is required to account for the fluctuation of channel quality.
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Furthermore, we need to account for the impact of sensing errors on the

CRN throughput. Sensing errors exist in all real systems and, as shown shortly,

they significantly impact the throughput. When sensing errors are present, a

CR may, for example, falsely identify an idle channel as being occupied, thus

missing a transmission opportunity. Under this setup, the CR’s sensing time

(i.e., the amount of time the CR spends on sensing a channel) becomes a variable

to be optimized. Specifically, the sensing time determines the accuracy of the

channel sensing process. A shorter sensing time reduces the scanning time of

a channel, but also increases the probability of a false alarm. This in turn

increases the number of channels the CR needs to sense and probe, leading to

possibly longer overall channel search time, and thus a reduction in throughput.

As such, the tradeoff between sensing time and sensing accuracy needs to be

carefully evaluated.

1.2. Main Contributions and Paper Organization

We provide an integrated framework that addresses all the above practi-

cal considerations. Our main contributions are as follows. First, we derive the

throughput-optimal decision strategy for the sequential channel sensing/probing

process. It turns out that this optimal strategy has a threshold structure, which

basically indicates whether the channel is good or bad. To properly set this

threshold, we consider the tradeoff between the achievable data rate brought

by good channels and the time cost (and consequently, throughput reduction)

for searching for good channels. Second, we derive the maximum acceptable

channel probing time that guarantees a positive throughput gain for the pro-

posed method over a scheme that does not utilize probing. This knowledge is

important because the accumulated probing time may be so significant that it

cancels out gains achieved by selecting good channels. Third, we optimize the

channel sensing time. It turns out that this optimization is non-convex when

probing is used (and thus leads to a non-binary multi-rate setup) in the presence

of sensing error. However, by exploiting the special structure of the problem,

we still achieve a good solution that gives provably near-optimal performance.
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Our work is the first to incorporate the relationship between sensing time and

sensing accuracy in an operational CR environment.

The above contributions are made by performing two rounds of optimiza-

tion. In the first round, we treat the sensing and probing times as parameters,

and derive the parametrically optimal probing strategy. This is achieved by for-

mulating the sensing/probing/access process as an infinite-horizon maximum

rate-of-return problem in the optimal stopping theory framework [9], with the

number of bits that the CR is able to send in one transmission as the return, and

the overall channel search plus transmission times as the time cost. Next, we

look into the particular structure of the optimal probing strategy and perform

a second round of optimization over the operational parameters, such as the

sensing and probing times, aiming at maximizing the outcome of the first-round

optimization.

Besides the above optimization aspects, we are also interested in evaluat-

ing the aggregate throughput performance when a network of CRs coexist with

PRs, and each CR reacts according to its sensing/probing/access scheme in a

distributed way. A Markov-chain model is developed for our performance analy-

sis, whereby the contention between CRs, the sensing strategies employed (ran-

dom channel sensing and collaborative channel sensing), and probing threshold

settings at individual CRs are all accounted for. While our analytical model

is based on homogeneous spectrum environment, we extend our performance

evaluation to the heterogeneous spectrum environment using simulation. Our

results show that when the sensing/probing parameters are properly set, the

addition of probing can significantly improve the CRN’s throughput, e.g., over

100% gains are observed in our simulations.

The remainder of this paper is organized as follows. We review related works

in Section 2. Section 3 describes the system model and its maximum rate of

return formulation. Using optimal stopping theory, we solve the optimization

problem in Section 4. Section 5 studies the performance for the multi-CR case.

Simulation results are presented for single CR and multi-CR cases at the end of

the above two sections, respectively. Section 6 concludes the paper. All proofs
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of the theorems are given in the appendix.

2. Related Work

Reference [3] is probably the most relevant paper to our work. In [3], the

authors addressed the optimal channel selection problem under the implicit as-

sumption that channel sensing is always accurate. As a result, the impact of

sensing time on the optimization is ignored. This simplifies the optimization,

which as explained in the previous section, involves a non-linear and non-convex

relationship between the sensing time and throughput. In addition, the opti-

mization in [3] is formulated under a utility-function objective, which character-

izes the benefit of transmitting over a good channel and the overhead of finding

such a channel through an additive revenue-cost relationship. In contrast, our

optimization is formulated as a rate of return problem, which describes the mul-

tiplicative relationship between the number of bits sent in a single transmission

and the total time spent on preparing for and executing this transmission. Our

formulation eliminates the ambiguity of setting the per-unit values for revenue

and cost for the utility function in [3], and hence has a more meaningful physi-

cal interpretation (i.e., the average throughput achieved per transmission). The

more realistic considerations pursued in this paper make our problem much

harder than in [3]. It requires us not only to derive the optimal sensing/probing

strategy under the new objective function, but also to look into the structure

of this strategy to optimize various operational parameters.

Aside from [3], other related works on exploiting channel-quality informa-

tion in CRNs tend to study the problem from a conceptual standpoint, ignoring

various operational details. Such simplifications may largely overestimate the

benefit brought by multi-channel diversity. For example, the work in [11] sug-

gests to maximize the CRN’s spectrum efficiency by adjusting the sensing peri-

ods of various CRs according to channel conditions. However, it ignores various

practical considerations, i.e., sequential sensing/probing, overhead, and sensing

errors. It also assumes that the CR can scan all channels simultaneously. The
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authors in [37, 7, 1, 35] studied OSA for a slotted system. They assumed that

a CR can only sense, probe, and access one or a pre-selected set of channels in

one slot. If these channels are occupied or their quality is poor such that the

channels are not used by the CR, the CR is not allowed to sense/probe other

channels, even though there is still big chunk of time remaining in the underly-

ing slot. Thus, the sequential exploration of channel diversity is ignored in these

works. Similarly, the work in [19] studied the optimal sensing and transmission

times that maximize the spectrum efficiency under an interference constraint

for a single-channel system. However, their optimization has ignored the effect

of a multi-channel setup, whereby the CR may scan multiple channels before

starting a transmission. The work in [12, 29] studied the fundamental per-

formance limit on CRN throughput under both perfect and imperfect channel

sensing, but they assumed a binary use of the channel based on the channel’s

idle/busy status, and does not consider channel probing to exploit channel di-

versity. The works in [14, 32, 33] study optimal channel sensing techniques that

maximize CR throughput. However, the impact of sensing errors is ignored

in these studies and their problem formulation has a finite horizon. The work

in [16] considered the impact of sensing errors on the achievable throughput

of the system, but did not explicitly account for the overhead for probing the

channel. Sequential spectrum sensing was also studied recently in [25] with the

objective of minimizing the energy consumption. The works in [23] and [4] sug-

gest a candidate-set-based scheme, where each CR may precompute a subset of

channels of relatively good quality in a statistical sense. When a CR needs to

transmit, it only senses and picks channels from this subset. In this way, the

overhead in selecting a channel can be reduced, because now all channels in the

subset are of relatively good quality. The candidate-set-based scheme ignores

the fact that in a multi-CR operational environment, the subsets calculated by

various CRs may overlap significantly with each other, because similar chan-

nel conditions are observed by close-by CRs. As a result, this mechanism may

lead to poor performance in a multi-CR environment due to high collisions in

CRs’ channel selection. Aside from the above, spectrum sensing for detecting
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the idle/busy status of the channels has also been extensively studied in the

literature. Some most recent examples are [28, 5, 18] and the references therein.

However, exploiting the diversity of channel quality is not a problem considered

in these works.

Note that the channel selection problem in our work is different from the

optimal sensing sequence problem formulated under the multi-armed bandit

framework, e.g., in [8, 17, 15, 21, 22]. The focus there is to exploit the long-

term statistical information of channels by trying to use the best channels, which

are fixed from a long-term statistical sense, throughout the entire transmission

of the CR. In contrast, our channel selection problem focuses on exploiting the

instantaneous channel condition. Consequently, in our setup the best channel

to use may change from round to round. The optimal sensing sequence problem

cannot be applied to homogeneous channel environment, because all channels

have the same or very close quality from a long-term statistical standpoint, and

thus become difficult to differentiate based only on their long-term statistics. In

this scenario, to select the best channel, our work resorts to the online real-time

measurement of the instantaneous channel condition.

For wireless systems with dedicated channels, there have been several works

that consider joint optimization of the reward obtained from channel selection

and the cost incurred by channel probing (e.g., [27, 39, 38, 13, 10, 42]). The

differences between our problem and these previous works include the follow-

ing: First, the problem of combined channel sensing and probing has not been

considered in all these works. The inclusion of sensing in the channel selection

problem is non-trivial, because the sensing time can affect the throughput by

nonlinearly changing the channel sensing accuracy. Second, previous work on

channel probing involves only a relatively small channel pool, e.g., a pool of 3

channels for 802.11 and 8 channels for 802.11a. For CRNs, this pool can be

much larger, e.g., over 100 channels in a 802.22 WRAN. As a result, algorithms

designed for small channel pools, e.g., the finite-horizon stopping method in [27]

and the tree-based searching algorithm in [10, 13], become practically infeasi-

ble in CRNs because of their prohibitive computational complexity when the
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number of channels is large. In our work, an infinite-horizon formulation is em-

ployed, which is particularly suitable for modeling large channel pools. Third,

the ultimate concern of all previous works is the optimal probing strategy that

maximizes the throughput. In this work, we are not only interested in the

optimal probing strategy, but also in the particular structure of this strategy,

with the objective of performing a second-round optimization over operational

parameters such as the sensing and probing times. Fourth, we also study the

aggregate throughput for a network of nodes, in which collisions between nodes

during sensing and probing are possible. Nearly all related work has ignored

this fact and only considered the single-link case in their analysis.

