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Abstract—We consider a system with a single base station
communicating with multiple users over orthogonal channels
while being assisted by multiple relays. Several recent works have
suggested that selection, i.e., a single relay helping the source, is
the best option in terms of the resulting complexity and overhead.
However, in a multiuser setting, optimal relay assignment is a
combinatorial problem. In this paper, using the sum rate as
our design metric, we develop a convex optimization problem
that provides an extremely tight upper bound on performance.
We also provide a heuristic to find a close-to-optimal relay
assignment. Simulation results using realistic channel models
demonstrate the efficacy of the proposed scheme.

I. I NTRODUCTION

Traditionally, spatial diversity in a wireless communica-
tion system is harnessed by having multiple antennas at the
transmitter and/or receiver. However, constraints on space,
power and cost might not permit the use of multiple antennas
at the transceivers. In such a situation, multiple distributed
transceivers, each with a single antenna, can cooperate with
one another to form virtual antenna arrays, and mimic a multi-
antenna system. Such a distributed system, unlike multipleco-
located antennas, can also help address large-scale fading.

First introduced by Sendonaris et al. in [1], wherein mobile
users relay for one another, many cooperation schemes have
been studied till date [1–4]. In networks with multiple relays,
the traditional strategy has been to let all the relays forward
their messages to the destination. The work in [2] and [3]
proposed repetition-based cooperation schemes includingfixed
amplify-and-forward (AF) and decode-and-forward (DF) using
orthogonal channels (time/frequency slots). However, having
relays transmit on orthogonal bands is bandwidth inefficient.
An alternative proposed is to use distributed space-time codes
(DSTC), but this requires symbol level synchronization which
is difficult to implement over a distributed network. It has
recently been shown that all the benefits of cooperative diver-
sity can be achieved with minimum overhead if a single ‘best’
relay cooperates with the source. This scheme is referred to
as selection cooperation [5], [6]. Relay selection has received
significant attention recently [5–9].

In the case of a single source-destination pair, choosing the
best relay is fairly straightforward and solved for both DF [6]
and AF [7] relaying. In both cases, the best relay is the one
that contributes the most to the output signal-to-noise ratio
(SNR). The selection gets significantly more complicated in
the more practical case of multiple information flows. To stay
within its power budget, a relay must then divide its available

power between all flows it supports. Consequently, a relay that
is best for a single flow may not remain the best overall. Relay
selection then becomes a combinatorial problem. In [6], the
authors present ad hoc approaches to approximate the optimal
solution with limited complexity. That work did not address
the issue of optimal power allocation across flows.

Relaying, in the context of cellular networks that has
received limited attention [10]. In this paper, we develop relay
selection as a by-product of a rate-maximization problem.
We try to answer the question,what relay assignment and
power allocation scheme maximizes the sum rate to all the
users? Since solving this original problem has exponential
complexity, we derive an upper bound on this sum rate. The
formulation is a convex optimization problem. We use the
resulting Karush-Kuhn-Tucker (KKT) conditions to illustrate
why the bound is extremely tight. The bound also leads to a
solution of the joint selection and power allocation problem.
Unlike previous works in this area, we answer this question
in the context of a cellular network that has relays installed to
aid the users with a poor link to the base station (BS).

The rest of the paper is organized as follows. In Section II,
we describe the system model in some detail. We then formu-
late the optimization problem and the upper bound to the sum
rate in Section III. In Section IV, we show through simulations
that this bound is extremely tight. The paper wraps up with
some conclusions in Section V.

II. SYSTEM MODEL

Consider a cellular network with a single BS, communi-
cating with K users, and assisted byJ relays, as shown
in Figure 1. Each of the users is assigned an orthogonal
channel, over which the BS to user and the relay to user
communication take place. The users are frequency division
multiplexed, although the results here also apply to the case
with time division multiplexing. The relays in the system
are fixed wireless terminals installed solely to aid the BS-
user communication. The relays use the DF protocol with
the same codebook as the transmitter. The communication
between the BS and a user happens over two time slots. In
the first time slot the BS transmits, while the relays and the
user try to decode the message. In the second time slot, one
of the relays, chosena priori, re-encodes and then transmits
the information it has decoded in the first time slot. The user
uses the messages received in the two time slots to decode the
transmitted information.



