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Abstract

For the two-sample location problem we consider a general class
of tests, all members of it are based on U-statistics. The asymp-
totic efficicacies are investigated in detail. We construct an adaptive
test where all statistics involved are suitably chosen U-statistics. It
is shown the adaptive test proposed has good asymptotic and finite
power properties.
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1 Introduction

Let Xy,...,X,, and Y7,...,Y,, be independent random samples from popu-
lations with absolutely continuous distribution functions F'(z) and F(z — 1),
¥ € R, respectively. We wish to test

H()I ¥ =0

against
Hl : 19 > 0.

The Wilcoxon-Mann-Whitney test is the most familiar nonparametric test
for this problem. It was generalized to linear rank tests with various other
scores, such as the Median test, the normal scores test and the Savage test
are proposed, see e.g. Hdjek, Sidak and Sen (1999).



Another generalization is to consider a class of tests based on U-statistics.
This interesting class of tests has been attached considerable attraction in the
literature (cf. e.g. Deshpande and Kochar (1982), Shetty and Govindarajulu
(1988), Kumar (1997), Xie and Priebe (2000)).

Following Kumar, Singh and Oztiirk (2003) a general class Uy, of U-
statistics is defined in Section 2. Local alternatives of the form ¢ = 0y =
6/ V/N, N = ny +ns, are considered and the asymptotic efficacies of the tests
based on Uy, are compared detailly in Section 3. It is shown that there are
different tests of this type which are efficient for densities with short, medium
or long (right or left) tails, respectively. For example, the test based on Us ;
is efficient for densities with short tails, and that based on Us 3 is efficient for
densities with long tails. However, the practising statistician has generally
no clear idea on the underlying density, thus he/she should apply an adaptive
test which takes into account the given data set. In Sections 4 and 5 two
versions of such an adaptive test are proposed, one of them is distribution-
free. The adaptive tests first classify the underlying distribution with respect
to some measures like (right and left) tailweight and skewness and then select
an appropriate test based on U-statistics. In Section 6 a simulation study is
performed and the finite power is compared with the asymptotic power. It is
shown that one of the adaptive tests behaves well also for moderate sample
sizes.

2 Test statistics

We consider the class of U-statistics, which was proposed by Kumar, Singh
and Oztiirk (2003). Let k£ and i be fixed integers such that 1 < i < k <
min(ng, ny). Define

2 it zewe <yer and Te—ire < Yg—it)k
Qi(w1, .. Y1y Yk) = 1 if either 2 < Yupk OF Th—itik < Yk—it1)k
0 otherwise,

where x(;); is the ith order statistic in a subsample of size & from the X-
sample (and likewise for y’s). Let Uy, be the U-statistic associated with
kernel ®;, i.e.
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where the summation extends over all possible combinations (71, ...,7x) of
k integers from {1,...,mn;} and all possible combinations (si,...,s;) of k
integers from {1,...,ny}. The null hypothesis Hj is rejected in favour of H;
for large values of Uy ;.

Remark: The following special cases are of particular interest.
For i =1 and k = 1 we have the Wilcoxon-Mann-Whitney test.

For i = 1 or i = k we have the Despande-Kochar test (cf. Despande and
Kochar, 1982).

For i = (k +1)/2 we have the Kumar-test (cf. Kumar, 1997).
Let
) = E&(x, Xy, ..., X, Y1, ..., )
y) = E&;(Xq,..., Xk y,Ys, ..., )
) (
(

where E and Var denote the expectation and variance rescpectively. More-
over, let Fi;),(.) be the cummulative distribution function of the ith order
statistics of a sample of size k.

Proposition 2.1 (cf. Kumar, Singh and Oztiirk, 2003) Under assump-
tions N — 0o, n1/N — X, 0 < X < 1 the limiting distribution of NY/*(Uy; —

Mii)/ Ok is standard normal, where expectation ng,; = EUy,; and variance

or; =var (Uy;) have the forms

Nki = MN1Ng (/ Foy(y) dFaye(y — 0) +/ Flo—ivvr(y) dFp—iv1ye(y — 9)) — N1No

L2 (4) L2 (4)
Ay = ning(S0 4 oy

Remark: Under Hy we have n;; = 0 and
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where py; depends on k and ¢ only. The expression for pj; is rather long,
that is why we do not write it out. It can be found in Kumar, Singh and
Oztiirk (2003).

