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Abstract—Location-Based Service (LBS) has become perva-
sive, riding along the trend of mobile application proliferation.
Given its high utility value, LBS, however, present serious privacy
concerns for cautious users. In this paper, we investigate privacy
preserving for location-based information survey application,
which calculates the geographic distribution of user’s information.
The design objective is twofold: i) calculate an information
distribution for a pool of mobile users, and ii) protecting the
location and value privacy of individual user, in the presence of
malicious servers and possible corrupted users. Our proposed
solution leverages a mobile cloud computing paradigm, in which
each mobile device is replicated with a system-level clone in
a proximate cloud environment. The computing of distribution
function is distributed among the set of cloud clones, via a peer-
to-peer (P2P) protocol. Compared to the approaches based on
centralized server or aggregate proxy, our scheme is advantageous
in avoiding single point of failure/attack, load balancing and
overhead reduction. Simulation results verify these advantages
and suggest that our proposed scheme is suitable for large scale
applications.

I. INTRODUCTION

Owing to the wide adoption of mobile Internet, location-
based service (LBS) has gained significant attention from both
academia [1] and industry [2]. Examples of widely-deployed
LBSs include Foursquare, Yelp and etc. These signature LBSs
serve important functions in the proliferation of mobile ap-
plication. As a subclass of LBS, location-based information
survey application (LB-ISA for short) also becomes more
and more popular (e.g., CarTel [3] and BikeNet [4]), where
individuals contribute their values and locations to a server
for calculating some geographic distribution. For example,
CarTel [3] uses mobile phones to collect road information to
learn the traffic condition.

However, LB-ISAs are exposing the privacy of mobile
users (e.g., location and value' ) to potential exploitation,
starting to cause concerns to cautious users. Indeed, location
information carries huge value if used properly. One widely-
touted example was that a suspected killer was apprehended

In terms of data privacy, both “location” and “value” are the attributes of
data and can be treated equally. However, in the LBS applications “location”
is an exceptive attribute that plays an important role. As such, it is singled
out from the normal attributes of users.
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via location tracking [5]. On the other hand, J. Krumm [6]
suggested that it is possible to find out individual’s home
and identify the individual from anonymous location database.
Such unintended usage could bring tremendous risks to the
mobile user. At the same time, collecting of values (and
mining them) associated with individuals, such as health
condition, income and etc, could serve important functions
(e.g.,Microsoft HealthVault [7]). Nevertheless, much of this
information is too private for individual to report it in public,
in the presence of malicious players in the system. As such,
further success of LBS applications highly depends on the
feasibility of preserving privacy for mobile users, protecting
both individual’s location and value information.

Previous solutions for LBS privacy preserving fall into
two architectural paradigms. One approach is to leverage
a centralized proxy, assumed to be trust-worthy, to accept
information from mobile users and present the information
in which individual privacy is erased to the LBS server [8],
[9], [10], [11]. The LBS server cannot obtain individual user’s
privacy-sensitive information. However, the proxy could be the
bottleneck of the system, suffering from a single point of fail-
ure/attack problem and capability limit. The other approach is
to delegate the privacy protection scheme to mobile devices, as
in [12], [13], [14], [15]. This solution, however, could drain the
resources of smartphones (CPU, memory and power) quickly,
in providing privacy protection such as encryption/decryption,
caching and communication overheads. To protect the value
privacy, SMC (Secure Multiparty Computation) [16], [17] is
a good choice to calculate the statistics without any private
information disclosure. However, the protocol could result in
huge message overhead, limiting its practicality in large mobile
systems with millions of users, even in a single metropolitan
area.

