
Conditions for Stability of Droop–Controlled Inverter–Based

Microgrids

Johannes Schiffera,∗, Romeo Ortegab, Alessandro Astolfic, Jörg Raischd, Tevfik Sezie

aTechnische Universität Berlin, Einsteinufer 11, 10587 Berlin, Germany
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Abstract

We consider the problem of stability analysis of droop-controlled inverter–based microgrids with meshed topologies.
The inverter models include variable frequencies as well as voltage amplitudes. Conditions on the tuning gains and
setpoints for frequency and voltage stability, together with desired power sharing, are derived in the paper. First, we
prove that for all practical choices of these parameters global boundedness of trajectories is ensured. Subsequently,
assuming the microgrid is lossless, a port–Hamiltonian description is derived from which sufficient conditions for local
asymptotic stability are given. Finally, we propose a design criterion on the controller gains such that a desired active
power distribution is achieved in steady-state. Our analysis is further validated via a simulation example of a microgrid
based on the CIGRE benchmark medium voltage distribution network.

Keywords: microgrid control, microgrid stability, smart grid applications, inverters, droop control, port-Hamiltonian
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1. Introduction

Motivated by environmental, economic and technolog-
ical aspects, the penetration of renewable energy sources
into the electrical networks is increasing worldwide. Most
of these sources are small-scale distributed generation (DG)
units connected at the low voltage (LV) and medium volt-
age (MV) levels via alternating current (AC) inverters. As
a consequence, the power generation structure is moving
from purely large, centralized plants to a mixed generation
pool consisting of conventional large plants and smaller
distributed generation units. Since in addition, the physi-
cal characteristics of inverters largely differ from the char-
acteristics of conventional electrical generators (i.e. syn-
chronous generators (SGs)), new concepts and strategies
to operate the electric power system that ensure a reliable
and stable operation are needed.

The microgrid concept represents one promising solu-
tion to address these issues by facilitating local integration
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of renewable energy sources [19, 14]. In general, a micro-
grid gathers a combination of generation units, loads and
energy storage elements at distribution level into a locally
controllable system, which can be operated in a decen-
tralized and completely isolated manner from the main
transmission system. An autonomous or islanded micro-
grid is operated in the latter mode. The microgrid concept
has been identified as a key component in future electri-
cal networks [9]. Furthermore, it is envisioned to greatly
contribute to the implementation of numerous smart grid
functions [20].

In this work, we consider the problem of frequency and
voltage stability in a microgrid while sharing the power de-
mand among the different generation units. The problem
of power sharing mainly addresses the following question:
how should the different generation units in the network
adjust their output power upon load changes in the system
to fulfill the demand while satisfying a desired power distri-
bution? It is required that these objectives are achieved in
a decentralized way without communication among units,
thereby allowing a plug–and–play–like operation [19].

A control technique widely used to address this prob-
lem for active power in large power systems is droop con-
trol, also referred to as power–speed characteristic [17]. In
droop control the current value of the rotational speed of
each SG in the network is monitored locally to derive how
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much mechanical power each SG needs to provide. From
a control perspective, droop control is a proportional con-
troller where the control gain (known as droop gain) spec-
ifies the steady–state power distribution in the network.
Since performance under droop control is satisfactory for
large systems, this technique has been adapted to invert-
ers [3, 4, 33, 1].

Further, in large transmission systems droop-control
is usually only applied to obtain a desired active power
distribution, while the voltage amplitude at a generator
bus is regulated to a nominal voltage setpoint via an au-
tomatic voltage regulator (AVR) acting on the excitation
system of the SG. In microgrids the power lines are typ-
ically relatively short. Then, the AVR employed at the
transmission level is in general not appropiate since slight
differences in voltage amplitudes can cause high reactive
power flows. As a consequence the reactive power shar-
ing among generation units cannot be ensured. There-
fore, droop control is typically also applied to achieve a
desired reactive power distribution in inverter-based net-
works. The most common approach is to control the volt-
age amplitude with a proportional control, the feedback
signal of which is the reactive power generation relative to
a reference setpoint [3, 4], see also the recent survey [11].

The paper is devoted to the stability analysis of droop–
controlled microgrids. As in any conventional power sys-
tem, stability is understood in the sense of achieving asymp-
totic synchronization of the frequencies of all DG units,
with the angle differences not exceeding π

2 and constant
generated voltages [18]. Since the synchronization fre-
quency is the same for all DG units and their dynamics de-
pends on the angle differences, it is possible to translate—
via a time–dependent coordinate shift—the synchroniza-
tion objective into a standard (constant) equilibrium sta-
bilization problem, which is the approach adopted in the
paper.

Most early stability analysis of droop-controlled micro-
grids has been carried out by means of detailed numerical
small-signal analysis as well as extensive simulations and
experimental studies aiming to characterize a range for the
droop gains guaranteeing system stability [4, 33, 26, 1].
However, as pointed out in [11], most work on microgrid
stability has so far focussed on radial microgrids. Further-
more, it is concluded in [11], that stability of microgrids
with meshed topologies and decentralized controlled units
is still an open research area.

For radial lossless microgrids, and under the assump-
tion of constant voltage amplitudes, analytic conditions
for proportional power sharing and synchronization of loss-
less microgrids with first-order inverter models have been
derived in [31] applying results of the theory of coupled
oscillators. Conditions for voltage stability for a lossless
parallel microgrid with one common load have been de-
rived in [32].

For general meshed networks, with the aim to sched-
ule the droop coefficients under the consideration of fre-
quency droop, an iterative procedure based on bifurcation

theory has been proposed in [6]. Under the assumption
of constant voltage amplitudes, analytic synchronization
conditions for a lossy meshed microgrid with distributed
rotational and electronic generation are derived in [30]
using ideas from second order consensus algorithms. A
decentralized LMI-based control design for lossy meshed
inverter-based networks guaranteeing overall network sta-
bility for the nonlinear model considering variable voltage
amplitudes and phase angles while accounting for power
sharing is provided in [29].

