
G2DGA: An Adaptive Framework for Internet-based
Distributed Genetic Algorithms

Johan Berntsson
School of Software Engineering and Data Communications

Queensland University of Technology, QLD 4001, AUSTRALIA

j.berntsson@qut.edu.au

ABSTRACT
The Internet is different from traditional parallel computing
environments, and Distributed Genetic Algorithms (DGAs)
for the Internet need to be designed to address these differ-
ences. This paper presents a framework for Internet island-
model DGAs that uses adaptation methods to maintain ef-
ficiency and robustness in a volatile and dynamic run-time
environment. The applicability of the methods is demon-
strated on benchmark tests, and a real-world optimization
problem in VLSI design.

Categories and Subject Descriptors: D.2 Software En-
gineering: Miscellaneous

General Terms: Performance Reliability Algorithms

Keywords: genetic algorithms, migration topology, adap-
tation, internet computing

1. INTRODUCTION
The Internet is the most powerful parallel and distrib-

uted computation environment in the world and the idle cy-
cles and memories of computers on the Internet have been
increasingly recognized as a huge untapped source of com-
putation power. As a result, the research and practice on
developing Internet-based parallel and distributed GAs have
attracted a great deal of attention recently, with most atten-
tion focused on client/server architectures (e.g. [4, 12, 3]).
Peer-to-peer (P2P) architectures have also been considered,
most notably in the DREAM project [11].

Developing parallel computation applications on the In-
ternet is quite different from in traditional parallel computa-
tion environments, such as multiprocessor systems, because
the Internet differs from those in many respects. Firstly, its
communication latency is significantly higher and communi-
cation bandwidth is narrower than traditional parallel com-
putation environments. Secondly, it is dynamic and volatile
since the number of participating computers and their per-
formance cannot be predicated beforehand and they may
withdraw at any time. Thirdly, because of security reasons,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

participating computers may not be able to communicate
with each other directly. Fourthly, participating computers
may be heterogeneous.

The results reported in this paper are part of a larger re-
search project, G2DGA, aimed at developing a middle-ware
for Internet-based genetic algorithms. The main approach
used to address the volatility and dynamic nature of the
Internet run-time environment is to use adaptation. Due
to limitations of space only a broad overview of the sys-
tem and the most significant experimental results can be
included, but more detailed reports can be found on-line 1.
The framework is described in Section 2. Section 3 describes
a method for adapting the migration topology, and Section 4
describes a method for sizing of population size and number
of islands. Section 5 concludes the paper with an overview
for future research.

2. INTERNET-BASED GA FRAMEWORK
While most Internet computing applications, including

GAs, use the client/server model, this research uses a P2P
model to make the system more scalable by reducing server
bottle-neck and single point of failure problems. In con-
trast to pure P2P DGAs like DREAM [11], G2DGA is im-
plemented as a hybrid P2P with two types of objects, (i)
islands that run a GA process, and (ii) a supervisor that
perform monitoring and adaptation. The supervisor creates
the island objects and defines a migration policy that is sent
to each of them, specifying the migration interval, rate, and
a list of neighbouring islands. The islands run the GA and
handle migration, which is asynchronous. The migrants are
sent directly between the peers (islands), while the supervi-
sor collects feedback data from the islands and is responsible
for adaptation. By its hybrid design G2DGA can retain a
global overview of the GA which provides opportunities for
adaptation that are difficult to achieve in a pure P2P ar-
chitecture, while avoiding the bottle-neck and single-point-
of-failure problems associated with traditional client-server
solutions since; (i) the supervisor is implemented as a P2P
node. If the computer goes off-line or becomes busy, the P2P
load-balancer will transparently move the supervisor object
to another computer, and (ii) the supervisor is optional, and
only used to improve the performance of the GA. The islands
will continue to work without it.

G2DGA is based on G2P2P [9], which is a P2P distrib-
uted object framework based on .NET remoting. G2P2P
uses a hash-based object addressing scheme to separate the

1http://plas.fit.qut.edu.au/Wiki/Users/JohanBerntsson.html

logic view of P2P nodes from the hardware they run on,
making it easy to implement object migration. G2P2P also
handles code distribution and fault tolerance transparently.
.NET provides a safe execution environment and platform-
independent exchange of data by XML.

