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Preface

The cellular telephone has become a symbol for the rapid change in the commu-
nications business. Within this plastic container reside the talents of engineers
working in the areas of efficient power supplies, digital circuit design, analog
circuit design, semiconductor device design, antennas, linear systems, digital
signal processing, packaging, and materials science. All these talents are carefully
coordinated at a cost that allows a wide cross section of the world’s population to
have available instant communication. The particular aspect of all these activities
that is of primary focus in this text is in the area of analog circuit design, with
primary emphasis on radio frequency electronics. Some topics normally consid-
ered in electronics courses or in microwave and antenna courses are not covered
here. For example, there is no mention of distributed branch line couplers, since
at 1 GHz their size would be prohibitive. On the other hand, topics such as trans-
mission line transformers are covered because they fit so well into this frequency
range.

This book is meant for readers who have at least advanced standing in elec-
trical engineering. The material in this text has been taught as a senior and
graduate-level course in radio frequency circuit design at the University of Texas
at Arlington. This class has continued to be popular for the past 20 years under
the guidance of at least four different instructors, two of whom are the present
authors. Because of the activity in the communications area, there has been ever
greater interest in this subject. It is the intent of the authors, therefore, to update
the current text offerings while at the same time avoiding simply reworking a
microwave text.

The authors gratefully acknowledge the contribution of Michael Black,
Raytheon Systems Company, to the phase lock loop discussion in Chapter 12.

W. Alan Davis
Krishna Agarwal
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CHAPTER ONE

Communication Channel

1.1 BASIC TRANSMITTER–RECEIVER CONFIGURATION

The design of radio frequency (RF) circuits borrows from methods used in low-
frequency audio circuits as well as from methods used in design of microwave
circuits. Yet there are also important departures from these techniques, so the
design of radio frequency circuits requires some specialized techniques not found
in these other frequency ranges. The radio frequency range for present purposes
will be taken to be somewhere between 300 MHz and 3 GHz. It is this frequency
range where much of the present day activity in wireless communication occurs.
In this range of frequencies, the engineer must be concerned about radiation,
stray coupling, and frequency response of circuit elements that from the point
of view of lumped, low-frequency analysis might be expected to be indepen-
dent of frequency. At the same time the use of common microwave circuit
elements such as quarter wave transformers is impractical because of the long
line lengths required. The use of monolithic circuits have enabled many high-
frequency designs to be implemented with lumped elements, yet the frequency
response of these “lumped” elements still must be carefully considered.

Today RF and digital designs have begun to move closer together, so typical
communication systems incorporate both of these disciplines in their design. While
direct digitizing of RF signals remains a challenge, there are many systems where
digital signal processing is playing a larger role than ever in communication systems.
A typical radio analog transmitter and receiver is shown in Fig. 1.1. In this system
the information source could be an audio or video signal. This information in the
process of being converted from, say, sound to an electrical signal by a transducer
produces a very low voltage that must be amplified by an audio amplifier.

The modulator is shown schematically as a mixer that represents a wide
variety of different modulation schemes. The two major categories are analog
and digital modulation. In either case the modulator performs two functions. The
first function is that it encodes the message in a certain way so as to meet the
communication channel requirements for cost, noise immunity, fading, available

1
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INFORMATION AND CAPACITY 3

bandwidth, bandwidth efficiency (the ratio of the throughput data rate per Hertz
in a given bandwidth), power efficiency (which measures the ability of a system
to preserve the message under low power conditions), and so on.

For the amplitude modulation (AM) case, the mixer is a multiplier that
multiples the information message with the local oscillator frequency. Just
as the product of two sine waves produces sum and difference frequencies,
so the message frequency is added to the local oscillator frequency. This
produces two effects necessary for practical wireless communications. The first
is that this enables forming multiple channels, which in the amplitude and
frequency modulation (FM) analog systems are separated by different frequency
bands. Otherwise, there would be massive interference between different signals.
This method of separating signals is called frequency division multiple access
(FDMA). Alternate methods are time division multiple access (TDMA) where
two or more signals may share the same frequency band but use it at different
times. The human receiver is able to integrate over the different time slots so that
the message is perceived to be continuous. A third method is the spread spectrum
technique known as code division multiple access (CDMA) where a broad
bandwidth is used by multiple users continuously. However, each user sends
and receives data that is coded in a particular way, different from all the other
users. When there is interference between users, it is perceived as low-level noise.

The second function of the modulator is that it translates the message infor-
mation to a much higher RF signal. For this reason antennas can be made a
manageable size, with their mechanical size normally correspondings to the wave-
length. A great deal of effort has gone into making smaller antennas, but there
are always design compromises.

The final stage of the transmitter before reaching the antenna is the power
amplifier. Since this component uses the greatest amount of power, high effi-
ciency becomes an important factor. In FM systems, class C amplifiers are often
used because, in practice, they can produce efficiencies as high as 70%. For
AM systems, class A or AB amplifiers are often used because of the required
linearity of AM signal transmission. However, class A amplifiers typically have
efficiencies of 30% to 40%.

As for the receiver, the received signal is sometimes strong enough to be
put directly into the mixer. However, as will be seen later (in Chapter 8), the
overall noise response of the amplifier is greatly enhanced by using a low-noise
amplifier for the front end. The demodulator in the receiver must correspond
to the modulator in the transmitter. The subsequent intermediate frequency (IF)
amplifier includes the required filtering to provide the desired selectivity for the
received signal. The IF frequency is chosen to be sufficiently high to avoid most
of the 1/f noise (f D frequency) or flicker noise. Since this circuit operates at
a fixed frequency, it can be carefully tuned for optimum performance.

1.2 INFORMATION AND CAPACITY

RF communication systems provide a means of carrying information from
the transmitter to the receiver. Now, what exactly is information? Webster’s
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Dictionary states that “information” is “knowledge communicated or received
concerning a particular fact or circumstance. . ..” A narrower, technical definition
that more closely aligns with our focus that “information” is an “indication
of the number of possible choices of messages, which are expressible as the
value of some monotonic function of the number of choices, usually log to the
base 2.” “Information” then is a term for data that can be coded for digital
processing.

Some examples of data that illustrate the meaning of information is helpful. If
a signal were sent through a communication channel that never changed, then it
would be conveying no information. There must be change to convey a message.
If the signal consisted of 1 0 1 0 1 0 1 0. . . , there would be changes in the signal
but still no information is conveyed, because the next bit would be perfectly
predictable. So while change is important, it is not the sole criterion for informa-
tion. There is one last example. If a signal in an amplitude modulation system
consists of purely random voltage fluctuations, then again no information can be
transmitted. It is simply noise, and the receiver becomes no more knowledgeable
upon having heard it.

A communication system consists of a transmitter, a receiver, and a channel.
The channel is capable of carrying only a certain limited amount of information.
Roughly analogous to an information channel is a water pipe which, because of its
diameter, is restricted to carrying only a certain amount of water. This limitation
is given the technical term “capacity.” It refers to the amount of information
that is transmitted over a time interval of T seconds. The time interval can
be broken up into shorter time intervals, each of duration �. Clearly, the more
distinct time intervals � these are in the total time span T, the more information
can be transmitted. The minimum size of � is determined by how well one
pulse in one time frame can be distinguished from a pulse in a neighboring time
frame. The limitation on how short a time frame can be is related to the channel
bandwidth.

In addition the signal voltage will have a maximum amplitude that is limited by
the available power in the system. This voltage range can be divided into many
levels, each level representing a bit of information that is distinguished from
another bit. The voltage range cannot be infinitely split because of the noise that
is always present in the system. Clearly, the more voltage intervals there are
in a given time frame �, the more information capacity there is in the system.
Just as the flow of water through a pipe is limited by the amount of pressure on
the water, by the friction on the walls of the pipe, and by the diameter of the
pipe, so the capacity of a transmission system is limited by the maximum voltage
level, by the noise in the system that tends to muddle the distinction between one
voltage level and another, and by the bandwidth of the channel, which is related
to the rise time of a pulse in the system.

In one of the time intervals, �, there are n voltage levels. The smaller that � is
and the larger that n is, the more information there can be transmitted through the
channel. In each time interval there are n possible voltage levels. In the next time
interval there are also n possible voltage levels. It is assumed that the voltage
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level in each time frame is independent of what is going on in other time frames.
The amount of information transmitted in a total of T seconds corresponds to the
product of the possible levels in each interval:

n Ð n Ð n Ð n . . . nT/� �1.1	

The total information transmitted intuitively is directly proportional to the total
time span T, which is defined as the log of the above product. By convention,
the base-2 logarithm is used.

H D T

�
log2 n �1.2	

The system’s capacity is simply the maximum rate of transmission (in bits/s)
through a system:

C D H

T
D 1

�
log2 n �1.3	

System capacity is inversely proportional to the minimum time interval over
which a unit of information can be transmitted, �. Furthermore, as the number
of voltage levels increases, so does the capacity for more information.

Information can be transmitted through a channel in a variety of different
forms, all producing the same amount of information. For example, suppose
that a signal can take on any one of eight different voltage levels, 0, 1, . . . ,
7, in a given time interval �. But the eight signal levels could also equally be
sent with just two levels, 0, 1. For every interval that has eight possible levels,
three intervals will be needed for the two-level signal. A convenient conversion
between the two systems is shown in Table 1.1.

Clearly, a 16-level signal could be transmitted by a sequence of four binary
signals, and a 32-level signal with a sequence of five binary signals, and so
on. For n levels, log2 n bits are needed. The information content of a signal
is defined then to be the number of binary choices, or bits, that are needed

TABLE 1.1 Eight-Level and
Two-Level Systems

n D 8 n D 2

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
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for transmission. A system is designed to transmit speech must be designed to
have the capacity to transmit the information contained in the speech. While
speech is not entirely what humans communicate, in a communication system
it is what engineers have to work with. A decision must be made as to with
what fidelity the speech is to be transmitted. This translates to the bandwidth
requirement of an analog system, or the number of voltage levels available in
a given total voltage range. Ultimately this restriction is always present even
if sophisticated coding techniques are used. The capacity of the system must
be ½, the rate of information that is to be transmitted. Beyond this capacity,
system cost, power levels, and available transmission media must be
considered.

1.3 DEPENDENT STATES

The definitions of the preceding section imply that the voltage level in each time
interval, �, is independent of the voltage level in other time intervals. However,
one simple example where this is not the case is the transmission of the English
language. It is known that in the English language the letter e appears more
frequently than the letter z. It is almost certain that the letter q will be followed
by the letter u. So, in transmitting a typical message in English, less information
is actually sent than would be sent if every letter in the alphabet were equally
likely to occur. A way to express this situation is in terms of probability. We
are interested in the total number of signal combinations that could occur in
a message T seconds long if each interval that is independent from the others
is nT/�. On average, every possible message T seconds long would have a
probability of occurrence of 1/nT/� .

The probability takes the form

P D number of occurrences of a particular event

total number of events
�1.4	

For information measured in terms of probability, P D 1/n if there are n events
specified as n voltage levels and each of these events is equally likely. For any
one event, the information transmitted is written H1 D � log2 P. For m intervals,
each � seconds long, there will be m times more information. So for m intervals,
the information written in terms of probability is

H D T

�
log2 n D �m log2 P bits �1.5	

Consider a binary system where a number 0 occurs with probability p and the
number 1 occurs with probability q. Knowing that pC q D 1, the information
content of a message consisting of 0’s and 1’s is to be found. The total information
is the sum of the information carried by the 0’s and that of the 1’s:
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H D �T
�
�p Ð log2 pC q Ð log2 q	 bits �1.6	

If the probabilities of p and q are each 0.5, then the total information in T
seconds is T/�. If, for example, p D 0.25 and q D 0.75, then

H D �T
�
�0.25 Ð log2 0.25 C 0.75 Ð log2 0.75	 bits

H D T

�
�0.5 C 0.3113	 D 0.8113

T

�
bits �1.7	

Hence, when there is a greater probability that an expected event will occur, there
is less information. As p approaches 1 and q approaches 0, the near certainty
of event with probability p will give 0 information. The maximum information
occurs when p D q D 0.5.

This scenario can be generalized for n signal levels in a given signal interval
�. Assume that each of these n signal levels, si, has a probability of occurrence
of Pi where

P1 C P2 C Ð Ð Ð C Pn D
∑

Pi D 1 �1.8	

Assume further that the probability of a finding a given signal level is independent
of the value of the adjacent signal levels. The total information in T/� intervals
or in T seconds is

H D �T
�

n∑

i

Pi log2 Pi bits �1.9	

The capacity required to transmit this amount of information is then

C D �1

�

n∑

i

Pi log2 Pi bits/s �1.10	

In the case where each level is equally likely, P1 D P2 D P3 D Ð Ð ÐPn D 1/n,
then for the n level signal,

H D �T
�

n∑

i

Pi log2 Pi D T

�
log2 n bits �1.11	

More detail on information transmission can be found in specialized texts;
a short introduction is given by Schwartz [1]. In general, this study of radio
frequency design, the primary focus will be on fundamental hardware design used
in transmitters and receivers. Other topics that are of great interest to communica-
tion engineers such as programming digital signal processing chips, modulation
schemes, and electromagnetic propagation problems are more fully explored in



8 COMMUNICATION CHANNEL

specialized texts in those areas. In this book these areas will be referred to only
as needed in illustrations of how systems can be implemented.

PROBLEMS

1.1 A pulse train is being transmitted through a channel at the maximum channel
capacity of 25 Ð 103 bits/s. The pulse train has 16 levels.

(a) What is the pulse width?
(b) The pulse width is doubled and sent back on the same channel. What is

number of levels required?

REFERENCES

1. M. Schwartz, Information Transmission, Modulation, and Noise, 3rd ed., New York:
McGraw-Hill, 1980, Ch. 1.
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CHAPTER TWO

Resistors, Capacitors, and
Inductors

2.1 INTRODUCTION

At radio frequencies passive circuit elements must be considered more care-
fully than in lower-frequency designs. The simple resistor, capacitor, or inductor
cannot be counted on to provide pure resistance, capacitance, or inductance
in high-frequency circuits. Usually the “lumped” element is best modeled as
a combination of these pure elements. In addition, when the size of the element
becomes larger than 0.1 wavelength in the circuit medium, the equivalent circuit
should include the transmission lines.

2.2 RESISTORS

Integrated circuit resistors can be classified into three groups: (1) semiconductor
films, (2) deposited metal films, and (3) cermets (a mixture of metal and dielectric
materials). Of these, only the first two have found widespread use in high-
frequency circuits. Semiconductor films can be fabricated by diffusion into a host
semi-insulating substrate, by depositing a polysilcon layer, or by ion implanta-
tion of impurities into a prescribed region. Polysilcon, or polycrystalline silicon,
consists of many small submicron crystals of silicone with random orientations.

2.2.1 Resistor Types

The resistance value of an integrated circuit resistor depends on the conductivity
of the channel through which the current is flowing. In the diffused resistors in a
semiconductor substrate, the conductivity is a function of the doping concentration

9
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and the carrier mobility. The conductivity is

� D q��nn C �pp� �2.1�

It is usually expressed in the units of �	 � cm��1. In this expression, q is the
electronic charge �1.602 Ð 10�19 C�, �n and �p are the electron and hole mobil-
ities (cm2/V � s), and n and p are the number of free electrons and holes,
respectively, that are available for conduction (cm�3). At room temperature it
may be assumed that all the impurity atoms in the semiconductor are ionized.
This means that for an n-type semiconductor, the number of available electrons
is equal to the donor impurity concentration:

nn ³ ND �2.2�

Similarly, for a p-type semiconductor, the number of holes equals the acceptor
impurity concentration:

pp ³ NA �2.3�

In either an n-type or a p-type semiconductor, the relationship between the
electron and hole concentrations is

np D n2
i �2.4�

where ni D 1.45 Ð 1010 cm�3 for silicon and 9.0 Ð 106 for gallium arsenide. This is
called the mass action law. Thus, for an n-type semiconductor, the conductivity is

� D q

(
�nND C �p

n2
i

ND

)
³ q�nND �2.5�

Typically, in integrated circuits, n-channel FETs and NPN bipolar transistors are
preferred because of the much larger electron mobility over that of the hole
mobility. The total number of processing steps required in a circuit design often
dictates the choice of resistor channel type.

Ideally the diffused resistor with conductivity � can be represented by the
rectangular block shown in Fig. 2.1. The resistance of the rectangular block is

R D L

�WT
�2.6�

It is often convenient to separate the “processing” aspects from the “layout”
aspects of the resistor. This is done by defining the sheet resistance in �	/�� as

R� D 1

�T
�2.7�

so that the total resistance is

R D R�
L

W
�2.8�

The length to width ratio determines the resistance value once the conductivity
and layer thickness is set.
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T

W

L

FIGURE 2.1 Diffused resistor of length L, width W, height T.