Fig. 1. A relay aided cellular network

Suppose user-k (denoted asdk) is allotted to relay-j (rj).
For a system as described above, the maximum rate at which
the BS can communicate with the receiver with the help of
the relay is [6]
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where SNRs and SNRr are, respectively, the ratios of the
transmit power at the BS (denoted ass) and the relay to
the noise power at the receiver.hsrj

is the channel between
the BS and relay-j, denoted byrj , similarly hrjdk

is the
channel between relayrj and destinationdk. Finally, αjk is
the fraction of the total relay power used to communicate with
userk. The factor of12 accounts for the fact that the BS-user
communication happens over two time slots.Isrj

is the rate at
which the source can communicate with relay-j, while Isrjdk

is the maximum rate at which the source can communicate to
user-k with the help of relay-j. Equation (1) ensures that both
the relay and the user can decode the message.

The channels between the BS, relays and users are modeled
using the COST-231 model as recommended by the IEEE
802.16j working group [11]. The model includes the path
loss, large-scale fading (modeled as a log-normal variable)
and Rician small-scale fading (if a dominant component is
available in a specific link). The strength of the dominant
component is higher for the BS-relay links (assuming that the
BS and relays are placed at some height above the ground)
and lower for the relay-user and BS-user links. The existence
of this dominant component is crucial since it suggests that
all relays would be able to decode a source codeword, i.e., the
factor limiting the rate is the second term,Isrjdk

in (3).

III. PROBLEM FORMULATION AND SOLUTION

In the model described in the previous section, every user
was allotted one of theJ relays. This paper deals with opti-

Fig. 2. The four different relay assignments possible

mizing this allocation with the sum rate to all the users as the
metric to compare different relay assignment schemes. Hence,
a relay assignment is considered optimal if it maximizes

K
∑

k=1

Idk
=

K
∑

k=1

min
(

Isr(dk), Isr(dk)dk

)

, (4)

where,r(dk) is the relay assigned to user-k.

In practice, the number of users,K, would be much larger
than the number of relays,J . Hence, a single relay may be
required to support multiple users, and to meet its power
constraint, it must divide its power amongst these users. Thus,
our objective is now to find the relay assignment scheme which
maximizes the sum rate given by (4), and distributing powers
at each of the relays amongst the users it supports to maximize
the sum rate.

To formulate a tractable problem, in this paper we investi-
gate a simplified version of the above problem. As mentioned
earlier, in a cellular network, the data rate bottleneck is the
compound source-relay-destination channel, the second term
in (3). Essentially, we assume that

Isrj
> Isrjdk

∀j, k. (5)

In Section IV, we examine the validity of this assump-
tion. Using (5), the sum rate to all the users reduces to
∑K

k=1 Isr(dk)dk
. Note that in spite of the assumption, the

solution is not immediate. The fact that the relays divide their
power amongst the users they support makes the problem
complex. To illustrate this point, consider the case with two
users and two relays as shown in Figure 2. Depending on
the channel coefficients, any of the four assignment schemes
could yield the maximum sum rate. The problem at hand is,
therefore, an integer programming problem.

We will now state the problem formally. For the sake
of brevity, let ck representSNRs|hsdk

|2 and pjk represent
SNRr|hrjdk

|2, j = 1, 2, . . . , J . Let αjk be the fraction of
the power of relay-j used to communicate to user-k. The
optimization problem maximizes the sum rate to all the users
subject to two constraints: only a single relay helps each user
and each relay must meet a power constraint. The formal
optimization problem is, therefore,



max
{αjk}

R =max
{αjk}

K
∑

k=1

1

2
log2



1 + ck +

J
∑

j=1

pjkαjk



 (6)

such that ∀k, αjkαlk = 0, j 6= l, j, l ∈ {1, 2, . . . , J}(7)
K
∑

k=1

αjk ≤ 1 ∀ j, (8)

αjk ≥ 0, (9)

where the objective function assumes the relay uses the same
codebook as the source. Equation (7) enforces the selection
rule allowing only oneαjk term to be non-zero for all relays.
The remaining two constraints force the power allocated to
be positive, but not exceed a chosen threshold. Note that we
cannot use the usual gradient based methods to maximize the
objective function in (6). Furthermore, an inherent assumption
is that the BS has knowledge of the parameters that define the
problem.