In this paper, we leverage the emerging mobile cloud
computing paradigm [18] to preserve privacy in LB-ISAs.
Specifically, each mobile device is shadowed by a system-level
clone in a proximate cloud infrastructure. The computation
of distribution function is dynamically assigned to this set
of cloud clones, which formulate a stabler P2P network than
their physical counterparts. Moreover, these cloud clones have
access to more system resources than their physical devices,
offering extended capability for privacy-preserving computing.
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Under this architecture, we design a robust protocol for privacy
preserving LB-ISAs and evaluate its effectiveness via analysis
and numerical simulation. Our contributions include:

e  We identify the problem of privacy-preserving infor-
mation survey in LBSs and introduce a novel ar-
chitecture to avoid the potential pitfalls in previous
centralized and distributed solutions.

e  Analytical investigation establishes the robustness of
our protocol, defending against potential attackers.

e Numerical simulations verify the effectiveness of
our protocol, providing better load-balancing, reduced
message overhead, and receivable communication cost
in large scale applications.

The rest of the paper is organized as follows. Related work
is presented in Section II. We present our system model and
state the LS-ISA problem in Section IIl. In Section IV we
describe our proposed scheme in detail. In Section V the
security of our scheme is analyzed and its effectiveness is
verified via numerical simulations. We conclude the paper and
propose the future work in Section VI.

II. RELATED WORK

Location privacy. The most common method to protect
location privacy is the k-anonymity [8], in which a cloaking
region containing at least k£ unrecognizable users is used to
hide the identity of each user. For example, in [9], a cell-
divided method is exploited to generate the desiring regions.
The privacy protection strength of k-anonymity can be further
enhanced by advanced ideas, such as [-diversity [19]. Consid-
ering the uniqueness of road networks, Mixzone [10] and path
confusion [20] are two special solutions to hide the identity of
individual user.

Notice that these aforementioned methods normally adopt
an architecture involved with a trusted proxy, which could
be the bottleneck for the system. Lately new approaches are
removing the trusted proxy. For example, cache method [12]
stores the data on the mobile phone. However, this method
could drain the onboard resource with the mobile device.
Other methods such as Private Information Retrieval (PIR) [14]
could provide the strongest privacy protection by cryptology
methods, nevertheless suffering from its complexity.

Query/Value privacy. Theoretically secure multi-party
computation (SMC) is an excellent solution for value privacy.
However, its practicality is often challenged in real system.
For example, [16] presents a secure sum protocol in which
the summation is calculated serially. It would consume a large
amount of time for a large-scale system. In [17], the summation
is allowed on untrusted servers, in which it uses participates’
keys. However, it requires the sum of all the parties’ keys
to be 0. If one of the party leaves in the process, which is
a common case in large-scale system, the summation cannot
be calculated. Previously, dummy query is used to hide the
true query or value in multiple fake ones [21], which would
generate too much useless information. PrivStats [15] solves
a similar problem as the problem in this paper. However, it
suffers from the channel varying in wireless environment.

101

TABLE 1. AGGREGATION FUNCTION LIST

Aggregation Function
Count: count(v)
Average: avg(v)

Standard Deviation: std(v)

Construction with summation sum(v)
the value of each individual is 1
sum(v)/count(v)

avg(v?) — avg(v)?

III. PROBLEM STATEMENT AND SYSTEM ARCHITECTURE

In this section, we first present a problem statement for
privacy-preserving location-based information survey service.
Following that, we suggest a system architecture based on
mobile cloud computing, in which each mobile device is
shadowed by a system-level clone located in a proximate
cloud. In this architecture, we highlight the fact that the
computation is delegated into a subset of cloud clones in the
system. Finally we list our assumptions about threat models
and attack vectors.

A. Problem Statement

In order to calculate the required distribution of LB-ISA
on an interesting area of unit square, we subdivide the area
into ko x ki grids, and calculate the aggregation statistic in
each grid. We assume that n users are distributed in this area,
in which user u;, ¢ = 0,1,--- ,n — 1 has a value of v; and a
location at (x;,y;). In practice, the unit square can be scaled
proportionally. We only consider a snapshot of the scenario
and our approach can be extended to a slotted time horizon.