TABLE 2.1 Resistor Materials

Resistor Type Resistance Temperature Coefficient Voltage Coefficient

Diffused Si 10 to 100 	/� 1500 ppm/°C 200 ppm/V
Diffused GaAs 300 to 400 	/� 3000 to 3200 ppm/°C —
Polysilcon 30 to 200 	/� 1500 ppm/°C 100 ppm/V
Ion implantation 0.5 to 2 k	/� 400 ppm/°C 800 ppm/V
AuGeNi (Alloyed) 2 	/� — —
Thin film Cr 13 µ	-cm 3000 ppm/°C —
Thin film Ti 55 to 135 µ	-cm — —
Thin film Ta 180 to 220 µ	-cm — —
Thin film TaN 280 µ	-cm — —
Thin film Ni 7 µ	-cm — —
Thin film NiCr 60 to 600 µ	-cm — —

Sources: Refs. [1–3].

Metal films are made by evaporation of the desired metal on substrate and
the desired pattern determined by photo lithography. Metal films are generally
superior to the semiconductor films in that metal films are less sensitive to changes
in temperature and voltage. Table 2.1 shows some of the main properties of a
variety of methods and materials. The temperature and voltage coefficients are
measures of the percentage change in resistance as a function of a change in a
given parameter. The definition of temperature coefficient is �dR/dT�/R and the
voltage coefficient is �dR/dV�/R.

2.2.2 Resistance Determination from Layout

The layout shape of a resistor is typically simply a straight rectangular bar, as
shown in Fig. 2.1. However, it may at times be better to try different shapes



12 RESISTORS, CAPACITORS, AND INDUCTORS

in order to optimize the overall layout of a circuit. A convenient method for
determining the resistance between two points on any shape is the method of
curvilinear squares. Of course computer-based numerical methods such as the
finite-element technique, can also be used. However, using paper and pencil, in
just 20 minutes an answer could be obtained to within 10% to 20% accuracy.

A curvilinear rectangle may be defined “as any area which is bounded on
opposite sides by two flux lines, and on the other sides by two equipotential
lines. . .” [4]. These rectangles can be divided and subdivided into squares of
ever-decreasing size. Then, based on Eq. (2.8), the total resistance can be found
by counting the squares.

Rather than estimating the “squareness” of a curvilinear square, circles can be
drawn between two flow lines using a compass or a template. Each curvilinear
square should have its four sides tangent to the inscribed circle.

The curvilinear square method is illustrated in Fig. 2.2. The procedure takes
the following form:

1. Draw flow lines between the two electrodes as if water is to travel between
the electrodes in a laminar flow. The spacing between the two flow lines
is less important than the shape of the flow lines. The flow lines should
intersect the electrodes at right angles.

(a) (c)

(d )

(b)

4

2

3

1

FIGURE 2.2 (a) Resistor shape with a flow line; (b) addition of tangential circles; (c)
drawing best-fit curvilinear squares; (d) expansion of the fractional curvilinear square
from (c).
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2. Between two adjacent flow lines, draw a series of circles tangent to the
flow lines and to each other.

3. Draw equipotential lines between the circles orthogonal to the flow lines.
4. If there is more rectangle left over than the number of circles, fill the

remaining part of the rectangle with circles in the orthogonal direction.
Continue this until the last rectangle is sufficiently close to becoming a
square.

5. Starting with the smallest square, count all the squares in series. Invert and
add to the next largest row of squares going in the orthogonal direction.
Continue inverting and adding to the next larger row of squares.

As Fig. 2.2 shows, the first step, in which the smallest squares are added,
has the result 2. Step 2 consists in inverting the result of step 1 and adding the
remaining series of squares, with the result 1

2 C 1 D 1.5. In step 3 the result of
step 2 is inverted and added to the remaining series of squares. At the end of this
step, the result is �1/1.5� C 2 D 2.67. Finally step 4 gives �1/2.67� C 5 D 5.375.
The resistance then in the indicated section of the resistor is 5.375 Ð R�. These
steps are repeated for the other parallel sections to obtain the total resistance as
a parallel combination.

The obvious application of this method to electrical engineers is in finding the
resistance of an arbitrarily shaped resistor. However, it can also be applied in
finding the magnetic reluctance in a magnetic circuit, capacitance, heat convec-
tion, and, of course, laminar fluid flow.

There are a couple of other details that should be considered in predicting
resistance values. One is that the rectangular bars of resistance are not really
rectangular bars. The bottom is rounded, and a better estimate can be found by
taking this characterstic into account. Another complication is that somewhere a
semiconductor diffused resistor is going to have to come in contact with a metal.
The resulting Schottky barrier can cause an additional voltage drop. Normally an
Ohmic contact is used for this interface. An Ohmic contact is formed by heavily
doping the semiconductor at the point of contact with the metal. This essentially
promotes tunneling of electrons through the barrier. Nevertheless, there is still
some residual resistance from the contact. Consequently the previously given
expression for resistance, Eq. (2.8), should be modified to incorporate the contact
resistance, Rc:

R D R�
L

W
C 2Rc

W
�2.9�

A typical value for Rc is about 0.25 	-mm.
Active loads are often used in integrated circuits in place of passive loads

where the required resistance value is fairly high. The primary advantage of the
active load is its compact size relative to that of a large passive load. These
are often used in common emitter NPN transistor amplifiers or FET amplifiers
as shown in Fig. 2.3. As the figure shows, the base-collector, the gate-drain of
the enhancement mode FET, and the gate-source of the depletion mode FET are
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V i

(a ) (b) (c)

V i V i

Vo
Vo Vo

FIGURE 2.3 Active loads using (a) common emitter structure, (b) p-channel enhance-
ment mode MOSFET load, and (c) n-channel depletion mode MOSFET load.

(a)

n+

n

n+

(b)

n+

n

n+

FIGURE 2.4 Charge distribution for (a) shorted gate active load and (b) a saturated
resistor.

shorted together. An active load can also be made in GaAs with a “saturated
resistor” [5]. This structure is essentially a GaAs MESFET without a gate, and it
is simpler to construct than the usual depletion mode FET with the gate shorted
to the source. The saturation current in GaAs is reached at a rather low satura-
tion field of 3 kV/cm. This means that once saturation has occurred, there is a
small increase in the current with each increase in voltage. Consequently a large
effective resistance is obtained. The saturated resistor channel depth is effectively
greater than that of the MESFET channel as shown in Fig. 2.4. Consequently,
for a given resistance value, the width of the saturated resistor would have to
be made narrower. Resistance values of 8 to 10 k	 have been obtained [5].
However, the simpler processing of the saturated resistor has given improved
reliability and repeatability of these devices.

2.3 CAPACITORS

Some of the most important parameters that need consideration in choosing
a capacitance are (1) the capacitance value, (2) capacitance value tolerance,
(3) loss or Q, (4) temperature stability, (5) mechanical packaging and size,
and (6) parasitic inductance. These criteria are interdependent, so often the
appropriate compromises depend on the constraints imposed by the particular
application. This section will consider both hybrid and monolithic capacitor
designs.
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2.3.1 Hybrid Capacitors

Hybrid capacitors are available in both single-layer capacitors for high-frequency
low-capacitance applications and multi-layer capacitors for higher capacitance.
Even for multilayer chip capacitors, the self-resonant frequency for a 0.1 pF
capacitor is over 10 GHz and for a 1000 pF capacitor the self-resonant frequency
of 250 MHz. These capacitors can be attached to hybrid circuit boards to provide
high available capacitances with relatively low loss. Unlike low-frequency cir-
cuits, certain parasitic circuit elements must be accommodated in the overall
design. The parasitic inductance is affected by the packaging, since it is usually
associated with the lead attachments to the capacitor and line length effects inside
the capacitor. In low-frequency circuits the effect of the inductance is so small that
it can safely be neglected. However, at radio frequencies both the inductance and
the metal losses often become significant. Consequently the equivalent circuit for
a chip capacitor as developed by chip capacitor manufactures is shown in Fig. 2.5
and can sometimes be simplified as simply a series RLC circuit. The additional
parallel resistance, Rp is added to this equivalent circuit to model resistive losses
caused by dielectric loss. This parameter is the main loss at low frequencies in
the hertz to kilohertz range, but at RF it becomes negligible when compared to
Rs. The impedance of the circuit is

Z D Rs C j

ωC
�ω2LC � 1� �2.10�

Consequently the effective capacitance is frequency dependent:

Ceff D C

1 � �ω/ω0�2
�2.11�

where ω0 D 1/
p
LC is the self-resonant frequency.

While loss in capacitors is usually less than that in inductors, capacitor loss
can still be significant in circuit performance. Loss can be described in terms of
dissipation factor (DF), loss tangent (tan υ), the equivalent series resistance (Rs),Rp

Cp

RsLsCs

FIGURE 2.5 Typical equivalent circuit for a chip capacitor.
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and Qcap. Since the circuit Q is assumed to result from a series RLC configuration,

Rs D Xc

Qcap
�2.12�

The loss terms then are related by

tan υ D DF D 1

Qcap
�2.13�

The angle υ D 90° � �, where � is the angle between the voltage and the current.
In a lossless capacitor, � D 90°.

In a capacitor the dielectric is the primary source of loss. An RF field can
cause the dipole molecules in the dielectric to rotate at a rate proportional to
the applied frequency and with a force proportional to electric field strength.
The rotation of these molecular dipoles is converted to heat loss. When E is
the electric field and f is the frequency, the energy dissipation is given by the
following empirical expression [6]:

E D E2f55.5 Ð 10�6εr tan υ W/cm3 �2.14�

Some of the most widely used dielectric materials for capacitors are shown in
Table 2.2

The BaTiO3, εr D 8000, material provides the most compact capacitor. How-
ever, it has relatively poor temperature coefficient, tan υ shift with voltage, coef-
ficient of expansion in terms of temperature, piezoelectric effects, and aging
qualities because of its porosity.

The BaTiO3, εr D 1200, capacitance varies by C15% from �55°C to 125°C.
When the BaTiO3 materials are heated to about the Curie point, the value for εr

jumps up about 10% to 15%. After cooling and waiting 10 hours, the dielectric
constant drops back down only 3% of its peak value, and after 10,000 hours, it
drops down only 7% of its peak value. As the voltage changes over a range of
30 V, the loss tangent increases from 0.01 to 0.1 at low frequencies. There are
four crystalline phases for BaTiO3 as it is heated up. The crystal changes from
orthorhombic to tetragonal to cubic (which is near the Curie point). At each of

TABLE 2.2 Loss Tangent (tan d) of Dielectric Materials

Dielectric At Low Frequency At 100 MHz At 1 GHz

BaTiO3, εr D 8000 — 0.1 —
BaTiO3, εr D 1200 0.01 0.03 0.10
Ceramic (NPO), εr D 30 0.0001 0.002 0.10
Alumina, εr D 9.8 — 0.0005 —
Porcelain (ATC100), εr D 15 — 0.00007 —
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these changes, there is an abrupt change in the mechanical size of the crystal [7].
This has deleterious implications on solder joints of the capacitor.

The capacitance using NPO material varies with temperature š30 ppm/°C.
It moves in the negative direction, then in the positive direction exceeding the
initial capacitance, and finally settling down near the original capacitance as the
temperature rises. Hence it gets the name NPO.

The porcelain materials provide high Q, no piezoelectric effects, no aging
effects (since it is not a porous material), and temperature coefficient of
š 30 ppm/°C up to 125°C. The coefficient of expansion of the porcelain capacitor
is the same as alumina (Al2O3). For this reason, when mounted on an alumina
substrate, the two will expand the same amount. The series resistance at 1 GHz
varies with the value of capacitance as shown in Table 2.3.

For a 30-pF BaTiO3, εr D 1200, capacitor operating at 300 MHz, the resis-
tance can be as high as 1 	 and result in 0.3-to 3-dB dissipation loss. In solid
state circuits that operate in high-current and low-voltage conditions, these losses
can be quite significant. The generated heat further degrades the loss tangent,
which increases the heat dissipation. Thermal runaway can occur, causing self-
destruction. Of the materials shown in Table 2.2, porcelain provides the best loss
tangent, especially at frequencies in the 1 to 3 GHz range.

The frequency range of a chip capacitor can be extended by the simple expe-
dient of turning it on its side (Fig. 2.6). Resonances appear to be the result of
different path lengths of the path through the lower plates and upper plates of a
multi-layer capacitor. Turning the capacitor on its side tends to equalize the path
lengths and eliminates all odd-order harmonic resonances [7].

2.3.2 Monolithic Capacitors

Capacitors in monolithic circuits are best avoided where possible because of the
amount of real estate they occupy. Nevertheless, they are sometimes required.
The capacitance tolerance is typically š10%, and capacitance values range from
0.2 to 100 pF. There are four types of monolithic capacitors that might be used in

TABLE 2.3 Resistance of
Porcelain Capacitors

C, pF Rs, 	

5.6 0.38
10 0.27
20 0.19
30 0.16
40 0.13
50 0.12

100 0.088

Source: Ref. [7].
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(a) (b)

FIGURE 2.6 Metallic conductors in (a) horizontal and (b) vertical orientation.

monolithic circuit designs: (1) open circuit stub, (2) interdigital line, (3) metal-
insulator metal, and (4) varactor diode.

The open circuit stub capacitance is simply an open circuit transmission line
whose length is < "/4. The capacitive susceptance is obtained from the trans-
mission line equation:

B D Y0 tan
(
ωl

vc

)
�2.15�

The value of the susceptance depends on the characteristic admittance, Y0, of
the transmission line, the length, l, of the transmission line, and the substrate
material that governs the velocity of the wave, vc. This open circuit stub provides
a shunt capacitance to ground. While the susceptance is not proportional to ω
as in lumped capacitors, it is a good approximation when the argument of the
tangent function is small. Line lengths can use a large amount of real estate at
low frequencies, so typically the open stub capacitor is most useful at frequencies
greater than about 8 GHz.

The interdigital capacitor shown in Fig. 2.7, unlike the open stub, provides
series capacitance. It is most useful for capacitances less than 1 pF, and at 12 to
14 GHz it typically has a Q of 35 to 50. The equivalent circuit shown in Fig. 2.7
includes series resistance and inductance, as well as some shunt capacitance to
ground. The latter is caused by the metal-insulator-ground metal of the microstrip
structure. The main series capacitance can be estimated from

C D �Nf � 1�Cg& �2.16�

where Nf is the number of fingers, & is the finger length, and Cg is the static gap
capacitance between the fingers.

A third type of capacitor is the metal-insulator-metal capacitor (Fig. 2.8). Of
the four monolithic capacitors, this is the most popular and is the most obvious.
The dielectric thickness typically used is 0.1 to 0.4 µm. Losses can be reduced if
the metal thickness is greater than two skin depths. The metal surface roughness
should be as smooth as possible to reduce losses and avoid pin holes in the
dielectric. Typically the capacitance ranges from 50 to 300 pF/mm2 [2]. When
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FIGURE 2.7 Interdigital capacitor layout and equivalent circuit.

C

Dielectric Metal

Metal

FIGURE 2.8 Metal-insulator-metal capacitor and equivalent circuit.

the conductor losses prevail over the dielectric losses, the conductor quality factor
is [1]

Qc D 3

2ωRs�C/A�l2
�2.17�

In this expression Rs is the surface skin resistivity, C is the capacitance, A is
the plate area, and l is length of the plate in the direction the microwave current
enters the plate. If the dielectric quality factor is

Qd D 1

tan υ
�2.18�

then the total Q is
1

QT
D 1

Qd
C 1

Qc
�2.19�



20 RESISTORS, CAPACITORS, AND INDUCTORS

TABLE 2.4 Monolithic Capacitor Dielectric Materials

Dielectric Nominal εr Range of εr Temperature
Coefficient ppm/°C

SiO2 5 4–5 50–100
SiN 7.5 5.5–7.5 25–35
Ta2O 21 20–25 200–400
Al2O3 9 6–10 100–500
Polyimide 3.5 3–4.5 �500

Source: Ref. [1].

The dielectric films used in monolithic capacitors tend to be much higher than
that obtained in the hybrid capacitors described above. Some typical metal-
insulator-metal dielectric materials are shown in Table 2.4. The variableness in
the dielectric constant is a result of the variation in deposition methods, unifor-
mity, and thickness.

The fourth way of obtaining capacitance is by means of the junction capaci-
tance of a Schottky diode. This capacitance is

C D C0

�1 � V/(�)
�2.20�

where ) ³ 1/2 [8, p. 190]. When the applied voltage, V, is zero, the capacitance
is C0. A major disadvantage of this capacitance is its voltage dependence relative
to the built-in potential, (.

2.4 INDUCTORS

Inductors operating at radio frequencies have a variety of practical limitations
that require special attention. A tightly wound coil in addition to providing a self
inductance also has heat loss due to the nonzero wire resistance, skin effect losses,
eddy current losses, and hysteresis losses when a magnetic material is used.
Furthermore two conductors close together at two different voltages will also
exhibit an interelectrode capacitance. At radio frequencies these effects cannot
be neglected as easily as they could at lower frequencies. The equivalent circuit is
shown in Fig. 2.9. In this figure the series resistance, Rs, represents the conductor
loss as well as the skin effect losses. The parallel resistance, Rp, represents
the effect of eddy current losses and the hysteresis loss in magnetic materials
when present. The shunt capacitance, C, is the capacitance found between the
coils. Straightforward circuit analysis gives the impedance for this equivalent
circuit:

Z D RpRs C RpLs

s2LCRp C s�RsCRp C L� C RsRp
�2.21�
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C LRs

FIGURE 2.9 Simple equivalent circuit for an inductor.