Our work in this paper involves both channel sensing and access. Methodology-

wise, we have noticed that the infinite-horizon optimal stopping framework has

been used to study the distributed link scheduling problem for wireless ad hoc

networks under various environments, e.g., the uni-cast scenario in [39, 42, 40],

the multi-cast scenario in [38], and the noisy channel scenario in [41, 30]. All

studies in the above works are based on the assumption that the links in the

system are contending for one common channel (a single-channel system), and

there is no channel sensing in the radio’s operation (and, of course, no consid-

eration for the sensing errors). In contrast, our work is based on a different

application context and accounts for many unique and fundamental properties

possessed by cognitive radio networks. More specifically, our work considered

a multi-PR, multi-CR, multi-channel system where CR’s channel sensing can

be inaccurate (resulting in false alarm and mis-detection probabilities). The

system’s operation contains both the sensing and the probing components. Ac-

cordingly, we need to account for the non-convex impact of the sensing errors on

the system performance. In addition, instead of assuming one common channel,

in our work CRs operate over a pool of channels. Furthermore, to cope with

the multi-PR multi-CR setting, we need to account for the collisions between a

CR and a PR, as well as collisions between CRs. Note that in previous works,

there is no difference between the nodes.

Consequently, the new context considered in our work leads to a different
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problem setup and formulation from those in previous works, calling for fun-

damentally different solution approach. In particular, different from all the

previous works, whose ultimate goals are to obtain the optimal stopping rule

and thus should be considered as example applications of the optimal stopping

theory, our analysis uses this theory only as a starting point, but goes far beyond

it by looking into the special mathematical structure of the optimal stopping

rule and conducting a second-round optimization over various operational pa-

rameters, via more advanced processing. As a result, we are able to maximize

our objective function w.r.t. the probing time, the sensing time, and the stop-

ping time, simultaneously. In contrast, the optimization in all previous works

is w.r.t. the stopping time only.

Finally, we note that the impact of sensing accuracy on throughput has been

studied in [20, 6] under binary use of channels. It was shown that under this

binary setup, throughput is a concave function of sensing time. In this paper,

we study the problem under a more complicated multi-rate environment. We

show that the problem loses its concavity in this case. One key contribution of

our paper is in studying the special structure of the new problem and suggesting

an approximate solution that provides provably near-optimal performance.

3. Model Description and Problem Formulation

3.1. System Model

We consider a set of C licensed channels. The status of a channel is modeled

as a continuous-time random process that alternates between two states: idle

and busy. The time scale for the PR activity over the channel is at the burst

level, i.e., the average busy period corresponds to a burst of packets, typically

ranging from tens to hundreds of ms, or at most few seconds. Denote the average

idle and busy durations by α and β, respectively. When the channel is observed

at an arbitrary time, its idle and busy probabilities are given by PI = α
α+β and

PB = β
α+β , respectively. Here we focus on the homogeneous channel utilization

scenario, i.e., we assume that the states of different channels are driven by
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homogeneous and independent random processes. This may correspond to the

scenario that all channels belong to the same licensed network and some load

balancing mechanism is in the place to statistically distribute PR traffic over

various channels. It is well known that load balancing increases the system

capacity and leads to better QoS for individual users [31]. Thus, it is often

used in practical systems, e.g., IS-95 and WiMAX. The heterogeneous channel

utilization scenario is studied in Section 5.1.3.

Along with the PR users, the spectrum is opportunistically available to a set

of CRs. To simplify the exposure, we ignore for the time being the contention

between CRs. This allows us to focus on the channel sensing/probing/access

process for a pair of CRs, a transmitter and a receiver, with the goal of optimiz-

ing this process. We will account for the contention issue in Section 5 when we

study the multi-CR scenario. We also assume that some synchronization mech-

anism is in place so that an active pair of CR transmitter and receiver follow the

same sequence in sensing and probing channels (i.e., the CR transmitter and

receiver are always sensing and probing the same channel at the same time).

Such a synchronization can be achieved by enforcing a common pseudo random

number generator throughout the network (i.e., at every CR of the CRN). Be-

fore a pair of CR transmitter and receiver start sequentially sensing and probing

the spectrum, they first negotiate a shared seed. This negotiation is done on

some initial control channel, e.g., a channel in the ISM band, which is used only

at the very beginning of the communication to assist CRs to establish connec-

tion. The shared seed is then used to generate the same sequence of random

numbers at the CR transmitter and receiver, whereby a random number denotes

the channel a CR should sense and probe in its next step.

When a CR wants to transmit, it starts scanning the channels sequentially,

as shown in Figure 2. Specifically, it randomly picks a channel, say c1, 1 ≤

c1 ≤ C, and samples it for τs time. Then the CR decides whether channel

c1 is idle or busy. If it is busy, the CR randomly selects the next channel c2,

1 ≤ c2 ≤ C, to sample, and so on. Suppose that in the nth step, channel

cn is determined to be idle. Then the CR transmitter begins to probe that
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Figure 2: Sequential channel sensing and probing before transmission.

channel by sending a channel probing packet (CPP) over channel cn using a

predefined transmission power. The CR receiver measures the strength of the

CPP signal and decides the maximum achievable data rate (MADR), rn, that

can be supported by the current channel. The value of rn is selected from a set

of discrete rates: {Rk, k = 0, 1, . . . ,K}, where Rk increases with k and R0
def
= 0.

This MADR value is then embedded into a probing feedback packet (PFP),

which is sent back from the receiver to the transmitter over channel cn. The

time spent on one CPP/PFP exchange plus the preceding time for association

and capture between the transmitter and receiver is called the channel probing

time τp. After receiving the PFP, the transmitter decides whether or not to

use this channel. This is done by comparing rn with some channel quality

threshold, r∗. If rn ≥ r∗, then the transmitter terminates the channel search

and transmits at rate rn over channel cn for τt duration of time (τt should not

be too long to reduce the likelihood of collisions with newly activated PRs).

If rn < r∗, the CR skips this channel and continues to sense the next one.

Because the CR receiver also has knowledge of r∗ (e.g., this information can

be embedded into the CPP), there is no need for the transmitter to notify the

receiver about its decision. Note that if the channel is busy during the sensing

phase, no probing packets should be exchanged between the CR transmitter and

receiver, to avoid interfering with PRs. However, the receiver still has to wait

for τp time to realize that the channel is busy3. Therefore, whether or not the

3Depending on the distance between the transmitter and the receiver, they may sense

different status for a channel. The fixed τs + τp scanning time guarantees perfect tx-rx
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channel is idle, a CR needs to stay tuned on a channel for τs + τp time

before coordinately switching to the next channel. This holding time

coordination can be achieved, e.g., through the exchange of CPP

and PFP between the CR sender and CR receiver, and under the

assistance of a synchronized timing at the sender and the receiver.

Note that here only relative synchronization (i.e., the synchronization

of duration) is needed. The absolute synchronization of sender and

receiver clock is not required. Furthermore, we assume that the number of

channels (C) is sufficiently large, so that fading processes over a given channel

at two different probing instants become independent.

Remark: If a CR can transmit over J idle channels at a time, 1 ≤ J ≪ C, then

J parallel channel scanning/access instances can be initiated and maintained

by the CR. Each instance will independently search and use one idle channel

according to the above sequential process. The optimization over each instance

are identical and independent. Therefore, we only need to focus on one such

instance in our treatment.

Channel sensing is modeled as a binary hypothesis test, where H0 indicates

an idle channel and H1 indicates an occupied channel. Let x(t) be the sample

collected by the CR. Then,

x(t) =

 n(t), H0 (idle)

s(t) + n(t), H1 (occupied)
(1)

where n(t) is the AWGN and s(t) is the received PR’s signal at the CR. For this

sensing process, the probabilities of false alarm Pfa and miss detection Pmd are

defined as follows:

Pfa(τs) = Pr{CR decides the channel is busy|H0} (2)

Pmd(τs) = Pr{CR decides the channel is idle|H1}. (3)

Note that these two probabilities, which represent sensing accuracy, are func-

tions of the sensing time τs.

synchronization under any case.
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The unconditional probabilities that a CR determines that the channel is

idle (QI) or busy (QB) are given by:

QI = PBPmd + PI(1− Pfa) ≈ PI(1− Pfa) (4)

QB = PB(1− Pmd) + PIPfa ≈ PB + PIPfa (5)

The approximation in the above equations is due to the practical requirement

that Pmd ≪ 1 (e.g., 1% is a typical value), which ensures negligible interference

from CRs.

3.2. Problem Formulation

The throughput-optimal sequential channel sensing/probing/access process

can be formulated as an optimal stopping problem. We first briefly describe the

definition of an optimal stopping problem and then present our formulation.