The main contribution of the paper is to give con-
ditions on the droop gains to ensure stability of droop-
controlled inverter-based microgrid with general meshed
topology and inverter models with variable frequencies
as well as variable voltage amplitudes. In contrast to
[31, 32, 30], no assumptions of constant voltage ampli-
tudes or small phase angle differences are made. In this
more general scenario, the graph theoretic methods em-
ployed in the aforementioned papers are not directly ap-
plicable. Instead, we adopt a classical Lyapunov–like ap-
proach for analysis of stability of equilibria and bounded-
ness of trajectories. Conditions for global boundedness are
given for lossy microgrids. Following the interconnection
and damping assignment passivity–based control approach
[24], we represent the lossless microgrid system in port–
Hamiltonian form [28] to identify the energy–Lyapunov
function and give conditions for asymptotic stability of
the frequency synchronization equilibrium state.

The remaining of the paper is organized as follows. The
network model is presented in Section 2. In Section 3 we
give the model of the inverter and the droop control. Sec-
tion 4 presents conditions for global boundedness of trajec-
tories. Sufficient conditions for local asymptotic stability
are established in Section 5. In Section 6 we propose a
selection of the droop gains, similar to the one given in
[31], that ensures the DG units share (in steady-state) the
active power according to a specified pattern. Our anal-
ysis is validated in Section 7 with a simulation example
based on the CIGRE (Conseil International des Grands
Réseaux Electriques) benchmark MV distribution network
[27]. The paper is wrapped–up with some conclusions and
future work in Section 8.

Notation We define the sets n̄ := {1, . . . , n}, R≥0 := {x ∈
R|x ≥ 0}, R>0 := {x ∈ R|x > 0} and S := [0, 2π]. For
a set U := {ν1, . . . , νn}, i ∼ U denotes i = ν1, . . . , νn. Let
x := col(xi) ∈ Rn denote a vector with entries xi for i ∼ n̄,
0n ∈ Rn the vector of all zeros, 1n ∈ Rn the vector with
all ones, and diag(ai), i = 1, . . . n an n×n diagonal matrix
with entries ai. The notation blkdiag(B1, B2) denotes a
block diagonal matrix with diagonal entries B1, B2. Let j
denote the imaginary unit. Also, ∇f denotes the transpose
of the gradient of a function f : Rn → R.
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2. Network model

We consider a generic meshed microgrid and, following
the classical approach in conventional power system stud-
ies, assume that loads are modeled by constant impedances
[34]. This leads to a set of nonlinear differential–algebraic
equations (DAE). Then, a network reduction (called Kron
reduction [17]) is carried out to eliminate all algebraic
equations corresponding to loads and obtain a set of differ-
ential equations. We assume this process has been carried
out and work with the Kron–reduced network.

The Kron–reduced microgrid is formed by n nodes,
each of which represents a DG unit interfaced via an AC
inverter. We associate a time-dependent phase angle δi :
R≥0 → S and a voltage amplitude Vi : R≥0 → R>0 to each
node i ∈ n̄ in the microgrid. Then, two nodes i and k
of the microgrid are connected via a complex admittance
Yik:=Gik+jBik∈C with conductance Gik ∈ R and suscep-
tance Bik ∈ R. We denote the set of network nodes by n̄
and the set of neighbors of a node i ∈ n̄ by Ni := {k

∣∣ k ∈
n̄, k 6= i , Yik 6= 0}. For ease of notation, we write angle
differences as δik := δi − δk.

The active and reactive power flows Pik : S2 × R2
>0 →

R, Qik : S2 ×R2
>0 → R from node i ∈ n̄ to node k ∈ n̄ are

then given by [17]

Pik(t) =GikV
2
i (t) (1)

− Vi(t)Vk(t)(Gik cos(δik(t)) +Bik sin(δik(t)))

Qik(t) =−BikV 2
i (t)

− Vi(t)Vk(t)(Gik sin(δik(t))−Bik cos(δik(t))).

The overall active and reactive power flows
Pi : Sn × Rn>0 → R, Qi : Sn × Rn>0 → R at a node i ∈ n̄
are obtained as1

Pi= GiiV
2
i −

∑
k∼Ni

ViVk(Gik cos(δik) +Bik sin(δik))

Qi=−BiiV 2
i −

∑
k∼Ni

ViVk(Gik sin(δik)−Bik cos(δik)) (2)

with

Gii := Ĝii +
∑
k∼Ni

Gik, Bii := B̂ii +
∑
k∼Ni

Bik,

where Ĝii ∈ R and B̂ii ∈ R denote the shunt conductance
respectively shunt susceptance at node i. The apparent
power flow is given by Si = Pi + jQi.

3. Modelling of inverters and droop control

We model the inverters as AC voltage sources the am-
plitude and frequency of which can be defined by the de-

1To simplify the notation the time argument of all signals is omit-
ted in the sequel.

signer [22].2 We assume that the frequency regulation is
instantaneous, but the voltage control happens with a de-
lay that, following standard practice, is represented by a
first order filter. Consequently, an inverter at the i–th
node is represented by

δ̇i = uδi

V̇i =
1

τVi

(−Vi + uV
i ), (3)

where uδi , u
V
i : R≥0 → R are controls and τVi

∈ R>0 is the
time constant of a low-pass filter.

In contrast to SG units, inverters do not have an in-
herent physical relation between frequency and generated
active power. Frequency droop control aims at artificially
creating such a relation, since it is desired in many appli-
cations [8]. The rationale behind the droop controller is
as follows [3, 11]. For small angular deviations δik we have
that sin(δik) ≈ δik while cos(δik) ≈ 1. Hence, for domi-
nantly inductive networks, i.e. Gik ≈ 0, from the power
equations (2) it is clear that the reactive power is more
strongly influenced by changes in the voltage, while the
active power depends more directly on angular deviations.
Consequently, the frequencies ωi and voltage amplitudes
Vi of the inverters are modified depending on the devia-
tions (with respect to a desired value) of the active and
reactive powers, respectively.