If Rp is considered so large as to have negligible effect, and if the remaining series
circuit Q D 1/ωRsC is large, then the effective inductance is approximately

Leff D L

1 � ω2LC
�2.22�

and the effective resistance is

Reff D Rs

1 � ω2LC
�2.23�

Clearly, the presence of the capacitance dramatically increases the effective induc-
tance and capacitance near the self-resonant frequency of the inductor. The
self-capacitance of the inductor is a function of the coil length to coil diam-
eter ratio, &/D, and it has an optimum value [9,10]. The following sections will
describe in greater detail the origin of the parasitic circuit elements for a practical
RF inductor and some design methods for RF inductors.

2.4.1 Resistance Losses

The dc current flowing through a wire with a cross-sectional area, A, will encoun-
ter twice the resistance if the area is doubled. At radio frequencies the ac current
tends to flow near the surface of the conductor because of the skin effect. This
can be illustrated by an electric field impinging on a conductor whose resistance
is not zero. The field will penetrate into the conductor and will exponentially
decay as it penetrates deeper:

E�x� D E0e
�x/υ �2.24�

where

υ D
√

.

/f�
�2.25�

In this equation f is the frequency, . is the resistivity, and � is the permeability.
Because of this skin depth, the resistance of a given wire with radius R will
have a higher resistance at high frequencies than at dc. The ac resistance is given
by [9]

RAC D Atot

Askin
Rdc
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TABLE 2.5 Common Conductors

Metal Conductivity Skin Depth
�	-cm��1 (cm)

Brass 1.57 Ð 105 12.7 Ð f�1/2

Aluminum 3.54 Ð 105 8.46 Ð f�1/2

Gold 4.27 Ð 105 7.7 Ð f�1/2

Copper 5.8 Ð 105 6.61 Ð f�1/2

Silver 6.14 Ð 105 6.61 Ð f�1/2

Mu-metal 1.58 Ð 108 0.4 Ð f�1/2

D /R2

/R2 � /�R � υ�2
Rdc

D
[

/R2

2/υR � /υ2

]
Rdc �2.26�

At high frequencies

Rac ³ R

2υ
Rdc. �2.27�

The possibility for Rac to be infinite or even negative clearly indicates that
Eq. (2.26) has gone beyond its range of applicability. The problem is that the
skin depth has become greater than twice the wire radius. Listed in Table 2.5 are
the resistivities and skin depths of a few common metals.

Another important loss mechanism is called the proximity effect. When one
conductor supporting a changing magnetic field is brought close to another
conductor, currents will be induced on the second conductor in conformity with
Faraday’s law. These currents are called eddy currents, and they flow in closed
paths so as to produce a magnetic field that is in opposition to the originally
applied external field. These currents produce Joule heating. This is exactly the
condition that occurs in a tightly wound inductive coil. When many wires are
close together, the loss problem is compounded, and the eddy current losses can
be quite significant. As an illustration of this, consider a coil with length to diam-
eter ratio of 0.7. If this coil is unwound and laid out as a straight wire, the losses
will drop by a factor of 6 [9, p. 47].

2.4.2 Magnetic Materials

A recurring problem is the need for a large value of inductance. An obvious
solution is to increase the flux density within an inductor coil with the addition of
a magnetic material with high permeability �r. Most magnetic materials introduce
losses that are unacceptable at radio frequencies. A variety of ferrite materials
however have been found to have low loss at radio and microwave frequencies
in comparison with most other magnetic materials. The relative permeability for
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ferrites is in the range 10 < µr <150. Above the cutoff frequency, �r drops off
quickly. The higher the permeability, the lower the cutoff frequency. Typically,
for �r D 10, fcutoff D 1 GHz. For �r D 150, fcutoff D 20 MHz.

2.4.3 Solenoid Design up to 2 GHz [11]†

A design procedure for a single layer solenoid is given below. The computer
program, SOLENOID, follows the procedure outlined here and is described in
Appendix A. The given parameters for the analysis of a solenoid are the form
length, number of turns (n), and the form diameter. The pitch is defined as

Pitch D form length

n
inches �2.28�

For maximum Q, the wire diameter should be 0.6 to 0.7 Ð pitch. The wire diameter
is selected from the standard wire sizes. For a given American wire gauge (AWG),
the wire diameter is

Wire diameter D 0.005

92�AWG�36�/39
inches �2.29�

Another parameter is the turn diameter. It represents the diameter where the
magnetic flux is generated. As shown in Fig. 2.10, it is merely (turn diameter) D
(form diameter) C (wire diameter). With these quantities now defined, the anal-
ysis recipe can be followed.

x D turn diameter

form length
�2.30�

Kn D 1

1 C 0.45x � 0.005x2
�2.31�

Turn Diameter

Wire Diameter

Form Diameter

FIGURE 2.10 Inductor form cross section.

† Reprinted with permission, Microwave Journal, Vol 39, pp. 70–76.
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When the wire diameter D 0, the current sheet correction factor, s, is set to 1.
When the wire diameter > 0, the s correction factor is needed. The s factor, and
finally the inductance, is found by first finding a and b as shown below:

a D 2.3 Ð log10

(
1.73 Ð wire diameter

pitch

)
�2.32�

b D 0.336
(

1 � 2.5

n
C 3.8

n2

)
�2.33�

s D 1 � 2 Ð �form length� Ð �a C b�

/ Ð �turn diameter� Ð n Ð Kn
�2.34�

L0 D �n Ð / Ð turn diameter�2 Ð 2.54 Ð 10�9

form length
�2.35�

L D L0 Ð Kn Ð s �H� �2.36�

The value L0 is the inductance of a closely wound coil with a flat strip (wire
diameter D 0). The value Kn is the Nagaoka correction factor and is used when

the wire length is not much larger than the turn diameter. The value s is the
current sheet correction factor and is needed when there is appreciable space
between wire turns. Because L0 is not dimensionless, the lengths must be given
in terms of inches. An example given in Ref. [11] illustrates the use of these
expressions:

Pitch D 0.0267 (n D 15)
Wire diameter D 0.0187 in.
Turn diameter D 0.2187 in.
x D 0.5467
Kn D 0.8035
a D 0.1912
b D 0.2857
s D 0.954
L0 D 674 nH
L D 516.8 nH

A synthesis procedure is also available [11]. In this case a desired inductance
is considered. Typically only a finite number of form diameters are available,
so the form diameter will also be considered a given quantity. From this, the
number of turns n and the form length, FLEN, is found.

The inductance is considered to be a function of n and FLEN, and Ld is the
desired inductance. An iterative procedure is followed where

L1 D L�n1, FLEN� �2.37�
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L2 D L�n2 D n1 š 1, FLEN� �2.38�

n3 D n2 � �L2 � Ld�
n2 � n1

L2 � L1
�2.39�

This iteration loop is repeated until

L�n,FLEN� D Ld �2.40�

The equality is obtained though with a nonintegral value for n. For printed
circuit boards, n must be an integer. While the number of form diameters is
limited, the form length can be cut to any desired length. Therefore the form
length is adjusted to guarantee an integral n. The procedure is to increase n to
the next higher integer value and adjust FLEN by an iterative scheme much like
the previous one:

L1 D L�n,FLEN1� �2.41�

L2 D L�n,FLEN2� �2.42�

FLEN3 D FLEN2 � �L2 � Ld�
FLEN2 � FLEN1

L2 � L1
�2.43�

This iteration loop is repeated until

L�n,FLEN� D Ld �2.44�

where n is not an integer value.
Once L, n, and FLEN are known, the Q factor and the parasitic capacitance

can be found using the formulas given in [11]. Using the value for x given in
Eq. (2.29), a value for the capacitance is determined:

C D (turn diameter)
�0.301468x C 0.493025�x C 0.227858

x
pF �2.45�

The coil resonant frequency is then simply

fr D 1

2/
p
LC

�2.46�

The value for Q is found from the empirical relationship for two cases where the
turn diameter is in inches and f is in MHz:

A D
{

[�58.6355x � 171.154�x C 200.674] x C 0.089708, 0.2 < x < 1

[�0.751186x � 9.49018�x C 42.506] x C 68.1191, 1 < x < 5
�2.47�
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The value for Q is then obtained from the two-step formula below:

Q0 D A Ð (turn diameter)
√

f �2.48�

Q D Q0

[
1 �

(
f

fr

)2
]

�2.49�

The procedure described above has been put in the form of the computer
algorithm, SOLENOID. An example of the design of 100 nH inductor is found
in Appendix A using this program.

2.4.4 Monolithic Spiral Inductors

Lumped monolithic inductors have been used in circuit designs as tuned loads
for amplifiers, filters to reduce out of band signals and noise, and as a means
of enhancing stage gain by tuning out device or parasitic capacitances at the
center frequency. Planar inductors have been implemented in practical systems
for many years using a variety of different substrates. They were examined early
in the development of silicon integrated circuits, but were abandoned because of
process limitations and losses in the series resistance and substrate that effectively
reduced their operating frequency. Now, however, technological improvements
have made them available for mobile communications systems.

Small inductances in the nano Henry range can be fabricated using printed
circuit techniques. These have typically been done in either a rectangular or
circular spiral shape. Both are widely used, but the circular spiral design seems
to provide greater inductance per unit area of real estate. In determining the
inductance in either case, the self-inductance of the structure must be supple-
mented by the mutual inductance of neighboring turns as well as the mutual
inductance of its mirror image associated with the ground plane for microstrip.
There are, in addition, capacitances between turns of the spiral and capacitances
to the ground. These capacitances are calculated from coupled microstrip line
theory. A numerical implementation of the rectangular inductance based on [12]
is provided. This paper is heavily cited and does provide a comparison between
the predicted and the measured inductance.

A comparison is made between square and circular inductors in [13] in which
it is stated that square spirals provide less inductance than circular spirals for
equivalent sized diameters, although the data seem ambigious. This paper uses a
simple lumped element equivalent circuit consisting of a series R–L circuit with
shunt capacitances on either side to represent a single turn. However, the entire
inductor is treated as a distributed circuit.

A design of a square inductor is described in [14], which is modeled like the
one in [13] except that an additional resistance is added in series to the parallel
capacitors to ground. A comparison is made with measured data, and the design
is incorporated into a low-pass filter design.

In an effort to increase the desired Q for an inductor, the ground plane under
the square spiral is removed in [15]. Excellent agreement is obtained up to 5 GHz.
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An extensive study of over 100 inductors was made in [16]. Comparisons
were made using square, octagonal, and circular spirals. Empirically determined
equivalent circuits were obtained based on the measured data. The basic conclu-
sions were that the resistance of the circular or octagonal shaped spiral is 10%
lower than that of a square spiral inductor for the same inductance. Furthermore
it is better to maximize line spacing rather than maximizing line width to achieve
high Q.

The capacitance itself becomes a major part of the inductor model. An effort
was made in [17] to predict the distributed capacitances of circular spiral inductors
by means of a Green’s function analysis. Good agreement between predicited and
measured values was obtained.

An actual equivalent circuit model for a spiral inductor was obtained in [18];
the computer program is posted on the web.† The “circular” spiral is a p-sided
polygon with n turns, with a total of n Ð p sections. Each section is modeled as
shown in Fig. 2.11. The analysis includes the effects of the internal impedance
of each section as well as the magnetic and electric coupling to neighboring
segments and to the substrate. The primary advantages of using this analysis
tool is the speed of computation (unlike the three-dimensional field simulator),
optimization, and the ability to analyze spiral transformers as well as inductors
with various metalizations and shapes. The geometrical shape of the inductor
depends on the area of the spiral, metal width, metal spacing, the number of
turns, and frequency of operation. The appropriate choice for these parameters
are aided by the above-mentioned program.

An alternate approach approximates an n turn circular spiral as a set of n
concentric circular microstrips (Fig. 2.12). Each of these circular microstrips are
modeled by an equivalent circuit shown in Fig. 2.11, where RL D Rq D 0 [13].
The total equivalent circuit of the circular spiral is simply the cascade of each of
the circular sections. The series resistance, R, represents the resistive loss in the
conductor. The resistance is proportional to

p
f because of the skin effect. The

capacitances Cq1 and Cq2 are the capacitances to the ground plane, and CL is
the total coupling capacitance between neighboring turns. What is lacking here,

CL

Cq

Rq

Cq

Rq

L R

RL

FIGURE 2.11 Spiral inductor modeled by a cascade of equivalent circuit sections [19].

† ASITIC; available at http://www.eecs.berkeley.edu/¾niknejad.
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Inner
Loop

Outer
Loop

ε

FIGURE 2.12 Spiral approximated by concentric circular coupled lines.

but considered in [18], is the mutual coupling that occurs for line segments that
are not parallel. What is helpful, though, are the closed form equations given in
[19] for various types of inductor elements.

The capacitances are determined from coupled line theory in which each line
can be excited with the same voltage (even mode) or equal but opposite signed
voltages (odd mode). The actual capacitance is a linear combination of the even
and odd mode capacitances. The percentage of the even-mode and odd-mode
capacitances between two adjacent turns of the spiral may be found based on the
following approximations: For a given pair of adjacent concentric circular lines,
assume there is a small break between the excitation of one loop and its end,
360° later (Fig. 2.12). There is a small connection from this point to the next
loop. If the wave on the inner loop is excited by a 1 volt source 1 Ð ej0° , then by
the time it reaches the other end of the inner loop, the voltage is 1 Ð ej(, where
( is the electrical length (circumference) of the inner loop. The outer loop is
then excited by the voltage 1 Ð ej(. Consequently there is a voltage difference
between the inner loop and the outer loop. The percentage of even-mode and
odd-mode voltages between the two loops is a function of (.

For the purpose of estimating the value for (, the circumferences of the two
circles will be assumed to be the average of the two circles:

( D 2/
r1 C r2

2
ˇ D 2/ˇravg �2.50�

where ˇ is the propagation factor of the line in the given media. If v1 is the
voltage at a certain position of the first loop and v2 is the voltage on the second
loop adjacent to v1, then the corresponding even- and odd-mode voltages are

ve D 1
2 �v1 C v2� �2.51�

vo D �v1 � v2� �2.52�

No information is lost in doing this, since the original voltages v1 and v2 are
easily recovered if ve and vo are known. The percentage of even- and odd-mode
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capacitances are proportional to the even- and odd-mode voltages:

%Ce D ve

ve C vo
�2.53�

%Co D vo

ve C vo
�2.54�

In the equivalent circuit for a single turn of the spiral shown in Fig. 2.13, the
percentage of even-mode excitation determines the relative amount of even- and
odd-mode capacitance components. For the even mode,

CL D 0 �2.55�

Cqi D Cm C C0
fe C C0

f �2.56�

and for the odd mode,

CL D Cga C Cge �2.57�

Cqi D Cm C C0
f i D 1, 2 �2.58�

In these expressions, Cga and Cge represent the gap capacitances between the
lines through the air and through the dielectric, respectively. The capacitance,
Cm, represents the parallel plate capacitance between the spiral conductor and
the ground plane. This is modified by the fringing capacitance, C0

f, between the
two coupled line conductors (which is nonzero only for the even mode excitation)
and the fringing capacitance, Cf, on the other side of the conductors. The even-

Cf' CfCmCf Cf'Cm

(a) Even Mode

Cge

Cga

CfCmCf Cm

(b) Odd Mode

FIGURE 2.13 Even- and odd-mode excitation of microstrip lines.
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and odd-mode capacitances are added together in proportion to their even- and
odd-mode voltages:

CL D 0 C %Co Ð �Cga C Cge� �2.59�

Cqi D %Ce Ð �C0
f C Cm C Cf� C %Co Ð �Cm C C0

f� �2.60�

Detailed formulas for the circuit elements in Fig. 2.13 are found in [19] and some
of these are summarized in Appendix B.

Once the equivalent / circuit for the spiral section is known, the entire spiral
inductor is modeled by cascading each of these sections. The CL, R, and L are
combined into the single impedance Zp:

Zp D R C sL

s2LCL C sCLR C 1
�2.61�

The ABCD parameters described in Chapter 4 (Section 4.2) are used to cascade
the individual / circuits. Thus

A D 1 C sCq2Zp �2.62�

B D Zp �2.63�

C D s2Cq1Cq2Zp C s�Cq1 C Cq2� �2.64�

D D 1 C sCq1Zp �2.65�

Each section of the spiral described in terms of an ABCD matrix may be cascaded
together by simply multiplying ABCD matrices. The C in Eq. (2.64) is a matrix
element, not a capacitance. Once the total cascaded ABCD matrix is found, the
input impedance may be determined:

Zin D AZ L C B
CZ L C D

�2.66�

The ZL is the load impedance on the output side of the spiral. If ZL is a short to
ground, then the effective inductance of the spiral might be estimated by

Leff D =fZing
ω

�2.67�

In the cascaded analysis the capacitance, Cq2, from one section is the same
as the Cq1 of the subsequent section, and hence it ought not to be counted
twice in evaluating the cascaded equivalent circuit. One approach is to simply
choose Cq2 ! Cq2/2 and Cq1 ! Cq1/2, except of course for the innermost and
outermost coupled line.
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PROBLEMS

2.1 Calculate the resistance of a 1 m long copper wire over a frequency range
of 100 MHz to 1 GHz when (a) the diameter of the wire is 31.2 mils (AWG
#20), and (b) when it is 10.0 mils (AWG #30). Plot your results of ac resis-
tance in terms of frequency.