3 The asymptotic efficacies

The asymptotic Pitman efficacies AE of the statistics Uy ; under the alterna-
tive Oy = N~1/2. 0 are given by

AE(Uyalf) = M1 =X) - CLi(f),

where f(-) denotes the probability density function belonging to the c.d.f. F(+)
and

((5))?

Cri(f) = e

. ( /_ Z( F(2)?2(1 — F(2))*% f2(z) dat
[ F ) )

(c¢f. Kumar, Singh and Oztiirk, 2003).

(Note that the asymptotic efficacy is defined by the limit of 7 ; /0% ;.)

To obtain procedures that are practically important also for moderate to
small sample sizes we restrict the further investigations to the case of small
k, k <5.

We compute the asymptotic Pitman efficacies for all tests Uy; with 1 <
1 <k, k <5. Values of the factors C’,fz( f) for various densities are presented
in Table 1. The L-DE density was proposed by Policello and Hettmansperger
(1976), the U-L by Gastwirth (1965), the RST is named after Ramberg,
Schmeiser and Tukey, cf. Ramberg and Schmeiser (1972, 1974), CN(e, o)
is the scale contaminated normal with contaminating proportion ¢, Mielke
denotes the Mielke (1972) density and BT is the density of Box and Tiao
(1962).

The bolded entries denote the, for the given density, asymptotically best
test among the considered tests. On the first view we see that the columns
for Us1,Us1 and Us s have the most bolded entries. This observation gives
rise to the idea to base an adaptive test on these few statistics. (The classical
test Uy is also included in the adaptive test.)



For various densities asymptotic power functions (together with finite
power functions) are given in Figures 3 and 4.

The blue dotted line is for U, 1, the violet short-dashed line for Us;, the
green long-dashed line for Us;, the red dashed-dotted line for Us 5 (and the
black continuous line for the adaptive test, see below).

Applying a similar idea of Hall and Joiner (1982) the content of informa-
tion in the asymptotic efficacy matrix is analysed by a principal component
analysis where the densities are the observations and the efficacies of the U; ;
are the variables. The first principal component explains already 96% of the
variabilty (Figure 1). For better visibility we preferred a two-dimensional
plot. In Figure 1 nearly symmetric densities with short tails (S) are denoted
by a green plus, that with medium tails (Ml and Mh) by a violet star and a
blue X and that with long tails (L) with a red dot. (Ml and Mh stand for
medium to light tails and medium to heavy tails respectively.) Skew densities
are denoted by a black plus (short tails, s) and a yellow star (medium tails,
m) respectively. The dots (L) denote densities with long tails, the stars (M
and m) denote densities with medium tails, and the plus (S and s) denote
densities with short tails. The small letters (m and s) are for skew densities.
On the left side we have densities with long tails, in the centre that with
medium tails, and on the right that with short tails. For an exact definition
what we understand by long, medium and short tails see below. On the
first view we see that the AE(Uy,;) classify the densities according to their
tailweight. The skewness seems to play a marginal role only.

4 Selector statistics

There are some proposals for adaptive tests for the two-sample location prob-
lem in the literature, see e.g. Hogg (1974, 1982), Hogg, Fisher and Randles
(1975), Ruberg (1986) and Biining (1994). We apply the concept of Hogg
(1974), that is, to classify at first the type of the underlying density with
respect to one measure of skewness § and to three measures of tailweight ¢,



Figure 1: The first two principal components of the asymptotic efficacy ma-
trix of Table 1
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t, and ;, which are defined by

. Q(0.952+Q(0.052—2-Q(0.5) W
Q(0. 95) ((0.05)

;_ Q095 Q(0.05) @)
0.85) — O(0.15)
i = = ) (3)
5) — Q(0.15) Q(0.85) — Q(0.5)

where Q(u) is the so-called classical quantile estimate of F~1(u),

o
Q(

X Q(0.5) — Q(0.05) E—Q(O‘%) Q0.5
Q0.5
(1-

) Xy = (1=0) (X —X@) if u<l1/(Z-N)
Qu) = § (1 =0) - Xy + 0 - X(j4) if 2N SU<22NN (4)

Xvy +0(Xv) — Xwv-1)) if uw>(2-N-1)/(2-N),

where 6 = N -u+1/2—j and j = |N -u+ 1/2|. Note that #; and #, are
measures of left tailweight and right tailweight, respectively.