Simple proportional controller are then implemented
as

uδi = ωd − kPi(P
m
i − P di )

uVi = V di − kQi(Q
m
i −Qdi ) (4)

with ωd ∈ R>0 the desired (nominal) frequency, V di ∈ R>0

the desired (nominal) voltage amplitude,Pmi , Q
m
i :R≥0→R

the measured powers, P di , Q
d
i ∈ R their desired setpoints

and kPi
, kQi

∈ R>0 the frequency and voltage droop gains.
It is assumed that the powers are measured and processed
through filters [4, 26]

τPi
Ṗmi = −Pmi + Pi

τPi
Q̇mi = −Qmi +Qi, (5)

where Pi and Qi are given in (2) and τPi ∈ R>0 is the time
constant of the low pass filters.

Replacing (4) and (5) in (3) yields the closed–loop sys-
tem

δ̇i = ωd − kPi
(Pmi − P di )

Ṗmi =
1

τPi

(−Pmi + Pi)

V̇i =
1

τVi

(−Vi + V di − kQi
(Qmi −Qdi ))

Q̇mi =
1

τPi

(−Qmi +Qi). (6)

2An underlying assumption to this model is that whenever the
inverter connects an intermittent renewable generation source, e.g.
a photovoltaic plant or a wind plant, to the network, it is equipped
with some sort of storage (e.g., flywheel, battery). Thus, it can
increase and decrease its power output in a certain range.
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In general τVi � τPi , hence we assume in the sequel τVi = 0.
Then, the system above reduces to (in analogy to [30])

δ̇i = ωi

τPi
ω̇i = −ωi + ωd − kPi

(Pi − P di )

τPi
V̇i = −Vi + V di − kQi

(Qi −Qdi ), (7)

where ωi denotes the inverter frequency. To simplify the
notation we define

δ :=col(δi) ∈ Sn, ω := col(ωi) ∈ Rn

V :=col(Vi) ∈ Rn, V d := col(V di ) ∈ Rn

P d :=col(P di ) ∈ Rn, P := col(Pi) ∈ Rn

Qd :=col(Qdi ) ∈ Rn, Q := col(Qi) ∈ Rn

T :=diag(τPi
) ∈ Rn×n, KP := diag(kPi

) ∈ Rn×n

KQ :=diag(kQi
) ∈ Rn×n (8)

and write the system compactly as

δ̇ = ω

T ω̇ = −ω + 1nω
d −KP (P − P d)

T V̇ = −V + V d −KQ(Q−Qd) (9)

with power flows P,Q given in (2). We further associate
to each inverter its power rating SNi ∈ R>0, i = 1, . . . , n.

Remark 3.1. The desired power setpoints for active and
reactive power P di and Qdi are assumed to be sent to each
inverter i ∈ n̄ by a supervisory control, i.e. typically a
secondary control or energy management system.

Remark 3.2. Since an inverter may connect a pure stor-
age device, e.g., a battery, to the network, P di can also
take negative values. In that case, the storage device is
charged depending on the excess power available in the
network and thus functions as a frequency and voltage de-
pendent load. In the sequel, we refer to such an operation
mode as charging mode.

Remark 3.3. In [30] it is proven that the dynamics of an
inverter with frequency droop control and the swing equa-
tion dynamics of an SG are equivalent. Consequently, an
inverter operated in voltage source mode and with fre-
quency droop achieves a behavior similar to that of an
SG with respect to frequency, which is desired in many
microgrid applications [19, 8].

Remark 3.4. There are several other alternative droop
control schemes proposed in the literature, e.g. [36, 12, 11].
The ones proposed here are the most common ones for
dominantly inductive networks. We will therefore restrict
our analysis to these control laws, commonly denoted by
“conventional droop-control“.

4. Boundedness of trajectories

The proposition below gives conditions for global bound-
edness of the trajectories of the system (9), which we recall
lives in the set

M := Sn × Rn × Rn>0. (10)

To establish our result, we need the following assump-
tion on the network susceptances.

Assumption 4.1.

Bii ≤
∑
k∼Ni

Bik for all i ∈ n̄. (11)

Remark 4.2. Condition (11) holds in general for domi-
nantly inductive networks, on which we focus our analysis.

Proposition 4.3. Consider the system (9) verifying As-
sumption 4.1. The set M defined in (10) is invariant and
all trajectories of (9) are bounded if V di , kQi

and Qdi are
chosen such that

V di + kQi
Qdi > 0 (12)

for all i ∈ n̄.

Proof. From (7), write τPi
V̇i = f3i(δ, V ), for some function

f3i : Sn × Rn>0 → R. Note that,

f3i(V, δ)|Vi=0 = V di + kQi
Qdi , (13)

that, under condition (12), is positive. Hence, the follow-
ing implication is true

Vi(0) > 0 ⇒ Vi(t) > 0, (14)

for all t ≥ 0. This proves that the set M is invariant.
To establish boundedness of solutions define the matrix

Γ := diag(τPi
/kQi

), i ∼ n̄ and the function W : Rn → R>0

W (V ) = ‖ΓV ‖1 =

n∑
i=1

τPi

kQi

Vi (15)

with ‖ · ‖1 the 1–norm. Then,

Ẇ =

n∑
i=1

(
1

kQi

(−Vi + V di )− (Qi(δ, V )−Qdi )
)

≤ −κ1W + κ2 − V >T (δ)V, (16)

where

κ1 := min
i∈n̄

{
1

τPi

}
, κ2 :=

n∑
i=1

(
1

kQi

V di +Qdi

)
(17)

and T : Sn → Rn×n with

(T (δ))ii := −Bii
(T (δ))ik := Bik cos(δik), i 6= k. (18)
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Here, we have used the fact that equation (2) implies

n∑
i=1

Qi =

n∑
i=1

(
−BiiV 2

i +
∑
k∼Ni

BikViVk cos(δik)