3. DYNAMIC TOPOLOGY ADAPTATION
For island model GAs, the migration topology has a ma-

jor impact on DGA performance [2]. The framework uses
clustering in the supervisor on the feedback data (elite so-
lutions received from the islands) to find groups of islands
that work in similar partitions of the search space, and to
optimize the migration topology with the goal of reducing
the connectivity while maintaining good performance. The
main steps are outlined in the pseudo-code below. Several
strategies for MakeTopology are described in Section 3.1. If
any parameter is to be changed, UpdateIslandTopology will
send the new migration policy to the islands.

procedure Adapt()

cluster_set=MakeClusters(data_set)

new_topology=MakeTopology(cluster_set)

UpdateIslandTopology(new_topology)

Clustering is an unsupervised learning method which di-
vides data into natural groups automatically based on sim-
ilarity. In the current application the problem is simplified
by the fact that only a small subset of individuals is eval-
uated. The computational expense grows with the number
of islands, which is much smaller than the total population.
Furthermore, it is not necessary to find optimal clusters. A
heuristic method that finds useful clusters for efficient adap-
tation is enough.

The clustering algorithm used in this work is K-medoid
[8], which can be applied to all genomes, including those
that can only provide nominal data, given a distance func-
tion that compares two genomes, e.g. Hamming distance for
bit genomes. The aim of K-medoid is to partition the data
set of n data points into K groups so as to minimize the
total within-group sum of distances about K representative
points, or medoids, among the data points. The stored num-
ber of individuals from each island is limited, and a newly
arrived data point replaces the oldest when the buffer is full.

The setting of the number of clusters parameter K is
a non-trivial problem. The Minimum Description Length
(MDL) criterion from information theory is used to find to
find a good K [5]. MDL which is a measure of how efficiently
a given cluster model encodes the data set, and the system
uses a bootstrap function to try K ∈ [1 . . . Kmax] and se-
lecting the k with minimal MDL. The optimal K tends to
be small compared to n, and Kmax =

√
n has empirically

been found to be a reasonable setting.

3.1 Experimental Results
The clusters created by the clustering algorithm are used

to create new migration topologies. The topologies tested
are:

• Similar: Ring topology between the islands in each
cluster, no communication between clusters.

• Diverse: Each island in a cluster communicates with
all islands in the other clusters.

• Mixed: Ring topology between islands in each cluster,
and one link to each other clusters.

• Fully: Each island communicates with all other is-
lands, regardless of the cluster.

Many experiments have been conducted to evaluate each
alternatives over a wide range of test problems. Figure 1
displays the running of F101 from the Whitley test suite [13]
with the parameter settings pc=0.7, pm=0.005, 2-tournament,
generational GA, 16 islands, 30 individuals/island, elite=1,
1-point crossover, 10 variable, 10 bits per variable, migrant
rate=1 individual (best replaces worst), and migration in-
terval=5 generations, averaged over 50 runs. Connectivity is
also measured, defined as the number of one-way migration
paths between the islands. For n islands, this means that
a fully connected topology has connectivity n(n− 1), and a
uni-directional ring topology has connectivity n.

Densely connected topologies have better average fitness
and worse optimal performance. The similar topology has
7% of the connectivity of the fully connected, and performs
worst in both categories. However, only a 3% increase in
connectivity allows the mixed topology to improve the av-
erage fitness significantly, and to achieve the best optimal
performance. The improved results can be explained thus:
the clusters concentrate on exploring promising partitions
in search space. The added connectivity in the mixed model
is not big enough to force premature convergence, and the
mixed topology keeps the number of clusters up compared to
other dynamic topologies, dividing the islands into smaller
groups and slowing down information exchange between the
clusters. This seems to provide good balance between ex-
ploration and exploitation, which is key to good GA design
[10].

The same set of experiments reported on F101 have also
been carried out with the F102 and F8F2 functions with sim-
ilar results. All experiments used ring topologies within the
clusters. Other experiments have been conduced with fully
connected topologies, and the general trend is the same,
but the total level of connectivity is higher (typically 0.6
instead of 0.1 for mixed), and the optimal performance ad-
vantage smaller. More sparse intra-cluster topologies are
clearly superior. The results suggest that clustering gives
a big boost in performance (especially optimal) for a small
increase in connectivity. This is especially evident in the
mixed topology. Furthermore the method has been applied
to a challenging real-world VLSI floorplanning problem [1].
The adaptive DGA has significantly better optimal perfor-
mance, and the best found solution is better than the best
solution reported in [1], even though the total population is
smaller.