In Tables 2 and 3 the values of the corresponding theoretical measures
s, t, t,. and t;, for various selected densities are presented. (For symmetric
densities we have s =0 and t = t, = t;.)

Comparing Table 1 with Tables 2 and 3 roughly we see that Us; is the
asymptotically best test for symmetric densities with small tailweight, Us
for symmetric densities with small to medium tailweight, U ; for symmetric
densities with medium to larger tailweight, and Us 3 for symmetric densities
with large tailweight. The tests Us; and U, ; should be included in a adaptive
test since they are the (asymptotically) best for the normal and for the logistic
density, respectively (at least among the considered tests).

The measure of skewness gives no clear classification idea. That is why
we consider left tailweight ¢; and right tailweight ¢, and classify densities
as densities with partially short tails if ¢; < 1.55 or ¢, < 1.55. They are
classified to have partially medium tails if ¢; < 1.8 or ¢, < 1.8 and if they
have not partially short tails.

5 Presentation of the adaptive test

The reasoning of the last two sections gives rise to the following adaptive
test.



Define regions Fi, ..., E7 of R* which are based on the so called selector
statistic S = (8,¢,1;,t,)

By ={t < 155,35 <0.2} “nearly symmetric, short tails” (S)

By ={1.55 <t < 1.65,]3 <0.2} “nearly symmetric, light medium tails” (MI)
B3 ={1.65<{<18,]3 <0.2} “nearly symmetric, heavy medium tails” (Mh)
Ey={t>18]3<0.2} “nearly symmetric, long tails” (L)

Es = {({; < 1.55 V {, < 1.55), ]3| > 0.2}  “skew, partially short tails” (s)
Es = {(t; > 1.65 A {, > 1.65), ]3| > 0.2}  “skew, long tails” (1)
E; = {t; > 1.55, {, > 1.55,]8] > 0.2} \Es “skew, partially medium tails” (m)
where 3, %, and £, are given by (1) to (3). Note that there was no density
which belongs to class Ej.

Looking again at Tables 2 and 3 we see that the vast majority of den-
sities is classified correctly, i.e. they fall in that class that has the highest
asymptotic power. If the classification is not correct, then the efficacy loss is
very small in almost all cases. In Table 1 the chosen test is underlined if it
is not already the (bolded) best.

Now, we propose the Adaptive test A which is based on the four U-
statistics Us 1, Us1, Ui, and Us 3. We denote the tests by (5,1), (3,1), (1,1)
and (5,3), respectively.

(5,1) if SeFEk UE;
B ) a,1)  if SeFE;

(5,3) if Se€EUE;s

In Figure 2 the corresponding adaptive scheme is given. As indicated
above the skewness plays only a marginal role. It is included in the adaptive
scheme implicitely by left and right tailweight.

The two-stage procedure defined above is asymptoticaly distribution-free
since the selector statistic S is based on the order statistic only and the
U-statistics are based on the ranks only.

The Adaptive test A is only asymptotically distribution-free because
asymptotic critical values are used in the adaptive scheme.

Proposition 5.1 Let o be the standard deviation of the underlying cdf. I,
if it exists and let {Ox} be a sequence of ‘near’ alternatives with /N0y —



Figure 2: Adaptive scheme
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orl. The asymptotic power function of the Adaptive test A equals

1= ®(21-q — JAE([Us1|f) -0p-0) if f€EUE;
B(6) = 1= ®(z1 0 —/AEUsa|f)-or-0) if feEBUE;

1= ®(z210 —AE(UL[f)-0p-0) if f€E;

1= ®(21-0 — VAE(Us3|f) - oF - 0) if f€E4UEF;g

Proof: Let be h = 1 if (k,i) = (5,1), h = 2 if (k,i) = (3,1), h = 3 if
(k,i) =(1,1), h =41if (k,i) = (5,3) Let be T} = U1, T = Us 1, T3 = Uy 4,
T4 = U5’3 and Dl = El UE5, D2 = E2 UE7, Dg = Eg, D4 = E4UE6.
The proposition follows from the total probability theorem and from the
consistency of the selector statistics, i.e.