2.2 You are asked to determine the inductance of a solenoid when the form
length is 1.5 in., the form diameter is 0.3 in., and there are 12 turns.
(a) What wire diameter would you choose?
(b) What is the inductance?
(c) What is the self-resonant frequency of the inductor?

REFERENCES

1. R. A. Pucel, “Design Considerations for Monolithic Microwave Circuits,” IEEE Trans.
Microwave Theory Tech., Vol. MTT-29, pp. 513–534, 1981.

2. R. Williams, Gallium Arsenide Processing Techniques, Boston: Artech House, 1990.

3. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, New York: Oxford
University. Press, 1987, p. 66.

4. A. D. Moore, Fluid Mapper Patterns, Ann Arbor: Overbeck, 1956.

5. C. P. Lee, B. M. Welch, and R. Zucca, “Saturated Resistor Load for GaAs Integrated
Circuits,” IEEE Trans. Microwave Theory Tech., Vol. MTT-30, pp. 1007–1013, 1982.

6. V. F. Perna, Jr. “A Guide to Judging Microwave, Capacitors,” Microwaves, Vol. 9,
August, pp. 40–42, 1970.

7. V. F. Perna, Jr. “Chip Capacitor Dielectric Effects on Hybrid Microwave Amplifiers,”
Proc. International Society for Hybrid Microelectronics, October 13, 1971.

8. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2nd ed.,
New York: Wiley, 1986, p. 190.

9. P. L. D. Abrie, The Design of Impedance-Matching Networks for Radio-Frequency
and Microwave Amplifiers, Boston: Artech House, 1985.

10. R. G. Medhurst, “High Frequency Resistance and Capacity of Single-Layer Sole-
noids,” Wireless Engineer, March, p. 35, 1947.

11. P. R. Geffe, “The Design of Single-Layer Solenoids for RF Filters,” Microwave J.,
Vol 39, pp. 70–76, 1996.

12. H. M. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors,” IEEE
Trans. Parts, Hybrids, Packaging, Vol. 10, pp. 101–109, 1974.

13. M. Parisot, Y. Archambault, D. Pavlidis, and J. Magarshack, “Highly Accurate Design
of Spiral Inductors for MMIC’s with Small Size and High Cut–off Frequency Char-
acteristics,” 1984 IEEE MTT-S Digest, pp. 106–110, 1984.

14. N. M. Nguyen and R. G. Meyer, “Si IC-Compatible Inductors and LC Passive Filters,”
IEEE J. Solid State Circuits, Vol. 25, pp. 1028–1031, 1999.

15. R. G. Arnold and D. J. Pedder, “Microwave Lines and Spiral Inductors in MCM-D
Technology,” IEEE Trans. Components, Hybrids, Manufact. Tech., Vol. 15, pp. 1038–
1043, 1992.



32 RESISTORS, CAPACITORS, AND INDUCTORS

16. S. Chaki, S. Andoh, Y. Sasaki, N. Tanino, and O. Ishihara, “Experimental Study on
Spiral Inductors,” 1995 IEEE MTT-S Digest, pp. 753–756, 1995.

17. Z. Jiang, P. S. Excell, and Z. M. Hejazi, “Calculation of Distributed Capacitances
of Spiral Resonators,” IEEE Trans. Microwave Theory Tech., Vol. 45, pp. 139–142,
1997.

18. A. M. Niknejad and R. G. Meyer, “Analysis, Design, and Optimization of Spiral
Inductors and Transformers for Si RF IC’s,” IEEE J. of Solid State Circuits, Vol. 33,
pp. 1470–1481, 1998.

19. E. Pettenpaul, H. Kapusta, A. Weisgerber, H. Mampe, J. Luginsland, and I. Wolff,
“CAD Models of Lumped Elements on GaAs up to 18 GHz,” IEEE Trans. Microwave
Theory Tech., Vol. MTT-36, pp. 294–304, 1988.



Radio Frequency Circuit Design. W. Alan Davis, Krishna Agarwal
Copyright  2001 John Wiley & Sons, Inc.

Print ISBN 0-471-35052-4 Electronic ISBN 0-471-20068-9

CHAPTER THREE

Impedance Matching

3.1 INTRODUCTION

A major part of RF design is matching one part of a circuit to another to provide
maximum power transfer between the two parts. Even antenna design can be
thought of as matching free space to a transmitter or receiver. This chapter
describes a few techniques that can be used to match between two real impedance
levels. While some comments will be made relative to matching to a complex
load, the emphasis will be on real impedance matching. The first part of this
chapter will discuss the circuit quality factor, Q. The Q factor will be used with
some of the subsequent matching circuit designs.

3.2 THE Q FACTOR

The the circuit Q factor is defined as the ratio of stored to dissipated power in
the following form:

Q D 2� Ð �max instantaneous energy stored�

energy dissipative per cycle
�3.1�

For a typical parallel RLC circuit, the Q becomes

Q D ωC

G
�3.2�

where G is 1/R. For a series RLC circuit,

Q D ωL

R
�3.3�

It should be emphasized that Q is defined at circuit resonance. If the circuit
reactance is plotted as a function of frequency, the slope of the reactance at

33
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X

High Q

Low Q

ω

FIGURE 3.1 Reactance slope related to Q.

resonance is a measure of Q (Fig. 3.1). This is explicitly given as

Q D ω0

2G

dB

dω

∣∣∣∣
ω0

�3.4�

where B is the susceptance and G the conductance. Alternately,

Q D ω0

2R

dX

dω

∣∣∣∣
ω0

�3.5�

where R and X are the resistance and reactance of the circuit. For a series RLC
circuit this latter formula will result in the solution given by Eq. (3.3). On the
other hand, the Q of a complicated circuit can be readily obtained from Eq. (3.4)
or Eq. (3.5), even numerically if necessary.

3.3 RESONANCE AND BANDWIDTH

The minimum insertion loss or maximum transmission of a parallel RLC circuit
occurs at the resonant frequency of the circuit. When this circuit is excited by
a current source, and the output is terminated with an open circuit, the transfer
function is

Vout

Iin
D 1

�1/R�C jωC� �j/ωL�
. �3.6�

This is shown in Fig. 3.2. The output voltage, Vout, drops from the resonant value
by

p
2 (or 3 dB) because the denominator of the transfer function increases from
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RL L C

w1 w0 w2

FIGURE 3.2 Simple parallel resonant circuit.

1/R at resonance to ∣∣∣∣
1

R
C jωC� jωL

∣∣∣∣ D
p

2

R
�3.7�

The resonant frequency is ω0 D 1/
p
LC, and the value of Q given in Eq. (3.2)

can also be written as Q D R
p
C/L. Using these two facts, Eq. (3.7) becomes

explicitly a quadratic equation in ω2:

ω4C2L2R2 � ω2�2CLR2 C L2�C R2 D 0 �3.8�

The two solutions for ω2 are

ω2 D ω2
0

{
1 C

[
1

2Q2
š 1

Q

√

1 C 1

4Q2

]}

ω2 D ω2
0

{
1 C 1

4Q2
š 1

Q

√

1 C 1

4Q2
C 1

4Q2

}

ω2 D ω2
0

{√

1 C 1

4Q2
š 1

2Q

}
Ð
{√

1 C 1

4Q2
š 1

2Q

}
�3.9�

In this expression, 4R4/ω4
0 is replaced by 4L4Q4. This has been written as a

product of two equal terms, so the original quartic equation has two pairs of equal
roots. Taking the square root of Eq. (3.9) provides the two 3 dB frequencies of
the resonant circuit:

ω1,2 D ω0

{√

1 C 1

4Q2
š 1

2Q

}
�3.10�

The 3 dB bandwidth of the resonant circuit is the difference between the two
3 dB frequencies:

f D ω2 � ω1 D 1

RC
rad/s �3.11�
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The response is clearly not symmetrical about the resonant frequency, ω0. The
resonant frequency can be found by taking the geometric mean of the two solu-
tions of Eq. (3.10) rather than the arithmetic mean:

ω1 Ð ω2 D ω2
0

[√

1 C 1

4Q2
� 1

2Q

]
Ð
[√

1 C 1

4Q2
C 1

2Q

]

ω0 D p
ω1ω2 �3.12�

However, for narrow bandwidths, the arithmetic mean of the the two 3 dB
frequencies can be used with a small error.

3.4 UNLOADED Q

In real physical reactive elements there are always some resistive losses. The loss
in a capacitor or an inductor can be described in terms of its Q. For example,
if a lossy inductor is placed in parallel with a lossless capacitor, the Q of the
resulting parallel circuit is said to be the circuit Q of the inductor. The inductor
Qind then is

Qind D ω0CR D R

ω0L
�3.13�

or
R D XLQind �3.14�

Similarly, for a lossy capacitor, its resistive component could be expressed in
terms of the capacitor Qcap. If the inductor, capacitor, and a load resistance, RL

are placed in parallel, then the total resistance is RT:

1

RT
D 1

RL
C 1

QindXL
C 1

QcapXC
�3.15�

At resonance, XL D XC, so

XL

RT
D XL

RL
C
[

1

Qind
C 1

Qcap

]
�3.16�

The unloaded Q, Qu is the Q associated with the reactive elements only (i.e.,
without the load). The bracketed term is the unloaded Q:

1

Qu
D 1

Qind
C 1

Qcap
�3.17�

3.5 L CIRCUIT IMPEDANCE MATCHING

There are four possible configurations that provide impedance matching with only
two reactive elements. In each case the design of the matching circuits is based
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R 'Series C R

L

(a)

R 'Shunt C R

L

(c)

R '

C

RL

(b)

R '

C

RL

(d )

FIGURE 3.3 Four possible L matching circuits.

on the Q factor, a concept that will become even more important in designing
broadband matching circuits [1]. Two of the circuits will be described as the series
connection since the reactive element closest to the load resistance is a series
reactance (Fig. 3.3a,b). The circuits with a shunt reactance closest to the load
resistance are called the shunt connection (Fig. 3.3c,d). For the series connection
in which the series reactance is an inductance, the total input admittance is given
as follows:

Yin D jωCC 1

RC jωL

D R

R2 C �ωL�2
C j

[
ωC� ωL

R2 C �ωL�2

]
�3.18�

Resonance occurs when the total shunt susceptance, jB D 0. Thus

C D L

R2 C �ω0L�2
�3.19�

Solution of this for the resonant frequency gives the following expression for the
resonant frequency:

ω0 D
√

1

LC
� R2

L2
�3.20�

The effect of the load resistor is to modify the resonant frequency somewhat.
The conductive part of Yin at this frequency (where B D 0) can be found. Its

reciprocal is the input resistance, R0, of the circuit:

R0 D R2 C ω2
0L

2

R

D R�1 C Q2
1� �3.21�
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The subscript 1 for Q is present to emphasize this is a single resonator circuit.
More complicated circuits might have several pertinent Q factors to consider.

At center frequency the reactance of the series part (i.e., not the capacitance
part) will change with changing frequency. Its value can be found from the input
admittance expression and is the amount the reactance changes because of the
series inductance. This reactance change is

jX0
1 D jR2 C �ω0L�2

ω0L
�3.22�

If X1 represents the series reactance, which in this case is ω0L, then the reactance
of the series element can be found also in terms of Q:

jX0
1 D jX1

(
1 C 1

Q2
1

)
�3.23�

The second element in the LC section is chosen to resonate out this X0
1:

jX2 D �jX0
1 D �jX1

(
1 C 1

Q2
1

)

D �jR0

Q1
�3.24�

In the typical synthesis problem, R0 and R are known. Equation (3.21) gives the
necessary value of Q1, Eq. (3.3) gives the required L, and Eq. (3.24) gives the
required C. This procedure is summarized in Table 3.1.

A similar procedure can be applied for the shunt connection in which the
capacitance is closest to the load resistance. The input impedance is expressed
as follows:

Zin D jωL C 1

GC jωC

D G

G2 C �ωC�2
C j

[
ωL � ωC

G2 C �ωC�2

]
�3.25�

TABLE 3.1 L Matching Circuit Design Where X1, B1 are
the Reactance or Susceptance Closest to the Load R

Circuit R0 jX2 Q1

Series R�1 C Q2
1� �jX1�1 C 1/Q2

1� X1/R
or �jR0/Q1

Shunt R/�1 C Q2
1� �jX1/�1 C 1/Q2

1� B1/G
or �jR0Q1
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For resonance, the series reactance X D 0. Solution for the resonant frequency
for the shunt connection is as follows:

ω0 D
√

1

LC
� G2

C2
�3.26�

Substituting this back into the input impedance expression gives the input
resistance:

R0 D 1/G

1 C �ω0C/G�2

D R

1 C Q2
1

�3.27�

The reactance associated with the capacitance is

jX0
1 D �jω0C

G2 C �ω0C�2

Since jX1 D 1/jωC,

jX0
1 D jX1

1 C 1/Q2
1

�3.28�

D R0Q1 �3.29�

Since jX2 D �jX1, the values in Table 3.1 are obtained.
The major feature that should be recognized, whether dealing with elaborate

lumped circuits or microwave circuits, if the impedance level needs to be raised,
a series connection is needed. If the impedance needs to be lowered, a shunt
connection is needed. Furthermore, since the design is based on a resonance
condition, the two reactances in the circuit must be of the opposite type. This
means two inductors or two capacitors will not work.

3.6 p TRANSFORMATION CIRCUIT

In the previous L matching circuit, the value for Q is completely determined
by the transformation ratio. Consequently there is no independent control over
the value of Q which is related to the circuit bandwidth. Addition of a third
circuit element gives flexibility to design for bandwidth. If a design begins with
a shunt L matching circuit, then addition of another shunt susceptance on the
other side of the series element provides the necessary circuit flexibility to be
able to choose the circuit Q as a design parameter. The resulting � matching
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circuit is shown in Fig. 3.4. In this circuit B1 and X2 both act as the impedance
transforming elements while the third, B3 is the compensation element that tunes
out the excess reactance from the first two elements. As in the L matching circuit,
the first shunt element, B1, reduces the resistance level by a factor of 1/�1 C Q2

1�,
and X2 increases the resistance level by �1 C Q2

2�, where Q2 is a Q factor related
to the second element. The final transformation ratio can be R00 < R or R00 > R
depending on which Q is larger, as shown in the diagram of Fig. 3.5. To make
R00 < R, make Q1 > Q2. The maximum Q, Qmax D Q1, will be the major factor
that determines the bandwidth.

Now consider design of a circuit where R00 < R. Then the first shunt transfor-
mation gives

R0 D R

1 C Q2
1

�3.30�

X0 D �R0Q1 �3.31�

The incremental reactance, X0, is added to the series arm. This results in the
circuit shown in Fig. 3.6, where R has been transformed to R0 with a modified
series reactance. This series reactance will act to increase the resistance level
from R0 to R00. The second transformation Q is

Q2 D X2 � R0Q1

R0 D R0�X2/R� Q1�

R0

RB1B3

X 2

R "

FIGURE 3.4 � impedance transformation circuit.

R

R '

R "

1

1 + Q1
2

1 + Q2
2

FIGURE 3.5 Diagram showing two-step transformation.
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X '2 = X2 – R 'Q1

R '

FIGURE 3.6 Equivalent series reactance after first transformation.

TABLE 3.2 p Matching Circuit Design Formulas

Step Number R00 < R R00 > R

1 Q1 D Qmax Q2 D Qmax

2 R0 D R/�1 C Q2
1� R0 D R00/�1 C Q2

2�
3 1 C Q2

2 D R00/R0 1 C Q2
1 D R/R0

4 X2 D R0�Q1 C Q2� X2 D R0�Q1 C Q2�
5 B1 D Q1/R B1 D Q1/R
6 B3 D Q2/R00 B3 D Q2/R00

or
X2

R0 D Q1 C Q2 �3.32�

The X2, B3 combination is a series L section with “load” of R0. Consequently

R00 D R0�1 C Q2
2� �3.33�

X00 D �R
00

Q2
�3.34�

A summary for the design process is shown below. To make R00 < R, make
Q1 > Q2 and Q1 D Qmax, and follow the design steps in the first column of
Table 3.2. For R00 > R, use the second column.

3.7 T TRANSFORMATION CIRCUIT

The T transformation circuit is the dual to the � transformation circuit and is
shown in Fig. 3.7. In this circuit, however, the series reactance X1 first raises the
resistance level to R0, and the remaining shunt susceptance lowers the resistance
level as indicated in Fig. 3.8. The design formulas are derived in the same way
as the � circuit formulas and are summarized in Table 3.3.
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X1X3

B2 RR"

FIGURE 3.7 T transformation circuit.

R

R '

R "

1

1 + Q2
2

1 + Q1
2

FIGURE 3.8 Diagram showing impedance transformation for the T circuit.

