
AR-Tracker: Track the Dynamics of Mobile Apps
via User Review Mining

Cuiyun GAO∗†, Hui XU∗†, Junjie HU†, and Yangfan ZHOU∗‡
∗Shenzhen Research Institute, The Chinese University of Hong Kong, China

†Dept. of Computer Science and Engineering, The Chinese University of Hong Kong, China
‡School of Computer Science, Fudan University, Shanghai, China

{cygao, hxu, jjhu, yfzhou}@cse.cuhk.edu.hk

Abstract—User-generated reviews on mobile applications
(apps) are a valuable source of data for developers to improve
the quality of their apps. But the reviews are usually massive
in size and span over multiple topics, thus leading to great
challenges for developers to efficiently identify the key reviews
of interest. In recent studies, automatic user review mining has
been recognized as a key solution to address this challenge. The
existing methods, however, require extensive human efforts to
manually label the training data. Besides, they only analyze the
static characteristics over the whole set of collected reviews, while
ignoring the dynamic information embedded in the reviews of
different time periods. In this paper, we propose ‘AR-Tracker’, a
new framework to mine user reviews without the need of human
labeling and track the dynamics from the top-ranked reviews.
Through extensive experiments on the reviews of four popular
mobile apps collected over 7 months, we show that AR-Tracker
can still achieve comparable accuracy with the state-of-the-art
methods, e.g., AR-Miner. Additionally, a case study on Facebook
reviews further validates the effectiveness of ‘AR-Tracker’ in
tracking the dynamics.

I. INTRODUCTION

The portability of the Dalvik virtual machine [1] pro-
motes the proliferation of mobile apps. In general software
development process, developers constantly update their apps
according to the user feedbacks, e.g., reviews and ratings [2].
In the area of mobile applications, constant updates make
a great impact on the app’s growth trajectory, being hot or
abortive. For instance, with refinements based on numerous
reviews, the game app “Flappy Bird” shot to the top of the
App Store with zero marketing spent, a spot estimated to
cost over $80,000 through customer acquisition [3]. Handling
massive user reviews manually is prohibitively time-consuming
for developers, especially for popular apps. How to extract
valuable information from user feedback is a critical problem
yet to be well addressed [4].

Different from other online reviews (such as shopping
reviews and hotel reviews), user reviews of mobile apps are (a)
generally shorter in length as a majority of them are posted via
mobile devices; (b) often specific to a particular app version
and vary over time [5]. Existing work focuses more on topic-
extracting from user reviews on mobile apps [6], [7]. The
dynamics of the topics are however largely ignored [5]. We
notice that apps are typically rapidly evolving software: New
versions of an app come out with its constant modification
by the developer [8]. User feedback often reflects only the
problems in the current version of the app. Hence, we can track

the dynamics of user feedback to help developers determine
the bugs they need to fix or features to add [9].

To this end, we propose a novel tool, namely ‘AR-Tracker’
(App Review Tracker), which can extract and visualize the
main themes from the raw user review data in a dynamic
version. In order to find the most appropriate modeling method
for our framework, we compare various topic modeling algo-
rithms. Regarding how to rank the topics mined from user
reviews, existing approaches consider only the features, such
as ratings and dates that can explicitly reflect the user feedback,
while largely overlooking the implicit relations between topics.
In contrast, the ranking scheme we propose takes both the
topic similarities [10] and other user-generated information
into account. We compare our algorithm with the state-of-the-
art algorithm in [4]. Then we analyze the dynamics of the
main user feedback through mining user reviews. Finally, we
visualize the results in an interpretable way.

The paper makes the following contributions.

• We propose a new topic-ranking and review-ranking
scheme to prioritize the user reviews, which can help
developers capture the most up-to-date issues with proper
topic modeling.

• We trace the changes of main user reviews on mobile apps
over time, which can help developers understand the user
demands and shed light to the new version design.

• We visualize the results in a user-friendly way, so that
developers can observe the trends of hot issues clearly.

• We evaluate our framework by comparing it with the
state-of-the-art work based on a large-scale experiment
involving more than 500k user reviews.

The rest of the paper is organized as follows: we discuss
related work in Section II; Section III gives the problem set-
ting; in Section IV, we introduce the AR-Tracker framework;
and Section V illustrates the empirical results; finally the
conclusion is described in Section VI.

II. RELATED WORK

Two lines of work inspire the design of AR-Tracker,
namely short-text mining and mining user reviews on mobile
apps.