4
B0) = Z P,.0(Th, > can|Th chosen) - P,,.o(T}, chosen)
h=1
e 1+o(1) if feD,
= ;(1 —®(21_0 —VAE(TH|f) -0 - 0) + 0(1)) . {o(l) olse

~ 1_(I>(Zl—a_ AE(Th|f)O'F€9) if f &€ Dy,
where ¢, is the (1 — a)-quantile of the asymptotic null distribution of 7,. g

Remark: For the Cauchy the factor o is given by o7 = ¢4y = FH(P(1)) =
1.8373. This factor is introduced to have similar power values for the various
distributions.

The Adaptive test A(S) is based on selector statistics computed from
the pooled sample. However, location differences may effect the estimates of
tailweight and skewness. That is why we consider also a modification A(S")
of the adaptive test, where tailweights and skewness are estimated from the
single samples. Let §; and &, fm' and fm-, 1 = 1,2 be statistics of the form
(1) to (3) for skewness and tailweight, left tailweight and right tailweight,
respectively. Applying the A(S')-test the statistics

Ak m n ., ~e m . n .
S :N81+N82 t :Ntl—f‘NtQ
ty = Tfll+££l2 t, = @Erl+££r2

N N N N7V

10



are used instead of 5, £, {; and ¢,. This procedure is also asymptotically
distribution-free. However, it is not distribution-free also if the exact critical
values are used. This property is due to the fact that the selector statistic is
no longer based on the pure order statistic.

Remark: Another adaptive test which is also based on U-statistics, but with
another classes of U-statistics (and in another context) is proposed in Késsler
(2005). It turns out, that the adaptive test presented here is better for the
majority of considered densities, especially for short tail densities (uniform,
exponential).

Remark: Other candidates for an adaptive test are linear combinations of
U-statistics which are proposed by Xie and Priebe (2002). The authors define
two families, there denoted by C, s and WC, ;, of generalized Mann-Whitney-
Wilcoxon (GMWW) statistics and of weighted generalized Mann-Whitney-
Wilcoxon (WGMWW) statistics and investigate the case r = s (r and s are
the subsample sizes, r = s = k in our notation). For unimodal densities
the possible gain in asymptotic power is very small if linear combinations of
U-statistics are admissed (except perhaps for the normal). An idea may be
to use the optimal linear combination of U-statistics if the density is normal
or nearly normal. However, this will complicate the adaptive procedure and,
perhaps, decrease the power for other densities (that are classified in the
same class as the normal).

For multimodal densities the consideration of tests of the class WGMWW
seems to be useful.

6 Comparison to adaptive tests based on lin-
ear rank statistics

Restrictive adaptive tests for the two-sample location problem based on lin-
ear rank tests are proposed by Hogg (1974, 1982), Hogg, Fisher and Randles
(1975), Handl (1986) and Biining (1994). All of them are based on the con-
cept of Hogg (1974), and they use few linear rank statistics, with the follow-
ing scores: Gastwirth (GA, for short tails), Wilcoxon (WI, for medium tails),
Median (Hogg, 1974, and Hogg et al. (1975), Long-tail (LT, Handl (1986)
and Biining (1994), both for long tails) and Hogg-Fisher-Randles (HFR, for
right-skew densities). Since the Median test is known to be bad for most
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densities (except for the doubleexponential), we restrict to the scores GA,
WI, LT and HFR, and call the corresponding adaptive scheme B(S) (where
the form of S is not of interest here). In Table 4 we take, for some densi-
ties, that tests that are, asymptotically, the two best among the tests in the
Adaptive schemes A(S) and B(S), respectively.

For the classical densities considered the U-statistics based test A(S) has
slightly higher asymptotic power than the test B(S). (For the logistic they
are, of course, the same.) For the densities U-L (0.75) and L-D (0.75) that
are ‘optimal’ densities for the tests GA and LT (cf. Biining and Kossler,
1999) it is vice versa.