The aggregation computation is based on the requirement
of distribution function. For example, if we want to survey the
population distribution in a city, we can count the number of
person located in each subdivided grid of the city. Previously,
Popa et al [15] outlined a list of possible aggregation statistics,
including summation, average, standard deviation and count.
Specifically, summation is the basic one, in which the server
processes the aggregation function sum(v) = > wv;. Other
aggregation functions can be constructed by summation, as
outlined in Table I. Therefore, the problem of interest in this
paper can be stated as follows:

Problem: A given unit area of R is subdivided into m =
ko X k1 subregions {r;|0 < ¢ < m—1}. n users with locations
{(24,9:)|0 < i < n—1} are distributed in R, each of which has
a value v;. A protocol is required to calculate the summation
of values in each of the subregion and cannot disclose the
individual’s value and location.

B. System Model

In this paper, we leverage the emerging mobile cloud
computing paradigm to design privacy-preserving location-
based information survey protocol. Our system architecture is
illustrated in Fig. 1. In particular, each mobile device is repli-
cated by a system-level clone located in a cloud infrastructure,
acting on behalf of its physical counterpart. Compared to its
physical device, a mobile clone has access to more system
resources (e.g., CPU, RAM, bandwidth, etc). Moreover, the
set of mobile clones can formulate a stabler P2P network than
their corresponding mobile counterparts. We leverage the set
of mobile clones as potential candidate for proxy to compute
the summation of individual values in subregions and hide the
location/value information of individual user.



2013 2nd IEEE/CIC International Conference on Communications in China (ICCC): Future and Mobile Internet (FMI)

LBS Server

Fig. 1. System architecture based on mobile cloud computing: each mobile
device is replicated by a clone in a proximate cloud, acting on behalf of its
physical device.

Comparing to the existing dedicated proxy solution, our
solution exhibits a few advantages. First, the amount of system
resource allocated to mobile clone can be dynamically deter-
mined in response to the application demand. Second, over a
period of time, the communication load can be shared among
all the participating clones, achieving load balancing.

C. Threat Model

We assume that the LBS server is honest but cannot be
trusted. The server executes the protocols honestly to get the
statistics, but it also makes an effort to find out individuals’
privacy information such as positions and values from the data
it receives. Moreover, because the LBS server is in the form
of centralization that all the reported data is stored on it, it is
quite possible that hackers could steal it to find out some useful
information about users by side information or background
knowledge when they break into the server.

Cloud providers are semi-trusted. We assume that cloud
providers are honest that they do not furtively monitor and
record the data and operations on the clones. However, the
security protection they provide is limited so that the attackers
may compromise the clone. This assumption is reasonable
because the main service that cloud providers offer is re-
mote storing/computing. Monitoring of users’ information will
greatly worsen cloud providers’ reputation. At the same time,
there is no perfect security system in the cloud, so the clones
could be compromised.

Malicious clone can get the data that passes and stores
on it, and can combines with other clones. Malicious clone
is the one belonging to a malicious user or compromised by
an attacker. It participates in the pretreatment of raw data as
other clones. The attacker can obtain all the data routed and
preprocessed by the compromised clone. Furthermore, many
malicious users may collaborate with others or the attacker
can control many clones to try to disclose individual’s privacy.
Since both malicious users and attackers cause the same
threaten, we do not distinguish “malicious user” and “attacker”
by default.

Notice that we only consider the passive adversary which
only eavesdrops information without modifying them. The
more powerful active adversary which modifies the information
it captures will be considered in future.
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IV. PRIVACY-PRESERVING INFORMATION SURVEY BASED
ON MOBILE CLOUD COMPUTING

In this section we describe the details of our proposed
scheme. Suppose the interesting area R is subdivided m
subregions, and n users lying in it (see the Problem in Section
III-A). The server wants to get the sum of values of users in
each subregion. The workflow is shown in Fig. 2.

A. Scheme Initialization

Our scheme requires an asymmetric encryption scheme,
which is defined by the following tuples:

e (PK,SK) < KeyGen(k). It is a probabilistic poly-
nomial time (PPT) algorithm that takes a security
parameter x as input and outputs a key pair containing
a public key PK and a private key SK.

e (C < Encpg(m). It is a PPT algorithm that takes a
public key PK and a plaintext message m as inputs
and outputs a ciphertext C.

e m < Decgk(C). It is a deterministic algorithm that
takes a secret key SK and a ciphertext C' as inputs
and outputs a plaintext message m.