An optimal stopping problem is defined by the following two components [9]:

1. A sequence of random variables (rvs) X1, X2, . . . , whose joint distribution

is assumed to be known.

2. A sequence of real-valued reward functions, y0, y1(x1), y2(x1, x2), . . . ,

y∞(x1, x2, . . .).

The rvs X1, X2, . . ., can be observed sequentially (one variable at a time) for

as long as needed. For each observation instance n = 1, 2, . . . , after observing

X1 = x1, X2 = x2, . . . , Xn = xn, one may stop and receive the known reward

yn(x1, . . . , xn), or one may continue to observe Xn+1. If no observations are

made, the received reward is the constant y0. If the observer never stops, the

received reward is y∞(x1, x2, . . .). The goal is to choose a rule to stop such that

the expected reward at the stopping time N , E{yN}, is maximized. According

to this framework, the optimal-stopping formulation of our problem is as follows.

First, we define the sequence of observations. For the nth sensing and prob-

ing step, n ≥ 1, the MADR value of the channel, rn ∈ {0, R1, . . . , RK}, can
be obtained. Let the distribution of rn be pk = Pr{rn = Rk}, k = 0, 1, . . . ,K

(we assume the fluctuations on different channels are i.i.d.). This distribution
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depends on fading and shadowing effects on the channel. We define Xn as the

outcome of the nth sensing and probing step: Xn = 0 if the channel is busy

and Xn = rn if the channel is idle. The distribution of Xn can be calculated as

follows.

q0
def
= Pr{Xn = 0} = QB +QIp0 (6)

qk
def
= Pr{Xn = Rk} = QIpk, for 1 ≤ k ≤ K. (7)

Next, we define the sequence of rewards. The reward of stopping after ob-

serving Xn is defined as the throughput achieved by transmitting over channel

cn and with the entire time span (i.e., from the beginning of observing X1 until

the end of transmission over channel cn) taken into account. Note that the

use of channel must be non-recall, i.e., once the CR skips a channel that it

has sensed and probed, the CR cannot come back and pick up this channel for

transmission without sensing and probing it again. Mathematically, the reward

for transmitting over channel cn is given by

yn(X1, . . . , Xn)
def
= yn(Xn) =

Beff (n)

Ttot(n)
=

Xnτt(1− Ploss)

n(τs + τp) + τt
(8)

where Beff (n) is the number of collision-free data bits that can be transmitted

over channel cn, Ttot(n) is the total time cost including channel search and

transmission times, and Ploss is the probability that channel cn is re-occupied

by some returning PR during the CR’s transmission, which leads to a collision

that voids the CR’s transmission, because channel overhearing by the CR is

not possible during its transmission. Defining the moment of sensing as the

reference point, denote the forward recurrence time of the channel’s idle period

by the random variable τ̃0 and its pdf by f̃0. We can calculate Ploss as follows

Ploss = Pr{τ̃0 < τt} =

∫ τt

0

f̃0(t)dt. (9)

Following standard renewal theory analysis:

f̃0(t) =
1−

∫ t

0
f0(τ)dτ∫∞

0
τf0(τ)dτ

(10)

where f0 is the pdf of the channel’s idle period. For example, if f0 is an

exponential distribution with mean α, then f̃0 = f0 and Ploss = 1− e−
τt
α .
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Define Ψ = {N : N ≥ 1, E[Ttot(N)] < ∞} as the set of all possible stopping

rules. Our goal is to find an optimal stopping rule N∗ ∈ Ψ, an optimal probing

time τ∗p ≥ 0, and an optimal sensing time τ∗s ≥ 0 that maximize the following

rate-of-return objective function:

maximizeN∈Ψ,τp≥0,τs≥0
E{Beff (N)}
E{Ttot(N)} . (11)

Note that given the amount of traffic to be transmitted, the objective of maxi-

mizing the average throughput is equivalent to minimizing the total time spent

on channel scanning and finishing transmitting all the given traffic. Clearly, for

given τp and τs, because the CR decides after each observation whether or not

to stop (according to some rule), the final stopping time N is a random vari-

able. Therefore, the number of bits that can be effectively transmitted at the

stopping point, Beff (N), together with the time cost Ttot(N), are both random

variables related to N . This is in contrast to the Beff (n) and Ttot(n) in (8),

where n is a constant. In addition, note that problem (11) is more than a pure

optimal stopping problem, because the optimization is w.r.t. the probing time

and sensing time, in addition to the stopping time.

4. Optimal Stopping Rule and Optimization Considerations

In this section, we solve the optimization in (11) via two steps. We first

treat τp and τs as parameters and solve the resulting parametric maximum-

rate-of-return sub-problem using optimal stopping theory. We then examine

the structure of our parametric solution to address the optimization over τp and

τs.

4.1. Parametric Throughput-Optimal Stopping Rule

Treating τp and τs in (11) as parameters makes the resulting sub-problem

degrade to a classic optimal stopping problem. To address this sub-problem, we

first consider its transformed version, whose reward sequence is defined by

wn = Beff (n)− λTtot(n)

= Xnτt(1− Ploss)− λ[n(τs + τp) + τt]. (12)
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Following [9], if the parameter λ is chosen such that the optimal expected

reward of the transformed problem, i.e., V ∗ def
= supN∈Ψ E{Beff (N)−λTtot(N)},

is zero, then the optimal stopping ruleN∗ of this transformed problem is also the

optimal stopping rule of the original problem (i.e., the parametric sub-problem

of (11) under given τp and τs). In addition, the value of λ that gives V ∗ = 0,

denoted as λ∗, is the maximum parametric throughput achieved by the optimal

stopping rule N∗ under the given τp and τs. Applying this philosophy, we

present the following results regarding the existence and solution of the optimal

stopping rule for problem (11).

Theorem 1: Given τs and τp, a parametric optimal stopping point for (11)

exists. The maximum parametric throughput λ∗ that is achieved by this optimal

stopping rule is the solution of: E{max(Xnτt(1−Ploss)−λ∗τt, 0)} = λ∗(τs+τp).

The parametric optimal stopping rule is given by N∗ = min{n ≥ 1 : Xn ≥
λ∗

1−Ploss
}.

The proof of this theorem follows the framework of [9] and is similar to that

in [39]. The proof is presented in Appendix A. Regarding the calculation of

the parametric optimal throughput and the parametric optimal stopping rule

of (11), we have the following theorem:

Theorem 2: Given τs and τp, λ
∗ is unique.

The proof follows [9] and is given in Appendix B. For the particular discrete-

rate CRs considered in our work, a fast numerical algorithm can be developed

to calculate the exact λ∗ in at most O(K) time, where K is the number of rates

supported by the CR 4. Such an algorithm is based on the following observations.

First, for the multi-rate system Xn ∈ {R0, R1, . . . , RK}, where R0 = 0 < R1 <

. . . < RK , define k∗ to be the minimum integer that satisfies Rk∗ ≥ λ∗

1−Ploss
.

Obviously, 1 ≤ k∗ ≤ K. Using this notation, the equation E{max(Xnτt(1 −

4A similar solution framework was developed independently in [40] under a different ap-

plication context.
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Ploss)− λ∗τt, 0)} = λ∗(τs + τp) can be written as

K∑
k=k∗

(Rkτt(1− Ploss)− λ∗τt)qk = λ∗(τs + τp),

subject to Rk∗−1 <
λ∗

1− Ploss
≤ Rk∗ . (13)

This gives a candidate solution for λ∗

λ∗ =
τt(1− Ploss)

∑K
k=k∗ Rkqk

τs + τp + τt
∑K

k=k∗ qk
,

subject to Rk∗−1 <
λ∗

1− Ploss
≤ Rk∗ (14)

The range of values for k∗ is from 1 to K. Therefore, one can first enumerate

all candidates of λ∗ according to (14) by setting k∗ = 1, . . . ,K, respectively,

and then pick the one that satisfies the condition Rk∗−1 < λ∗

1−Ploss
≤ Rk∗ .

Theorem 2 guarantees that there is only one solution satisfying this condition.

The particular Rk∗ under which the right λ∗ is obtained is the threshold rule

that determines whether an idle channel is good enough to be used.

4.2. Optimization Considerations

4.2.1. Impact of Probing Overhead

In this section, we evaluate λ∗ as a function of the parameters τs and τp.

An examination of (14) reveals that λ∗ can be written as a segmented function.

Specifically, for the jth segment, 1 ≤ j ≤ K, the value of λ∗ satisfies Rj−1(1−
Ploss) < λ∗ ≤ Rj(1− Ploss). To satisfy this condition, it must be the case that

Rj−1 <
τt
∑K

k=j Rkqk

τs + τp + τt
∑K

k=j qk
≤ Rj , for 1 ≤ j ≤ K. (15)

After some mathematical manipulations, (15) leads to the following condition:∑K
k=j Rkqk −Rj

∑K
k=j qk

Rj
≤ τs + τp

τt
<

∑K
k=j Rkqk −Rj−1

∑K
k=j qk

Rj−1
, for 1 ≤ j ≤ K.