)
, (19)

which are the reactive power losses in the network.
Since Bik = Bki, T (δ) is symmetric and (11) implies

that
T (δ) ≥ nκ3Γ2, (20)

for some κ3 ≥ 0. Hence

Ẇ ≤ −κ1W + κ2 − κ3W
2, (21)

where the third right hand term follows from

nV >Γ2V ≥ ‖ΓV ‖21 = W 2(V ). (22)

Assume κ3 > 0. The differential equation

ż = −κ1z + κ2 − κ3z
2, z(0) = z0 (23)

has solution

z(t) =
1

2κ3

[
−κ1 + κ4 tanh(

κ4

2
(t+ κ5))

]
(24)

with κ4 :=
√

4κ2κ3 + κ2
1 and

κ5 :=
2

κ4
Arctanh

(
2κ3z0 + κ1

κ4

)
. (25)

From the Comparison Lemma [16] we then have for
W (V (0)) ≤ z0

n∑
i=1

τPi

kQi

Vi(t) ≤ −
κ1

2κ3
+

κ4

2κ3
tanh

[κ4

2
(t+ κ5)

]
, (26)

hence V ∈ L∞. This, together with (2), implies that
P ∈ L∞. Finally, ω ∈ L∞ follows from (7), which shows
that ωi is the output of a linear time invariant (LTI) asymp-
totically stable system with bounded input.

If κ3 = 0 we have Ẇ ≤ −κ1W + κ2, and the proof
follows immediately.
���

Remark 4.4. From (25) and the definition of the Arctanh
function it follows that for z(t) in (24) to be well-defined,
z0 and κ3 must be chosen such that |2κ3z0 + κ1| < κ4

holds. Recalling that κm > 0 for m = 1, . . . , 4 in (24) sim-
ple calculations yield for the initial conditions of interest
(z0 > 0)

0 < z0 <
−κ1 +

√
κ2

1 + 4κ2κ3

2κ3
. (27)

Remark 4.5. Condition (12) in Proposition 4.3 has a
clear physical interpretation. Indeed, from the dynamics
of Vi in (7) we see that the equilibrium voltage is given by

V si = V di − kQi
(Qsi −Qdi ),

where Qsi is the reactive power injected in steady state to
the i–th bus. Hence, (12) requires that the gains kQi

and
the setpoints V di and Qdi of the voltage droop control (4)
are chosen such that V si > 0 even if there is zero reactive
power injection to the i–th bus. Notice that condition (12)
is satisfied for all kQi

if Qdi ≥ 0.

5. Asymptotic stability for lossless microgrids

In this section we derive conditions for asymptotic sta-
bility for lossless microgrids, i.e. Gii = Gik = 0 for all
i, k ∈ n̄. The assumption of lossless line admittances may
be justified as follows: in MV and LV networks the line
impedance is usually not purely inductive, but has a non–
negligible resistive part. On the other hand, the inverter
output impedance is typically inductive (due to the output
inductor and/or the possible presence of an output trans-
former). Under these circumstances, the inductive parts
dominate the resistive parts in the admittances for some
particular microgrids, especially on the MV level.

We only consider such microgrids and absorb the in-
verter output admittance (together with the possible trans-
former admittance), Ỹik, into the line admittances, Yik,
while neglecting all resistive effects. This assumption is
further justified for the present analysis, since the droop
control laws introduced in (4) are mostly used in networks
with dominantly inductive admittances [12, 11].

For a lossless microgrid with inductive admittances
Bik < 0 for all i, k ∈ n̄ the power flow equations (2) re-
duce to

Pi=
∑
k∼Ni

|Bik|ViVk sin(δik)

Qi= |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk cos(δik). (28)

Remark 5.1. The need to introduce the, sometimes un-
realistic, assumption of lossless admittances has a long his-
tory in power systems studies. It appears in transient sta-
bility studies, where the presence of transfer conductances
hampers the derivation of energy–Lyapunov functions [34].
Although there has been progress in addressing this issue
[2, 7], to the best of our knowledge, no analytic solution for
power systems with variable frequencies as well as variable
voltage amplitudes is available today. See also [23] for an
illustration of the deleterious effect of line losses on field
excitation controller design.

Remark 5.2. In the case of the Kron–reduced network,
we are aware that, in general, the reduced network admit-
tance matrix does not permit to neglect the conductances
and our stability results might therefore be inaccurate [34].
Alternatively, one could consider the idealized scenario
in which part of the inverter–interfaced storage devices
are being charged, hence acting as loads and all constant
impedance loads are neglected. Another approach is to
use other, possibly dynamic, load models instead of con-
stant impedances in so-called structure preserving power
systems. However, in the presence of variable voltages the
load models are usually, somehow artificially, adapted to
fit the theoretical framework used for the construction of
energy-Lyapunov functions, see e.g. [5, 10].

5.1. Synchronized trajectory

To state the main result of this section we need the
following natural power–balance feasibility assumption.
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Assumption 5.3. There exists δs ∈ Θ, ωs ∈ R and
V s ∈ Rn>0, where

Θ :=
{
δ ∈ Sn

∣∣ |δik| < π

2
, i ∼ n̄, k ∼ Ni

}
,

such that

1nω
s − 1nωd +KP [P (δs, V s)− P d] = 0

V s − V d +KQ[Q(δs, V s)−Qd] = 0. (29)

Under Assumption 5.3, the trajectory of the system (9)
starting in (δs,1nω

s, V s) is given by

δ∗(t) = mod2π{δs + 1nω
st}

ω∗(t) = 1nω
s

V ∗(t) = V s, (30)

where the operator3 mod2π{·} is added to respect the
topology of the system. This desired trajectory is called
synchronized trajectory and ωs is the synchronization fre-
quency.

Remark 5.4. As done in [31] where a similar analysis
is made, for lossless networks it is possible to uniquely
determine ωs. Towards this end, recall the well-known
fact that in a lossless power system∑

i∼n̄
P si = 0. (31)

Thus, replacing the synchronized trajectory in (7) and
adding up all the nodes yields

ωs= ωd +

∑
i∼n̄ P

d
i∑

i∼n̄
1
kPi

. (32)

Remark 5.5. Clearly, the synchronized trajectory lives
in the set Θ× 1nωs × Rn>0.