7 Simulation study

In order to assess whether the asymptotic theory can also be applied for
medium to small sample sizes a simulation study (10,000 replications each)
is performed. We choose the following six distributions:

- Uniform distribution (density with small tailweight),

- Normal distribution (density with medium tailweight),

- Logistic distribution (density with medium tailweight),

- Double exponential distribution (density with large tailweight),
- Cauchy distribution (density with very large tailweight),

- Exponential distribution (very skew density)

We consider the four single tests Us1,Us 1, Ui 1, Us s and the two Adap-
tive tests A(S) and A(S’). The sample sizes ny = ny = 10, ny = ny = 40
and the alternatives Oy = N~Y20o; with various 6 are considered. Re-
call that the factor op denotes the standard deviation of the underlying
distribution function F. The factor op is introduced to have similar val-
ues of the power function. (For the Cauchy density the factor is set to
OF = 0can = F71(®(1)) = 1.8373.)

The Adaptive test A(S’) is slightly anticonservative, also for n; = ny =
40, with correspondingly slightly higher power than the Adaptive test A(S)
(except for the Cauchy). This test is not considered here. For ny = ny = 40
the results of the simulation study are summarized in Figures 3 and 4. The
blue dotted line is for Uj 1, the violet short-dashed line for Us 1, the green long-
dashed line for Us;, the red dashed-dotted line for Us 3 and the continuous
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line is for the Adaptive test A(S). At first we see that, for n; = ny = 40 the
finite power is well approximated by the asymptotic power (except for the
Cauchy). Moreover, it can be seen that, for a given density, there is always,
sometimes together with another test, a single test which is the best. The
test U, is the best for the uniform and for the exponential (together with
the Adaptive test A(S)), the test Uy is the best for the normal and for the
logistic density, and the test Us s is the best for the doubleexponential and
for the Cauchy. All these facts are not surprising. Also, not surprisingly,
the tests Us; and Us3 may be bad for some densities. The tests U;; and
A(S) are, over all densities, the best. However, for the uniform and for the
exponential densities the adaptive test is clearly better.

For the Cauchy density, somewhat surprisingly, the test U;; is clearly
better than the adaptive tests. The Adaptive test A(S’) is better than A(S).
The reason for these facts is, that for small and moderate sample sizes, the
misclassification rate into the class E is relatively large.

8 Conclusions

What are the results of our study? At first, we see that the finite power of
the considered tests based on U-statistics can be well approximated by their
asymptotic power. Second, there are modifications of the “classical” Mann-
Whitney test MW that may have (considerably) higher power than MW for
symmetric as well asymmetric densities. Third, the Adaptive test A(S) is a
serious concurrent for the Wilcoxon-Mann-Whitney test U; ; for moderate to
large sample sizes.
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Figure 3: The asymptotic and finite (ny = ny = 40) power functions of the
tests Ui 1, Usq,Us 1, Us 3 and A(S); densities: uniform, normal and logistic.
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Figure 4: The asymptotic and finite (ny = ny = 40) power functions of the
tests Uy 1, Us 1, Us 1, Us 3 and A(S), densities: doubleexponential, Cauchy and
exponential (Continuation from Figure 3).
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Table 1: Values of the factors Cf ;(f), k < 5, for various densities f.

Density Ui U1 Us 1 Us,2 Usn Ui Us1 Us,2 Us 3
Uniform 12.00 14.74 22.09 7.053 30.01 7.535 38.00 9.109  6.095
Normal 0.954 0976 0.985 0.873 0.950 0.889 0.900 0.931 0.832

Logistic 0.333 0.332 0313 0.324 0.284 0.327 0.254 0.332 0.315
Doubleex 0.750 0.705 0.576 0.833 0.462 0.816 0.379 0.749 0.866

Cauchy 0.304 0.268 0.182 0.382 0.118 0.368 0.077 0.318 0.409
12 0.520 0489 0.398 0.572 0.311 0.566 0.244 0.538 0.579
t1o 0.843 0.846 0.816 0.802 0.755 0.813 0.688 0.835 0.772

