
Measuring Unmeasurable Attributes of Software Quality Using Pragmatic Quality
Factor

Jamaiah Haji Yahaya
College of Arts and Sciences,

Building of Information Technology
Universiti Utara Malaysia (UUM),
06010, Sintok, Kedah, Malaysia

jamaiah@uum.edu.my, jhyahaya@yahoo.com

Aziz Deraman
Vice Chancellor Office,

Universiti Malaysia Terengganu (UMT),
21030, Kuala Terengganu, Terengganu,

Malaysia
a.d@umt.edu.my

Abstract—Software quality is evolving beyond static
measurement to a wider scope of quality definition. Previous
studies have indicated the importance of human aspect in
software quality. But the quality models have not included
comprehensively this aspect together with the behavioural
aspect of software quality. This research has proposed a
Pragmatic Quality Factors (or PQF) as a software quality
measurement and metrics that includes both aspects of quality.
These aspects of quality are essential as to balance between
technical and non-technical (human) facet. In addition, this
model provides flexibility by giving priorities and weights to
the quality attributes. The priority and weight are necessary to
reflect business requirement in the real business environment.
Therefore, it is more practical that suits with different users
and purposes. It is implemented through collaborative
perspective approach between users, developers and
independent assessor. This model shows how the unmeasurable
characteristics can be measured indirectly using measures and
metrics approach. It has been tested involving assessment and
certification exercises in real case studies in Malaysia.

Keywords-software quality; pragmatic quality factor;
software measurement

I. INTRODUCTION

In the era of 1990s, software quality has been realized as
an important element. This era was also known as quality era,
which software quality has been quantified and brought to
the center of development process. The business’s software
significant impact to today economy generates consideration
in producing good quality software with cost effective
development process [19]. At the same time, companies are
competing to produce software which are claimed to be good
and fulfill user’s expectation and requirements. The
companies unable to provide any justification on the quality
of their products to the users and users are left with
uncertainties on the standard and quality of the software
[6][22].

General expression of how quality is realized in software
dealing with “fitness for use” and “conformance to
requirements”. The term “fitness of use” usually means
characteristic such as reliability, functionality, reusability
and etc. On the other hand, “conformance to requirements”
means that software has value to the users [20]. ISO defines
quality as “the totality of features and characteristics of a
product or services that bear on its ability to satisfy stated or
implied needs” [12]. Peter J. Denning presented his idea that

“software quality is more likely to be attained by giving
much greater emphasis to customer satisfaction. Program
correctness is essential but is not sufficient to earn the
assessment that the software is of quality and is dependable”
[8]. Software quality and evaluation not only deal with
technical aspects but also in dimensions of economic
(managers’ viewpoint), social (users’ viewpoint) and as well
as technical (developers’ viewpoint) [5].

In many organizations, software is considered as one of
the main asset with which the organization can enhance its
competitive global position in this global economy era. To
remain competitive, software firms must delivers high
quality products on time and within budget. At the same time,
many complaints have been reported regarding quality of the
software. They claim that software quality is not getting
improved but deterioration steadily and worsening [23].
Therefore, users report and claim that software is being
delivered with bugs that need to be fixed and dissatisfied
with the product [8][22].

This paper presents the measurement of software quality
based on collaborative perspective approach. It presents the
background of this research which includes the state-of-the-
art of software quality models and the measurement and
metrics in software quality. The discussion moves on to the
methodology of this research and follows with the proposed
quality factor, Pragmatic Quality Factors, its application,
future work and conclusion.

II. BACKGROUND

A. Software Quality Models
Software and quality are among the most common topic

of discussion about computers. Study suggested that
“without an accompanying assessment of product quality,
speed of production is meaningless”[10]. This observation
has led to the development of software quality model that
measure and combine with productivity models.

The McCall quality model is one of the earliest models
[13]. It is interesting to notice that some of the factors
defined in this model are still relevant and as fresh today as
they were in 70’s. The Boehm model is similar to McCall
model that it represents a hierarchical structure of
characteristics, each of which contributes to total quality [3].
Hewlett-Packard developed a set of software quality factors
that make up its name FURPS. The FURPS model takes five
characteristics of quality attributes - Functionality, Usability,

197

978-1-4244-5539-3/10/$26.00 ©2010 IEEE

Reliability, Performance, and Supportability[13]. One
disadvantage of this model is that it does not take into
account the software product’s portability [15].