5.2. Error dynamics

The main result of this section is to give conditions on
the setpoints and gains of the droop controller (4) such
that the synchronized trajectory (30) is asymptotically
stable. To establish this result we make the important ob-
servation that, since the dependence with respect to δ of
the dynamics (9) is via angle differences δik, the flow is in-
variant to a shift in the δ coordinate of the form δ+1nω

st.
Consequently, we can study the stability of the synchro-
nized trajectory (30) in the coordinates

δ̃ = δ − 1nωst
ω̃ = ω − 1nωs, (33)

3The operator mod2π{·} : R → [0, 2π], is defined as follows:
y = mod2π{x} yields y = x − k2π for some integer k with
sign(y) = sign(x) and y ∈ [0, 2π].

where—for convenience—we have also shifted the coordi-
nate ω.

Written in the new coordinates the dynamics (9) take
the form

˙̃
δi =ω̃i

˙̃ωi =
1

τPi

(−ω̃i − kPi

∑
k∼Ni

ViVk|Bik| sin(δ̃ik) + c1i
)

V̇i =
1

τPi

(−Vi − kQi |Bii|V 2
i

+ kQi

∑
k∼Ni

ViVk|Bik| cos(δ̃ik) + c2i
), (34)

where we defined
δ̃ik := δ̃i − δ̃k,

which clearly verifies δ̃ik = δik, and introduced the con-
stants

c1i
:= ωd − ωs + kPi

P di , c2i
:= V di + kQi

Qdi . (35)

Notice that (34) has a (constant) equilibrium at

xs := (δ̃s, 0n, V
s), (36)

the asymptotic stability of which implies asymptotic sta-
bility to the motion associated to the synchronized trajec-
tory.

5.3. Main result

To streamline the presentation of the asymptotic sta-
bility result we introduce the constants

κi :=


(∑

k∼Ni
V sk |Bik| sin(δ̃sik)

)2

∑
k∼Ni

V sk |Bik| cos(δ̃sik)
− |Bii|V si

V si , (37)

i ∼ n̄, where δs and V s are the equilibrium values defined
in Assumption 5.3.

Proposition 5.6. Consider the system (9) verifying As-
sumption 5.3. Fix kPi

and P di . Select V di , kQi
and Qdi such

that

V di
kQi

+Qdi > κi. (38)

Then, the synchronized motion is asymptotically stable.
That is, there exists a neighborhood of xs, given in (36),
such that all trajectories starting in this set are bounded
and converge to xs.

Proof. The proof is established proving asymptotic stabil-
ity of the the equilibrium xs of the “shifted” system repre-
sentation (34). We follow the interconnection and damping
assignment passivity–based control approach [24], and rep-
resent the system (34) in port–Hamiltonian form to iden-
tify the energy–Lyapunov function.
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Defining xi := col(δ̃i, ω̃i, Vi), and x := col(xi) we can
write (34) as

ẋ = (J −R(x))∇H, (39)

where the Hamiltonian H : Rn × Rn × Rn>0 → R is given
by

H(x) =

n∑
i=1

( τPi

2kPi

ω̃2
i −

c1i

kPi

δ̃i +
1

kQi

(Vi − c2i
ln(Vi))

+
1

2
|Bii|V 2

i −
1

2

∑
k∼Ni

ViVk|Bik| cos(δ̃ik)
)

(40)

and the interconnection and damping matrices are

J = blkdiag(Ji), R(x) = blkdiag(Ri(xi)), i ∼ n̄ (41)

with

Ji =

 0
kPi

τPi
0

−kPi

τPi
0 0

0 0 0

 , Ri =


0 0 0

0
kPi

τ2
Pi

0

0 0
kQi

Vi

τPi

 . (42)

Notice that J = −J> and R ≥ 0. Consequently,

Ḣ = −(∇H)>R∇H ≤ 0. (43)

Therefore, xs is a stable equilibrium of system (39) if
H(x) has a strict local minimum at the equilibrium xs.
To ensure the latter we show that ∇H(xs) = 03n and
∂2H(x)
∂x2

∣∣
xs > 0. Now,

∂H(x)

∂xi

∣∣
xs =

 V si ai −
c1i
kPi

0

−bi + |Bii|V si + 1
kQi

(
1− c2i

V s
i

)

>

, (44)

where we defined

ai :=
∑
k∼Ni

V sk |Bik| sin(δ̃sik)

bi :=
∑
k∼Ni

V sk |Bik| cos(δ̃sik).

Hence, ∇H(xs) = 03n.

Showing that ∂2H(x)
∂x2

∣∣
xs > 0 is equivalent to showing

that ∂2H(x)
∂x2

i

∣∣
xs > 0 for all i ∈ n̄. Some simple computations

yield

∂2H(x)

∂x2
i

∣∣
xs =

V
s
i bi 0 ai
0

τPi

kPi
0

ai 0 |Bii|+ c2i
kQi

(V s
i )2

 . (45)

Clearly, this matrix is positive definite if the submatrix[
V si bi ai
ai |Bii|+ c2i

kQi
(V s

i )2

]
(46)

is positive definite. Now, since δ̃s ∈ Θ we have that bi > 0.
Finally, it can be shown that the determinant is positive
if and only if

|Bii|V si +
c2i

kQi
V si

>
a2
i

bi
, (47)

which by recalling δ̃sik = δsik and the definition of c2i
in

(35), leads to the condition (38).
Recalling (43) and the fact that R(x) ≥ 0, we see that

to prove asymptotic stability it suffices to show that—
along the trajectories of the system —the implication be-
low holds

R(x(t))∇H(x(t)) ≡ 03n ⇒ lim
t→∞

x(t) = xs. (48)

From (48) it follows that

∂H

∂xi2
= 0,

∂H

∂xi3
= 0, (49)

where the first condition implies xi2 = 0. Hence, xi1 is
constant. The second condition implies xi3 is constant.
Therefore, the invariant set where Ḣ(x(t)) ≡ 0 is an equi-
librium. To prove that this is the desired equilibrium xs

we recall that xs is an isolated minimum of H(x). Con-
sequently, there is a neighborhood of xs where no other
equilibrium exists, completing the proof.