TABLE 3.3 T Matching Circuit Design Formulas

Step Number R00 > R R00 < R

1 Q1 D Qmax Q2 D Qmax

2 R0 D R�1 C Q2
1� R0 D R00�1 C Q2

2�
3 1 C Q2

2 D R0/R00 1 C Q2
1 D R0/R

4 X1 D Q1R X1 D Q1R
5 B2 D �Q1 C Q2�/R0 B2 D �Q1 C Q2�/R0

6 X3 D Q2/R00 X3 D Q2/R00

3.8 TAPPED CAPACITOR TRANSFORMER

The tapped capacitor circuit is another approximate method for obtaining
impedance level transformation. The description of this design process will
begin with a parallel RC to series RC conversion. Then the tapped C circuit
will be converted to an L-shaped matching circuit. The Q1 for an equivalent
load resistance Reqv will be found. Finally, a summary of the circuit synthesis
procedure will be given.

3.8.1 Parallel to Series Conversion

Shown in Fig. 3.9 is a parallel RC circuit that will be forced to have the same
impedance as the series RC circuit, at least at one frequency. The conversion is of
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Rp

Rs

Cs

=Cp

FIGURE 3.9 Parallel RC to series RC conversion.

course valid for only a narrow frequency range, so this method is fundamentally
limited by this approximation.

The impedance of the parallel circuit is

Zp D Rp

1 C sCpRp
�3.35�

The Q for a parallel circuit is Qp D ωCpRp. The equivalent series resistance
and reactance in terms of Qp are

Rseqv D Rp

1 C Q2
p

�3.36�

Xseqv D � XpQ2
p

1 C Q2
p

�3.37�

3.8.2 Conversion of Tapped C Circuit to an L-Shaped Circuit

The schematic of the tapped C circuit is shown in Fig. 3.10 where R0 is to be
matched to R2. The parallel R2C2 section is converted to a series ReqvCeqv, as
indicated in Fig. 3.11. Making use of Eqs. (3.36) and (3.37),

Cseqv D C2

(
1 C Q2

p

Q2
p

)
³ C2 for high Qp �3.38�

Rseqv D R D R2

1 C Q2
p

�3.39�

where Qp D ω0C2R2. Considering R0 as the load, and using the L circuit trans-
formation for a shunt circuit in Table 3.1,

Rseqv D R0

1 C Q2
1

�3.40�
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R2

R '

C1

L

C 2

FIGURE 3.10 Tapped C transformation circuit.

R   =   Rseq vR ' L

C1 Cseq v

FIGURE 3.11 Intermediate equivalent transformation circuit.

This is the transformed resistance looking through C1 toward the left. Looking
toward the right through Cseqv and again using the parallel to series conversion,
Eq. (3.36),

Rseqv D R2

1 C Q2
p

�3.41�

These two expressions for Rseqv can be equated and solved for Qp:

Qp D
[
R2

R
�1 C Q2

1�� 1
]1/2

�3.42�

3.8.3 Calculation of Circuit Q

An approximate value for Q can be found by equating the impedances of the two
circuits in Fig. 3.12:

Z D R0ω2L2 C jR02ωL
R02 C �ωL�2

D R0
eqv C jωLeqv �3.43�

If the Q of the right-hand circuit is approximately that of the left-hand circuit in
Fig. 3.12, then

Q1 D ω0Leqv

R0
eqv

D ω0R02L
R0ω2

0L
2

D R0

ω0L
�3.44�
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Q1Z

C

LR '

L eq v

Z

C

R eq v'

FIGURE 3.12 Equate the left- and right-hand circuits.

TABLE 3.4 Tapped C Matching Circuit Design Formulas

Step Number Tapped C Formula

1 Q1 D f0/f
2 C D Q1/ω0R0 D 1/2�fR0

3 L D 1/ω2
0C

4 Qp D [
�R2/R0��1 C Q2

1�� 1
]1/2

5 C2 D Qp/ω0R2

6 Cseqv D C2�1 C Q2
p�/Q

2
p

7 C1 D CseqvC2/�Cseqv � C2�

The variable C represents the total capacitance of C1 and Cseqv in series, as
implied in Fig. 3.11 and represented in Fig. 3.12. For a high Q circuit, circuit
analysis gives the resonant frequency:

ω2
0 D 1

LC� L2/R02 ³ 1

LC
�3.45�

As a result the approximate value for Q1 can be found:

Q1 D ω0R
0C D f0

f
�3.46�

Here f is the bandwidth in Hz and f0 is the resonant frequency.

3.8.4 Tapped C Design Procedure

The above ideas are summarized in Table 3.4, which provides a design procedure
for the tapped C matching circuit. Similar expressions could be found for a tapped
inductor transforming circuit, but such a circuit is typically less useful because
inductors are more difficult to obtain than capacitors.

3.9 PARALLEL DOUBLE-TUNED TRANSFORMER

Each of the above described T, �, or tapped C matching circuits provide some
control over the bandwidth. Where precise control over the bandwidth is required,
a double tuned circuit allows controlling bandwidth by specifying two different
frequencies where maximum transmission occurs. For a small pass band, the
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GT

fm1 fm2

FIGURE 3.13 Double tuned transformer response.

RG C1 RLC2L22L11

M

FIGURE 3.14 Real transformer with resonating capacitances.

midband dip in the transmission can be made small. Furthermore the double-tuned
circuit is especially useful when a large difference in impedance levels is desired
although its high end frequency range is limited. The filter transmission gain is
shown in Fig. 3.13.

The double-tuned circuit consists of a coupled coil transformer with resonating
capacitances on the primary and secondary side. This circuit is shown in Fig. 3.14.
The transformer is described by its input and output inductance as well as the
coupling coefficient k. The turns ratio for the transformer is

n : 1 D
√

L11

k2L22
: 1 �3.47�

The circuit in Fig. 3.14 can be replaced by an equivalent circuit using an ideal
transformer (Fig. 3.15a). Since an ideal transformer has no inductance, the induc-
tances and coupling factor, k, must be added to the ideal transformer. The final
circuit topology is shown in Fig. 3.15b. Looking toward the right through the
ideal transformer, Fig. 3.15b shows the circuit values are:

L0
2 D L11

(
1

k2
� 1
)

�3.48�

C0
2 D

(
L11

k2L22

)
C2 �3.49�

R0
L D L11

k2L22
RL �3.50�
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RG R LC1 C2

L22(1–k 2)

L'2

L11

n :1

(a)

L11 R 'LC'2C1RG

(b)

FIGURE 3.15 (a) Alternate equivalent circuit with an ideal transformer, and (b) final
equivalent circuit.

L11C1 C'2

L'2

RG R'L
R1

R2

FIGURE 3.16 Double tuned circuit split into two.

The circuit elements will be chosen to give exact match at the two frequen-
cies, fm1 and fm2. The circuit in Fig. 3.15b can be conceptually split into two
(Fig. 3.16). The resistance R1 with the parallel resonant circuit will never be
larger than RG. The right-hand side is an L matching circuit with the reactance of
the shunt element monotonically decreasing with frequency. Hence R2 monotoni-
cally decreases. Consequently, if RL is small enough, there will be two frequencies
where R1 D R2. This is illustrated in Fig. 3.17.

A design procedure for the parallel double-tuned circuit has been reviewed in
[1] and is summarized below. The typical synthesis problem is to design a circuit
that will match RG and RL over a bandwidth, f, at a center frequency, f0, with
a given pass band ripple. The bandwidth and center frequency are approximated
by the following:

1. Determine fm1 and fm2:

f ³
p

2�fm2 � fm1� �3.51�

f0 ³
√
fm1fm2 �3.52�
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FIGURE 3.17 Plot of left- and right-hand resistance values versus frequency.

The minimum pass band gain for the filter is dependent on the difference
between the match frequencies:

GTmin D 4fm2/fm1

�fm2/fm1�2 C 2fm2/fm1 C 1
�3.53�

2. Determine the actual transducer gain for the given ripple factor:

GT D 10�ripple factor �dB�/10 �3.54�

3. Find the resistance ratio if GT > GTmin, the pass band ripple specification
can be met:

r D 1 C j1 �GTj1/2
1 � j1 �GTj1/2 �3.55�

4. Calculate the Q2 at the two matching frequencies:

Q2
2�m1 D r

fm1

fm2
� 1 �3.56�

Q2
2�m2 D r

fm2

fm1
� 1 �3.57�

5. Solve the following simultaneous equations for L0
2 and C0

2:

�ωm1L
0
2 C 1

ωm1C0
2

D jQ2�m1j RG

1 C Q2
2�m1

�3.58�

Cωm2L
0
2 C 1

ωm2C0
2

D jQ2�m2j RG

1 C Q2
2�m2

�3.59�

6. Find the value for R0
L:

R0
L D 1 C Q2

2�m1

ω2
m1C

02
2 RG

�3.60�
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7. Calculate the input susceptance of the right-hand side where G0
L D 1/R0

L:

Bm1 D Im

{
1

jωm1L0
2 C �1/G0

L C jωm1C0
2�

}
�3.61�

Bm2 D Im

{
1

jωm2L0
2 C �1/G0

L C jωm2C0
2�

}
�3.62�

8. Solve the following simultaneous equations for L11 and C1:

1

ωm1L11
� ωm1C1 D jBm1j �3.63�

1

ωm2L11
� ωm2C1 D jBm2j �3.64�

9. Find the transformer coupling coefficient, and hence L22 and C2:

k D 1√
1 C L0

2/L11
�3.65�

L22 D L11RL
k2R0

L
�3.66�

C2 D L11

k2L22
C0

2 �3.67�

This procedure has been coded into the program DBLTUNE, and an example
of its use is given in Appendix C.

PROBLEMS

3.1 Design an impedance transforming network that matches a generator resis-
tance, RG D 400 " to a load resistance RL D 20 ". The center frequency
for the circuit is f0 D 6 MHz. The desired ripple (where appropriate) is to
be less than 0.25 dB. In some cases the ripple factor will not be able to be
controlled in the design. The problem is to design four different transforma-
tion circuits with the specifications above, and for each design do an analysis
using SPICE. See Appendix G, Sections G.1, and G.2.
(a) Design a two-element L matching circuit and check the results with

SPICE.
(b) Design a three-element tapped capacitor matching circuit with a band-

width f D 50 kHz, and check the results with SPICE to determine the
actual bandwidth.
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(c) Design a three-element � matching circuit with a bandwidth of f D
50 kHz, and check the results with SPICE to determine the actual band-
width.

(d) Design a double tuned transformer matching circuit with a bandwidth of
f D 50 kHz, and check the results with SPICE to determine the actual
bandwidth.

(e) Repeat part (d) for a 3 dB bandwidth of 2 MHz. Again, check the results
using SPICE.

3.2 The � matching circuit shown in Fig. 3.4 is used to match the load R D
1000 " to R00 D 80 ". If the intermediate resistance level is R0 D 20 ",
determine the following:
(a) What is Q1?
(b) What is Q2?
(c) What is B1, the first susceptance nearest R?
(d) What is the estimated 3 dB bandwidth for this circuit in terms of the

center frequency, f0?
3.3 The tapped capacitor transformer is to be used in a narrowband of frequencies

around ω D 4 Ð 109 rad/s. In designing the matching circuit, the tapped C
circuit is converted to an ‘L’ matching circuit. If R2 in Fig. 3.10 is 50 ",
C2 D 8 pF, and C1 D 5.0 pF, then what is the total capacitance for the ‘L’
matching circuit?
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CHAPTER FOUR

Multiport Circuit Parameters
and Transmission Lines

4.1 VOLTAGE–CURRENT TWO-PORT PARAMETERS

A linear n-port network is completely characterized by n independent exci-
tation variables and n dependent response variables. These variables are the
terminal voltages and currents. There are four ways of arranging these indepen-
dent and dependent variables for a two-port, and they are particularly useful, when
considering feedback circuits. They are the impedance parameters (z-matrix),
admittance parameters (y-matrix), hybrid parameters (h-matrix), and the inverse
hybrid parameters (g-matrix). These four sets of parameters are defined as.

[
v1

v2

]
D
[
z11 z12

z21 z22

] [
i1
i2

]
�4.1	

[
i1
i2

]
D
[
y11 y12

y21 y22

] [
v1

v2

]
�4.2	

[
v1

i2

]
D
[
h11 h12

h21 h22

] [
i1
v2

]
�4.3	

[
i1
v2

]
D
[
g11 g12

g21 g22

] [
v1

i2

]
�4.4	

Two networks connected in series (Fig. 4.1) can be combined by simply adding
the z parameters of each network together. This configuration is called the
series–series connection. In the shunt–shunt configuration shown in Fig. 4.2,
the two circuits can be combined by adding their y-matrices together. In the
series–shunt configuration (Fig. 4.3), the composite matrix for the combination
is found by adding the h parameters of each circuit together. Finally, the circuits

51
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–

+

Z G

Z L [Zc] = [Z1] + [Z2]

Z1

Z2
VG

FIGURE 4.1 Series–series connection.

IG YG [Yc] = [Y1] + [Y2]YL

Y1

Y2

FIGURE 4.2 Shunt–shunt connection.

–

+

ZG

YL [Hc] = [H1] + [H2]

H1

H2
VG

FIGURE 4.3 Series–shunt connection.

connected in the shunt–series configuration (Fig. 4.4) can be combined by adding
the g parameters of the respective circuits. In each type of configuration the inde-
pendent variables are the same for the individual circuits, so matrix addition is
valid most of the time. The case where the matrix addition is not valid occurs
when for example in Fig. 4.1 a current going in and out of port 1 of circuit 1
is not equal to the current going in and out of port 1 of circuit 2. These patho-
logical cases will not be of concern here, but further information is found in
[1, pp. 188–191] where a description of the Brune test is given.

Any of the four types of circuit parameters described above can be represented
by an equivalent circuit with controlled sources. As an example, the impedance
(or z) parameters can be represented as shown in Fig. 4.5. The input port-1 side
is represented by a series resistance of value z11 together with a current controlled
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iG YG

G1

G2

ZL [Gc] = [G1] + [G2]

FIGURE 4.4 Shunt–series connection.

–

+

–

+

–

+

–

+

i1

i2Z12 i1Z21

v1

i 2

v2

Z11 Z22

FIGURE 4.5 Equivalent circuit for the z parameters.

voltage source with gain z12 in series. The controlling current is the port-2 current.
If the current at port-1 is i1 and the current at port-2 is i2, then the voltage at
port-1 is

v1 D i1z11 C i2z12

A similar representation is used for the port-2 side.
The individual impedance parameters are found for a given circuit by setting

i1 or i2 to 0 and solving for the appropriate z parameter. The z parameters are
sometimes termed open circuit parameters for this reason. The y parameters are
sometimes called short circuit parameters because they are found by shorting
the appropriate port. These parameters are all summarized in Appendix D where
conversions are given for converting them to scattering parameters.

4.2 ABCD PARAMETERS

Networks are often cascaded together, and it would be useful to be able to
describe each network in such a way that the product of the matrices of each
individual network would describe the total composite network. The ABCD
parameters have the property of having the port-1 variables being the independent
variables and the port-2 variables being the dependent ones:
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[
v1

i1

]
D
[
A B
C D

] [
v2

�i2
]

�4.5	

This allows the cascade of two networks to be represented as the matrix product
of the two circuit expressed in terms of the ABCD parameters. The ABCD para-
meters can be expressed in terms of the commonly used z parameters:

A D v1

v2

∣∣∣∣
i2D0

D z11

z21
�4.6	

B D �v1

i2

∣∣∣∣
v2D0

D z
z21

�4.7	

C D i1
v2

∣∣∣∣
i2D0

D 1

z21
�4.8	

D D � i1
i2

∣∣∣∣
v2D0

D z22

z21
�4.9	

where
z

D z11z22 � z21z12

In addition, if the circuit is reciprocal so that z12 D z21, then the determinate of
the ABCD matrix is unity, namely

AD� BC D 1 �4.10	

4.3 IMAGE IMPEDANCE

A generator impedance is said to be matched to a load when the generator
can deliver the maximum power to the load. This occurs when the generator
impedance is the complex conjugate of the load impedance. For a two-port circuit,
the generator delivers power to the circuit, which in turn has a certain load
impedance attached to the other side (Fig. 4.6). Consequently maximum power
transfer from the generator to the input of the two-port circuit occurs when
it has the appropriate load impedance, ZL. The optimum generator impedance

ZG
i1 –i2

v1

Z11

v2 Z L = Z 12A B C D
–

+

–

+

FIGURE 4.6 Excitation of a two-port at port-1.
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depends on both the two-port circuit itself and its load impedance. In addition
the matched load impedance at the output side will depend on the two-port as
well as on the generator impedance on the input side. Both sides are matched
simultaneously when the input side is terminated with an impedance equal to its
image impedance, ZI1, and the output side is terminated with a load impedance
equal to ZI2. The actual values for ZI1, and ZI2 are determined completely by
the two-port circuit itself and are independent of the loading on either side of
the circuit. Terminating the two-port circuit in this way will guarantee maximum
power transfer from the generator into the input side and maximum power transfer
from a generator at the output side (if it exists).