A. Short-text Mining

Recently, short-text analysis and classification has been
paid more and more attention [11]. Generally, topic extrac-

tion is related to semantic analysis, which has already been
reflected in many classic works. Latent Dirichlet Allocation
(LDA) [12] is a standard topic modeling method. In this paper,
we implement and discuss different kinds of topic modeling
methods for our app reviews, so as to seek out the most
appropriate one.

B. Mining User Reviews on Mobile Apps

With the swift growth of mobile application markets, many
researches have been conducted in mining app features. Clau-
dia and Rachel [13] proposed a prototype MARA (Mobile App
Review Analyzer) to automatically retrieve request features of
online reviews. The features extracted in their work mainly
focused on game apps and simply included some keywords,
which might be not sufficient for practical review analysis.

Also, there are many other aspects of applications. A
case study of Android Game Apps was conducted in [14]. It
extracted the devices mentioned in most user reviews to help
developers prioritize their limited Quality Assurance (QA) ef-
forts. In [8], a framework named as ‘Apposcopy’ was proposed
to determine whether a given app matched a malware signature
based on semantic characteristics. Features of different types
of apps were mined in [5]. Although [5] provided topic
analysis for different segments of time series, the number of
user reviews was analyzed in it, instead of topics or main
reviews. It merely focused on the topic distributions when the
number of reviews was abnormal. In [4], Ning et al. produced
a framework named as ‘AR-Miner’ for mining informative
user reviews. A filtering method base on supervised learning
was proposed for extracting informative reviews before topic
analysis. However, their work did not consider the essential
attribute of user reviews, that is, the pertinence to a time period
or a specific version of mobile app. Furthermore, ‘AR-Miner’
needs manual labeling before filtering process, which might
be not applicable for massive reviews.

III. PROBLEM SETTING

Considering an individual app A from a certain app store,
it involves a list of n review instances with review texts
R = {r1, r2, · · · , rn}, user ratings A = {a1, a2, · · · , an},
post time T = {t1, t2, · · · , tn} and corresponding versions
V = {v1, v2, · · · , vn}. Therefore, for each review instance ri,
we have its attributes: post date ti, rating ai, and version vi.
The general structure of data is designed as A : {R,A,T,V}.
Table I shows the notations of all the variables and a review
sample with n review instances respectively.

To track the dynamics of the main themes, we divide
reviews into several time sequences T = {T1, T2, · · · , Tz},
where z indicates the number of time periods. The detail will
be discussed in Section V.

IV. AR-TRACKER

In this section, we give an overview of the proposed
framework - ‘AR-Tracker’ initially. And then we introduce
each procedure of AR-Tracker in detail.

TABLE I: Examples of User Reviews

ReviewID Review Text Rating Date Version

1 Never had an issue with it 5.0 11/08/14 21.0.0.23.12
2 Hate that I have to download. 1.0 9/08/14 20.0.0.25.15
3 Can’t download videos. 2.0 07/14/14 12.0.0.15.14
...
n rn an tn vn

Notes: Each row means a review instance, including a review text,
user rating, post date and the corresponding app version.

A. Overview of AR-Tracker

The general framework of AR-Tracker is illustrated in
Fig 1, which comprises 5 main steps. To begin with, we need
to collect and preprocess massive user reviews and other basic
information of the app from the Internet. The second step is to
extract topics from messy reviews using various topic modeling
methods (Section IV-B). Then, we implement our proposed
ranking scheme to present the topics in order of importance
(Section IV-C). In the next step, on the basis of the ranked
topics, we prioritize the user review instances, described in
Section IV-D. We compare the results of different modeling
methods with the real user feedback presented on the official
website, in order to find the most appropriate one for mining
app reviews (Section V-C). Finally, by using the method with a
more effective result in Section V, we visualize the dynamics
of main themes generated from user reviews (Section V-D).

User-generated

Contents

Gibsampling

LDA
LDA

Preprocessing

LSI NMF RP

Extract Topics Using Different Methods

Rank Topics

Review Texts

User Ratings

Post Date

App Version

Rank

Reviews
Comparison

Dynamic Visualization

Fig. 1: Framework of AR-Tracker

B. Topic Extraction

User experiences possess intangible values. Developers can
be reminded of the bugs in their apps or the features they need
to refine through mining user-generated contents.