���

Remark 5.7. Our analysis reveals that local stability of
the lossless microgrid (9) is independent of the frequency
droop gains kPi

, active power setpoints P di and low pass fil-
ter time constants τPi , and only condition (38) is imposed
on V di , kQi and Qdi . In that regard, the result is identical
to those derived for lossless first–order inverter models in
[31] and lossless second–order inverter models in [30], both
assuming constant voltage amplitudes.

Remark 5.8. Condition (38) is imposed to ensure H(x)
is a positive definite function and, therefore, qualifies as
a Lyapunov function candidate. This condition can be
removed if, instead of Lyapunov theory, La Salle’s invari-
ance principle (that does not require positive definiteness)
is invoked [16]. Indeed, from the proof of Proposition 5.6
we have that the function H(x) is still non–increasing and
via La Salle we can conclude that all bounded trajectories
converge to an equilibrium. Unfortunately, this property
is of little interest at this point because, even though in
Proposition 4.3 we prove global boundedness of the state
(δ, ω, V ), there is no obvious way to conclude that the state
x—that consists of incremental variables—is bounded.

6. Active power sharing

In [31] a criterion on the frequency droop gains and
setpoints has been derived such that the generation units
share the active power according to their power ratings.
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This is a desired control goal in many applications. How-
ever, it has been argued in [6] that system operators may
not always seek to achieve a power sharing in proportion
to the power ratings of the units. Instead they may also
wish to take into account other technical, economic or en-
vironmental criteria, such as fuel consumption, generation
costs or emission costs, see also [15].

In this regard, the ideas derived in [31] are easily ap-
plied to proportional active power sharing with respect to
a user-defined criterion. It turns out that the same cri-
terion ensures that storage devices in charging mode, i.e.
P di < 0 for some i ∈ n̄, are charged proportionally. To for-
mulate the selection criterion for the controller gains and
setpoints, we employ the following definition.

Definition 6.1. Let χi, i = 1, . . . , n denote the active
power sharing performance criterion. Then, two inverters
at nodes i, k ∈ n̄ share their active powers proportionally
if

P si
χi

=
P sk
χk
. (50)

Remark 6.2. One possible power sharing performance
criterion would, e.g., be χi = SNi , i = 1, . . . , n. However,
the power sharing performance criterion χi do not have to
be equal for all inverters in general. Thus, active power
could, e.g., be shared according to an economic or environ-
mental criteria by some inverters, while it could be shared
according to the power ratings by other inverters.

Lemma 6.3. Consider the system (9) verifying Assump-
tion 5.3. Then, all inverters the power outputs of which
satisfy sign(P si ) = sign(P sk ), share the active power pro-
portionally if the gains kPi , kPk

and active power setpoints
P di , P

d
k are chosen such that

kPi/χi = kPk
/χk and P di /χi = P dk /χk (51)

for all i, k ∈ n̄ with sign(P si ) = sign(P sk ).

Proof. The claim follows in a straighforward manner from
[31], where it has been shown for first-order inverter mod-
els and χi = SNi , P

d
i > 0, P si > 0, i = 1, . . . , n. Under

conditions (51), we have along the synchronized trajectory
defined in Assumption 5.3,

P si
χi

=
P di −k−1

Pi
(ωs−ωd)
χi

=
P dk −k−1

Pk
(ωs−ωd)
χk

=
P sk
χk
, (52)

where i, k ∈ n̄. ���

Remark 6.4. For χi = SNi conditions (51) imply that the
inverters share the power demand in proportion to their
power ratings if their droop gains and power setpoints are
chosen equally in inverter per unit values.

Remark 6.5. The conditions in Lemma 6.3 also imply
that storage devices in charging mode are charged propor-
tionally.

Remark 6.6. Note that proportional active power sharing
is achieved by Lemma 6.3 independently of the admittance
values of the network. However, in a highly ohmic network,
the droop control laws (4) may induce high fluctuating
currents due to the stronger coupling of phase angles and
reactive power, see (2). Then, additional methods such
as the virtual output impedance [13] or alternative droop
control laws [36] could be employed instead of (4).

Remark 6.7. As described in Section 3, the voltage droop
control law (4) follows a similar heuristic approach as the
frequency control droop law, aiming at obtaining a de-
sired reactive power distribution in a synchronized state.
However, the conditions for proportional power sharing in
Lemma 6.3 are derived using the fact that the frequency
is equal all over the network for a synchronized trajectory,
i.e. ωsi = ωsk = . . . = ωs, and serves thus as a common
communication signal. This is not the case for the voltage
droop, since in general V si 6= V sk for i, k ∈ n̄. In the special
case of equal voltage amplitudes, i.e. V si = V sk , i, k ∈ n̄,
proportional reactive power sharing can be achieved by se-
lecting V di = V dk as well as reactive droop gains kQi

, kQk

and setpoints Qdi , Q
d
k following Lemma 6.3. The fact that

the voltage droop control (4) does not in general achieve
proportional reactive power sharing has been widely recog-
nized in the literature and several alternative or modified
decentralized droop control structures have been proposed,
e.g. in [21, 35], with the purpose of improving the reactive
power sharing. Nevertheless, proportional reactive power
sharing via a decentralized control law is still a challenging
open question.

7. Simulation example

Our theoretical analysis is illustrated next via a sim-
ulation example based on the three-phase islanded Sub-
network 1 of the CIGRE benchmark medium voltage dis-
tribution network [27]. The network is a meshed network
and consists of 11 main buses, see Fig. 1.