For correctness, we require that for any plaintext message
m, we have m <+ Decgx(Encpi(m)) if (PK,SK) +
KeyGen(k) for some security parameter . We additionally
require the encryption scheme to have the homomorphic prop-
erty:

e  Homomorphic Addition of plaintexts: Encpx (mi+
mg) = EnCpK(ml) . EnCpK(mg).

Paillier cryptosystem [22] is a good candidate to satisfy all the
above requirements.

Server executes the KeyGen algorithm. It publishes
PK while keeping SK private. It also claims the sub-
regions {r;|0 < i < m — 1} it requires, where r;={<
(X:,Y2), (X1,Y!) >} satisfying X; < X/ and V; < Y.
Suppose 7; Nr; = (i # 7,0 < 4,7 < m — 1), which means
each user only belongs to one subregion.

For users, each mobile phone has a clone in the cloud.
Suppose the phone and clone are connected by a secure
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channel such as SSL, regardless of the connection way (Wi-Fi,
GPRS, 3G, etc.).

For clones, all the clones form a structured P2P network.
Here we use Chord which is one of the most classical P2P
routing protocol to organize the clones. Each clone runs as a
peer in Chord. The identity (ID) of peer is a pseudorandom
number, such as the hash value of the phone number, guaran-
teeing that each peer has an unique ID, and its position on the
ring is not selected elaboratively.

B. Scheme in Details

Our scheme is composed by three phases: value generation,
value pretreatment and value aggregation. Value generation
is responsible for the generation of individuals’ information,
which is implemented on the user side. Value pretreatment
wipes off both location and value privacy of individuals, which
is carried out on the clone side. Value aggregation computes
the statistics on server. In the following the details of the phases
are described.

1) Value Generation: The function Value Generation Func-
tion (Table II) processes at the user part. In this phase each
user generates the encrypted value and location pair, and
transmits the pair to his clone in the cloud. Suppose user
u;(0 < i < n—1) generates value v;, and the location is P;
(24,9;). u; encrypts v; by server’s public key PK, and sends
(EnCpK(vi),Pi) to his clone ¢;.

TABLE II. VALUE GENERATION FUNCTION

Value Generation Function Functions run by wu;
1 generate (value, location) pair (v;, P;)

2 encrypt the value v; using PK

3 send (Encpi (vi), P;) the pair to clone ¢;

2) Value Pretreatment: At the beginning of value pretreat-
ment phase, each clone ¢; (0 < ¢ < n — 1) contains one
(value, location) pair. In value pretreatment phase there are
two functions. One function protects the privacy of locations
by fake location technology or rounding [6]. The other protects
the privacy of values by aggregation.

The former function (Value Pretreatment Functionl, Ta-
ble III) is executed by every clone. For clone ¢;, firstly it
finds out the subregion that its location (z;,y;) belongs to.
The subregions are claimed by server. Each clone downloads
them to find the subregion locally. If ¢; finds a subregion 7;
satisfying X; < z; < X/ and Y; < y; <Y/, r; is the subregion
its location belongs to. Then c¢; uses the representative point
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of r; (X;,Y;) to displace his original location, where the
representative point is a point delegating the subregion. Here
we select the lower left point of the subregion as representative
point ((X;,Y;) for subregion r; in Fig. 3). In this way all
the locations in 7; are changed to (X;,Y;). Then clone sends
the pair (Encpg(v;), (X;,Y;)) with the destination address
H((X;,Y;)), where H is a collision-resistant hash function
that maps any arbitrary string to a point on Chord ring. So
the n pairs are sent to m destinations, which are maintained
by m clones at most. In Fig. 3 uy and w; locate in the same
subregion, so the clones of both take P; as the destination,
which is the mapping of the representative point (X;,Y;) of
r;. As the formulation of Chord protocol, the clockwise nearest
peer co takes charge of p;. For the hash mapping from realistic
region to the Chord ring, the corresponding user us lies in the
region randomly.