The solution to the optimization problem in (6)-(9) is
complicated by the constraint in (7). There are a total ofJK

possible relay assignments (each of the users can be assigned
to any of the relays) and each of these schemes must be tested.
Once the relay assignment is done, the well known water-
filling algorithm can be used to allocate power at the relays
to maximize the sum rate. Hence, an exhaustive search would
involve the solving ofJK water-filling problems, and finding
the maximum among them. Clearly, this is impossible for
realistic values ofJ andK. We therefore explore alternative
approximate formulations.

A. An upper bound to the maximum sum rate

The objective function of the optimization problem in (6)-
(9) is concave and the constraints, other than the one in (7),
are affine. Our strategy to solve the optimization problem in
hand is to ignore the constraints given in (7) and maximize
the sum rate subject to the power constraints alone:

max
{αjk}

K
∑

k=1

1

2
log2



1 + ck +
J
∑

j=1

pjkαjk



 , (10)

such that

K
∑

k=1

αjk ≤ 1 ∀ j, (11)

αjk ≥ 0. (12)

Since we ignore a constraint, the solution so obtained will
be an upper bound to the maximum sum rate achieved by
selection. In the next section we illustrate why this upper
bound is tight and in most cases is, in fact, the exact solution
to the original optimization problem. Furthermore, the opti-
mum power allocation vectors to the simplified maximization
problem serve as a heuristic to the joint relay assignment and
power allocation problem.

Note that since the optimization problem is now concave,
solving this simplified problem is fairly straightforward.For
example, interior point methods, discussed in [12] can be used

to solve the problem. The computational complexity involved
in solving the optimization problem is polynomial inK and
J , and the problem is, hence, tractable for practical values of
K andJ .

B. Tightness of the bound

The previous section simplifies the original optimization
problem into a simpler problem that serves as an upper bound.
Using the case of two relays we now show why this upper
bound is tight. With onlyJ = 2 relays, the optimization
problem is,

min
{α1k,α2k}

−R =

min
{α1k,α2k}

−
K
∑

k=1

1

2
log2 (1 + ck + p1kα1k + p2kα2k) (13)

such that

K
∑

k=1

αjk − 1 = 0, j = 1, 2; −αjk ≤ 0 . (14)

The Lagrangian of the minimization problem is given by

L({α1k, α2k} ; {λ1
k}, {λ2

k}, ν1, ν2) =

−R −
K
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λ1
kα1k −

K
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k=1

λ2
kα2k

+ν1

(

K
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k=1

α1k − 1

)

+ ν2

(

K
∑

k=1

α2k − 1

)

, (15)

whereλ1
k and λ2

k, k = 1, 2, . . . , K are the Lagrange multi-
pliers associated with the constraint on positive power, and
ν1 and ν2 are the Lagrange multipliers associated with the
constraint on the total power at the two relays. Any solutionto
the optimization problem satisfies the KKT conditions, which
are

p1k

1 + ck +
∑2

i=1 pikαik

+ λ1
k = ν1, λ1

kα1k = 0, λ1
k ≥ 0, (16)

p2k

1 + ck +
∑2

i=1 pikαik

+ λ2
k = ν2, λ2

kα2k = 0, λ2
k ≥ 0. (17)

Now suppose for somei ∈ {1, 2, . . . , K}, α1i andα2i are
both non-zero, then the conditionsλ1

i α1i = 0 andλ2
i α2i = 0

dictate thatλ1
i andλ2

i are both zero. From the KKT conditions,
it follows that

ν1

p1i

=
ν2

p2i

. (18)