Topic modeling methods are statistical methods that can
analyze the words of the original texts to discover the main top-
ics [15]. They do not require any prior annotation or labeling
of the documents - the topics emerge from the analysis of the

texts. To our best knowledge, little research has been conducted
systematically on determining which kind of method is better
for app review mining. In the paper, we compare different
topic modeling methods on massive user review instances.
The methods include Latent Semantic Indexing (LSI) [16],
Latent Dirichlet Allocation (LDA) [12], Random Projection
(RP) [17], Non-Negative Matrix Factorization (NMF) [18], and
Gibbs Sampling of LDA [19].

C. Topic Ranking

In order to discover the major topics, we need to prioritize
the topics extracted from user reviews. Existing methods
merely consider the user-generated contents, such as ratings,
dates, and duplicates, etc., and ignore the relations between
topics. Generally, the topic with the larger similarity with other
topics would likely to be the main concern of users.

Given a list of review texts R = {r1, r2, · · · , rn},
we can simply obtain the corresponding vocabulary D =
{ω1, ω2, ..., ωd} (d is the magnitude of the vocabulary, ω
means one specific token). Topics β = {β1, β2, ..., βk} (k is
the number of topics) represent the topics extracted through
topic modeling. A review text r can also be expressed as a
probability distribution over the topics β, as shown in Table II.

TABLE II: Review-Topic Matrix

β1 β2 · · · βk

r1 p11 p12 · · · p1k
r2 p21 p22 · · · p2k
...

...
...

. . .
...

rn pn1 pn2 · · · pnk

The topic-ranking schema involves two factors - one is
the similarities with other topics, and the other is the user
ratings. The score S of the i th topic can be represented as
S(βi) = {S(di), S(ai)}, where S(di) and S(ai) indicate the
scores stemmed from the above two influence factors. Next we
will introduce the detail of the computation.

1) Topic Similarity: Commonly, ranking and clustering are
regarded as orthogonal techniques [20]. Intuitively, if one topic
has a larger similarity with other topics, this topic tends to have
more significance than the other and can be ranked higher. As
shown in Fig. 2, Topic C seems closer to the other topics
than Topic A or Topic B does, which implies that the words
in Topic C are more related to those in B and C. Here, we
introduce Hellinger distance, a statistical method to quantify
the similarity between two probability distributions.

For any two topics βi and βj , their discrete probability
distributions among review instances are βi = (pi1, · · · , pin)
and βj = (pj1, ..., pjn) respectively, where n means the
number of review instances. The Hellinger distance between
these two topics is defined as:

H(βi, βj) =
1√
2

√√√√ n∑
u=1

(p
1
2
iu − pju

1
2)2 (1)

The score of topic similarity for the topic βQ, Q ∈ [1, k],
is the inverse distance to all the other topics, that is:

Fig. 2: Explanation of Topic Similarity. Note: The clusters A,
B and C indicate three topics. And the dots inside each cluster
represent the words belonging to that topic.

S(dQ) =
1∑k

i=1H(βQ, βi)
(2)

where k is the number of the topics.

2) User Rating: Generally, user reviews with lower ratings
imply the users are highly frustrated with some features of the
app. And reviews with medium or higher ratings indicate the
corresponding features are not very critical.

In the paper, we define I1 as the set of reviews with rating
1.0 or 2.0, I2 as the set with rating 3.0, and I3 as the set with
rating 4.0 or 5.0. Then the score of user ratings for the topic
βQ can be described as:

S(aQ) = w1

∑
i∈I1

PiQ + w2

∑
i∈I2

PiQ + w3

∑
i∈I3

PiQ (3)

where w1, w2 and w3 are the weights corresponding to each
index set I1, I2 and I3 respectively and w1 + w2 + w3 = 1,
0 ≤ w3 ≤ w2 ≤ w1 ≤ 1.

3) Overall Score: In terms of topic similarities and user
ratings, the overall score of the topic βQ is defined as:

S(βQ) = (S(aQ) + γ1) · (S(dQ) + γ2), (4)

where γ1 and γ2 are the weights that can be modified according
to individual requirements and 0 ≤ γ1, γ2 ≤ 1.

D. Review Ranking

Our goal is to provide developers more interpretable and
direct results, so only a few undefined topics are not satisfying.
We need to prioritize the review instances among massive raw
user reviews and show the representative ones to developers.