4. POPULATION SIZING
Finding the proper population size for a given GA prob-

lem is of crucial importance for good performance, and the
intention of the proposed method is to find set of values for
the number of islands and island sizes that provides a total
population size big enough to solve the problem efficiently.
Parameters such as crossover, mutation rates, and migra-
tion policy are important, but they are also fairly tolerant,
while a proper population sizing is crucial and can to some
extent overcome suboptimal settings of other parameters. If
the population size or number of islands is too small the GA

Generations

F
it

n
es

s

Similar

Diverse
FullyConnected

Mixed

40 60 80 100 120 140 160 180 200

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Generations

F
it

n
es

s

Similar

Diverse
FullyConnected

Mixed

40 60 80 100 120 140 160 180 200

0.55

0.6

0.65

0.7

0.75

0.8

Figure 1: Continuous adaptation; optimal (left) and mean fitness (right)

will convergence prematurely, and too large values are inef-
ficient. A manual approach to population sizing could be
to first try with a small population and number of islands,
and then increase each parameter until no further gain in
performance is detected. The proposed method works in a
similar manner, but instead of working in an ad-hoc way,
the population adapter automates the process and hides it
from the user.

The basic idea of the population adapter is to run sev-
eral distributed GAs with competing sets of number of is-
lands/island size settings in parallel. Let n denote the num-
ber of islands, and d denote the island size, which is the same
for all islands. The total population is n ∗ d. At any given
time three DGAs (denoted DGA0, DGA1, and DGA2) are
run in parallel with the following set of parameters:

< n, d >, < n, d ∗ 2 >, < n ∗ 2, d >

This sets up a competition between the basic DGA0, DGA1

with more islands, and DGA2 with bigger island population
sizes. The DGAs are allowed to run until one of the DGAs
overtake its competitors, or the termination criterion has
been met.

The method has similarities to the parameter-less GA [6],
but with significant modifications: (i) both population size,
and number of islands are adjusted in parallel, (ii) the pop-
ulation adapter is both competitive and collaborative, and
(iii) the population adapter terminates automatically when
no further improvements are found.

4.1 Competitive Evaluation
Evaluation of DGAs can be cut if they are being overtaken

by other DGAs, or converging. Overtaking is detected by
comparing average fitness of a DGA with DGAs with big-
ger total population size, since it is unlikely that the smaller
DGA with lower average fitness will succeed in getting better
optimal results than the bigger DGA. The convergence cri-
terion is problem dependent, and should be set by the user.
Once convergence or overtaking is detected, the population
adapter takes the following action:

• DGA0 converges
no action.

• DGA1 and DGA2 converged
All DGAs restarted.

• DGA1 overtakes DGA0

d = d∗2, DGA1 → DGA0, DGA1 and DGA2 restarted
(using seeding).

• DGA2 overtakes DGA0

n = n∗2, DGA2 → DGA0, DGA1 and DGA2 restarted
(using seeding).

The intuition behind this algorithm is that three hypoth-
esis are evaluated in parallel, and when a DGA overtakes its
competitors, it is an indication of the need to adjust the pa-
rameter set in the direction suggested by the winning DGA.
DGA1 is testing if more islands are beneficial, and when it
overtakes the other DGAs, the routine increases the number
of islands in the next round of competitions. DGA2, which
is testing the benefit of increasing the population size on
each island, works in the same way.

4.2 Collaborative Restart
The basic case of restarting an DGA is to simply reinitiate

the population on each island. This may be inefficient, since
each newly restarted DGA will need time to catch up with
its competitors even if its population sizing parameter set
is better. As an alternative the population adapter can use
seeding. With seeding, each island in the newly restarted
DGA reinitiates its population, but also inserts the best in-
dividuals from the other DGAs. E.g., if DGA1 is restarted,
each island in DGA1 is seeded with the best individual from
DGA0 and DGA2. In this way, the DGAs collaborate to give
new DGAs a bias toward promising regions of the search
space, which makes the population adapter more efficient.

4.3 Termination
The population adapter terminates when there is a rela-

tively slim chance of finding a better set of sizing parameters
than the current. The termination criterion should not re-
ply on problem specific parameters, such as a known global
optima, or a maximum number of generations. Rather,
the population adapter uses the convergence status of each
DGA. Since it is quite common that DGAs converge in early

Seeding Success Evaluations Island size, number of islands
rate Mean Stddev 80,8 80,16 80,32 160,8 160,16 160,32 320,8

Yes 10/10 407555 93437 - - 1 3 3 2 1
No 10/10 463970 205637 1 2 1 4 2 - -

Table 1: Population adapter with the Royal Road problem

trials because of the small values of n and d, it is not possi-
ble to terminate as soon as a convergence has been detected.
The population adapter therefore does not terminate until
(i) each DGA has converged at least once, and (ii) no new
best solution is found during the detection phase. If a new
best solution is detected, then the best solution so far is
updated and the termination detection process is reset. In
addition to the general termination criterion, problem spe-
cific knowledge can be used.