Similarly, if α1j and α2j are both non-zero for somej ∈
{1, 2, . . . , K}, then

ν1

p1j

=
ν2

p2j

. (19)

Equations (18) and (19) cannot simultaneously be true
(unlessp1i/p2i = p1j/p2j , which occurs with probability
zero). This implies thatwhen the power is optimally allocated,
K − 1 of the (α1k, α2k) pairs have only one non-zero entry,
and at mostone of the K pairs has two non-zero entries. This
indicates that the solution obtained by ignoring (7) comes quite
close to the solution to the original optimization problem in
(6)-(9).



For the case of three relays, writing down the KKT condi-
tions and analyzing them in a manner similar to the previous
case; suppose for somei, (α1i, α2i, α3i) are all non-zero, then,

ν1

p1i

=
ν2

p2i

=
ν3

p3i

. (20)

This dictates that in all other triplets (α1k, α2k, α3k), at least
two of the entries has to be zero.

Now consider the case when for noi, (α1i, α2i, α3i) are
all non-zero. Without loss of generality, suppose for somej,
α1j andα2j are non-zero, and for somek, α2k andα3k are
non-zero, then,

ν1

p1j

=
ν2

p2j

,
ν2

p2k

=
ν3

p3k

. (21)

These two equations imply that in all other three-tuples
(α1k, α2k, α3k), only one of the entries is non-zero. This is
because, if for somel, α1l and α3l are non-zero, then, (21)
would imply, p1l/p3l = p2jp1i/p3jp2i, which occurs with
probability zero. Hence, for the case of three relays, at most
two of three-tuples can have more than one non-zero entry.

Generalizing it to the case ofJ relays, at mostJ −1 of the
J-tuples (α1k, α2k, . . . , αJk) can have more than one non-zero
entry. This indicates that ifK > J − 1, then a large fraction
of the users are guaranteed to receive power from only one
relay. Note that, in practice, one would expect theK ≫ J and
this condition to be easily satisfied.

C. Optimal relay assignment and a lower bound

Solving the simplified optimization problem in (10)-(12)
yields an upper bound on the achievable sum rate, but does
not solve the original problem of assigning users to a single
relay. This is because some of the users are assigned power
from multiple relays. A simple heuristic, then, is to assigneach
such user to the relay with the maximum allocated power, i.e.,

r(dk) = rm if αmk = max
j

{αjk} . (22)

Once this relay assignment is done,J water-filling problems
can be solved for the power distribution at each of the relays.
However, we can avoid a second round of water-filling by
re-using the power allocation vectors derived from the earlier
step. Note that in such a case, there could be some power left
over at some of the relays. We will see in the next section
that both the upper and lower bounds are extremely tight to
the point of being indistinguishable in realistic settings.

An interesting aside is that this heuristic also provides a
lower bound on the original optimization problem of (6)-(9).
This is because any feasible solution can only be as good or
worse than the optimal solution.

In summary, in this section we have developed, in the
context of relay-assisted cellular communications, the power
optimization problem that maximizes the sum rate to multiple
users wherein each user is assigned to a single relay. The asso-
ciated solution has exponential complexity and we formulated
a simplified problem that serves as an upper bound and a
related heuristic that also serves as a lower bound.

TABLE I
PARAMETERS USED INCOST231MODEL

Parameter Value chosen Parameter Value chosen
BS height 50m Rooftop height 30m

Relay height 50m User height 1.5m
Frequency 1GHz Road orientation 90 degrees

Building spacing 50m Street width 12m
Transmit power 20dBm Noise power -120dBm

TABLE II
PERCENTAGE OF LOCATIONS WHERE(5) IS SATISFIED

Distance from % Distance from %

the BS (m) locations the BS (m) locations
0-100 93.591 500-600 99.943

100-200 99.642 600-700 99.963
200-300 99.815 700-800 99.977
300-400 99.309 800-900 99.989
400-500 99.482 900-1000 99.992

IV. N UMERICAL RESULTS AND DISCUSSION

In this section, we verify the validity of the assumption
in (5) and present the results of simulations to illustrate the
tightness of the two bounds developed earlier. The simulations
are implemented using the COST-231 channel model. In
interests of brevity, the details of the model are not presented
here. The details are available in [11].