(16)

The ratio η
def
=

τs+τp
τt

represents the efficiency of the channel sensing/probing/access

scheme. All the time factors in (16) are separated from the upper and lower
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bounds of the segment, allowing a neat partition of segments based on η. Fol-

lowing this thread, λ∗ can be explicitly written in the following segmented form:

λ∗ =



λ∗
1(η) for ϕ1 ≤ η < Φ1

...

λ∗
j (η) for ϕj ≤ η < Φj

...

λ∗
K(η) for ϕK ≤ η < ΦK

(17)

where λ∗
j (η)

def
=

(1−Ploss)
∑K

k=j Rkqk

η+
∑K

k=j qk
, ϕj

def
=

∑K
k=j Rkqk−Rj

∑K
k=j qk

Rj
, and Φj

def
=∑K

k=j Rkqk−Rj−1
∑K

k=j qk
Rj−1

, j = 1, . . . ,K. Because we are interested in determining

whether the inclusion of probing leads to better performance, we can assume τs

and τt to be fixed (we later discuss the case when τs is an optimization variable),

and analyze the structure of λ∗ as a function of τp. In this sense, η becomes a

one-to-one image of τp.

Theorem 3: Given τs and τt, the function λ∗ defined in (17) is a continuous

and strictly mono-decreasing segmented function over the entire domain of η.

The proof is given in Appendix C. When probing is not used, the average

throughput, denoted by λno−probing, can be derived as follows. First, the number

of channels that are sensed until an idle channel is found follows a geometric

distribution with parameter QI . So the average time cost for finding an idle

channel is given by Ts
def
= τs/QI . Once an idle channel is found, the average data

rate supported by that channel is R̄ =
∑K

k=1 Rkpk. So λno−probing is calculated

as

λno−probing =
(1− Ploss)τt

∑K
k=1 Rkpk

Ts + τt
=

(1− Ploss)
∑K

k=1 Rkqk

η′ +QI
(18)

where η′
def
= τs

τt
. Given τs and τt, λno−probing is a constant. The equation

λ∗(η) = λno−probing must have a unique solution. This is because when τt = 0,

the sensing/probing/access scheme is at least as good as the sensing/access

scheme; whereas when τt → ∞, λ∗(∞) = 0 < λno−probing. The property

presented in Theorem 3 guarantees the existence of a unique positive intersection

between λ∗(η) and λno−probing. Therefore, the maximum acceptable τp that

guarantees a throughput gain for sensing/probing/access scheme is given by

τmax
p = τtλ

∗−1
(λno−probing)− τs (19)
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where λ∗−1(·) denotes the inverse function of λ∗(η). The significance of (19) is

that it dictates when probing should be used for a given set of sensing/probing/access

parameters.

4.2.2. Impact of Sensing Time

In this section, we are interested in the impact of τs on the optimal through-

put. It is well known that for a given sensing/access CR system, throughput

is a concave function of τs [20]. So there exists an optimal sensing time that

maximizes the throughput. However, our finding in this section reveals that,

in general, the concavity of the throughput is not preserved when probing is

included, largely due to the more complicated structure of the multi-rate sys-

tem. The encouraging aspect of our finding is that when τs is the variable,

the throughput maintains its segmented structure. Treating a segment as our

evaluation unit, the trend in throughput is concave over the segments of τs.

Based on this fact, we can derive a closed range To
s that contains the optimal

sensing time τos . The importance of this range is that any τs ∈ To
s leads to a

throughput greater than what can be achieved under any τs /∈ To
s. The range

To
s is also “provably efficient”, i.e., any value inside this range can achieve at

least a provable fraction of the maximum throughput achieved with τos . As a

result, achieving provably near-optimal performance is still guaranteed.

Our analysis involves evaluating the partition points of each segment defined

in (17). In total, there are K + 1 distinct partition points: ϕ0
def
= Φ1 = ∞ >

ϕ1 > ϕ2 > . . . > ϕK−1 > ϕK = 0, where the new notation ϕ0 is defined for

presentation convenience. For 1 ≤ j ≤ K − 1, ϕj can be written as

ϕj = (1− Pfa(τs))Cj (20)

where Cj
def
=

PI

∑K
k=j(Rk−Rj)pk

Rj
is a channel-dependent quantity that does not

depend on τs.

We consider an energy detector for channel sensing, for which the false alarm

probability is approximated by [20]

Pfa(τs) = Q

((
ϵ

σ2
u

− 1

)√
τsfs

)
(21)
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Figure 3: Exponential curve fitting of the false alarm rate.

where ϵ
σ2
u

is the decision threshold for sensing, fs is the channel bandwidth,

and Q(.) is the Q-function. Given a target minimum sensing time τmin
s and a

desired miss detection probability P̄md, the decision threshold should be chosen

such that for any τs ≥ τmin
s , we have Pmd(τs) ≤ P̄md, i.e., [20]

ϵ

σ2
u

= Q−1(1− P̄md)
√

2γ + 1τmin
s fs + γ + 1 (22)

where γ is the received signal-to-noise ratio of the PR signal as measured at the

CR. The relationship between Pfa and τs in (21) is not in closed-form and thus

is hard to manipulate. Given the parameters γ, τmin
s , Pmd, and fs, we suggest

an exponential curve fitting for (21), yielding Pfa(τs) ≈ e−bτs . Mathematically,

this fitting is inspired by the well-known approximation [34] erfc(x) ≤ e−x2

.

Numerically, we found this exponential fitting to achieve good accuracy. Fig-

ure 3 shows an example when γ = 0.01, τmin
s = 0.1 ms, Pmd = 1%, and fs = 1

MHz. The average fitting error in this case is less than 8%.

Applying the exponential fitting of Pfa(τs) to (20) and substituting (20) to

(17), the domain of the jth segment defined in (17) now becomes:

(1− e−bτs)Cjτt < τs + τp ≤ (1− e−bτs)Cj−1τt. (23)
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The above partition is not in explicit form of τs because τs appears on both

sides of each inequality. To get the explicit partitions, we need to solve the

following set of equations of τs:

τs = (1− e−bτs)Cjτt − τp, 1 ≤ j ≤ K. (24)

For each equation, if a non-negative solution exists, then it gives a partition

point over τs. The difficulty here is that such a solution does not always exist.

Theorem 4: The following statements specify the existential condition and

structure of the solutions to (24):

1. Existential condition: An equation in (24) has solutions if and only if

Cjτt − 1
b − 1

b ln bCjτt ≥ 0;

2. Number of solutions: Each equation in (24) can have at most two solutions.

At most one equation can have exactly one solution;

3. Sign of solutions: If an equation has two solutions, then both solutions are

positive (or negative) if 1
b ln bCjτt is positive (or negative). In other words, it is

impossible to have one positive solution and one negative solution for the same

equation;

4. Structure of solutions: If the jth equation has two positive solutions, denoted

as τ
(j,high)
s and τ

(j,low)
s , where τ

(j,high)
s ≥ τ

(j,low)
s > 0, then the (j − 1)th equa-

tion must have two positive solutions, which satisfy the condition τ
(j−1,high)
s >

τ
(j,high)
s ≥ τ

(j,low)
s > τ

(j−1,low)
s > 0.

To emphasize the structure of the solutions to (24), we present the proof in

the body of the paper.

Proof: 1. We first prove the existential condition. Define

hj(τs) =
(
1− e−bτs

)
Cjτt − τp − τs, 1 ≤ j ≤ K. (25)

The equation set hj(τs) = 0, 1 ≤ j ≤ K, is equivalent to (24). The function hj

is concave since its second-order derivative is:

d2hj

dτ2
s

= −b2Cjτte
−bτs < 0. (26)

Because of this concavity, it is clear that hj(τs) = 0 has solutions if and only

if the function’s maximum value is not smaller than 0. The maximum value is
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calculated as follows:
dhj

dτs
= e−bτsbCjτt − 1 = 0. (27)

From (27) we can get τos = 1
b ln bCjτt. Accordingly, the maximum value of

hj(τs) is given by

hmax
j

def
= hj(τ

o
s ) = Cjτt −

1

b
− 1

b
ln bCjτt (28)

Then statement 1 follows.

2. The first half of statement 2 is clear due to the concavity of hj(τs). We

prove the second half after proving statement 4.

3. The proof is by contradiction. We first consider the case when τos =

1
b ln bCjτt > 0. From the concavity of hj , it is clear that at least one solution

must be positive. Now suppose the second solution is negative. Then hj(0) ≥ 0

must hold. However, from (25), when τs = 0, hj(0) = −τp < 0. A similar

contradiction can be established when τos = 1
b ln bCjτt < 0. So statement 3

holds.