The volt–ampere equations for a two-port are given in terms of their ABCD
parameters as

v1 D Av2 � Bi2 �4.11	

i1 D Cv2 � Di2 �4.12	

Now, if the input port is terminated by ZI1 D v1/i1, and the output port by
ZI2 D v2/��i2	, then both sides will be matched. Taking the ratios of Eqs. (4.11)
and (4.12) gives

ZI1 D v1

i1
D Av2/��i2	C B

Cv2/��i2	C D

D AZI2 C B

CZI2 C D
�4.13	

The voltage and current for the output side in terms of these parameters of the
input side are found by inverting Eqs. (4.11) and (4.12):

v2 D Dv1 � Bi1 �4.14	

i2 D Cv1 � Ai1 �4.15	

If the output port is excited by v2 as shown in Fig. 4.7, then the matched load
impedance is the same as the image impedance:

ZI2 D v2

i2
D Dv1/��i1	C B

Cv1/��i1	C A
D DZI1 C B

CZI1 C A
�4.16	

Equations (4.13) and (4.16) can be solved to find the image impedances for both
sides of the circuit:

ZI1 D
√
AB

CD
�4.17	

ZI2 D
√
DB

AC
�4.18	
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–

+

–

+

i1 –i2

v1

Z12

Z12

v2ZG =  Z 11 A B C D

FIGURE 4.7 Excitation of a two-port at port-2.

When a two-port circuit is terminated on each side by its image impedance
so that ZG D ZI1 and ZL D ZI2, then the circuit is matched on both sides simul-
taneously. The input impedance is ZI1 if the load impedance is ZI2, and vice
versa.

The image impedance can be written in terms of the open circuit z parameters
and the short circuit y parameters by making the appropriate substitutions for the
ABCD parameters (see Appendix D):

ZI1 D
√
z11

y11
�4.19	

ZI2 D
√
z22

y22
�4.20	

Therefore an easy way to remember the values for the image impedances is

ZI1 D p
zoc1zsc1 �4.21	

ZI2 D p
zoc2zsc2 �4.22	

where zoc1 and zsc1 are the input impedances of the two-port circuit when the
output port is an open circuit or a short circuit, respectively.

As an example consider the simple T circuit in Fig. 4.8. The input impedance
when the output is an open circuit is

zoc1 D Za C Zb �4.23	

Za Zc

Zb

FIGURE 4.8 Example T circuit.
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and the input impedance when the output is a short circuit is

zsc1 D Za C ZbjjZc �4.24	

The image impedance for the input port for this circuit is

ZI1 D
√
�Za C Zb	[Zc C ZbjjZc] �4.25	

and similarly for the output port

ZI2 D
√
�Zc C Zb	[Zc C ZbjjZa] �4.26	

The output side of the two-port circuit can be replaced by another two-port
whose input impedance is ZI2. This is possible if ZI2 is the image impedance
of the second circuit and the load of the second circuit is equal to its output
image impedance, say ZI3. A cascade of two-port circuits where each port is
terminated by its image impedance would be matched everywhere (Fig. 4.9). A
wave entering from the left side could propagate through the entire chain of
two-port circuits without any internal reflections. There of course could be some
attenuation if the two-port circuits contain lossy elements.

The image propagation constant, � , for a two-port circuit is defined as

e� D
√

v1i1
v2��i2	 D v1

v2

√
ZI2

ZI1
�4.27	

If the network is symmetrical so that ZI1 D ZI2, then e� D v1/v2. For the general
unsymmetrical network, the ratio v1/v2 is found from Eq. (4.11) as

v1

v2
D Av2 � Bi2

v2

D AC B

ZI2

D AC B

√
AC

BD

D
√
A

D

(p
ADC

p
BC
)

1 2 2 3 3 4 4 5 5 6Z11

Z12 Z13 Z14 Z15 Z16

Z16

FIGURE 4.9 Chain of matched two-port circuits.
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Similarly

i1
��i2	 D CZI2 C D

D
√
D

A

(p
ADC

p
BC
)

The image propagation constant is obtained from Eq. (4.27):

e� D
√

v1i1
v2��i2	 D

p
ADC

p
BC �4.28	

Also
e�� D

p
AD�

p
BC �4.29	

When the circuit is reciprocal, AD� BC D 1. Now if Eqs. (4.28) and (4.29)
are added together and then subtracted from one another, the image propagation
constant can be expressed in terms of hyperbolic functions:

cosh � D
p
AD �4.30	

sinh � D
p
BC �4.31	

If n represents the square root of the image impedance ratio, the ABCD param-
eters can then be written in terms of n and �:

n
D
√
ZI1

ZI2

D
√
A

D
�4.32	

A D n cosh � �4.33	

B D nZI2 sinh � �4.34	

C D sinh �

nZI2
�4.35	

D D cosh �

n
�4.36	

Hence, from the definition of the ABCD matrix (4.5), the terminal voltages and
currents can be written in terms of n and �:

v1 D nv2 cosh � � ni2ZI2 sinh � �4.37	

i1 D v2

nZI2
sinh � � i2

n
cosh � �4.38	
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Division of these two equations gives the input impedance of the two-port circuit
when it is terminated by ZL:

Zin D v1

i1
D n2ZI2

ZL C ZI2 tanh �

ZL tanh � C ZI2
�4.39	

This is simply the transmission line equation for a lumped parameter network
when the output is terminated by ZL D v2/��i2	. A clear distinction should be
drawn between the input impedance of the network, Zin, which depends on the
value of ZL, and the image impedance ZI2, which depends only on the two-
port circuit itself. For a standard transmission line, ZI1 D ZI2 D Z0, where Z0

is the characteristic impedance of the transmission line. Just as for the image
impedance, the characteristic impedance does not depend on the terminating
impedances, but is a function of the geometrical features of the transmission
line. When the lumped parameter circuit is lossless, � D jˇ is pure imaginary
and the hyperbolic functions become trigonometric functions:

Zin D n2ZI2
ZL C jZI2 tanˇ

ZI2 C jZL tanˇ
�4.40	

where ˇ is real. For a lossless transmission line of electrical length � D ωL/v,

Zin D Z0
ZL C jZ0 tan �

Z0 C jZL tan �
�4.41	

where ω is the radian frequency, L is the length of the transmission line, and v
is the velocity of propagation in the transmission line medium.

4.4 THE TELEGRAPHER’S EQUATIONS

A transmission line consists of two conductors that are spaced somewhat less than
a wavelength apart. The transmission line is assumed to support only a transverse
electromagnetic (TEM) wave. The transmission line might support higher-order
modes at higher frequencies, but it is assumed here that only the TEM wave
is present. This assumption applies to the vast number of two conductor trans-
mission lines used in practice. A transmission line may take a wide variety of
forms; here it will be presented as a two-wire transmission line (Fig. 4.10). This
line is represented as having a certain series inductance per unit length, L, and
a certain shunt capacitance per unit length, C (Fig. 4.11). The inductance for
the differential length is thus Ldz, and the capacitance is Cdz. If the incoming
voltage and current wave entering port 1 is V D v1 and I D i1, respectively, then
the voltage at port 2 is

v2 D VC ∂V

∂z
dz
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z = –L z = 0

Z Z0 ZLV + V –

+

–

+

–

FIGURE 4.10 Two wire representation of a transmission line.

V1 = V

+

–

+

–

+
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Ldz

(a) (b)

Cdz V1 = V

Ldz Rdz

Cdz GdzV2 = V +      dz
∂z
∂V V2 = V +      dz

∂z
∂V

FIGURE 4.11 Circuit model of a differential length of a transmission line where (a) is
the lossless line and (b) is the lossy line.

so the voltage difference between ports 1 and 2 is

v2 � v1 D ∂V

∂z
dz D �Ldz

∂I

∂t
�4.42	

The negative sign for the derivative indicates the voltage is decreasing in going
from port-1 to port-2. Similarly the difference in current from port-1 to port-2 is
the current going through the shunt capacitance:

i2 � i1 D ∂I

∂z
dz D �Cdz

∂V

∂t
�4.43	

The telegrapher’s equations are obtained from Eqs. (4.42) and (4.43):

∂V

∂z
D �L ∂I

∂t
�4.44	

∂I

∂z
D �C∂V

∂t
�4.45	

Differentiation of Eq. (4.44) with respect to z and Eq. (4.45) with respect to t,
and then combining, produces the voltage wave equation:

∂2V

∂z2
D 1

v2

∂2V

∂t2
�4.46	



THE TRANSMISSION LINE EQUATION 61

In similar fashion the current wave equation can be found:

∂2I

∂z2
D 1

v2

∂2I

∂t2
�4.47	

The velocity of the wave is

v D 1p
LC

�4.48	

The solution for these two wave equations given below in terms of the arbi-
tray functions F1 and F2 can be verified by substitution back into Eqs. (4.46)
and (4.47):

V�z, t	 D F1

(
t � z

v

)
C F2

(
t C z

v

)
�4.49	

I�z, t	 D 1

Z0

[
F1

(
t � z

v

)
C F2

(
t C z

v

)]
�4.50	

The most useful function for F1 and F2 is the exponential function exp[j�ωt š
ˇz	], where ˇ D ω/v. The term Z0 is the same characteristic impedance in
Eq. (4.41), which for the telegrapher’s equations is

Z0 D
√
L

C
D Lv D 1

Cv
�4.51	

The variables L and C are given in terms of Henries and Farads per unit
length and are thus distinguished from L and C used in lumped element circuit
theory.

4.5 THE TRANSMISSION LINE EQUATION

The transmission line equation was determined in Section 4.3 for a cascade of
lumped element matched circuits. It is the input impedance of a transmission line
terminated with a load, ZL, and it can also be found directly from analysis of a
transmission line itself. The transmission line is characterized by its mechanical
length, L, and its characteristic impedance, Z0. The characteristic impedance of
a transmission line is a function only of the geometry and dielectric constant of
the material between the lines and is independent of its terminating impedances.
The input impedance of the transmission line depends on L, Z0, and ZL. When
terminated with a nonmatching impedance, a standing wave is set up in the
transmission line where the forward- and backward-going voltages and currents
are as indicated in Fig. 4.10. At the load,

VL D VC C V� �4.52	

IL D IC � I� �4.53	



62 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

Since the forward current wave is IC D VC/Z0 and the reverse current wave is
I� D V�/Z0, the current at the load is

IL D VC � V�

Z0
D VL

ZL
�4.54	

Replacing VL above with Eq. (4.52), the voltage reflection coefficient can be
determined:

 D V�

VC D ZL � Z0

ZL C Z0
�4.55	

If the transmission line is lossy, the reflection coefficient is actually

 D V�

VC D ZL � Z0

ZL C ZŁ
0

�4.56	

The phase velocity of the wave is a measure of how fast a given phase
moves down a transmission line. This is illustrated in Fig. 4.12 where ejωt time
dependence is assumed. If time progresses from t1 to t2, then in order for ej�ωt�ˇz	
to have the same phase at each of these two times, the wave must progress in
the forward direction from z1 to z2. Consequently

0 D ˇ�z2 � z1	� ω�t2 � t1	

giving the phase velocity

v D z

t
D ω

ˇ
�4.57	

This is to be distinguished from the group velocity,

vg D dω

dˇ

t1 t2

z1 z2 z

FIGURE 4.12 Forward-directed propagating wave.
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which is a measure of velocity of energy flow. For low-loss media, vgv D c2/ε,
where c is the velocity of light in a vacuum. The negative-going wave of course
has a phase velocity of �ω/ˇ.

This traveling wave corresponds to the solution of the lossless telegrapher’s
equations. The total voltage at any position, z, along the transmission line is the
sum of the forward- and backward-going waves:

V�z	 D VCe�jˇz C V�eCjˇz �4.58	

The total current at any point z is by Kirchhoff’s law the difference of the of the
two currents:

I�z	 D 1

Z0
�VCe�jˇz � V�eCjˇz	 �4.59	

At the input to the line where z D �$, the ratio of Eqs. (4.58) and (4.59) gives
the input impedance:

Z D Z0
VCe�jˇz C V�eCjˇz

VCe�jˇz � V�eCjˇz �4.60	

D Z0
e�jˇz C eCjˇz

e�jˇz � eCjˇz �4.61	

At the position z D �$,

Zin D Z0
ZL C jZ0 tanˇ$

Z0 C jZL tanˇ$
�4.62	

If the propagation constant is the complex quantity � D ˛C jˇ, then

Zin D Z0
ZL C jZ0 tanh �$

Z0 C jZL tanh �$
�4.63	

A few special cases illustrates some basic features of the transmission line
equation. If z D 0, Zin�0	 D ZL no matter what Z0 is. If ZL D Z0, then Zin�z	 D
Z0 no matter what z is. For a quarter wavelength line, Zin�z D &/4	 D Z2

0/ZL. The
input impedance for any length of line can be readily calculated from Eq. (4.62),
or by using the Smith chart.

4.6 THE SMITH CHART

The Smith chart, as shown in Fig. 4.13, is merely a plot of the transmission
line equation on a set of polar coordinates. The reflection coefficient is really
an alternate way of expressing the input impedance relative to some standard
value (Z0), which is typically 50 '. The reflection coefficient, , has a magnitude
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FIGURE 4.13 The Smith chart.

between 0 and 1 and a phase angle between 0° and 360°. The equations describing
the radii and centers of the circles of the coordinates of the Smith chart are found
by solving the normalized version of (4.60):

( D r C jx D Zin

Z0
D 1 C e�2jˇ$

1 � e�2jˇ$
�4.64	

Solution of the real part of Eq. (4.64) gives the center of the resistance circles as
�r/�1 C r	, 0	 with a radius of 1/�1 C r	. Solution of the imaginary part gives the
center of the reactance circles as �1, 1/x	 with a radius of 1/x [2, pp. 121–129].
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The Smith chart can be used as a computational tool, and it often gives insight
where straight equation solving will not. It is also a convenient plotting tool of
measured or calculated data, since any passive impedance will fall within its
boundaries.

4.7 COMMONLY USED TRANSMISSION LINES

Because TEM transmission lines have neither an electric nor a magnetic field
component in the direction of propagation, the characteristic impedance can be
found from Eq. (4.51) and electrostatics. Since the velocity of propagation in the
given media is presumably known all that is necessary is to calculate the elec-
trostatic capacitance between the conductors. When the geometry is particularly
nasty and the solution is needed quickly, the field-mapping approach described
in Chapter 2 can be used.

4.7.1 Two-Wire Transmission Line

The two-wire transmission line, commonly used, for example, between a TV
antenna and the receiver, consists of two round conductors each with a radius of
a and separated by a distance b (Fig. 4.14). The dielectric surrounding the wires
has a dielectric constant of ε. The field theory analysis, such as that given in [2],
shows that the characteristic impedance of the two wire line is

Z0 D +

,
Arccosh

(
b

2a

)
�4.65	

where

+ D
√
-

ε
�4.66	

2a

ε r

b

FIGURE 4.14 The two-wire transmission line.
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While the field analysis for a given structure may bring some challenges, the
good news is that once Z0 is known, the rest of the problem can be solved
from circuit theory. Losses in the two-wire transmission line stem from the
lossy dielectric between the conductors and the resistive losses experienced by
the current as it flows along the conductor. Since a wave is attenuated as it
goes down a line by exp��˛z	, the power loss is proportional to exp��2˛z	,
where

˛ D ˛d C ˛c �4.67	

The dielectric and conductor losses are

˛d D .d+

2
�4.68	

˛c D 1

2a

√
ω-

2.c

1

+Arccosh�b/2a	
�4.69	

where .d and .c are the conductivities of the dielectric and conductor, respec-
tively. The two-wire line is inexpensive and widely used in UHF applications.

4.7.2 Two Parallel Plate Transmission Line

The parallel plate transmission line consists of two separate conductors of width b
and separated by a distance a (Fig. 4.15). This is a rectangular waveguide without
the side walls. It is fundamentally distinct from the rectangular waveguide, which
is not a TEM transmission line. The Maxwell equations for a plane wave of this
system are an exact analog to the telegrapher’s equations:

∂Ex
∂z

D �-∂Hy
∂t

�4.70	

∂Hy
∂z

D �ε∂Ex
∂t

�4.71	

a

b

x

y

z

FIGURE 4.15 The parallel plate transmission line.
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The voltage between the plates is the integral of the electric field:

V D �
∫ a

0
Exdx D �aEx �4.72	

The magnetic field in the y direction will produce a current in the conductor that
will travel in the z direction according to Ampère’s law:

I D �
∫ b

0
Hydy D �Hyb �4.73	

Substitution of Eqs. (4.72) and (4.73) into Eq. (4.44) gives

∂Ex
∂z

D �Lb
a

∂Hy
∂t

�4.74	

Comparison of this with Eq. (4.70) indicates that

L D -a

b
�4.75	

A similar substitution of Eqs. (4.72) and (4.73) into Eq. (4.45) and comparison
with Eq. (4.71) indicates that

C D εb

a
�4.76	

so that the characteristic impedance for the parallel plate guide is

Z0 D
√
L

C
D a

b

√
-

ε
�4.77	

4.7.3 Coaxial Transmission Line

Coaxial transmission line comes in the form of rigid, semirigid, and flexible
forms. The end view of a coaxial line, which is shown in Fig. 4.16, consists
of an inner conductor and the outer conductor, which is normally grounded.
The electric field points from the outer to the inner conductor, and the longi-
tudinal current on the center conductor produces a magnetic field concentric to
the inner conductor. The potential between the two conductors is a solution of
the transverse form of Laplace’s equation in cylindrical coordinates where there
is no potential difference in the longitudinal z direction. The notation for the
divergence and curl operators follows that given in [3]:

0 D rt

0 D 1

r

∂

∂r

(
r
∂

∂r

)
C 1

r2

∂2

∂22
�4.78	
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a b
Φ = V0Φ = 0

FIGURE 4.16 The coaxial transmission line.