L-DE 0.55 0.745 0.701 0.574 0.826 0.461 0.809 0.378 0.728 0.822
L-DE 0.61 0.726  0.686 0.567 0.798 0.458 0.783 0.377 0.728 0.822
L-DE 0.70 0.672 0.641 0.544 0.720 0.448 0.712 0.373 0.678 0.730
L-DE 0.75 0.630 0.606 0.524 0.663 0.438 0.659 0.368 0.637 0.665
L-DE 0.80 0.581 0.563 0.497 0.599 0.423 0.599 0.360 0.587 0.594
L-DE 0.90 | 0.464 0457 0422 0.460 0.373 0463 0.328 0.466  0.450
L-DE0.95 | 0.400 0.396 0.372 0391 0.334 0394 0.300 0.399 0.380
L-DE 097 | 0.373 0371 0349 0363 0.315 0.367 0.282 0372 0.353
L-DE 0.99 | 0.347 0.345 0325 0.337 0.295 0.340 0.264 0.345 0.328
U-L 0.55 0.298 0.299 0.289 0.282 0.267 0.287 0.242 0.296 0.271
U-L 0.61 0.250 0.254 0.255 0.228 0.242 0.233 0.224 0.248 0.215
U-L 0.70 0.173 0.181 0.194 0.147 0.195 0.152 0.188 0.169 0.134
U-L 0.75 0.130 0.139 0.156 0.105 0.163 0.110 0.161 0.125 0.094
U-L 0.80 0.090 0.099 0.116 0.069 0.126 0.073 0.130 0.085 0.061
U-L 0.90 0.026 0.029 0.038 0.018 0.048 0.019 0.054 0.022 0.015
RST (-1) 0.042 0.037 0.024 0.055 0.015 0.052 0.009 0.044 0.060

RST (-0.5) 0.464 0427 0.328 0.533 0.243 0.522 0.182 0.480 0.550
RST (-0.4) 0.891 0.832 0.665 0994 0.511 0980 0.396 0919 1.016
RST (-0.3) 1.952  1.850 1.537 2113 1.230 2.095 0987 2.003 2.132
RST (-0.2) 5.426 5220 4.518 5.678 3.765 5.664 3.135 5.524  5.662
RST (-0.1) | 26.87 26.27 23.73 27.13 20.61 27.22 17.81 27.09 26.71
RST (0.05) | 148.6 149.2 144.1 141.5 1334 1433 1219 1470 136.7
RST (0.14) | 23.08 23.56 23.73 21.15 22.84 21.55 2159 2250 20.19
RST (0.2) 1291 1333 13.81 11.52 13.65 11.78 13.20 1245 10.91
RST (0.4) 5.036 5425 6.196 4.078 6.686 4.222 6.978 4.643 3.762
CN (.01,2) 0.941 0960 0.966 0.863 0.928 0.879 0.876 0.918 0.823
CN (.02,2) 0.927 0944 0.947 0853 0907 0.869 0.853 0.907 0.814
CN (.03,2) 0.887 0.900 0.893 0.823 0.846 0.837 0.788 0.871 0.787
CN (.05,2) 0.824 0.831 0.811 0.775 0.757 0.787 0.694 0.815 0.744
CN (.01,3) 0.934 0952 0.954 0.859 0913 0.875 0.859 0913 0.820
CN (.02,3) 0914 0.928 0.924 0.845 0.878 0.860 0.819 0.896 0.807
CN (.03,3) 0.854 0.861 0.839 0.804 0.780 0.817 0.713 0.846 0.771
CN (.05,3) 0.761 0.759 0.716 0.738 0.644 0.747 0.569 0.766 0.712
CN (.01,5) 0.928 0.944 0943 0.855 0.899 0.871 0.841 0909 0.817
CN (.02,5) 0.901 0.913 0.902 0.838 0.850 0.853 0.786 0.887 0.802
CN (.03,5) | 0.825 0.825 0.789 0.788 0.718 0.799 0.642 0.825 0.757
(:05,5)