4. From the definition of Cj in (20), it is clear that Cj < Cj−1. Now consider

the solution τ
(j,high)
s of the jth equation. From (24), we have

τ (j,high)
s = (1− ebτ

(j,high)
s )Cjτt − τp < (1− ebτ

(j,high)
s )Cj−1τt − τp. (29)

As τs → ∞, (1 − e−bτs)Cj−1τt − τp → Cj−1τt − τp < ∞. So the function

(1− e−bτs)Cj−1τt − τp must intersect with the function τs between τ
(j,high)
s and

∞ (the two boundaries not included). Applying a similar logic to τ
(j,low)
s , it is

clear that the function (1−e−bτs)Cj−1τt−τp also intersects with the function τs

between 0 and τ
(j,low)
s (the two boundaries not included). Note that the domains

(τ
(j,up)
s , ∞) and (0, τ

(j,low)
s ) do not overlap. Accounting for statements 2 and 3,

it can be concluded that there are only two solutions to the (j − 1)th equation,

each of which is positive. One solution is located in (τ
(j,high)
s , ∞) and the other

in (0, τ
(j,low)
s ). So statement 4 follows.

Based on statement 4, the second half of statement 2 is straightforward:

Counting down from j = K to j = 1 in (24), the first equation that has solutions,

say the j∗th one, is the only one that can have exactly one solution. For all

j < j∗, each equation must have two solutions. �
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Figure 4: Structure of the solutions to (24) and the partition points over τs.

The structure of the solutions to (24) and the resulting partition points over

τs are illustrated in Figure 4. The optimization of τs is based on examining

the structure of this segmentation. Specifically, counting down from j = K to

1 in (24), let the j∗th equation be the first one that has positive solution(s).

The segmented function λ∗(τs) is described as follows: 1. The total number of

segments is 2j∗+1. 2. The domains of these segments are given from left to right

by [0, τ
(1,low)
s ), [τ

(1,low)
s , τ

(2,low)
s ), . . ., [τ

(j∗,low)
s , τ

(j∗,high)
s ), [τ

(j∗,high)
s , τ

(j∗−1,high)
s ),

. . ., [τ
(1,high)
s ,∞). 3. Recalling the condition (15) required for λ∗, for the jth

left-most and the jth right-most segments, where 1 ≤ j ≤ j∗, the corresponding

λ∗ must satisfy (1− Ploss)Rj−1 < λ∗ ≤ (1− Ploss)Rj . In addition, the specific

value of λ∗ in these two segments is given by

λ∗ =
(1− e−bτs)τtPI(1− Ploss)

∑K
k=j Rkpk

τs + τp + (1− e−bτs)τtPI

∑K
k=j pk

. (30)

Three properties regarding this segmentation can be observed: First, inside

each segment, the relationship between λ∗ and τs, i.e., (30), is no longer concave

or monotonic. So λ∗ is in general neither concave nor monotonic for the entire

domain τs ≥ 0. Second, the trend of λ∗ is concave with τs if we treat segment

as our observation unit: Starting from the left-most segment, [0, τ
(1,low)
s ), any

τs in the next segment gives greater λ∗ than any τs in the previous segment.

This trend is valid until reaching the segment in the middle, [τ
(j∗,low)
s , τ

(j∗,high)
s ).

25



Starting from this segment and until the last one, any τs in the next segment

gives smaller λ∗ than any τs in the previous segment. Third, the segment

[τ
(j∗,low)
s , τ

(j∗,high)
s ) gives λ∗s that are greater than any other segments. In other

words, we can define To
s

def
= {τs : τ

(j∗,low)
s ≤ τs ≤ τ

(j∗,high)
s )}. To

s is a closed

range that contains the optimal τos . In addition, any τs ∈ To
s achieves greater

throughput than any τs /∈ To
s, and its throughput is bounded by (1−Ploss)Rj∗ ≤

λ∗ ≤ (1− Ploss)Rj∗+1. Therefore, for the sensing/probing/access scheme, even

though we cannot find τos explicitly, we can still decide a good range for τs that

provably gives near-optimal performance.

Theorem 5: The closed range To
s is

Rj∗

Rj∗+1
-optimal, i.e., any τs ∈ To

s can

achieve at least
Rj∗

Rj∗+1
fraction of the maximum throughput, where j∗ denotes

the id of the first equation that has positive solution(s) when counting down

from the Kth to the first equation in (24).

Proof: The proof is straightforward based on our preceding discussions. �

4.3. Performance Evaluation

In this section, we use simulations to evaluate the performance of the pro-

posed sequential channel sensing/probing scheme. Before each run, we first

calculate the optimal probing threshold and associated parameters according to

our analytical model. These parameters are then used to drive the simulation.

Our simulations were performed using program written in C. The simulation

results presented below are based on the average of ten independent runs, each

lasting for 500 seconds of simulation time.

4.3.1. Simulations for a Single CR link

We first study the performance of a single CR link as a function of vari-

ous operational parameters. This scenario is meant to verify the accuracy of

our analytical model and illustrate the significance of our optimization. We

are interested in the following performance metrics: (1) the average through-

put, defined as the average number of bits transmitted by the CR link in each

second; (2) the average channel access delay, defined as the average time the
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CR spends until it finds a good channel and starts transmitting over it; and

(3) the average number of sensed/probed channels before a transmission takes

place. Note that although the average throughput is the primary objective of

our optimization, the delay-related metrics (2) and (3) carry some significance

due to the sequential natural of the scheme.

We simulate a CR link that supports five rates: 0, 1, 2, 3, and 4 Mbps. We

consider the rate distribution, (p0, p1, p2, p3, p4), under two channel conditions:

a good channel condition with rate distribution (0.1, 0.1, 0.2, 0.2, 0.4) and a poor

channel condition with rate distribution (0.4, 0.2, 0.2, 0.1, 0.1). We assume that

the rate distributions over various channels are i.i.d. and that the fluctuation

over a channel is quasi-static, i.e., the maximum rate supported by the channel

remains unchanged during the CR’s transmission time. We set τt = 500 ms,

and the average idle and busy period of each channel α = β = 500 ms.
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Figure 5: Throughput vs. probing time.

In Figures 5 to 8, we study the performance as a function of the channel

probing time. The channel sensing time is fixed at 10 ms. We take Pfa = 0.1.

To verify the accuracy of our analysis, the throughput calculated according to

the analytical model and the one obtained from the simulations are compared in
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Figure 5. The throughput in the absence of probing is also plotted. We observe

that the simulated throughput matches well the one obtained analytically. Fur-

thermore, it is clear that as long as τp is kept sufficiently small, e.g., τp < 45 ms

under a good channel condition or τp < 100 ms under a poor channel condition,

the incorporation of probing leads to a throughput gain. Recalling that the

per-channel probing time in current 802.11 WLAN systems ranges from 10 to

133 ms [2], the above probing time requirement is non-trivial, because there is

still a reasonable chance under the current technology that the use of probing

could actually undermine the throughput. In addition, the benefit of probing is

more significantly observed under poor channel conditions, e.g., the throughput

gain reaches about 120% when τp = 10 ms. At the same time, the maximum

acceptable channel probing time becomes 100 ms. These results favor the use of

probing when the channel condition is bad, which is in line with our intuition.

Figure 6 shows that significant channel access delay is caused by the sequen-

tial channel sensing and probing. Such delay is expected, because as shown in

Figure 7, the CR needs to sense and probe more channels to find an idle one

that also meets the probing threshold. (Note that this delay has been accounted

for in calculating the throughput in Figure 5.) The long channel access delay

also suggests that the proposed scheme is most suitable for non-realtime ap-

plications, which can tolerate certain delay in exchange of higher throughput.

In addition, we also observe from Figure 7 that the larger the τp, the smaller

the number of channels that are scanned before a transmission. This is because

as τp increases, so does the cost of scanning each channel. The increased cost

of scanning a channel will eventually cancel out the benefit of finding a bet-

ter channel via scanning more channels, and thus leading to smaller number

of channels scanned before a transmission. The reduced number of scanned

channels also leads to a smaller probing threshold. For example, as shown in

Figure 7, under poor channel conditions, the rate threshold becomes 4, 3, and 2,

for τp ≤ 20 ms, 20 ms < τp ≤ 140 ms, and 140 ms < τp ≤ 200 ms, respectively.

It is these switches in the rate threshold that incur the non-smooth change of

delay observed in Figure 6.
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Figure 8: Throughput comparison between the optimal stopping strategy and other stopping

schemes.

Figure 8 illustrates the significance of the optimal stopping strat-

egy derived in our study. In particular, we compare the simulated

throughput of the optimal stopping scheme with other two stop-

ping schemes, fixed-threshold stopping and scan-all stopping. In

the fixed-threshold stopping, a CR keeps sensing and probing chan-

nels sequentially until it finds an idle channel that reaches the pre-

set rate threshold r∗. In scan-all stopping, the CR stops until it

senses/probes all available channels, and it picks the one of the high-

est rate for transmission. Two observations can be made. First, it

can be observed that the throughput of the optimal stopping scheme

is never lower than that of the fixed-threshold stopping, no matter

what r∗ is being used. However, for a given r∗, the throughput of

fixed-threshold stopping could be as good as the optimal stopping

scheme for some values of τp. For example, the fixed-threshold stop-

ping scheme with r∗ = 3 Mbps is as good as the optimal stopping

in the range 30 ms ≤ τp ≤ 90 ms. This is not surprising, because

the optimal stopping scheme has a changing stopping threshold for
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different τp’s. When 30 ms ≤ τp ≤ 90 ms, r∗ = 3 Mbps is actually

the optimal stopping threshold, as shown in Figure 7. As a result,

the two schemes achieve the same throughput over this range of τp.