ISO 9126 defines product quality as a set of product
characteristics that governs how the product works in its
environment are called external quality characteristics. ISO
9126 indicates six main quality characteristics which
associated with several subcharacteristics. It has been
invented since 1991 and today, it is still being accepted and
used in researchers that deal with software quality [1].
However, at the same time it has the disadvantage of not
showing clearly how these aspects can be measured [18] and
the model only focusing on developer view of the software
[17].

Dromey proposes a working framework for building and
using a practical quality model to evaluate requirement
determination, design and implementation phases. Dromey
points out that high level quality attributes cannot be built
into the system. The alternative way to input quality into
software is by identifying a set of properties and build them
up consistently, harmoniously and fully to provide high level
quality [9].

The systemic model is developed by identify the
relationship between product-process, efficiency-
effectiveness and user-customer to obtain global systemic
quality [15]. The disadvantages of this model are that it does
not cover the user requirements and conformation aspects.

Analysis from previous quality models have
demonstrated that there is different quality characteristics
associated with different models. It shows that the main
quality characteristics found in majority of the models are:
efficiency, reliability, maintainability, portability, usability
and functionality, which are presented in more recent models
and are considered as essential and vital.

Quality is believed as a complex concept. It is the eye of
the beholder and it means different things to different people
and highly context dependent [14]. Therefore, “software
quality is nothing more than a recipe. Some like it hot, sweet,
salty or greasy” [24]. Thus, there can be no single simple
measure of software quality acceptable to everyone.

As observed from existing quality models for software
product assessment, available identified quality attributes is
difficult to meet current requirement and specification.
Current quality models are much dependent on the usage of
the assessment process and development requirement. The
earliest models of quality such as McCall, Boehm, FURPS
and ISO 9126 are limited to measure of external software
characteristics such as reliability, maintainability, portability
and functionality which do not consider other necessities
needs such as conformance of user requirements and
expectation. Software quality is more on customer
satisfaction and software correctness is not sufficient to be
declaring as good quality without satisfaction by the users
[8]. Thus, there are requirements to include measurements of
human aspects and the quality impact in the quality model.
Integrity as one of the vital attribute in current situation is not
considered in previous models.

B. Software Quality Measurement and Metrics
The ultimate goal is to produce a high-quality software,

application, or product. Measurement is used to assess the
quality of the software. Software metric is defined as
“objective, mathematical measure of software that is
sensitive to differences in software characteristics. It
provides a quantitative measure of an attribute which the
body of software exhibits”[11]. Measurements can be used to
assist in estimation quality of software product. Without
measurement, judgment can be based on subjective
assessment. Indicators or metrics provide insight into the
product and measure quality indirectly [25].

Software measurement can be categorized into direct
measurement and indirect measurement. Direct measurement
includes lines of code (LOC) produced, execution speed,
memory size, and defect reported over some period of time.
Indirect measurement of products includes functionality,
complexity, efficiency, reliability, and many other “-
abilities”. These characteristics are unmeasurable software
quality characteristics. The unmeasurable characteristics are
decomposed into several subcharacteristics and metrics to
generate a measureable metrics. Metric can be defined as a
quantitative measures of software or processes for a given
attributes. It can be used to estimate quality [4].

The following discussion aspires to demonstrate the
software quality framework with focusing on unmeasurable
and measurable aspects of quality characteristics. For an
example, functionality is broken down into subfactors which
are suitability, accuracy and interoperability. The
decomposition of subfactor is at level two of hierarchy.
Functionality is considered as unmeasurable characteristics
and involved indirect measurement. In order to convert this
unmeasurable to a measurable characteristic, subfactors of
functionality is decomposed into the higher level in the
hierarchy viz the third level. At the third level of the
hierarchy the subfactors are decomposed into metrics used to
measure software products. The decomposition is shown in
Fig. 1 and Table 1. In this example, functionality
(unmeasurable characteristic) is decomposed into suitability,
accuracy and interoperability. These three subfactors are
decomposed to the third level, metrics, which are named as
M1, M2, M3, M4, M5, M6, M7, M8, and M9 (refer to Table
1). The decomposition is as follow:

Subfactor -> {metrics}
Suitability -> {M1, M2, M3, M4}
Accuracy ->{M5, M6, M7}
Interoperability ->{M8, M9}

The used metric measures of a software product derived
from measures of the behaviour of the system of which it is a
part, by testing, operating and observing the executable
software and documentations. Thus, data is gathered and
required to arrive an indication of quality. Eventually metrics
gathered can cost a lot of money and therefore it is suggested
to collect practical target data that will produce meaningful
result.