0.709 0.696 0.631 0487 0.544 0.713 0.461 0.726 0.686
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Density U Uy Ui Usp Uiy Usp Usy Usp  Usg
Mielke (0.2) 0.620 0.591 0.500 0.667 0.413 0.658 0.347 0.620 0.682
Mielke (0.4) 0.521 0.503 0.439 0545 0.373 0541 0.319 0.521 0.548
Mielke (0.6) 0.444 0.433 0389 0.452 0.339 0.452 0.295 0.444 0.449
Mielke (0.8) 0.383 0.377 0348 0.380 0.309 0.382 0.273 0.382 0.374
Mielke (1.5) 0.245 0.249 0.246 0.227 0.233 0.231 0.215 0.242 0.215
Mielke (2.0) 0.188 0.193 0.200 0.167 0.195 0.171 0.185 0.184 0.156
Mielke (5.0) 0.061 0.067 0.079 0.047 0.087 0.049 0.090 0.057 0.042
Mielke (20) 0.006 0.007r 0.010 0.004 0.013 0.004 0.015 0.005 0.003
BT (0.25) 0.660 0.658 0.624 0.640 0.572 0.645 0.520 0.650 0.626
BT (0.5) 0.444 0.433 0.389 0.454 0.340 0.452 0.298 0.441 0.454
BT (0.75) 0.292 0279 0.239 0311 0.200 0.308 0.170 0.291 0.318
BT (1.25) 0.118 0.116 0.098 0.131 0.081 0.132 0.068 0.123 0.136
BT (1.5) 0.073 0.077 0.070 0.080 0.061 0.083 0.055 0.080 0.081
Exponential 3.000 3.684 5.522 1.763 7.502 1.884 9.500 2.277 1.524
Gamma (1.5) 1.216 1.365 1.705 0.895 1.994 0.936 2.230 1.062 0.808
Gamma (2.0) 0.750 0815 0.951 0.595 1.047 0.617 1.112 0.683 0.546
Gamma (2.5) 0.540 0.578 0.651 0.445 0.694 0.459 0.717 0.502 0.412
Gamma (3.0) 0.422 0447 0.493 0355 0.515 0.365 0.523 0.396 0.330
Gamma (4.0) 0.293 0.307 0.330 0.252 0.337 0.259 0.336 0.278 0.237
Gamma (5.0) 0.224 0234 0.248 0.196 0.250 0.201 0.246 0.214 0.184
Gamma (10) 0.103 0.106 0.110 0.092 0.108 0.094 0.106 0.100 0.087
Weibull (1.1) 2919 3448 4.793 1.898 6.135 2.008 7.407 2360 1.673
Weibull (1.5) 3.391  3.706 4.375 2.662 4.877 2.762 5.249 3.058 2.446
Weibull (2.0) 4.712 4980 5.447 3996 5.665 4.110 5.470 4.428 3.738
Weibull (2.5) 6.516 6.795 7.203 5.693 7.276 5835 7.182 6.216 5.364
Weibull (3.0) 8.732  9.060 9.450 7.736 9.413 7916 9.174 8387 7.315
Weibull (4.0) 14.33 1478 15.25 12.84 15.01 13.12 1448 13.84 12.18
Weibull (5.0) 21.46  22.09 22.70 19.30 22.26 19.71 21.39 20.76 18.32
LogNor (0.05) | 382.5 391.0 395.0 349.3 281.3 356.0 361.2 3726 3329
LogNor (0.1) 95.97 98.21 99.44 8747 96.18 89.18 91.29 9341 83.31
LogNor (0.3) 11.10 1147 11.89 9.893 11.76 10.12 11.37 10.70  9.363
LogNor (0.5) 4.328 4559 4946 3.690 5.094 3.797 5.104 4.095 3.448
LogNor (0.9) 1.768 1.984 2478 1.290 2874 1.356 3.173 1.561 1.153
LogNor (1.0) 1.574 1.804 2350 1.090 2.819 1.154 3.195 1.356 0.959
LogNor (1.1) 1.445 1.692 2304 0944 2860 1.007 3.328 1.211 0.817
LogNor (1.5) 1.307 1.690 2.765 0.640 3.924 0.708 5.045 0.947 0.509
RST (.2,.4) 7.599 8040 8812 6413 9.161 6.608 9.256 7.156 5.976
RST (.2,.49) 6.638 7.107 8.005 5449 8.528 5.634 8.800 6.170 5.040
RST (.4.,49) 4532 4933 5.767 3.582 6.353 3.720 6.750 4.127 3.284
RST (-.2,-.4) 2.061 1991 1.743 2.135 1.465 2134 1.227 2.099 2.116
RST (-.2,-.49) | 1473 1.435 @9 1.496 1.010 1.502 0935 1.495 1.471
RST (.4-,.49) 0.659 0.613 0.485 0.742 0.369 0.730 0.282 0.681 0.760