When the probing time goes out of this range, the stopping with

fixed threshold deviates more and more from optimality, leading to

significant performance gaps between these two schemes. For exam-

ple, for stopping with fixed threshold r∗ = 4 Mbps, the gap is more

than 30% when τp > 130 ms. The second observation is that the opti-

mal stopping scheme always achieves significantly higher throughput

than the scan-all scheme, irrespective of the number of channels in

the system. This is caused by the fact that the scan-all scheme accu-

mulates large sensing/probing delays, and it completely ignores the

tradeoff between throughput and the accumulated overhead brought

by sensing/probing more channels.
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Figure 9: Throughput vs. sensing time.

The performance as a function of the channel sensing time is shown in Figures

9 to 11. Here we use the exponential curve fitting with parameter b = 14.8349 to

describe the Pfa vs. τs relationship. The theoretical and simulated throughput
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results are plotted in Figure 9. It is clear from this figure that the sensing time

has a significant impact on the CR’s throughput. For example, under good

channel conditions, the ratio between the highest and the lowest throughput

observed in the simulation can be as high as 190%. This wide range supports

the need to optimize the sensing time. In addition, the concave trend in the

throughput curve is clearly observed in this figure. More importantly, even

though we cannot analytically derive the globally optimal τos that maximizes

the throughput, our analysis in Section 4 shows that they must be located in

the ranges denoted by the dotted boxes, i.e., τos ∈ [15.1, 43.9] ms under good

channel conditions, and τos ∈ [6.8, 140.5] ms under poor channel conditions.

In practice, the sensing time should be selected from these ranges to achieve

near-optimal throughput.

Figures 10 and 11 demonstrate the tradeoff between sensing time and sens-

ing accuracy. More specifically, when τs is small, the CR needs to scan many

channels before each transmission due to its poor sensing accuracy. The ac-

cumulated scanning time over these channels causes excessive channel access

delay. As τs increases, the CR can more accurately detect each spectrum op-

portunity, requiring the scanning of fewer channels before a transmission. This

mono-decreasing relationship between the number of scanned channels and τs

is seen in Figure 11. On the other hand, as observed in Figure 10, the overall

effect of τs on the channel access delay is quite complex: their relationship is

neither monotonic nor convex. Instead, it presents a segmented property. Such

a complex relationship is due to the multi-rate setup supported by the CR link:

the optimal rate threshold decided by the optimization algorithm changes with

τs, leading to a segmented structure similar to that in Figures 6 and 7.

4.3.2. Sensitivity Analysis

In this section, we study the performance of the proposed scheme when

there is uncertainty, e.g., errors or fluctuations, in the CR’s working environ-

ment. Such uncertainty captures deviations from the nominal setup used in the

optimization, and thus the optimized parameters may not be actually optimal

33



in practice. We are interested in the performance gap between the nominal set-

ting and the one that uses exact knowledge of the environment as input to the

optimization. In particular, we focus on the uncertainty in the following two

factors: channel’s rate distribution (p0, . . . , pK) and the relationship between

sensing accuracy and sensing time. We choose to study these two factors be-

cause they play a key role in the optimization and their knowledge relies heavily

on online measurements. Uncertainty in the rate distribution arises when the

online measurement is not accurate due to, for example, a limited observation

window. Uncertainty also happens when the actual distribution shifts with time.

Similar situations apply to the Pfa vs. τs relationship. Furthermore, as shown

in Figure 3, this relationship also suffers from intrinsic curve-fitting errors.

We study the impact of rate-distribution uncertainty on throughput in Fig-

ure 12. We use the following model to describe uncertainty in the rate distri-

bution. The distributions (0.4, 0.2, 0.2, 0.1, 0.1) and (0.1, 0.1, 0.2, 0.2, 0.4)

are taken as the nominal rate distributions for the poor and good channel con-

ditions, respectively. An actual rate distribution is generated according to a

distribution error, δ, in the following way. Under poor channel conditions, for

a given distribution error δ, the corresponding actual rate distribution is given

by 1
0.6(1+δ)+0.4 (0.4(1 + δ), 0.2(1 + δ), 0.2, 0.1, 0.1). Under good channel condi-

tions, the actual rate distribution is given by 1
0.6(1+δ)+0.4 (0.1, 0.1, 0.2, 0.2(1 +

δ), 0.4(1 + δ)). In this way, an actual rate distribution literally differs from

the nominal one, but still retains the basic pattern that makes it in line with

good (or bad) channel conditions. For example, under bad channel condi-

tions, when δ = −0.5 and 0.5, the corresponding actual rate distributions are

(0.2857, 0.1429, 0.2857, 0.1429, 0.1429) and (0.4615, 0.2308, 0.1538, 0.0769, 0.0769),

respectively, for which the low rates still occur with relatively high probabilities

(and thus representing bad channel). Under each channel condition, we first

conduct optimization based on the nominal rate distribution to derive the theo-

retically optimal operational parameters. For example, under the poor channel

condition, we found that τos ∈ [6.8, 140.5] ms. So we use the middle point

τs = 74 ms and the corresponding rate threshold k∗ = 2 to drive the sequential
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Figure 12: Throughput vs. channel rate distribution error.

channel sensing and probing process in our simulation. During the simulation,

channel conditions are generated according to the actual rate distribution. For

each actual rate distribution, the optimal throughput is also decided by exhaus-

tively testing various combinations of operational parameters via simulation.

Figure 12 depicts throughput achieved by using the nominal distribution as in-

put to the optimization compared with the actual optimal throughput obtained

via exhaustive testing. It is clear that the gap between these two are minor (less

than 5% in the worst case). This observation suggests that our optimization

framework is insensitive to rate distribution errors, and thus the operational

parameters derived from our analytical model still achieve good performance in

actual environments.

We study the impact of sensing inaccuracy in Figure 13. To model the

uncertainty in the false alarm rate of the channel sensing process, we modify

the exponential curve-fitting function into Pfa(τs) = (1+ |θ|)e−bτs , where θ is a

random variable that follows a normal distribution N(0, σ2). The parameter σ

denotes the standard deviation of the error in the false alarm rate normalized by

the deterministic component e−bτs . Here, we take the absolute value of the error.
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This leads to false alarm rates that are always larger than the deterministic

component. The simulation results gathered under this setup can be considered

as a lower bound on the performance when both positive and negative errors

on false alarm rate can happen. From Figure 13, the throughput is shown to

degrade with the magnitude of the error. However, the throughput shows some

tolerance to errors when their magnitudes are limited. For example, no obvious

throughput degradation is observed when σ is smaller than 0.4 and 0.6 under

good and poor channel conditions, respectively. Recalling that the exponential

fitting induces less than 8% fitting errors, the proposed framework presents

enough margin to accommodate those errors without significantly impacting

the effectiveness of the optimization.

5. Throughput Analysis for CRNs

In this section, we study the aggregate throughput when multiple close-by

CRs share the same spectrum, each being driven by its own sensing/probing/access

process as discussed before. Such an investigation allows us to better appreciate

the proposed scheme from a network’s standpoint. An important factor we need
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to consider in this scenario is collisions between CRs, i.e., more than one CR

transmitter/receiver pair are sensing and probing the same channel at the same

time, so their probing packets collide. As a result, none of them can use the

channel at this moment even if this channel is idle and is of a good quality. Such

a collision is a fundamental factor in deciding the performance of distributed

CRNs, and is intrinsic to the sensing/probing scheme studied in this work.

We consider two sensing strategies for CRs: random sensing and collabo-

rative sensing. In random channel sensing, each CR pair randomly selects a

channel to sense in each step. There is no information exchange between differ-

ent CR pairs. For collaborative sensing, CRs exchange their channel-hopping

information in every step to avoid multiple CRs hopping to the same channel

at the same time. This could be done, for example, under the assistance of

an online coordinator. This study mainly concerns about the impact of such

collaboration on the network’s throughput performance. The implementation

details of collaborative sensing is out of the scope of this paper.

To make the analysis tractable, we relax the condition that CR’s trans-

mission time has a fixed length τt. We assume that the transmission time is

exponentially distributed with mean τt. In the simulation section, we test the

validity of this assumption and show that it has a negligible impact on net-

work performance. A discrete-time Markov-chain model is used to analyze the

throughput of the CRN. Time is divided into slots with slot length = τs + τp.

So for a CR, each step of channel sensing/probing takes exactly one slot and

each transmission takes on average L
def
= ⌈ τt

τs+τp
⌉ slots. We assume that CRs

are synchronized, i.e., the slots of different CRs are aligned. Let the number of

CR transmitter/receiver pairs be M . To simplify the presentation, here we only

consider the fundamental case when each CR link can only sense, probe, and

transmit over one channel at a time. The case that a CR link can simultane-

ously use J > 1 channels can be treated as J independent one-channel virtual

CR links and analyzed accordingly. We show the accuracy of this treatment

using simulations in Section 5.1.1. To evaluate the CRN’s capability of harvest-

ing the spectrum, we are interested in a saturated traffic scenario, i.e., there
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is always backlogged traffic at each CR link. The state of the Markov chain is

defined by the tuple (x1, . . . , xM ), where each element xm ∈ {0, 1} indicates the

activity of the mth CR link in the current slot: xm = 0 means that CR link m

is sensing and probing a channel; xm = 1 denotes an ongoing transmission by

that link. A CR link’s activity in the current slot depends on the effect of all CR

links’ activities in the previous slot, (x′
1, . . . , x

′
M ), i.e., the transition probability

of the chain satisfies

Pr(x1, . . . , xM |x′
1, . . . , x

′
M ) =

M∏
m=1

Pr(xm|x′
1, . . . , x

′
M ) (31)

Note that a CR’s activity in the current slot does not impact other CRs’ activ-

ities in the same slot, because CR links decide their activities independently.