Given a list of review texts R = {r1, r2, ..., rn} and their
rating information, we get the topic probability distributions
of each review text in Table II and the sorted topics in
Section IV-C. The review-ranking scheme involves 3 elements
- topic importance, user rating and review instance similarity.
We adopt the probability distributions among different reviews
to measure the similarity. The grade G of the i th review
instance can be described as G(ri) = {G(mi), G(ai), G(di)},
where G(mi), G(ai) and G(di) mean the grades stemmed
from the above three factors respectively. The detail is de-
scribed as below.

1) Topic Importance: For a review text, a larger probability
distribution of the more important topic means that instance
also tends to be more prioritized. Here, we group reviews
according to the topic probability distributions, which means
a review text belongs to the topic with the largest proportion.
Thus, we have k groups of reviews, each with nj (where
j ∈ [1, k], k is the number of topics) review texts. The score
of topic importance for the review text rQ can be defined as:

G(mQ) =

∑k
j=1 λj · pQj

k
, (0 ≤ λj ≤ 1), (5)

where k represents the number of extracted topics. λj means
the weight to the j th topic and λj =

nj

n , where n is the total
number of review instances. pQj is the probability distribution
of j th topic to the review text rQ.

2) User Rating: Analogous to the impact of user ratings on
sorting topics it also influences the order of review instances.
Here, we adopt the similar grouping method as the one
described in the last section. That is, I1 means the review
group with rating 1.0 or 2.0, I2 with rating 3.0, and I3 with
rating 4.0 or 5.0. The score of user ratings G(aQ) for the
reveiw rQ is described as:

G(aQ) = wi, i ∈ [1, 3] (6)

where wi is the wight to the i th review group. Generally,
w1 + w2 + w3 = 1, 0 ≤ w3 ≤ w2 ≤ w1 ≤ 1. A larger wi
means the review group with a certain rating has more priority.

3) Review Similarity: If a review text has more resembling
texts, the theme reflected by this review would tend to be
significant. Thus, this review instance can be ranked higher. A
review text can be regarded as a probability distribution over
different topics, as shown in Table II. Here, we also adopt the
Hellinger distance to measure the similarity between reviews.
The score of review similarity G(dQ) for the review rQ is
defined as:

G(dQ) =
1∑n

i=1H(rQ, ri)
, (7)

where n is the number of user reviews in R. H(rQ, ri) means
the Hellinger distance between rQ and all the reviews in R.

4) Overall Score: With respect to the above three factors,
the overall score G(rQ) of the review rQ is denoted as:

GQ = (α1 ·G(mQ) + α2 ·G(aQ)) ·G(dQ), (8)

where αi(i ∈ [1, 2]) means the weight to each factor and (0 ≤
α1, α2 ≤ 1). Developers can adjust them according to their
own demands.

V. EMPIRICAL STUDY

We implement on a large sample of online reviews from
mobile apps. The two main objects of our experiments: (i)
to find a more appropriate topic modeling method for our
framework; (ii) track the dynamics of the themes reflected by
the representative reviews.

TABLE III: Experimental Dataset

Facebook
Facebook Messenger TempleRun2 Instagram

11-01 12,678 14,515 2,531 11,836
10-15 31,787 29,715 7,312 31,797
10-01 26,690 23,966 6,259 26,035
09-15 23,538 30,143 7,195 27,315
09-01 29,096 39,793 6,901 28,144
08-15 31,303 40,510 7,933 5,728
08-01 21,270 26,863 4,676 -

A. Dataset

We collected meta-information and user reviews of mobile
apps by (a) building a web crawler using a web-automation and
testing tool named Selenium based on Python; (b) utilizing the
app-crawling API.

Here we choose 4 main apps - Facebook (social app), Face-
book Messenger (communication app), Templerun2 (action
game app), and Instagram (social app) - for dynamic analysis.
The reasons why we choose these apps are that they belong to
several categories and some of them are possessed by the same
developer. So we can expect to detect some problems of apps
belong to one company. Most importantly, they are prevalent
in the worldwide, making sure the numbers of reviews are
considerable and sufficient for tracking the dynamics.

Also, we utilize the data of SwiftKey (6,282 reviews in
total) in [4] for comparison and evaluation. Table III illustrates
numbers of reviews within different periods or time sequences
T = {T1, T2, · · · , T7}. As can be observed from the Table III,
all the data are collected in the recent 4 months. In the first
column of the table, ‘11-01’ means the time period from ‘11-
01’ to the latest date of the reviews; ‘10-15’ indicates the
period from ‘10-15’ to ‘11-01’.