Because there is no potential variation in the z direction, the z derivative of
 is zero. Because of symmetry there is no variation of  in the 2 direction
either. Thus Eq. (4.78) simplifies to an ordinary second-order differential equation
subject to the boundary conditions that  D 0 on the outer conductor and D V0

on the inner conductor:

0 D 1

r

d

dr

(
r

d

dr

)
�4.79	

Integration of Eq. (4.79) twice gives

 D C1 ln r CC2 �4.80	

which upon applying the boundary conditions gives the potential anywhere bet-
ween the two conductors:

�r	 D V0

ln�a/b	
ln
( r
b

)
�4.81	

The electric field is easily obtained by differentiation.

E D �rt D V0e�jˇz

ln�b/a	

Or
r

�4.82	

The magnetic field is then

H D Oz ð E

D V0e�jˇz

r+ ln�b/a	
O2 �4.83	
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H2H1

r
∧

FIGURE 4.17 The continuity of the magnetic field along the center conductor.

The outward normal vector of the center conductor, Or, is shown in Fig. 4.17. The
surface current on the center conductor is determined by the boundary condition
for the tangential magnetic field:

Js D Or ð �H2 � H1	 D Or ð H2 �4.84	

The later result occurs because the magnetic field is zero inside the conductor.
The total current flowing in the center conductor is

I0 Oz D
∫ 2,

0

OzV0

a+ ln�b/a	
ad2

D Oz2,V0

a+ ln�b/a	
�4.85	

so that

Z0 D V0

I0
D +

2,
ln
(
b

a

)
�4.86	

Coaxial Dielectric Loss. The differential form of Ampère’s law relates the
magnetic field to both the conduction current and the displacement current. In
the absence of a conductor,

H D J C ∂D
∂t

�4.87	

³ jωεE �4.88	

By taking the curl of Eq. (4.88), the Helmholtz wave equation for H can be
found. Solution of the wave equation would give the propagation constant, �:

� D jω
p
-ε

D jk0
p
εr �4.89	

where εr is the relative dielectric constant and k0 is the propagation constant in
free space. A lossy dielectric is typically represented as the sum of the lossless



70 MULTIPORT CIRCUIT PARAMETERS AND TRANSMISSION LINES

(real) and lossy (imaginary) parts:

εr D ε0
r � jε00

r �4.90	

The revised propagation constant is found by substituting this into Eq. (4.89).
The result can be simplified by taking the first two terms of the Taylor series
expansion since ε00

r − ε0
r:

� D ˛C jˇ D jk0

√
ε0

r

(
1 � j

ε00
r

2ε0
r

)
�4.91	

so that

˛d D k0ε00
r

2
√
ε0

r

�4.92	

ˇ D k0

√
ε0

r �4.93	

The power loss is proportional to exp��2˛z	.

Coaxial Conductor Loss. The power loss per unit length, P$, is obtained by
taking the derivative of the power at a given point along a transmission line:

P D P0e
�2˛cz �4.94	

P$
D �dP

dz
D 2˛cP �4.95	

For a low-loss conductor where the dielectric losses are negligible, Eq. (4.87)
becomes, with the help of Ohm’s law,

H D .E �4.96	

where . is the metal conductivity. This would be the same as Eq. (4.88) if

ε ) .

jω
�4.97	

With this substitution the wave impedance becomes the metal surface impedance:

√
-

ε
) Zm D �1 C j	

√
ω-0

2.
�4.98	

At the surface there will be a longitudinal electric field of ZmJs directed in the
Oz direction. Thus, in a lossy line, the fields will no longer be strictly TEM. This
longitudinal electric field produces energy flow into the conductor proportional
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to EOz ðH O2. This energy is dissipated in the center and outer conductor. The
power loss per unit length is found in the following way:

P$ D Rm
2

∮
Js Ð JŁ

s d$

D Rm
2

∮
�r̂ ð H	 Ð �r̂UH∗	d$

D Rm
2

∮
H Ð HŁd$

D RmV2
0,

+2�ln b/a	2

(
1

a
C 1

b

)
�4.99	

The power, P, transmitted down the line is found by the Poynting theorem:

P D 1

2
<fZmg

∫ b

a

∫ 2,

0
E ð H∗ Ð Ozrdrd2

D ,V2
0

+ ln�b/a	
�4.100	

The attenuation constant associated with conductor loss is found from Eq. (4.95):

˛c D P$
2P

D Rm
2+ ln�b/a	

aC b

ab
�4.101	

while the dielectric loss found earlier is

˛d D k0ε00
r

2
√
ε0

r

�4.92	

The total loss is found from Eq. (4.67).

4.7.4 Microstrip Transmission Line

Microstrip has been a popular form of transmission line for RF and microwave
frequencies for some time. The microstrip line shown in Fig. 4.18 consists of
a conductor strip of width w on a dielectric of thickness h above a ground
plane. Part of the electric field between the strip and the ground plane is in the
dielectric and part in the air. The field is more concentrated in the dielectric
than in the air. Consequently the effective dielectric constant, εeff, is somewhere
between εr and 1, but closer to εr than 1. A variety of methods have been used
to find εeff. However, rather than provide a proof, a simple empirically based
procedure for synthesizing a microstrip line will be given. Microstrip line is
not strictly a TEM type of transmission line and does have some frequency
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w
t

h

rε

FIGURE 4.18 The microstrip transmission line.

dispersion. Unless microstrip is being used in a multi-octave frequency range
application, the TEM approximation should be adequate. The synthesis problem
occurs when the desired characteristic impedance, Z0, and the dielectric constant
of the substrate, εr, are known and the geometrical quantity w/h is to be found.
The synthesis equations, given by [4], are simple, and they give an approximate
solution to the microstrip problem:

w

h
D

8

√
A

11

(
7 C 4

εr

)
C 1

0.81

(
1 C 1

εr

)

A
�4.102	

A D exp
Z0

p
εr C 1

42.4
� 1 �4.103	

The analysis equations given below by [5] are more accurate than the synthesis
equations. The value given by Eqs. (4.102) and (4.103) provides an initial value
for w/h that can be used in an iterative procedure to successfully solve the
synthesis problem. This process depends on knowing εr and the conductor thick-
ness, t. The solution results in the effective dielectric constant, εeff, needed to
determine electrical line lengths and Z0. The procedure for the analysis procedure
is shown below:

ua D t/h

,
ln
[

1 C 4 exp�1	

t/h C coth2 p
6.517w/h

]
�4.104	

ur D 1

2

[
1 C 1

cosh
p
εr � 1

]
ua �4.105	

ua D w

h
Cua �4.106	

ur D w

h
Cur �4.107	

Z0a�x	 D +

2,
ln



f�x	
x

C
√

1 C
(

2

x

)2


 �4.108	

f�x	 D 6 C �2, � 6	 exp[��30.666/x	0.7528] �4.109	
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εe�x, εr	 D εr C 1

2
C εr � 1

2

(
1 C 10

x

)�a�x	b�εr	

�4.110	

a�x	 D 1 C 1

49
ln
[
x4 C �x/52	2

x4 C 0.432

]
C 1

18.7
ln
[

1 C
( x

18.1

)3
]
�4.111	

b�εr	 D 0.564
[
εr � 0.9

εr C 3

]0.053

�4.112	

From the given value of t and trial solutions of w/h, Eqs. (4.104) to (4.107) give
unique values for ua and ur. The characteristic impedance and effective dielectric
constant are obtained using Eqs. (4.108) through (4.112):

Z0

(w
h
, t, εr

)
D Z0a�ur	p

εe�ur, εr	
�4.113	

εeff

(w
h
, t, εr

)
D εe

[
Z0a�ua	

Z0a�ur	

]2

�4.114	

Since w/h increases when Z0 decreases, and vice versa, one very simple and
effective method for finding the new approximation for w/h is done by using the
following ratio:

(w
h

)

iC1
D
(w
h

)

i

calculated Z0 from Eq. (4.113)

desired Z0
�4.115	

This procedure has been codified in the program MICSTP. The effect of
dielectric and conductor loss has been found [6,7,8]:

˛c D






D 0.159A
Rm[32 � u2

r ]

hZ0[32 C u2
r ]
,

w

h
� 1

7.02 Ð 10�6A
RmZ0εeff

h

[
ur C 0.667ur

ur C 1.444

]
,
w

h
½ 1

�4.116	

A D 1 C ur

[
1 C 1

,
ln
(

2B

t

)]
�4.117	

B D






h,
w

h
½ ,

2

2,w,
w

h
� ,

2

�4.118	

The value for the loss caused by the dielectric is

˛d D εr

2
p
εeff

εeff � 1

εr � 1

k0ε00
r

ε0
r

�4.119	
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The definitions for Rm, ε0
r, and ε00

r were given previously as Eqs. (4.98) and
(4.90). There are a variety of other transmission line geometries that could be
studied, but these examples should provide information on the most widely used
forms. There are cases where one line is located close enough to a neigh-
boring line that there is some electromagnetic coupling between them. There
are cases where interactions between discontinuities or nearby structures that
would preclude analytic solution. In such cases solutions can be found from 2 1

2
and 3 dimensional numerical Maxwell equation solvers.

4.8 SCATTERING PARAMETERS

This chapter began with a discussion of five ways of describing a two-port circuit
in terms of its terminal voltages and currents. In principle, any one of these is
sufficient. One of these uses h parameters and was popular in the early days
of the bipolar transistor, since they could be directly measured for a transistor.
For a similar reason, scattering parameters, or S parameters, were found conven-
tient to use by RF and microwave engineers because the circuits could then be
directly measured in terms of them at these frequencies. Scattering parameters
represent reflection and transmission coefficients of waves, a quantity that can
be measured directly at RF and microwave frequencies. However, these wave
quantities can be directly related to the terminal voltages and currents, so there
is a relationship between the scattering parameters and the z, y, h, g, and ABCD
parameters.

Consider a one-port circuit excited with a voltage source EG with an internal
impedance, ZG, as shown in Fig. 4.19. The quantity a will represent the wave
entering into the port. The quantity b will represent the wave leaving the port.
Both of these quantities are complex and can be related to the terminal voltage and

–

+
ZV

a1

b1

+

–

ΓG

EG

ZG
bG

Γi

FIGURE 4.19 Wave reflections from an unmatched generator source.
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current. The generator and the load are characterized by a reflection coefficient,
G and i, respectively. The wave bG from the generator undergoes multiple
reflections until finally the reflected wave from the load, b1, is obtained:

b1 D ibG C �ibG	Gi C �2
i GbG	C Ð Ð Ð

D bGi[1 C iG C �iG	
2 C Ð Ð Ð]

D bGi
1 � iG

�4.120	

This last expression is the sum of a geometric series. Since i D b1/a1, an expres-
sion for the wave entering into the load can be found:

a1 D bG

1 � Gi
�4.121	

The power actually delivered to the load is then

P1 D 1
2 �ja1j2 � jb1j2	 �4.122	

From the definition of i and Eq. (4.121), the delivered power can be found:

P1 D 1

2

( jbGj2
j1 � Gij2

)
�1 � jij2	 �4.123	

and when matched so that i D Ł
G:

P1 D Pa D 1

2

jbGj2
1 � jGj2 �4.124	

The latter is the available power from the source. Similar expressions could be
found for an n-port circuit.

Now the wave values will be related to the terminal voltages and currents.
With reference to Fig. 4.19, Ohm’s law gives

EG D ZGIC V �4.125	

A forward-going voltage wave,VC, can be related to the forward-going current by

VC D ZŁ
GI

C �4.126	

This is based on the reason that if Z D ZŁ
G, V D VC, because V� D 0. Similarly

V� D ZGI
� �4.127	
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The forward-going voltage and current can be expressed by means of Ohm’s law
as follows:

VC D ZŁ
GEG

ZG C ZŁ
G

D ZŁ
GEG

2<fZGg �4.128	

IC D EG

2<fZGg �4.129	

These voltages and currents represent rms values, so the incident power is

Pinc D <fVCICŁg D jEGj2
4<fZGg

D jVCj2 Ð <fZGg
jZGj2 �4.130	

The incident power, Pinc, is proportional to jaj2, and the reflected power, Pref,
to jbj2. Taking the square root of a number to get a complex quantity is, strictly
speaking, not possible mathematically unless a choice is made regarding the
phase angle of the complex quantity. This choice is related to choosing ZŁ

G for
a and ZG for b:

a D
√
Pinc

D VC√<fZGg
ZŁ

G
�4.131	

D ICZŁ
G

√
<fZGg

ZŁ
G

�4.132	

and for b,

b D
√
Pref

D V�√<fZGg
ZG

�4.133	

D I�ZG

√
<fZGg

ZG
�4.134	

From Eqs. (4.131) through (4.134) the forward- and reverse-going voltages and
currents can be found in terms of the waves a and b. The total voltage and total
current are then found:

V D VC C V� D aZŁ
G C bZG√
<fZGg

�4.135	

I D IC � I� D a� b√
<fZGg

�4.136	
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These are now in the form of two equations where a and b can be solved in
terms of V and I. Multiplying Eq. (4.136) by ZG and adding to Eq. (4.135) gives
the result

VC ZGI D 2a<fZGg√
<fZGg

which can be solved for a. In similar fashion b is found with the following
results:

a D 1

2
√

<fZGg
�VC ZGI	 �4.137	

b D 1

2
√

<fZGg
�V� ZŁ

GI	 �4.138	

Ordinarily the generator impedance is equal to the characteristic impedance of
a transmission line to which it is connected. The common way then to write
Eqs. (4.137) and (4.138) is in terms of Z0, which is assumed to be lossless:

a D 1

2
p
Z0
�VC Z0I	 �4.139	

b D 1

2
p
Z0
�V� Z0I	 �4.140	

The ratio of Eqs. (4.140) and (4.139) is

b

a
D V/I� Z0

V/IC Z0
D 

where  is the reflection coefficient of the wave. The transmission coefficient is
defined as the voltage across the load V due to the incident voltage VC:

T D V

VC D 1 C b

a
D 1 C  �4.141	

This is to be contrasted with the conservation of power represented by jTj2 C
jj2 D 1.

For the two-port circuit shown in Fig. 4.20, there are two sets of ingoing
and outgoing waves. These four quantities are related together by the scattering
matrix: [

b1

b2

]
D
[
S11 S12

S21 S22

] [
a1

a2

]
�4.142	
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S

b2

a2

b1

a1

FIGURE 4.20 The two-port with scattering parameters.

The individual S parameters are found by setting one of the independent variables
to zero:

S11 D b1

a1

∣∣∣∣
a2D0

S12 D b1

a2

∣∣∣∣
a1D0

S21 D b2

a1

∣∣∣∣
a2D0

S22 D b2

a2

∣∣∣∣
a1D0

Thus S11 is the reflection coefficient at port-1 when port-2 is terminated with a
matched load. The value S12 is the reverse transmission coefficient when port-1
is terminated with a matched load. Similarly S21 is the forward transmission
coefficient, and S22 is the port-2 reflection coefficient when the other port is
matched.

The formulas for converting between the scattering parameters and the volt–
ampere relations are discussed in Section 4.1 and given in Appendix D. In each
of these formulas there is a Z0 because a reflection or transmission coefficient
is always relative to another impedance, which in this case is Z0. This is further
corroborated by Eqs. (4.139) and (4.140) where the wave values are related to a
voltage, current, and Z0.

4.9 THE INDEFINITE ADMITTANCE MATRIX

Typically a certain node in a circuit is designated as being the ground node.
Similarly, in an n-port network, at least one of the terminals is considered to be
the ground node. In an n-port circuit in which none of the terminals is considered
the reference node, it can be described by the indefinite admittance matrix. This
matrix can be used, for example, when changing the y parameters of a common
emitter transistor to the y parameters of a common base transistor. The indefinite
admittance matrix has the property that the sum of the rows D 0 and the sum
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of the columns D 0. In this way the indefinite admittance matrix can be easily
obtained from the usual definite y matrix, which is defined with at least one
terminal connected to ground.

The derivation of this property is based on considering the currents in the
indefinite circuit of Fig. 4.21. Jk is the current going into terminal k when all
other terminals are connected to ground. It is therefore a result of independent
current sources inside the n-port or currents resulting from initial conditions. The
resulting currents going into each terminal are





i1
i2
...
in



 D





y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
. . .