198

Figure 1. Decomposition of functionality

TABLE I. EXAMPLE OF QUALITY FACTOR, SUBFACTORS AND
METRICS

Factor: Functionality
Subfactors Metric Measure

M5: Incomplete result Number of incomplete
results obtains from the
software.

M6: Incorrect result Number of incorrect
results obtains from the
software.

Accuracy

M7: Unexpected results
issued

Are unexpected results
issued during running
the software?

Evaluating or assessing the quality of software is very
important, not only from the perspective of software
engineers to determine the quality level of their products but
also from a business point of view, such as to make a choice
between two similar products. Assessment of product means
judging to which the software product meets the quality
characteristics.

III. METHODOLOGY

The research approach used in this study is deductive
approach [16][21] where theory and concepts of software
quality are derived from the literature and empirical findings
before the model is applied and tested in real case studies.
The research approach involves four phases:-

A. Theoretical Study
In this phase current state-of-the-art in the development

of software quality and assessment were being reviewed in
depth. Based on literature findings in issues and factors
affecting software quality, the research proceeds with
designing questionnaires and test it through pilot study.

B. Empirical Study
The survey was conducted to gather data and information

from various agencies involved in software development and
acquisition in Malaysia. Findings from this phase were used
as the basis for producing specification and requirements for
proposed software quality model.

C. Model Construction
Based on the empirical and literature findings, an initial

software quality model is constructed. The concept,
definition and contributing factors are used to identify
attributes that are required in the assessment of software.

This led to the development of a software quality model,
which met current software assessment requirements. The
proposed quality model is named Pragmatic Quality Factor
(PQF), which describes the relationships between attributes
(which mostly unmeasurable) and the measurable metrics. In
model construction, all variables in the model are defined
and weighted according to their importance in relation to
their influence in software assessment. The formulation of
the weight factors that classified attributes into different
levels was provided.

D. Application and Validation
The application of the model is carried out to evaluate the

model. These involved collaboratively with industry in
Malaysia. The applications on the case studies test the
proposed model by assessing systems operating in the actual
environments. As the model evaluation is carried out by the
case study, a model refinement is conducted as necessary.

IV. PRGAMATIC QUALITY FACTOR(PQF) : A PRACTICAL
SOFTWARE QUALITY MODEL

The PQF consists of four main components: behavioural
attributes, impact attributes, responsibility, and weight.

A. The Behavioural Attributes
The behavioural attribute is defined as the external

quality characteristic of specific software and how it behaves
in the actual operating environment. The behavioural
attributes include efficiency, functionality, maintainability,
portability, reliability, integrity and usability. The
behavioural attributes are derived from ISO 9126 attributes
with the integrity aspect included. In the age of hackers and
firewalls, the importance of integrity aspect has increased.
This attribute measure the ability to with-stand attack on its
security that comprises of program, data and document. It
covers threat and security aspects. Our previous survey [26]
indicated the importance of integrity in software quality
attributes.

In PQF, attributes are decomposed into several
subattributes and then a further level of decompositions to
associate with directs measurable metrics. Each of the
subattributes and metrics comprises of information on
interviewees. An example of the decompositions of attributes
is shown in Table 1 and Table 2. In this example, it shows
that functionality is broken down into three subattributes:
suitability, accuracy and interoperability. The subattributes
are later decomposed to several metrics associated with them

Functionality First level

Second
level Accuracy InteroperabilitySuitability

Third
level M1 M5 M6 M7 M8 M9 M3 M4M2

199

and the metrics are measurable to the users or developer of
the software. They are also measurable to the external
assessor who will also be the independent assessor in the
assessment.

TABLE II. A DECOMPOSITION OF FUNCTIONALITY

Attribute : Functionality

Subattributes Metric Interviewee

Functional Implementation
coverage

User

Functional specification
stability

User

Functional implementation
correctness

User

Suitability

Functional implementation
completeness

User

Incomplete result User
Incorrect result User

Accuracy

Unexpected results issued User
Interoperability Data format based for data

exchangeability
User,
Developer

User’s success attempt based
for data exchange

User,
Developer

B. The Impact Attribute
The impact attribute defined in PQF refers to the human

aspect of quality toward the product. It illustrates the impact
of the software in term of quality to the users and also
measures the conformity of software to the user requirement.
This attribute is important to balance the quality model
between technical measurement of software and human
factor [7]. Similar to behavioural attributes, the impact
attribute is made up of several subattributes and metrics that
show the measurement of the attributes. The impact attribute
is decomposed into two distinct subattributes which by
means of user perceptions and user requirements. The
metrics include measures of popularity, performance,
trustworthiness, law and regulation, recommendation,
environmental adaptability, satisfaction and user acceptance
(refer to Table 3).