To verify the assumption in (5), we consider a circular cell,
centered at a BS, of radius one kilometer with four relays
positioned at (±200

√
2m,±200

√
2m), i.e., on a ring of radius

400m.3 × 106 user locations in the cell are randomly gener-
ated. For each location, independent channels are generated
using the COST-231 channel model. The parameters used in
the model are listed in Table I. As shown in Fig. 1, we divide
the cell into annular rings of radius 100 meters. In Table II we
list the percentage of number of locations where (5) is valid.
It is evident from the table that the assumption we make is
valid whenever the user is farther than 300m from the BS.
Essentially, for all user locations of interest, i.e., areas where
users have a relatively weak channel to the BS, the assumption
is valid.

Our next simulation tests the tightness of the upper bound as
developed in this paper and the resulting heuristic. Note that
this heuristic is our final solution to the joint selection and
power allocation problem. Figure 3 plots the upper bound and
sum rate achievable by the heuristic (that also acts as a lower
bound on the achievable sum rate) for varying values ofJ and
K averaged over many channel realizations. The lower bound
has been computed by re-using the power allocation vectors
resulting from solving the simplified optimization problem
(10)-(12) (Refer Section III-C). The average signal-to-noise
ratio is set at 30dB. For a fair comparison, the power allocated
to each relay is set to1/J , i.e., all curves use the same total
power. As is clear from the figure, the upper and lower bounds
are indistinguishable. The heuristic, therefore, is an extremely
effective solution to the joint selection and power allocation
problem. By an exhaustive search, we also find the exact
maximum sum rate for the case withJ = 2 relays andK
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Fig. 3. The proposed upper bound to the maximum sum rate and the heuristic
(a lower bound), as a function of the number of users. Note that both the
bounds are extremely tight

between one and eight. Note that since each exhaustive search
requires solving ofJK water-filling problems, any larger value
of J is infeasible. We include the results in the plot.

For our final simulation, we consider a cell of radiusrcell,
with four relays. The users are uniformly distributed in the
outer annular ring, of inner radiusrcell/2 and outer radiusrcell,
the area shaded in gray in Figure 1. The density of users is
set to 30/π per square kilometer. We find the average user-rate
with and without the relays, and plot it as a function ofrcell in
Figure 4. It is evident from the plot that the average data rates
in a relay aided cellular network are higher than that of the
data rates in the cell without relays. Hence, the coverage area
of a cell can be substantially improved by deploying relays,
assuming that improvement is commensurate with the cost of
deployment. The worst case complexity of the optimal solution
would have been on order of4275 water-filling solutions. The
simulation hence illustrates the usefulness of the alternative
joint strategy developed here.

V. CONCLUSION

This paper deals with the use of cooperation in a cellular
network wherein a base station is assisted by a few dedicated
relays. Previous work largely for mesh and sensor networks
has shown the importance ofselection, i.e., each user using
only one relay, since this minimizes the overhead due to
orthogonal channels. However, in a scenario with multiple data
flows, the selection process has been either brute force or ad
hoc. Previous work has also largely ignored the problem of
power allocation once the selection is achieved. In this paper
we have developed an optimization framework to solve the
problem of joint selection and power allocation.

The optimization problem uses the achievable sum rate
as its figure of merit. Given that the selection problem has
exponential complexity, in this paper we formulate an alterna-
tive convex optimization problem whose solution provides an
upper bound on the sum rate. However, for practical values
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Fig. 4. Average user-rate as a function of the radius of the cell

of number of users, the bound is indistinguishable from the
true solution for sum rate. Since this solution can violate
the selection condition, a related heuristic is derived that
assigns users to the relay which allocates it the maximum
power. The resulting lower bound is also extremely tight and
indistinguishable from the upper bound. Essentially, we have
an efficient solution to the problem at hand.
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