B. Performance Metrics

In this section, we introduce the performance metrics
used in our experiments. To compare with the state-of-the-
art method in [4], we adopt the same metrics such as Hit-rate
(recall) and NDCG@k.

Recall(Hit− rate) = TP

TP + FN
(9)

where TP, FN indicate the numbers of true positives (hits)
and false negatives (misses), respectively.

NDCG@k =
DCG@k

IDCG@k
(10)

Also, since our framework does not filter the non-informative
user reviews, we use the Info-rate as one index for analyzing
the proportion of informative reviews in the whole result.

Info− rate = Number of informative reviews

Number of returned results
(11)

where Info−rate ∈ [0, 1], and the higher value implies more
informative reviews are included in the results.

C. Comparison with AR-Miner

In the experiment, we choose w1, w2, w3 equal to 0.85, 0.1,
and 0.05, respectively. The whole parameters are illustrated
in Table IV. Due to the limitation of writing space, we just
describe the top 5 results of AR-Tracker(Gibbs Sampling
LDA), shown in Fig 3. We can see that the fifth review text is
non-informative and 3 of the top 5 reviews hit the groundtruth.

TABLE IV: Experimental Parameters

Parameter k α1, α2 γ1, γ2 w1 w2 w3

Value 10 1 0 0.85 0.1 0.05

Fig. 3: Top 5 Review Texts of Gibsampling LDA

The groundtruth given in [4] is derived from SwiftKey
Feedback Forum. To compare with AR-Miner, we use the same
dataset (6,282 reviews totally) and performance metrics. The
results are illustrated in Fig 4.

Fig. 4: Comparison of Different Methods

As can be seen from Fig 4, Gibbs Sampling LDA can
achieve the identical hit-rate as AR-Miner(LDA) higher than
AR-Miner(ASUM). Also, LDA without EMNB for filtering
process would not prioritize user reviews satisfyingly. In
terms of Info-rates and Hit-rates (only applicable for methods
without filtering), LSI, LDA, RP, and NMF all represents lower
than Gibbs Sampling LDA, which means these methods are
more vulnerable to noises (non-informative reviews). Although

the NDCG@10 of Gibbs Sampling LDA is a little lower than
that of AR-Miner(LDA), Gibbs Sampling LDA is higher than
AR-Miner(ASUM). And most importantly, Gibbs Sampling
LDA spends less manual labor and are more particularly appli-
cable for tremendous numbers of raw reviews. In AR-Miner,
the total number of reviews amounts to just 6,282 (3,282 for
unlabeled set), far less than the actual number (thousands of
reviews per day) for popular apps. As [4] stated, AR-Miner
took 0.5 man-hours (for 3,000 labeled data) for EMNB filtering
and 7.4 hours for purely manual inspection, while filtering
is non-necessary in our framework. Therefore, we suppose
our framework possesses more practical implications. And we
will use AR-Tracker(Gibbs Sampling LDA) for the dynamic
analysis of user reviews in the next section.

D. Dynamic Analysis

We analyze the reviews of Facebook over time. From the
top 10 review texts of different time sequences, we extract
10 key themes - Crash, Newsfeed, Picture, Post, Notifica-
tion, Privacy, Space, Video, Messenger, and Navigation. We
summarize the ranks and frequencies of occurrence of these
themes in specific time period, illustrated in Fig 5. In the cell,
the number outside the bracket indicates the rank with the
occurrence frequency inside. The only one figure in the cell
represents the corresponding rank.

Fig. 5: Summary of Top 10 Reviews in Different Periods

To clearly describe the changes of each theme, we divide
the themes into two groups: General issues (with orange
ground in Fig 5) and Content issues (with gray ground).
And we define Importance− rate as below to illustrate the
significance level of each theme for content issues.

Importance− rate = 1− rank
N

∗ (λ+ frequency) (12)

where rank and frequency represent the rank and occurrence
frequency of the theme in specific period, respectively. λ is for
regularization and here we set λ = 0.1. The Importance −
rate of each theme over time is illustrated in Fig 6.

As Fig 6 described, the trend of ’Messenger’ is the sharpest
and most interesting. This is because users were forced to
download Messenger app to check Facebook messages when
the app first launched, which aroused much discontent and

Fig. 6: Dynamics of Topical Issues

strong response, also reported by [21]. From the aforemen-
tioned analysis, we can conclude that tracking the dynamics
of the reviews can really help developers fix the main bugs or
determine some new features.