C. Responsibility and Measurement of Metrics
The third component in PQF is the responsibility. It is

defined as the responsibility person to answer the questions
related to metrics. It is also named as the interviewee in this
model. The PQF has identified specific interviewee to
responsible in giving the assessment score of each metrics.

The measurements used are Likert scale of 1 to 5 based
on collaborative perspective among assessment team
members. The Likert technique presents a set of attitude
statements to measure satisfaction on perception. Subjects
are asked to express agreement or disagreement of a five-
point scale. Each degree of agreement is given a numerical
value from one to five. Thus a total numerical value can be
calculated from all the responses. The scale used in this
approach is recommended as 1 = unacceptable, 2 = below
average, 3 = average and 4 = good, 5= excellent.

TABLE III. A DECOMPOSITION OF IMPACT ATTRIBUTES

Attribute : Impact

Subattributes Metric Interviewee
Popularity User
Performance User
Law & Regulation User
Recommendation User
Trustworthiness User
Requirement & Expectation User
Environmental adaptability User

 User Perceptions

User Requirement User acceptance
Satisfaction

User
User

D. Classification of Attributes and Weight Factors
The weighting factors defined in PQF is based on

findings from previous survey [27]. From this analysis, the
function point approach is used to group and classify
attributes into three distinct classifications namely low,
moderate and high. Then, the attributes are sorted into these
classifications according to the calculated weight score. The
analysis shows that functionality is 14.29% more important
compared to other quality attributes defined in this model. It
obtained the highest weight in this analysis. Reliability is
considered 12.34% more important and integrity is
considered 11.69% important. These three attributes
(functionality, reliability and integrity) are classified in the
classification group of high. This finding is consistent with
survey done by Bazzana, Andersen and Jokela [2]. Second
group of classification defined as moderate includes safety
(8.44), efficiency (9.09%), maintainability (7.79%) and
usability (7.79%). The third group of classification defined
as low includes flexibility (5.84), Interoperability (6.49),
Intraoperability (5.84), portability (5.19%) and survivability
(5.19). See also the previous publication for detail [27].

For the purpose of assessment and certification, weight
factor is therefore assigned to each group accordingly. This
is consistent with the requirements of having different
weights for attributes.

V. APPLICATION AND VALIDATION

PQF has been applied in software certification model
developed by our research group. The certification process
requires a software quality model as the benchmark and
standard of the assessment. The quality model must suit with
the certification specifications and requirements thus, PQF is
suitable and fulfill certification requirements with
customisation. The whole process of assessment has been
implemented and tested in real case studies. In these case
studies three main systems operated in their environment
have been selected and assessed. The exercises completed in
less than a week depending on the numbers of main users of
the system and the availability of the users and other
respondents. The assessment of the system was done through
collaborative discussions and evaluation between the three
different assessment members that includes users, developers
and independent assessor. The independent assessor led the
assessment team.

In order to study the individual quality attributes of this
product, the results are tabulated in the summary table as
demonstrated in Table 5. These scores can be plotted into a
kiviat chart to easily realise the result. Each attribute in Fig. 2

200

is represented by axis and scores are plotted at the limits
between 0-100%. Attribute that fall on the limit’s outer layer
is considered better quality compared to attributes at inner
layers of this graph. In this case (later is called product ABC),
usability, portability and the impact attribute, user factor fall
in better quality level compared to maintainability,
functionality, efficiency, reliability and integrity. Refer to
Fig. 2.