TABLE III. VALUE PRETREATMENT FUNCTION1

Value Pretreatment Functionl Functions run by c¢;

1 < (X;,Y:),(X],Y/) > = FindSubregion(P;)

2 P=(X;,Y5)

3 send (Encpk (vi), (X4, Y:)) to the address H(P;)

Another function Value Pretreatment Function2 (Table IV)
is executed by every clone too, but only the processes on
the clones receiving (value, location) pairs are active (active
clone for short, such as co in Fig. 3), while others are in the
suspended state. When an active clone receives the (value,
location) pairs by Chord protocol, he multiplies all the values
with the same location. Suppose #(P;) is between c; and
its predecessor, so the (EnCpK(Ui),Pi) is transmitted to c;
which is an active clone. At first ¢; initializes the aggregate
result AggEncValue(#(P;)) < Encpk(0), which is the
ciphertext of zero. Then the product of all encrypted values
in the address H(F;) is calculated when the packets generated
by Value Pretreatment Functionl of some other clones come.
This step lasts until time 7 + ¢ where 77/ is the end time
of collecting user’s information and e is time margin to
guarantee all the packets can be received. At last ¢; sends
(AggEncValue(#(P;)),r;) to the server. In order to avoid
congestion at server, the sending time is selected randomly in
the time interval [0, Ts], where T is the maximum delay given
by the scheme.

TABLE IV. VALUE PRETREATMENT FUNCTION2

Value Pretreatment Function2 Functions run by ¢;

AggEncValue (H(P;)) «+ Encpx (0)

while get value v; with address H (P;) and nowtime < TL/ + e
AggEncValue (H(P;)) = AggEncValue (H(P;)) - Encpx (vi)

endwhile

send (AggEncValue (H(P;)), ;) to the server with random

delay in [0, T%]

L N S

3) Value Aggregation: In this phase, server receives all
the (result, subregion) pairs. Server decrypts the results by
his private key. There are m subregions in all, so server
gets a set {(AggEncValue(H(P;)),r;)|0 < i < m — 1}.
When server receives (AggEncValue(H(P;)),r;) from ¢;,
he decrypts to get > v; < DecCgsk (AggEnCValue(’H(Pi))),

which is the sum of the values in subregion r;. Now server
gets the summation aggregation in each subregion.
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V. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION

In this section, at first we analyze the security of our
scheme. It shows that our scheme can preserve the privacy
of individuals from both untrusted server and malicious users.
Then the performance, especially the communication cost of
our scheme is evaluated. Shown by the simulation, our scheme
balances the load efficiently, which is especially suitable for
large-scale applications.

A. Theoretic Security Analysis

Our scheme aims both location and value privacy of
individuals from untrusted server and malicious users. From
the perspective of server, the data it receives only is the neces-
sary information for statistics calculation, i.e. the encrypted
aggregate results of the subregions without any individual
information. It fundamentally prevents the attacks from server
regardless of any side information the server obtains. Therefore
server cannot violate the individuals’ privacy.

Privacy of individuals’ information on clone is another part
we should concern. We also need to prevent privacy disclosure
from malicious clones. We focus on the malicious user who
has a clone participating in the Chord network and attacker
who compromises clone. They can eavesdrop the packets in
the P2P network. We use the hash of phone number as the ID
of clone in Chord, so the ID is not easy to change arbitrarily
and frequently, which means that the clone can not choose
whether it is an active clone, or which subregion it maintains.

If the malicious clone is not an active clone, it can monitor
all the passing packets, which contain encrypt values and
locations of others. However, the clone does not obtain the
private key of server, so the values cannot be decrypted. The
location information can be obtained, but it has been rounded
by user’s clone before the packet is sent into Chord. So the
attacker only knows the subregions the users belong to and
nothing about the exact locations, which is not regarded as the
individuals® privacy anymore. Therefore, the attacker does not
compromise the privacy of users’ locations and values.