4.4 Experimental Results
Table 1 summarizes the outcome of ten runs of the pop-

ulation adapter, using one variant of the Royal Road prob-
lem [7]. To provide a reference for the population adapter
experiments a series of experiments with manual settings
were conducted, which suggested that a total population
size of 2560 is required for good performance. The pop-
ulation adapter successfully finds the optimal value for all
runs, but there are clear differences in the number of eval-
uations and the selected parameters, depending on whether
seeding is used or not. Without seeding, most runs lead to
comparatively small population sizes. With seeding, bigger
population sizes are favoured, which is found in the man-
ual experiments to be advantageous. This is reflected in
the number of evaluations, where seeding has a lower aver-
age number of generations needed with a significantly lower
standard deviation, suggesting that seeding leads to more
reliable results. Additional experiments with F101 and the
VLSI floorplanning problem described in Section 3.1 show
similar results.

Although the population sizing experiments were carried
out of standard GAs, the method can be applied to more
advanced GAs, such as messy GAs or the Bayesian opti-
mization algorithm, without any significant modifications.

5. DISCUSSION AND CONCLUSIONS
This paper has presented an adaptive framework for Internet-

based island model genetic algorithms. Benchmark testing
was used to evaluate different design options, and to com-
pare adaptive and static performance. Furthermore, results
on a real-world VLSI optimization problem were presented.
In future research, we hope to extend on the current system
and investigate the applicability of the proposed approach
on optimization of other parameters that have an impact on
communication overhead, such as migration rate and inter-
val.

6. REFERENCES
[1] J. Berntsson and M. Tang. A slicing structure

representation for the multi-layer floorplan layout
problem. In Applications of Evolutionary Computing:

Proceedings of EvoWorkshops 2004, volume 3005 of
Lecture Notes in Computer Science, pages 188–197.
Springer-Verlag, 2004.

[2] E. Cantú-Paz and M. Mejia-Olvera. Experimental
results in distributed genetic algorithms. In
International Symposium on Applied Corporate

Computing, pages 99–108. Texas A&M University,
Monterrey, Mexico, 1997.

[3] F. S. Chong. A Java based Distributed Approach to

Genetic Programming on the Internet. Master’s thesis,
Computer Science, University of Birmingham, 1998.

[4] C. Gagnè, M. Parizeau, and M. Dubreuil. Distributed
BEAGLE: An environment for parallel and
distributed evolutionary computations. In Proceedings

of the 17th Annual International Symposium on High

Performance Computing Systems and Applications.
Kluwer Academic Publishers, 2003.

[5] P. Grünwald. A tutorial introduction to the minimum
description length principle. In P. Grünwald,
I. Myung, and M. Pitt, editors, Advances in Minimum

Description Length: Theory and Applications. MIT
Press, 2004.

[6] G. R. Harik and F. G. Lobo. A parameter-less genetic
algorithm. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, editors, Proceedings of the Genetic and

Evolutionary Computation Conference, volume 1,
pages 13–17. Morgan Kaufmann, 1999.

[7] T. Jones. A description of Holland’s royal road
function. Evolutionary Computation, volume 2(4),
pages 409–415, 1995.

[8] L. Kaufman and P. J. Rousseeuw. Finding groups in

data : an introduction to cluster analysis. Wiley, New
York, 1990.

[9] R. Mason and W. Kelly. G2-P2P: A Fully

Decentralised Fault-Tolerant Cycle-Stealing

Framework, volume 44 of ACSW Frontiers 2005.
ACM, 2005.

[10] Z. Michalewicz. Genetic Algorithms + Data Structures

= Evolution Programs. Springer-Verlag, 1992.

[11] B. Paechter, T. Back, M. Schoenauer, M. Sebag,
A. Eiben, J. Merelo, and T. Fogarty. A distributed
resource evolutionary algorithm machine (DREAM).
In Proceedings of the 2000 Congress on Evolutionary

Computation, volume 2, pages 951–958. IEEE Press,
2000.

[12] K. C. Tan, W. Peng, T. H. Lee, and J. Cai.
Development of a distributed evolutionary
computation package. In Proceedings of the 2003

Congress on Evolutionary Computation, volume 1,
pages 77–84. IEEE-Press, 2003.

[13] D. Whitley, K. Mathias, S. Rana, and J. Dzubera.
Evaluating evolutionary algorithms. Artificial

Intelligence, volume 85(1-2), pages 245–276, 1996.