Further, we summarize the Info-rates of these apps during
time periods, described in Fig 7. It shows that Game app
TempleRun2 has the lowest Info-rates but not less than 0.5 and
all the other Info-rates are higher than 0.8, which indicates the
validity of our framework on avoiding noises.

Fig. 7: Info-rates of Different Apps Over Time

VI. CONCLUSION

User-generated contents are a favorable and crucial repos-
itory for mobile app developers. Since the user reviews are
normally massive and messy for popular apps, manual labor
is rather time-consuming and inapplicable. In the paper, we
propose a novel review-ranking scheme without manual label-
ing for filtering. Also, we produce a new index for measuring
the proportion of informative reviews in the top reviews.
Furthermore, we visualize the dynamics of the main themes
represented by these top reviews and evaluate the results with
the factual reports or app change history.

There are two major advantages of our framework: (i) it
does not need any manual labor and can achieve similar effect
as the state-of-the-art method - AR-Miner. (ii) It can track the
dynamics of main themes reflected by the top reviews, which
would facilitate developers to determine the next commit.

ACKNOWLEDGMENT

This work was supported by the National Basic Research
Program of China under 973 Project No. 2011CB302603, the
National Natural Science Foundation of China under Project

No. 61100077, and the Shenzhen Basic Research Program
under Project No. JCYJ20120619152636275. Yangfan Zhou
is the corresponding author.

REFERENCES

[1] X. Lu, H. Wang, J. Wang, J. Xu, and D. Li, “Internet-based virtual
computing environment: beyond the data center as a computer,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 309–322, 2013.

[2] “The importance of reviews and ratings.” http://app-promo.com/
aso-tip-5-the-importance-reviews-ratings/.

[3] “How in-app review mechanics pushed Flappy Bird to
the top of the charts.” http://venturebeat.com/2014/02/11/
how-in-app-review-mechanics-pushed-flappy-bird-to-the-top-of-the-charts/.

[4] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace.” in
ICSE, 2014, pp. 767–778.

[5] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1276–1284.

[6] D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in Proceedings
of the 23rd international conference on Machine learning. ACM, 2006,
pp. 113–120.

[7] C. Wang, D. Blei, and D. Heckerman, “Continuous time dynamic topic
models,” arXiv preprint arXiv:1206.3298, 2012.

[8] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in SIG-
SOFT FSE, 2014.

[9] S. Havre, E. Hetzler, P. Whitney, and L. Nowell, “Themeriver: Visu-
alizing thematic changes in large document collections,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 8, no. 1, pp. 9–20,
2002.

[10] A. Bougouin, F. Boudin, B. Daille et al., “Topicrank: Graph-based topic
ranking for keyphrase extraction,” in International Joint Conference on
Natural Language Processing (IJCNLP), 2013, pp. 543–551.

[11] H. Yu, C. Ho, Y. Juan, and C. Lin, “Libshorttext: a library for short-
text classification and analysis,” Technical Report. http://www. csie. ntu.
edu. tw/˜ cjlin/ papers/libshorttext. pdf, Tech. Rep., 2013.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[13] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Mining Software Repositories (MSR),
2013 10th IEEE Working Conference on. IEEE, 2013, pp. 41–44.

[14] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing
the devices to test your app on: A case study of android game apps,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
the Foundations of Software Engineering. ACM, 2014.

[15] D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77–84, 2012.

[16] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman, “Indexing by latent semantic analysis,” JASIS, vol. 41, no. 6,
pp. 391–407, 1990.

[17] P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text
samples for latent semantic analysis,” in Proceedings of the 22nd annual
conference of the cognitive science society, vol. 1036. Citeseer, 2000.

[18] C.-J. Lin, “Projected gradient methods for nonnegative matrix factor-
ization,” Neural computation, vol. 19, no. 10, pp. 2756–2779, 2007.

[19] L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang, H. Sun, and Z. Chen,
“Cqarank: jointly model topics and expertise in community question
answering,” in Proceedings of the 22nd ACM international conference
on Conference on information & knowledge management. ACM, 2013,
pp. 99–108.

[20] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu, “Rankclus:
integrating clustering with ranking for heterogeneous information net-
work analysis,” in Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology.
ACM, 2009, pp. 565–576.

[21] “Facebook Messenger users gripe and grum-
ble in online reviews.” http://www.cnet.com/news/
facebook-users-share-messenger-displeasure-in-online-pool/.