If the malicious clone is an active clone of some subregion,
it additionally has all the users’ packets in the subregion
besides the data in the former situation. Similarly, the values
can not be decrypted and the locations have been formulated.
The potential threaten is that the adversary knows the number
of users in the subregion, which may be helpful to recognize
the user when the number is small. But usually in survey
applications there are plenty of individuals in one subregion
which satisfies k-anonymity easily. Therefore malicious active
clone also cannot violate the location and value privacy.
Furthermore, collusion of multiple malicious clones does not
weaken the strength of privacy protection, just having more
encrypted data and rounded locations.

In our problem, the region is divided by server according
to the application, which is a tradeoff of the privacy and utility.
If the application only wants to calculate simple statistics such
as the average of values in the whole region, one subregion
(no division in another word) meets the requirement. However
in this case too much traffic converges to the active clone.
Dividing the region into several proper subregions can balance
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Fig. 4. In Fig.4(a), for the method with centralized proxy, the proxy receives
all the data. The number of receive packets is O(n). In our scheme, data is
distributed to all the clones. Each clone receives much less packets, or rather
O(log(n)) packets in average (Fig. 4(b)).

the traffic of clones, which is evaluated in Section V-B.
However, if much subregions are subdivided, some subregions
may have few locations, easily violating individual’s privacy.
The extremely case is each subregion only contains one person,
which violates individual’s privacy easily. Thus adequate size
of subregion is necessary to meet the k-anonymity in each
subregion. Here we do not focus on how to divide the region
into proper subregions, which is out of the scope of the paper.

B. Performance Evaluation

1) Simulation Setup: We simulate our scheme based on
OverSim [23] to see the performance, especially the commu-
nication cost of clones. In the experiment, we adopt the default
parameters of Chord in OverSim. We divide the interesting
region into m subregions with equal size. We set the runtime of
our protocol 200s and m = 20 as default. Users are uniformly
distributed in the m subregions. Each user has one clone, and
has one (value, location) pair.

2) Performance Investigation: We measure the commu-
nication cost of clones by the number of received packets.
They can be divided into types. One is generated by the data
procession in value pretreatment phase. The other is caused
by the maintenance of Chord itself. In the P2P network, the
packets a clone receiving are not only the packets to it, but
also the packets routed by it. Fig. 4 illustrates the average
packets the clone receiving. By way of contrast in the method
with centralized proxy, the proxy receives all the data from
users. So it receives O(n) packets, where n is the number
of users. Our scheme distributes the data by the P2P network.
Compared to the method with centralized proxy, in our scheme
the average number of packets each clone receiving (including
the packets it routes) grows in logarithmic way (Fig. 4(b)).
For example, the number is 159.035 when n = 200. It only
increases to 249.680 when n reaches 5000. Thus our scheme
is especially suitable for large-scale applications.

Actually, some clones, such as aggregation clones, are
under the heavier load than others. Fig. 5 shows the dif-
ference between aggregation clones and other clones, where
the communication cost of aggregation clone is larger than
other clone’s. The packets clone receiving can be divided into
two categories. One contains the packets maintaining the P2P
protocol. The other contains the packets for application. The
communication cost of aggregation clone is caused by the
application data, especially when large number of users exist.

Increasing the number of subregion can reduce the cost
of aggregation clones. Fig. 6 shows the communication cost
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of aggregation clones, where there are 10000 users. The load
can be distributed by adding the number of subregions. In our
experiment, the average number of received packets is reduced
from 2818.25 to 649.075 when m increases from 4 to 40. Thus
the load can be balanced by splitting subregions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel structure to protect
both individuals’ location privacy and value privacy against
untrusted server and other users/attackers in LB-ISAs. From
the security analysis and performance evaluation, our scheme
is efficient to defend the passive adversary without modifying
the data, especially in large scale applications. In the future
work, we would enhance the power of adversary, to protect
the individual privacy against active adversary.
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