Figure 2. Kiviat chart of product ABC

TABLE V. QUALITY SCORE BY ATTRIBUTES AND SUBATTRIBUTES

Attribute Score Attribute Score

Efficiency
Time behavior
Resource
utilization

3.05 (61.0%)
3.25
2.75

Functionality
Suitability
Accuracy
Interoperability

3.33 (66.7%)
3.41
3.38
3.13

Maintainability
Analysability
Changeability
Testability

3.35 (66.9%)
3.43
3.21
3.33

Portability
Adaptability
Installability
Conformance
Replaceability

3.47 (69.4%)
3.67
3.09
3.50
4.00

Reliability
Maturity
Fault Tolerance
Recoverability

3.14 (62.8%)
3.44
3.03
2.89

Integrity
Security
Data Protection

3.08 (61.7%)
3.17
3.00

Usability
Understandabili
ty
Learnability
Operability

3.71 (74.3%)
3.78
3.79
3.63

User Factor
User’s
perception
User requirement

4.18 (83.5%)
4.25
4.06

Table 6 shows an example of a result showing the scores
obtained by product ABC. It illustrates the scores of the
behavioural attributes and the impact attributes (human
aspects) as defined in PQF. In this example, product ABC is
a hospital information system operating in a large well-
known hospital in Malaysia. It was developed by internal
experts in the organization and was operating for more than 2
years in the environment. The table shows the final analysis
of Product ABC. Column 1 of this table refers to the
maximum value of each score by respondents. Column 2
refers to the weight values given by the owner of the
software or any appointed individuals, column 3 is the
average score obtained by this assessment. Based on the
weights assigned, scores are computed as shown in column 4.
Final computed values as in column 5 are the computed
values of quality scores obtained according to attributes. For
this case, the final computed quality score for the

behavioural attributes is 65.6% and for the impact attribute is
83.5%. The final computed overall quality score of product
ABC is 74.5% (see [28] for detail of the algorithm).

TABLE VI. ANALYSIS OF PRODUCT ABC USING PQF

Behavioural
Factors

Max
Value Weight

Score
Obtained Score

Quality
Score
(%)

(1) (2) (3) (4) (5)

Efficiency 5 7 3.05 0.403 8.1

Functionality 5 9 3.33 0.566 11.3

Maintainability 5 7 3.35 0.442 8.8

Portability 5 4 3.47 0.262 5.2

Reliability 5 9 3.14 0.533 10.7

Usability 5 7 3.71 0.490 9.8

Integrity 5 10 3.08 0.582 11.6

TOTAL 53 3.278 65.6

a) Impact Factors
User Factor 83.5

Total Product 74.5

VI. FUTURE WORK

This work participated in solving problem in ensuring
and determining quality of software product. The candidate
software in the assessment is the software product that is
already operating in an actual environment. A support tool
that enables to automate the process efficiently at the users
sides will be required for convenient assessment throughout
its life cycle.

PQF as explained in this paper consists of static model of
quality. Even though it provides certain level of flexibility to
the organization in the assessment by allowing to choose
weight factors but this model unable to improve its
components according to current and future requirements.
This research will be further enhanced to produce a more
comprehensive and intelligent model of software quality that
capable to learn from its environment. With this new
intelligent model, new attributes associated with quality will
be included when the system suggests and recommends to
the environment.

VII. CONCLUSION

Pragmatic quality factor (PQF) is a pragmatic software
quality model which could be used in assessment of software
operating in certain environment. It focuses on measuring the
quality in-use in the actual environment. PQF consists of
four main components: 1) behavioural attributes, 2) impact
attribute, 3) responsibility and measurement of metrics and 4)
classification of attributes and weight factors. Weighted
Scoring Method applied in this model is beneficial and
valuable to the organizations as the weight factors of each
attribute are defined separately. As suggested in literature
stakeholders are more interested in the overall quality and
therefore, assigning weights to reflect business requirements
is essential. It allows the owner of the product to tailor and
customise weight factors of individual attributes but guided

201

by the weight defined in this model. This model shows how
the unmeasurable characteristics can be measured indirectly
using measures and metrics approach. It has been tested
involving assessment and certification exercises in real case
studies in Malaysia. This model will be supported by a tool
named SoCfeS in the future assessment which will also
support continuous assessment throughout the software life
cycle.

ACKNOWLEDGMENT

This project is funded by Malaysian Ministry of Science,
Technology and Innovation.

REFERENCES

[1] R. Adnan & M. Bassem, “A new software quality model for
evaluating COTS components”, Journal of Computer Science
2(4)2006,pp. 373-381.

[2] G. Bazzana, O. Andersen & T. Jokela, “ISO 9126 and ISO 9000:
friends or foes?” IEEE Software Engineering Standards Symposium,
1993.

[3] M.F. Bertoa, J.M. Troya & A. Vallecillo, “A survey on the quality
information provided by software component vendors”, Proceedings
of 7th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE 2003), 2003, pp. 25-30.