The following two modifications are made compared
to the original system given in [27]: first, at bus 9b the
combined head and power (CHP) diesel generator is re-
placed by an inverter-interfaced CHP fuel cell (FC). Sec-
ond, since the original network given in [27] stems from a
distribution network connected to a transmission system,
the power ratings of the generation units are scaled by a
factor 4 compared to [27], such that the controllable units
(CHPs, batteries, FC) can satisfy the load demand in au-
tonomous operation mode at least during some period of
time.

The network in Fig. 1 possesses a total of six con-
trollable generation sources of which two are batteries at
buses 5b (i = 1), respectively 10b (i = 5), two are FCs
in households at buses 5c (i = 2), respectively 10c (i =
6) and two are FC CHPs at buses 9b (i = 5) and 9c
(i = 4). We assume that all controllable generation units
are equipped with frequency and voltage droop control as
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given in (4). We associate to each inverter its power rating
SNi , i ∈ n̄. Since the apparent power ratings of the gen-
eration sources are not specified in [27], we set SNi to the
maximum active power given for each source in [27], Table
2. The transformer impedances of the inverter-interfaced
units are modelled with RTi = 0.01Sbase/S

N
i pu, XTi =

0.06Sbase/S
N
i pu, i ∈ n̄, where pu denotes per unit val-

ues with respect to the common system base power Sbase

given in Table 1. Here, we assumed for simplicity that the
transformer power rating is equivalent to the power rating
of the corresponding inverter SNi , i ∈ n̄. The output filter
inductances are assumed equal to XF = 0.0005 pu for all
units.

Non-controllable PV units are connected at buses 3, 4,
6, 8 and 11. The loads at nodes 3-11 represent industrial
and household loads as specified in [27], Table 1, besides
the load at node 1, which is neglected. The line parame-
ters and lengths are as given in [27], Table 3. The total
lengths of the lines is approximately 15 km. We consider
the following two scenarios.

1) Lossless scenario. All loads and uncontrollable
generation sources (PV, wind turbine) of the test system
given in Fig. 1 are neglected. As outlined in Section 5, we
merge the transfomer and filter impedances of the invert-
ers with the line impedances. The largest R/X ratio of an
admittance in the network is then 0.21. For HV transmis-
sion lines it is typically 0.31 [8]. Hence, the assumption
of dominantly inductive admittances is satisfied. Conse-
quently, the droop control laws given in (4) are adequate
and our stability analysis of Section 5 applies.

The batteries at nodes 5b and 10b are operated in
charging mode, hence functioning as loads. We design the
active power droop gains and setpoints of the inverters ac-
cording to Lemma 6.3 with χi = SNi , P

d
i = αiSbi/Sbase

pu, kPi = 0.1Sbase/Sbi Hz/pu for all i ∈ n̄, i.e. the in-
verters should supply the requested power, respectively be
charged, in proportion to their power ratings. We assume
the power setpoints have been provided by some sort of
supervisory control or energy management system, see Re-
mark 3.1, with αi = 0.7 for inverters in generation mode
(i = 2, 3, 4, 6) and αi = −0.5 for inverters in charging
mode, i.e. i = 1, 5.

The reactive power setpoints are set toQdi = βiSbi/Sbase

pu with βi = 0.01 for all i ∈ n̄ to account for the induc-
tive behavior of the lines. The reactive power droop gains
are chosen in the same relation as the active power droop
gains, i.e. kQi

= 0.2Sbase/Sbi pu/pu and V di = 1 pu for
all i ∈ n̄. The low pass filter time constants are set to
τPi

= 0.5 s, i ∼ n̄. The main system data and control
gains are given in Table 1.

The simulation results are shown in Fig. 2. After a
transient the frequencies synchronize and the voltage am-
plitudes become constant. The latter satisfy the usual re-
quirement of 0.9 < V si < 1.1 for V si in pu, i ∼ n̄. The initial
conditions have been chosen arbitrarily. Since condition
(38) holds for all inverters, the synchronized trajectory is
locally asymptotically stable.

The deviation of the synchronization frequency with
respect to the nominal frequency is ωs−ωd = −4.42 mHz.
Following Remark 5.4, for a purely lossless network with
the parameters given in Table 1, the frequency deviation
should be ωs − ωd = −0.09 mHz. The higher frequency
deviation in the simulation is due to the losses over the
lines given by

∑
i∼n̄ P

s
i = 0.05 pu, from which it follows

(in analogy to Remark 5.4) that

ωs − ωd =

∑
i∼n̄

(
P di − P si

)∑
i∼n̄

1
kPi

= −4.42 mHz. (53)

The batteries are charged in proportion to their power
ratings with the active power also being supplied propor-
tionally, as stated in Lemma 6.3. Hence, the simulation
confirms that the active power droop control, as given
in (4), is suited to achieve the desired objective of ac-
tive power sharing. Regarding the reactive power sharing,
we make the following observation. The voltage ampli-
tudes of inverter-interfaced units at the same main buses
5, 9, 10 become (almost) equal when the system synchro-
nizes. But, as discussed in Section 6, the reactive power is
not shared proportionally, limiting the overall performance
of the voltage-reactive power droop law (4).

Our experience in numerous simulations with large va-
riety of control gains, setpoints, low pass filter time con-
stants and initial conditions is that whenever the system
reaches a synchronized trajectory as defined in Assump-
tion 5.3, the latter is locally asymptotically stable by con-
dition (38). However, there exist gain settings such that
the system converges to a limit-cycle behavior. As one
would expect, this is the case for large control gains and
low pass filter time constants.

2) Scenario with constant impedance loads. In
this simulation scenario we evaluate the robustness of our
stability condition with respect to loads represented by
constant impedances. We therefore assume all PV units
work at 50% of their nominal power with cos(φ) := P/S =
0.98 and are treated as negative loads, while the wind tur-
bine is not generating any power. All loads are represented
by constant impedances to ground, the values of which are
calculated at nominal frequency and voltage.