Without loss of generality, we consider the transition probability of CR link

1. We first consider the random sensing strategy. Our analysis covers the

following four cases:

Case 1: Pr(0|0, x′
2, . . . , x

′
M )

In this case, the transition probability contains four components

Pr(0|0, x′
2, . . . , x

′
M ) = Pcr occupied + Pcr collision + Ppr occupied

+Ppoor channel (32)

where Pcr occupied denotes the probability that the channel that was sensed/probed

by CR link 1 in the previous slot was being occupied (transmitted over) by other

CR links, and thus CR link 1 has to sense/probe another channel in current slot;

Pcr collision denotes the probability that the channel that was sensed/probed by

CR link 1 in the previous slot was not being occupied by any other CR, but

was being sensed/probed by other CR links, and hence there was a collision and

CR link 1 has to sense/probe another channel in the current slot; Ppr occupied

denotes that the channel that was sensed/probed by CR link 1 was neither being

occupied nor being sensed/probed by any other CR, but was being used by a

PR, and hence CR link 1 has to sense/probe another channel in current slot;

Ppoor channel denotes that the channel that was sensed/probed by CR link 1 in

the previous slot was neither being occupied by either CR or PR, nor being
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sensed/probed by any other CR, but it was having a bad channel condition,

and hence CR link 1 has to sense/probe another channel in current slot.

To calculate these four probabilities, we note that a collision of multiple

CRs that are sensing the same channel can be detected during the probing

phase. After detecting a collision, the CRs will sense/probe other channels

in the next slot. Therefore a CR’s transmission over some channel indicates

this channel is collision-free between CRs. We define the following notations:

M
(m)
1

def
=
∑M

i=1;i̸=m x′
i and M

(m)
0

def
= (M − 1)−M

(m)
1 . M

(m)
1 denotes the number

of transmitting CR links in the previous slot, not counting the mth link; M
(m)
0

is the number of sensing/probing channels in the previous slot, not counting the

mth link. Recalling the number of channels is C, we have

Pcr occupied =
M

(1)
1

C
(33)

Pcr collision =

(
1− M

(1)
1

C

)1− (C − 1

C

)M
(1)
0

 (34)

Ppr occupied =

(
1− M

(1)
1

C

)(
C − 1

C

)M
(1)
0

QB (35)

Ppoor channel =

(
1− M

(1)
1

C

)(
C − 1

C

)M
(1)
0

QI

k∗−1∑
k=0

pk (36)

Case 2: Pr{1|0, x′
2, . . . , x

′
M}

This transition probability is simply given by

Pr{1|0, x′
2, . . . , x

′
M} = 1− Pr{0|0, x′

2, . . . , x
′
M}

=

(
1− M

(1)
1

C

)(
C − 1

C

)M
(1)
0

QI

K∑
k=k∗

pk (37)

Case 3: Pr{0|1, x′
2, . . . , x

′
M}

This case means that CR link 1 finishes its transmission in the previous slot, so

it starts looking for a new channel in the current slot. The transition probability

is given by

Pr{0|1, x′
2, . . . , x

′
M} = 1/L (38)
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Case 4: Pr{1|1, x′
2, . . . , x

′
M}

This is simply calculated as

Pr{1|1, x′
2, . . . , x

′
M} = 1− Pr{0|1, x′

2, . . . , x
′
M} = (L− 1)/L. (39)

Having obtained the transition probability matrix, the Markov chain’s station-

ary distribution for the random vector (x1, . . . , xM ) can be calculated using

standard state-transition balance equations. Among all the states, those with∑M
m=1 xi > C are infeasible, and therefore their stationary distribution proba-

bility is 0. The CRN’s throughput is then calculated as

Rtot =
1∑

x1=0

. . .
1∑

xM=0

(
Pr{x1, . . . , xM}

M∑
m=1

xmR̄

)
(40)

where R̄
def
=

(1−Ploss)
∑K

k=k∗ Rkpk∑K
k=k∗ pk

is the average throughput a CR link can achieve

when transmitting.

In the above calculation, we have assumed a fully-distributed random chan-

nel sensing strategy. Under a collaborative sensing strategy, the above calcula-

tion should be modified as follows: the term
(
C−1
C

)M(1)
0 should be replaced by(

C−1
C

)max(0,M
(1)
0 +1−C)

in (33) through (37). This is because under collaborative

sensing, if the number of links that are sensing channels is not greater than the

number of channels, then there is no collision. Otherwise, the collision is only

due to those links that exceed the number of channels.

5.1. Performance Evaluation

5.1.1. Simulations for a CR Network

In this set of simulations, we use the optimal threshold derived for individual

links to drive the operation of the CRN. In Figures 14, we fix the number of

CR links M = 8 and plot the CRN throughput as a function of the number of

channels, C. The rate distribution for each CR link is given by (0.2, 0.2, 0.2, 0.2,

0.2). We set τs = τt = 10 ms, and τt = 500 ms. Both simulation and analytical

results are plotted. Note that in the analysis we have assumed exponentially

distributed transmission time, but in the simulation a CR’s transmission time
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Figure 14: CRN throughput vs. number of channels.
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has a fixed length. Figure 14 shows that as long as the mean transmission

time remains the same, the distribution of the transmission time only has a

minor impact on the throughput, as evidenced by the good match between the

analytical and the simulation results.

From Figure 14, it is also clear that the collaborative sensing strategy achieves

higher throughput than the random sensing strategy, mainly due to the former’s

smaller collision probability. Under both strategies, the throughput increases

with C. However, the rate of increase is fast when C is small, and slow when

C is large. This trend is due to the smaller collision probability and the more

likelihood of finding an idle channel when C is large. A third observation is that

when C is large the slope of the throughput curve in the case of collaborative

sensing is less steep than in the random sensing case. This is because the colli-

sion probability under collaborative sensing approximates zero when C is large,

and therefore the throughput increase is only due to the increased probability

of finding a good idle channel.

In Figures 15 and 16 we compare the sequential channel sensing/probing
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scheme with the candidate-set-based channel selection scheme [23]. As dis-

cussed in Section 2, the candidate-set-based scheme provides an effective way to

reduce the overhead in sensing a large number of channels, and hence is an al-

ternative to the sequential sensing scheme in improving the CRN’s throughput.

The main limitation of the candidate-set-based scheme is that, in a multi-CR

environment, the set of candidate channels pre-computed by various CRs may

overlap significantly with each other. To account for this phenomenon, we sim-

ulate two scenarios: light overlap, where each candidate set, which is of size 5,

contains 2 network-wide common channels, and high overlap, where there are 4

network-wide common channels in each candidate set. The remaining channels

in a set are randomly picked from the pool that does not include the network-

wide common channels. Such a setup mimics the realistic situation where CRs

are located close to each other, and thus may sense similar channel conditions.

Various channels differ in their statistical quality. However, the difference is

slight. Otherwise, various candidate sets would completely overlap. To conduct

a fair comparison, we assume that within a set of candidate channels, a CR

could only sequentially sense/probe each channel, just as in the sequential sens-

ing/probing scheme. From Figure 15, it can be observed that when the number

of CRs in the system is low, there is no significant difference in the throughput

between the two schemes. However, as we increase the number of CRs, less

throughput can be achieved under the candidate-set-based scheme. The gap

becomes even larger in the high-overlap scenario. The worse performance of the

candidate-set-based scheme is not surprising, because the overlap between the

sets of candidate channels leads to high collisions during channel probing and

access, especially when the number of CRs is large.

In Figure 16, we study the impact of the size of the candidate set on the

CRN throughput. In this simulation, the number of common channels in a

candidate set is taken as the smallest integer that is greater than or equal to

C times the fraction of common channels (0.4 or 0.7, corresponding to low and

high overlap considered in the simulation). In general, the throughput achieved

under the candidate-set based scheme increases with the size of the candidate
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set. This is because the collision between channel probing and access becomes

smaller when the set contains more non-overlapped channels. Ultimately, when

the candidate set contains all the channels, both schemes achieve the same

throughput, because the candidate-set-based scheme actually reduces to the

sequential channel sensing/probing scheme at this point.