[4] N. Bevan, “Quality in use: Meeting user needs for quality”, 1999,
Retrieved 14 October 2007 from
http://www.usabilitynet.org/papers/qiuse.pdf.

[5] L. Buglione & A. Abran, “A quality factor for software”, Proceeding
of QUALITA99, 3rd International Conference on Quality and
Reliability, 1999, pp. 335-344.

[6] Compuware, “Application quality and its business impact- a view
from the top (White paper)”, 2003, Retrieved 13 January 2004 from
http://www.compuware.com/whitepapers/ok.asp.

[7] C.A. Dekkers & P.A. McQuaid, “The dangers of using software
metrics to (Mis)Manage”, IT Pro, March/April 2002, pp. 24-30.

[8] P.J. Denning, “What is software quality?” A Commentary from
Communications of ACM, January 1992.

[9] G.R. Dromey, “Cornering the chimera”, IEEE Software, January
1999, pp. 33-43.

[10] N.E. Fenton. & S.L. Pfleeger, “Software Metric: A rigorous &
practical approach”, London: Thompson Computer Press, 1996.

[11] J.E. Gaffney, “Metrics in software quality assurance”, ACM , Nov
1981,126-130.

[12] ISO/IEC 9126. “Software quality characteristics and metrics-Part2:
External metrics”, Technical Report, ISO/IEC JTC1/SC7/WG6, 1996.

[13] K. Khosravi & Y.G. Gueheneuc, “A quality model for design
patterns”, Retrieved 26 October 2005 from
http://www.yann_gael.gueheneuc.net/work/Tutoring/Documents/0410
21+Khosravi+Technical+Report.doc.pdf, 2004.

[14] [14] B. Kitchenham & S.L. Pfleeger, “Software quality: The elusive
target”, IEEE Software, January 1996, pp. 12-21.

[15] M. Ortega, M. Perez & T. Rojas, “Construction of a systemic quality
model for evaluating a software product”, Software Quality Journal,
vol. 11, 2003, pp. 219-242.

[16] C. Page & D. Meyer, “Applied Research Design for Business and
Management”, Sydney:McGraw-Hill, 2000.

[17] S.L. Pfleeger, “Software Engineering: Theory and Practice”, 2nd ed.
Upper Saddle River, N.J: Prentice Hall, 2001.

[18] A.K. Rae, H.L. Hausen & P. Robert, Software Evaluation for
Certification : Principles, Practice and Legal Liability. Middlesex, UK:
McGraw-Hill, 1995.

[19] F. Shull, C. Seaman & M. Zelkowitz, “Quality time: Victor R.
Basili’s Contributions to Software Quality”, IEEE Software, Jan/Feb
2006, pp. 16-18.

[20] I. Tervonen, I. “Support for quality-based design and inspection”.
IEEE Software , January 1996, pp. 44-54.

[21] W.M.K. Trochim, W.M.K., “Deduction & Induction thinking”,
Retrieved 25 July 2007 from
http://www.socialresearchmethods.net/kb/dedind.php, 2006.

[22] J.A. Whittaker & J.M. Voas, “50 years of software: Key principles for
quality”, IEEE IT Pro, Nov/Dec 2002, pp. 28-35.

[23] J. Voas, “Limited software warranties”, Engineering of Computer
Based Systems (ECBS2000) Proceeding, 2000, pp. 56-61.

[24] J. Voas, “Software's secret sauce: The "-ilities". IEEE Computer ,
November/December 2004, pp. 14-15.

[25] T.E. Vollman, “Software quality assessment and standards”,
Computer , June 1993, pp. 118-120.

[26] J.H. Yahaya, A. Deraman, A.R. Hamdan, “Software Quality and
Certification: Perception and practices in Malaysia”, Journal of ICT
(JICT), vol. 5, Dec 2006, pp. 63-82.

[27] J.H. Yahaya, A. Deraman, A.R. Hamdan, “Software product
certification model: Classification of quality attributes”, Proc. The
First Regional Conference of Computational Science and Technology
(RCCST 07), Kota Kinabalu, 2007, pp. 436-440.

[28] J.H. Yahaya, A. Deraman, A.R. Hamdan, “Software Certification
Model Based on Product Quality Approach”, Journal of Sustainability
Science and Management, vol. 3(2), December 2008, pp. 14-29.

202