At first, we compute the admittance matrix of the
equivalent Kron-reduced network. In the present case the
largest R/X ratio is 0.22. Thus, the assumption of domi-
nantly inductive admittances is satisfied – even in the pres-
ence of impedances representing loads – but of course the
term lossless system is no longer adequate. The control
gains are chosen as specified in the lossless scenario with
αi = 0.65 and βi = 0.25, i = 1, . . . , 6. Hence, all inverters
operate in generation mode. The voltage setpoints and
low pass filter time constants are as in the lossless case.
We again assume the power setpoints have been provided
by some sort of supervisory control or energy management
system. The main data is given in Table 2.

The simulation results are displayed in Fig. 3. All tra-
jectories converge to a synchronized trajectory satisfying
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Figure 1: 20 kV MV benchmark model adapted from [27] with 11
main buses and inverter-interfaced units of type: PV-Photovoltaic,
FC-fuel cell, Bat-battery, CHP fuel cell. PCC denotes the point of
common coupling to the main grid. The sign ↓ denotes loads. The
numbering of the main buses is according to [27].

condition (38), indicating that the condition is robust –
to a certain extent – to the presence of transfer and load
conductances. The inverters share the active power de-
mand of the loads as stated in Lemma 6.3. Compared
to the lossless scenario, all inverters provide positive re-
active power and the voltage amplitudes are equal at all
units connected to the same main buses (5, 9, 10), when the
system synchronizes. Hence, since the control gains and
setpoints have been selected according to Lemma 6.3, gen-
eration units connected in parallel to the same main bus
(5, 9, 10) share the reactive power in proportion to their
ratings (see Remark 6.7). However, as in the lossless sce-
nario, the reactive power sharing is not proportional with
respect to all units, since the voltage amplitudes are not
equal at all buses.

We have found this behavior of the voltage amplitudes
for all tested initial conditions and control parameters sat-
isfying Lemma 6.3 in the presence of inductive loads. We
wish to point out, however, that (at the moment) we do
not have conditions under which equal voltage amplitudes
at generators in parallel (and therefore proportional reac-
tive power sharing) can be achieved via the droop control
law (4).

Furthermore, numerous simulations with different pa-
rameters indicate that our stability condition (38) is satis-
fied in all cases in which the system reaches a synchronized
trajectory. As in the lossless case, there are gain settings
such that the system does not reach a desired synchronized
trajectory as defined in Assumption 5.3, but shows a limit
cycle behavior. This is typically the case for large control
gains and/or large low pass filter time constants.

All simulations are carried out in Plecs [25].

Table 1: Test system parameters for lossless scenario, i = 1, . . . , 6.

Base values Sbase = 4.75 MVA, Vbase = 20 kV

SNi [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] pu

P di [−0.253, 0.020, 0.183, 0.125,−0.084, 0.008] pu

kPi [0.198, 3.599, 0.383, 0.560, 0.594, 8.482] Hz
pu

Qd
i [0.005, 0.000, 0.003, 0.002, 0.002, 0.000] pu

kQi [0.396, 7.197, 0.766, 1.120, 1.188, 16.964] pu
pu

Table 2: Test system parameters for lossy scenario with loads repre-
sented by constant impedances, i = 1, . . . , 6.

Base values Sbase = 4.75 MVA, Vbase = 20 kV

Max. sys. load 0.91+j0.30 pu

Total PVgen. 0.15 pu

SNi [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] pu

P di [0.328, 0.018, 0.170, 0.116, 0.110, 0.008] pu

kPi [0.198, 3.599, 0.383, 0.560, 0.594, 8.482] Hz
pu

Qd
i [0.126, 0.007, 0.065, 0.045, 0.042, 0.003] pu

kQi [0.396, 7.197, 0.766, 1.120, 1.188, 16.964] pu
pu

8. Conclusions and future work

We have considered the problem of frequency and volt-
age stability in a droop-controlled inverter-based micro-
grid. First, we have shown that the trajectories of the
system are globally bounded for all practical choices of
controller gains and setpoints. We then have derived suf-
ficient local asymptotic stability conditions for a lossless
microgrid via a port-Hamiltonian representation of the lat-
ter. Our condition states that local stability is indepen-
dent of the choice of the controller gains and setpoints of
the frequency droop controller as well as low pass filter
time constants, but does depend on the choice of the con-
troller gains and setpoints of the voltage droop controller.
We further give a design criterion on the controller gains
such that a desired active power distribution is achieved
in steady-state.

To illustrate our theoretical analysis we provide a sim-
ulation example based on the the CIGRE benchmark MV
distribution network. The derived stability condition is
satisfied and a desired steady-state active power distribu-
tion is achieved in simulation for a wide selection of differ-
ent control gains, setpoints, low pass filter time constants
and initial conditions.

Our simulations also show that, despite the observa-
tion that meshed microgrids with droop-control possess a
locally stable synchronized trajectory for a wide range of
control gains, the conventional reactive power droop con-
trol does not guarantee proportional reactive power shar-
ing in general. Therefore, future work concerns – pos-
sibly distributed – control solutions for accurate reactive
power sharing, while guaranteeing network stability. Fur-
thermore, power sharing and stability in dominantly ohmic
microgrids is an interesting outstanding problem.
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Figure 2: Lossless scenario. Trajectories of the power outputs Pi, Qi
in pu, internal relative frequencies fi = (ωi − ωd)/(2π) in Hz and
voltage amplitudes Vi in RMS of the controllable sources in the mi-
crogrid given in Fig. 1, i = 1, . . . , 6. The batteries at nodes 5b respec-
tively 10b operate in charging mode, hence functioning as frequency
and voltage dependent loads. The lines correspond to the following
sources: Battery 5b, i = 1 ’–’, FC 5c, i = 2 ’- -’, FC CHP 9b, i = 3
’+-’, FC CHP 9c, i = 4 ’* -’, battery 10b, i = 5 ’M -’ and FC 10c,
i = 6 ’o-’. The initial conditions have been chosen arbitrarily. All
trajectories converge to a locally aymptotically stable synchronized
trajectory satisfying condition (38). The voltage amplitudes remain
within 1± 0.1 pu in steady-state.
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