5.1.2. Multi-channel CR Situation

In all previous simulations for CRN, we have assumed that each CR link can

only operate over one channel at a time. In Figure 17, we relax this condition

and study the impact of a CR link being able to simultaneously use J channels,

J ≥ 1. In this situation, there is no sensing/probing collision between the

channels selected by the same CR. Note that this has no impact on the analysis

of collaborative sensing, because a stronger condition, i.e., the collaboration

between CRs, has been assumed in its analysis. So, here we focus our effort

on the random sensing scheme. We simulate three cases, where J = 1, 2, and

4, respectively. In each case, the number of CR links in the CRN is 8, 4, and

2, respectively. As such, the total number of operating channels in the CRN is

maintained at 8 at any given time, so that the results in various cases can be

fairly compared. The CRN throughput in all the cases is plotted as a function

of the number of channels in Figure 17. It can be observed that the gap between

the analysis and the simulation increases with J . This is not surprising, because

in our analysis we have treated each CR link as J independent links, which may

collide with each other during sensing and probing. So, the analytical model

over-states the collision between CR links, leading to a pessimistic estimation

(a lower bound) of the CRN throughput under random sensing scheme. On

the other hand, it is clear from Figure 17 that the upper bound is given by the

throughput under collaborative sensing. This is because under the collaborative

scheme, no sensing and probing of channels will collide with each other, no

matter whether these channels are selected by the same CR or by different CRs.
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Figure 17: Impact of a CR transmitting over multiple channels.

5.1.3. Heterogeneous Spectrum Environment

In our analysis, we have assumed homogeneous spectrum situation over chan-

nels, i.e., each channel has the same PR utilization (represented by PB) and

the same average SNR for PR’s signal (represented by γ) during CR’s channel

sensing. Such an assumption usually requires the channels under consideration

belong to the same frequency band and be assigned to the same PRN. How-

ever, in reality, it is not uncommon that the spectrum that is available to the

CRN consists of multiple bands. Each band contains a large number of channels

and is assigned to a specific type of licensed network. So, channels in different

bands may have different PB’s and γ’s, leading to a heterogeneous spectrum

environment. In this situation, a key question is to decide the optimal band

in which CRs should operate, so that maximum throughput can be achieved

by the CRN. To answer this question, we study the impact of PB and γ on

CRN’s throughput. Our simulation is performed over a homogeneous band,
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Figure 18: Impact of heterogeneous spectrum availability.

but the parameters PB and γ are changed during the simulation to obtain the

CRN’s throughput when it operates under various spectrum conditions. Such a

homogeneous-band-based simulation is valid because, even though the spectrum

environment changes from band to band, it remains homogeneous inside each

band 5.

The CRN’s throughput is plotted as a function of PB and γ in Figures 18

and 19, respectively. It can be observed that CRN’s throughput is decreasing

with Pb and increasing with γ. This is because with the increase of Pb, the

channel is more frequently occupied by the PRs. So less amount of transmission

opportunities are available for the CRs, degrading the CRN’s throughput. On

5Note that the heterogeneous spectrum environment is defined as the scenario that the

spectrum is a combination of multiple homogeneous bands. This definition is different from

the more general heterogeneous channel scenario, whereby the statistics of channel availability

strictly varies from channel to channel.

46



10
−3

10
−2

10
−1

4

5

6

7

8

9

10

11

12

SNR

C
R

N
 th

ro
ug

hp
ut

 (
M

bp
s)

 

 

random sensing (theory)
random sensing (sim.)
collaborative sensing (theory)
collaborative sensing (sim.)

τ
s
=τ

p
=10 ms, τ

t
=500 ms

number of CR links: 8
number of channels: 20

Figure 19: Impact of heterogeneous SNR for PR signal.

the other hand, the increase of γ reduces the false alarm probability of the CR.

As a result, the CRs can accurately capture more transmission opportunities,

leading to a larger CRN throughput. The lesson learned from Figures 18 and

19 is in line with our intuition: In a heterogeneous spectrum environment, CRs

should first operate over the band that has the lowest PR channel utilization

and the highest PR signal SNR.

6. Conclusions

Our study has indicated that a carefully designed joint channel sensing/probing

scheme for CRNs can achieve significant throughput gains over the conventional

mechanism that uses sensing alone. Our study has included both homogeneous

and heterogeneous spectrum environments, and can be applied to the general

case where a CR can transmit over multiple channels at the same time. Our

findings include: (1) the throughput-optimal probing strategy has a threshold
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structure, which basically determines whether a probed idle channel is good or

bad, (2) to achieve throughput gain over the conventional sensing approach, the

probing time has to be smaller than a certain value; otherwise using sensing

alone can achieve better throughput, (3) when probing is used, the throughput

in general is no longer a concave function of the sensing time, largely due to

the more complicated multi-rate structure induced by the inclusion of probing.

However, this function has a segmented structure. If we treat segments as our

observation instances, the trend in this function is concave. We exploited this

property to derive a range of values for the sensing time that provides provably

near-optimal throughput performance.

Appendix A. Proof of Theorem 1

1. Existence. We need to prove that, given τs and τp, for any finite λ, an optimal

stopping rule exists for the transformed problem (12). It follows from Theorem

1 in Chapter 3 of [9] that the optimal stopping rule exists if the following two

conditions are satisfied:

1. E{supn wn} < ∞.

2. limn→∞ supn wn = −∞, a.s.

By examining (12), condition 2 is clearly satisfied. Condition 1 can be ver-

ified by applying Theorem 1 in Chapter 4 of [9]. Specifically, it is easy to see

that the random variable

X ′
n

def
= Xnτt(1− Ploss)− λτt (A.1)

is related only to the random variable Xn. Since Xn’s are i.i.d. for n =

1, 2, . . ., the X ′
n’s must also be i.i.d.. In addition, because Xn takes a finite

number of values and λ is finite, X ′
n must also be finite. Therefore, it holds that

E{max(X ′
n, 0)} < ∞ and E{(max(X ′

n, 0))
2} < ∞. So according to Theorem 1

in Chapter 4 of [9], it holds that E{supn wn} = E{supn X ′
n−nλ(τs+τp)} < ∞.

So condition 1 is also satisfied.

2. Optimal solution. wn can be written as wn = X ′
n−nλ(τs+τp), where X

′
n

is defined in (A.1). So X ′
n can be considered as the reward for observing w1, . . . ,
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wn, and λ(τs + τp) can be deemed as the cost for each observation. Applying

the principle of optimality in Chapter 2 of [9], the optimal stopping rule of the

transformed problem (12) is given by

N∗ = min{n ≥ 1 : X ′
n ≥ V ∗} (A.2)

where V ∗ denotes the expected return from an optimal stopping rule; it satisfies

the following optimality equation

V ∗ = E{max{X ′
n, V

∗}} − λ(τs + τp). (A.3)

Equivalently, the above equation can be written as

E{max(X ′
n − V ∗, 0)} = λ(τs + τp). (A.4)

Recalling the connection between the original problem and its transformed

version, the value of λ that gives V ∗ = 0 is simply the solution of (11). With

V ∗ = 0, we have the following equation:

E{max(Xnτt(1− Ploss)− λ∗τt, 0)} = λ∗(τs + τp). (A.5)

According to Theorem 1 in Chapter 6 of [9], the solution to the above equation,

λ∗, is the maximum parametric objective function value for problem (11). At

the same time, substituting V ∗ = 0 into (A.2), we derive the parametric optimal

stopping rule to problem (11):

N∗ = min{n ≥ 1 : Xn ≥ λ∗

1− Ploss
} (A.6)

This concludes the proof of Theorem 1. �

Appendix B. Proof of Theorem 2

The main idea is to show that the LHS of (A.5) is a mono-decreasing function in

λ∗, whereas the RHS is mono-increasing in λ∗. The two functions must intersect

at one and only one point. Particularly, we define g(λ) = E{max(Xnτt(1 −
Ploss)− λτt, 0)}. For the general case of a continuous random variable Xn with

pdf q(x), g(λ) can be extended as

g(λ) =

∫ ∞

λ
1−Ploss

xτt(1− Ploss)q(x)dx−
∫ ∞

λ
1−Ploss

λτtq(x)dx. (B.1)
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The first-order derivative of g is given by

dg(λ)

dλ
= −λτtq

(
λ

1− Ploss

)
−

[
τt

∫ ∞

λ
1−Ploss

q(x)dx− λτtq

(
λ

1− Ploss

)]

= −2λτtq

(
λ

1− Ploss

)
− τt

∫ ∞

λ
1−Ploss

q(x)dx. (B.2)

Clearly, both terms in (B.2) are strictly negative, and therefore g(λ) is a strictly

mono-decreasing function. In addition, g(0) = τt(1 − Ploss)E[Xn] < ∞ and

g(∞) = 0. It is clear that the RHS of (A.5) is a strictly mono-increasing function

of λ with function values of 0 and ∞ when λ = 0 and λ = ∞, respectively.

For the case of discrete random variable Xn, it is easy to see that the above

monotonic property does not change. Therefore, λ∗ must have a unique solution.

�

Appendix C. Proof of Theorem 3

First, by evaluating λ∗
j (η), it is clear that inside each segment, λ∗ is continuous

and strictly mono-decreasing. Next, it can be easily verified that Φj = ϕj−1

and limη→Φj λ
∗
j (η) = λ∗

j−1(ϕj−1) for j = 2, . . . ,K. Therefore, λ∗ is continuous

and strictly mono-decreasing over the entire domain of η. �
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