Table 2: Values of the tailweight t for various symmetric densities

Density t Density t Density t Density t
Uniform 1.286 | Normal 1.587 | Logistic 1.697 | Doubleexp  1.912
Cauchy 3.217 | to 2.107 | t19 1.672

L-DE 0.55 1.911 | L-DE 0.61 1.905 | L-DE 0.70  1.884 | L-DE 0.75  1.864
L-DE 0.80 1.836 | L-DE 0.90 1.753 | L-DE 0.95 1.712 | L-DE 0.97  1.703
L-DE 0.99 1.698

U-L 0.55 1.668 | U-L 0.61 1.623 | U-L 0.70 1.534 | U-L 0.75 1.474
U-L 0.80 1.409 | U-L 0.90 1.300

RST (-1) 3.451 | RST (-0.5) 2.302 | RST (-0.4) 2.146 | RST (-0.3) 2.010
RST (-0.2) 1.891 | RST (-0.1) 1.788 | RST (0.05) 1.657 | RST (0.14) 1.591
RST (0.2) 1.552 | RST (0.4) 1.446

CN (.01,2) 1.592 | CN (.02,2) 1.597 | CN (.03,2) 1.601 | CN (.05,2) 1.611
CN (.01,3) 1.596 | CN (.02,3) 1.605 | CN (.03,3) 1.615 | CN (.05,3) 1.635
CN (.01,5) 1.600 | CN (.02,5) 1.614 | CN (.03,5) 1.629 | CN (.05,5) 1.665
Mielke 0.2 1.860 | Mielke 0.4 1.812 | Mielke 0.6  1.770 | Mielke 0.8  1.732
Mielke 1.5 1.626 | Mielke 2.0  1.571 | Mielke 5.0  1.404 | Mielke 20.0 1.292
BT (0.25) 1.670 | BT(0.5) 1.752 | BT(0.75) 1.833 | BT(1.25) 1.992
BT (1.5) 2.071

20



Table 3: Values of skewness s, tailweight ¢, left tailweight ¢; and right tail-
weight ¢, for various skew densities

Density Skewness Tailweight Left tailweight Right tailweight
Exponential 0.564 1.697 1.210 1.912
Gamma (1.5) 0.460 1.651 1.284 1.846
Gamma (2.0) 0.401 1.668 1.329 1.810
Gamma (2.5) 0.354 1.621 1.360 1.785
Gamma (3.0) 0.338 1.653 1.382 1.768
Gamma (4.0) 0.298 1.643 1.412 1.743
Gamma (5.0) 0.271 1.636 1.432 1.727
Gamma (10.0) 0.202 1.619 1.480 1.686
Weibull (1.1) 0.508 1.654 1.237 1.859
Weibull (1.5) 0.335 1.571 1.329 1.728
Weibull (2.0) 0.194 1.544 1.411 1.649
Weibull (2.5) 0.103 1.541 1.470 1.605
Weibull (3.0) 0.040 1.546 1.513 1.577
Weibull (4.0) -0.04 1.559 1.573 1.544
Weibull (5.0) -0.088 1.571 1.612 1.525
LogNormal (0.05) | 0.041 1.588 1.563 1.611
LogNormal (0.1) 0.082 1.591 1.541 1.634
LogNormal (0.3) 0.242 1.626 1.457 1.749
LogNormal (0.5) 0.390 1.695 1.386 1.879
LogNormal (0.9) 0.629 1.940 1.274 2.202
LogNormal (1.0) 0.676 2.024 1.251 2.298
LogNormal (1.1) 0.719 2.117 1.229 2.401
LogNormal (1.5) 0.844 2.588 1.160 2.890
RST (0.2,0.4) 0.029 1.486 1.486 1.486
RST (0.2,0.49) 0.014 1.459 1.469 1.449
RST (0.4,0.49) -0.011 1.426 1.436 1.417
RST (-0.2-,0.4) 0.375 2.073 1.718 2.289
RST (-0.2,-0.49) 0.490 2.195 1.657 2.470
RST (-0.4,-0.49) 0.153 2.226 2.086 2.342
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