...
yn1 yn2 . . . ynn









v1

v2
...
vn



C





J1

J2
...
Jn



 �4.143	

The sum of all the equations represented by (4.143) gives the total current going
into a node which by Kirchhoff’s law must be zero:

n∑

iD1

n∑

jD1

yjivi D
n∑

kD1

ik �
n∑

kD1

Jk D 0 �4.144	

All the terminal voltages except the jth are set to 0 by connecting them to
the external ground. Then, since vk 6D 0, the only nonzero left-hand side of
Eq. (4.144) would be

vk

n∑

jD1

yjk D 0. �4.145	

Thus the sum of the columns of the indefinite admittance matrix is 0.

i 1V1

V2

V3

Vn

i2

i3

in

FIGURE 4.21 An n-port indefinite circuit.
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The sum of the rows can also be shown to be 0. If the same voltage v0 is added
to each of the terminal voltages, the terminal currents would remain unchanged:





i1
i2
...
in



 D





y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
. . .

...
yn1 yn2 . . . ynn









v1 C v0

v2 C v0
...

vn C v0



C





J1

J2
...
Jn



 �4.146	

Comparison of this with Eq. (4.143) shows





y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
. . .

...
yn1 yn2 . . . ynn









v0

v0
...
v0



 D 0 �4.147	

So that the sum of the rows is 0. A variety of other important properties of the
indefinite admittance matrix are described in [1, ch. 2] to which reference should
be made for further details.

One of the useful properties of this concept is illustrated by the problem of
converting common source hybrid parameters of a FET to common gate hybrid
parameters. This might be useful in designing a common gate oscillator with a
transistor characterized as a common source device. The first step in the process
is to convert the hybrid parameters to the equivalent definite admittance matrix
(which contains two rows and two columns) by using the formulas in Appendix E.
The definite admittance matrix, which has a defined ground, can be changed to
the corresponding 3 ð 3 indefinite admittance matrix by adding a column and a
row such that

∑
rows D 0 and the

∑
columns D 0. If the y11 corresponds to the

gate and y22 corresponds to the drain, then y33 would correspond to the source:

[Y] D




g d s
g y11 y12 y13

d y21 y22 y23

s y31 y32 y33



 �4.148	

The common gate parameters are found by forcing the gate voltage to be 0.
Consequently the second column may be removed, since it is multiplied by the
zero gate voltage anyway. At this point the second row represents a redundant
equation and can be removed. In this case row 2 and column 2 are deleted, and
a new common gate definite admittance matrix is formed. This matrix can then
be converted to the equivalent common gate hybrid matrix.

4.10 THE INDEFINITE SCATTERING MATRIX

A similar property can be determined for the scattering matrix. The indefinite
scattering matrix has the property that the sum of the rows D 1 and the sum
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SV

–

+

V

–

+

V

–

+

Z0

Z 0

Z0

FIGURE 4.22 The indefinite scattering parameter circuit.

of the columns D 1. For the first property the three-port shown in Fig. 4.22 is
excited at all three terminals by the same voltage value. The output wave is

bj D Sj1a1 C Sj2a2 C Sj3a3, j D 1, 2, 3 �4.149	

Under this excitation all the input waves, aj, have the same amplitude, so
Eq. (4.149) becomes

bj D �Sj1 C Sj2 C Sj3	a1, j D 1, 2, 3 �4.150	

Since from Eqs. (4.132) and (4.134) ak D p
Z0I

C
k and bk D p

Z0I
�
k , Eq. (4.150)

can be written in terms of the incident and reflected currents:

I�J D [Sj1 C Sj2 C Sj3]IC1 �4.151	

When all the terminal voltages are set equal, then all the terminal currents must
be zero, since there can be no voltage difference between any two ports. Thus
I�j D IC1 , which means that

Sj1 C Sj2 C Sj3 D 1 �4.152	

proving that the sum of the rows D 1.
To show that the sum of the columns D 1, only port-1 is excited with a voltage

source. This gives a1 6D 0 and a2 D a3 D 0. By Kirchhoff’s current law the sum
of the currents into the three terminal circuit is zero:

0 D I1 C I2 C I3 �4.153	

D �IC1 � I�1 	C �IC2 � I�2 	C �IC3 � I�3 	 �4.154	
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Now, since IC2 D IC3 D 0 because of a2, a3,

IC1 D I�1 C I�2 C I�3 �4.155	

In addition

bk D Sk1a1

I�k D Sk1I
C
1 �4.156	

so
IC1 D [S11 C S21 C S31]IC1 �4.157	

which affirms that the sum of the columns for the indefinite scattering matrix
is 1.

PROBLEMS

4.1 Convert the following scattering parameters (related to 50 ') to ABCD
parameters:

jS11j 6 S11 jS21j 6 S21 jS12j 6 S12 jS22j 6 S22

0.49 �29 3.25 85 0.10 65 0.65 �33

4.2 Given the S parameters, derive the z parameters.
4.3 Two transmission lines are cascaded together. Transmission line 1 has a

characteristic impedance of Z01 D 50 ', has a length of 30/8 cm, and is
terminated on the right-hand side by a resistive load of 25 '. The left-
hand side is connected to transmission line 2 whose characteristic impedance
Z02 D 30 ', and its length is &/4 at 1 GHz. What is the input impedance at
the left-hand side of the 30 ' line?

4.4 The transmission line circuit of length $ and characteristic impedance Z0 is
terminated by a resistance RL. Determine the Q for this circuit at the first
appropriate nonzero frequency.
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CHAPTER FIVE

Filter Design and
Approximation

5.1 INTRODUCTION

The subject of network synthesis became highly refined in the twentieth century
due to the work of some very capable electrical engineers. To work through
that body of knowledge would be beyond the present purpose of reviewing filter
synthesis techniques. This chapter will therefore concentrate on basic techniques
and solutions to the filter approximation problem and implementations that have
come about by special requirements. At this point in time, operational amplifiers
have not made a significant inroad to the RF frequency range, so active filters
will not be treated here. However, active filter design is discussed by Chen [1].
Filters and impedance matching circuits are vital in the design of transistor ampli-
fiers. The particular values of impedances needed for an amplifier depend on the
device type and its orientation. Formulas for these impedances are summarized
in Appendix D.

The solutions to the filter approximation problem and implementations that
have arisen because of special requirements are treated in this chapter. The treat-
ment is further limited to filters that perform certain tasks on continuous time
varying analog signals by way of linear time-invariant circuit elements. Such
filters are called analog filters. These analog filter functions are frequency selec-
tive circuits, and they can be analyzed in the time domain or in the frequency
domain using Fourier transforms and Laplace transforms.

5.2 IDEAL AND APPROXIMATE FILTER TYPES

The function of a filter is to separate different frequency components of the input
signal that passes through the filter network. The characteristics of the network
are specified by a transfer function, H�jω� or H�s�, where s D Cjω represents

84
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the complex frequency defined for the Laplace transform. The transfer function
is the ratio of output signal to input signal, voltage, or current:

H�jω� D Vout

Vin
�5.1�

D jH�jω�jej
�ω� �5.2�

The transfer phase function, 
�ω�, is related to the transfer group delay through
a differential with respect to frequency as follows:

�d�ω� D �d
�ω�

dω
�5.3�

For constant group delay, the phase function must be linear with frequency. In
most filters only the magnitude of the transfer function is of interest. However,
in modern-day systems using signals with complex modulation schemes, phase
and group delay functions are also important.

A filter network passes some of the input signal frequencies and stops others,
and being a linear circuit, this function is performed without adding or generating
new frequency components. The frequency band that passes, ideally without
losses (0 dB insertion loss), defines the pass band, and the band that stops the
frequencies, ideally with infinite loss, is called the stop band. Figure 5.1 shows
this loss representation of the ideal low-pass filter. It is a low pass because it
passes all low-frequency signals from dc to some high frequency, ωc and stops all
signals above ωc. The frequency, ωc, is called the cutoff frequency of the filter.
An ideal low-pass filter is physically not realizable as this requires a circuit with
an infinite number of elements due to an abrupt change from pass band to stop
band. Such a change is not practical.

This raises a practical issue of how does one specify the filters? The concept
of the transition band, ωp to ωs, is the frequency range that separates the pass
band and stop band where the loss transitions from a minimum to a maximum
value. This is shown in Fig. 5.2. The ratio of ωs/ωp is sometimes referred to
as filter selectivity, ratio, or filter steepness. As the selectivity approaches one,

ω

Pass band Stop band

(b)

ωω p ωp

Pass band Stop band

L,
 d

B

(a)

0
0

0

T
, d

B

FIGURE 5.1 Loss or attenuation characteristics of an ideal low-pass filter.
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T
, d

B

α min

α max

ωω

Pass band Transition
band

Stop band

p

FIGURE 5.2 Method of specifying a practical low-pass filter.

the more complex and costly the filter becomes. Similar considerations can be
applied in the design of filters using phase linearity and/or group delay flatness.
The concept of pass band, stop band, and transition band permits specifications
of five major types of filters: (1) low pass, (2) high pass, (3) band pass, (4) band
stop, and (5) all pass. The transmission behavior of these filters is shown in
Fig. 5.3.

ωω c

Low Pass

ωH(j   ) ωH(j   ) ωH(j   )

ωH(j   )ωH(j   )

H0H0

ωω c

High Pass

H0

ωω1 ω 2

Band Pass

H0

ωω1 ω 2

Band Stop

H0

ω

All Pass

FIGURE 5.3 The five major filter types using transfer function amplitude response.
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5.2.1 Low-Pass Filter

Low-pass filter networks are realized by using a cascade of series inductors and
shunt capacitors. The number of these elements determines the steepness of the
filter with the larger number resulting in a more complex and steep filter. The
penalties are the complexity of the filter, the in-band loss, higher cost, and larger
size. At low frequencies, series inductances produce low impedance, and shunt
capacitors produce high impedance, thus allowing the signal to appear at the
output of the filter. Above the cutoff frequency, the series inductors behave as
large impedances and shunt capacitors as low impedances, thereby impeding the
signal transfer to the load.

5.2.2 High-Pass Filter

The high-pass filter shown in Fig. 5.3b allows signal frequencies higher than
the cutoff frequency to pass through the filter to the load with a minimum
loss and stops all frequencies below the cutoff frequency. This behavior is the
reverse of the low-pass filter, and sometimes the high-pass filter is referred to
as the complement of the low-pass filter. High-pass filter networks are realized
by using a cascade of series capacitors and shunt inductors. Capacitors at high
frequencies have low impedance, and inductors have high impedance. Thus the
high-frequency signal passes through the filter to the output load with a minimum
loss. Just the opposite happens at low frequencies, resulting in a high attenuation
of the low frequencies.

5.2.3 Band-Pass Filter

The band-pass filter shown in Fig. 5.3c shows the signal is transferred to the
load in a band of frequencies between the lower cutoff frequency, ωc1, and the
upper cutoff frequency, ωc2. Between the lower and upper cutoff frequency is
the center frequency, ω, defined by the geometric mean of ωc1 and ωc2.

5.2.4 Band-Stop Filter

The band-stop filter is a complement of the band-pass filter and is shown in
Fig. 5.3d. The signal in a band-stop filter is transferred to the load in two
frequency bands, one from a low frequency to a low cutoff frequency, ωc, and the
other from the upper cutoff frequency, ωc2, to infinite frequency. The signal expe-
riences high loss between ωc1 to ωc2, hence the name band stop or band reject.

5.2.5 All-Pass Filter

The all-pass filter allows the signal amplitude for all frequencies to pass
through the network without any significant loss (Fig. 5.3e). This network
has no frequency selective pass band or stop band. The transmitted signal
ideally experiences a linear phase shift or constant group delay with frequency.
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Unfortunately, minimum phase networks do not have constant group delay: rather
there are peaks near the corner frequency. All passive ladder networks, such as
filters that have frequency selectivity, are minimum phase. In the design there is a
trade-off between flat group delay and filter selectivity. However, a network that
is nonminimum phase can be cascaded with a minimum phase network to achieve
both flat group delay and selectivity. All pass networks with nonminimum phase
are used as group delay compensation devices.

5.3 TRANSFER FUNCTION AND BASIC FILTER CONCEPTS

Before proceeding with the design of filters, it is important to understand the
transfer function in the complex frequency domain, s D � C jω. The transfer
function can easily be transformed from the time to the frequency domain when
losses are small so that � D 0 and s D jω. As described in Section 5.2, the filter
transfer function is the ratio of the output signal voltage to the input signal
voltage. One could also easily select the ratio of currents. The transfer function,
in general, can be written as a ratio of two polynomials:

H�s� D P�s�

Q�s�
D a0 C a1sC a2s2 C Ð Ð Ð C am�1sm

b0 C b1sC b2s2 C Ð Ð Ð C bn�1sn
�5.4�

where polynomials P�s� and Q�s� in general are of order m and n. These poly-
nomials are Hurwitz stable, which requires that the order of the numerator
polynomial m be equal to or less than the denominator polynomial n, m < n.
The order of polynomial Q�s� is the order of the filter as well. Polynomials P�s�
and Q�s� can be factored and rewritten in the form

H�s� D �s� z1��s� z2��s� z3� . . . �s� zm�

�s� p1��s � p2��s� p3� . . . �s� pn�
�5.5�

The values z1, z2, z3, . . . , zm, are called the zeros of the transfer function, or
simply transmission zeros. The roots of Q�s�, p1, p2, p3, . . . , pn, are the poles
of the transfer function. The poles and zeros can be real or complex, but complex
poles and zeros must occur in conjugate pairs. That is, if �2 C j3 is a pole, then
�2 � j3 must be a pole as well. The magnitude plot of voltage transfer function
represents the loss or attenuation of the filter circuit, and in dB is given by

LdB D 20 log jH�s�j �5.6�

Poles and zeros of realizable passive networks must follow certain rules:

1. All poles of a transfer function occur in the left half s-plane. The left half
s-plane includes the imaginary jω-axis.

2. Complex poles and zeros occur in complex conjugate pairs. However, on
the imaginary axis, poles and zeros may exist singly.
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5.4 LADDER NETWORK FILTERS

The class of minimum phase filters are those filters in which the zeros of the
impedance function are chosen to be in the left half-plane. This is a way of saying
that the topology of a low-pass filter is a ladder network. The filter is assumed
to be lossless and terminated on each side by a real resistance. As indicated in
Fig. 5.4, there are four possible choices for the first and last reactive elements.
The final reactive element depends on whether the number of elements is even
or odd. The basic procedure is to develop a design for a low-pass filter whose
terminating resistors are 1 � and whose cutoff frequency is ωc D 1 rad/s. Once
this normalized low-pass filter is designed, the impedance level is adjusted to the
desired value, the cutoff frequency is adjusted, and circuit topology is transformed
to a high-pass, band-pass, or band-stop filter as desired.

The notation for the low-pass filter prototype filter with g values, shown in
Fig. 5.4, is widely used. In this way convenient recursion formulas can be used
for finding the filter values. A g beside an inductor stands for inductance, a g
beside a capacitor stands for capacitance, and a g beside a resistor stands for
resistance. For the normalized prototype circuit, g0 D 1.

5.4.1 The Butterworth Filter

The transducer power gain for a two port circuit is

GT D power delivered to the load

power available from the source
�5.7�

which for a passive filter is a quantity �1. A filter with many reactive elements
would be expected to more closely approximate an ideal filter with rectangular
shape (infinitely steep band edge skirts and flat-pass band) than one with few
reactive elements. For a filter with n poles (n reactive elements), the low-pass
Butterworth approximation provides the maximum flatness in its pass band near

g1

g0 g2 g4 gn gn+1

g3 gn

gn+1
. . . 

or

gn gn+1g0 g1 g3 gn+1

g2 gn

. . . 

or

FIGURE 5.4 The lumped element prototype low-pass filter.
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ω D 0. The gain function for this type of filter is given by

jH�jω�j2 D GT D H0

1 C �ω/ωc�2n
�5.8�

where H0 � 1. The first 2n� 1 derivatives of the denominator of this function
are all zero at ω D 0, implying that it is maximally flat. The poles of this function
all have a magnitude of 1 and are separated from one another on the unit circle
by �/n radians. Furthermore there are no poles on the jω-axis. At the edge of
the pass band, the filter attenuates the power by 1

2 or �3 dB. A recursion formula
for the filter elements that would produce this response can be found in a variety
of references, one of which is [1]:

g0 D gnC1 D 1 �5.9�

gk D 2 sin
[
�2k � 1��

2n

]
, k D 1, 2, 3, . . . , n �5.10�

A set of filter values that is worth remembering is the three-pole Butterworth
filter, where g1, g2, g3 D 1, 2, 1. The low-pass prototype starting with a shunt C
has C1 D 1 F, L2 D 2 H, and C3 D 1 F.

Often minimum requirements are placed on the shape of the pass band. In this
instance the minimum number of poles needed to produce a desired specifica-
tion is

n D log[�10˛min/10 � 1��10˛max/10 � 1�]

2 log�ωs/ωp�
�5.11�

In this expression the maximum attenuation in the pass band 0 � ω � ωp is ˛max.
The minimum attenuation in the stop band, ωs � ω < 1, is ˛min.

5.4.2 The Chebyshev Filter

The slope of the pass-band skirts for a given number of poles of a filter can be
improved by allowing small ripples in the pass band. In antenna theory the Dolph-
Chebyshev amplitude weighting of the array elements provides the minimum
beam width for a specified side lobe level. Similarly in filter design the Chebyshev
function provides the maximum possible bandwidth for a given pass-band ripple
or the minimum possible pass-band ripple for a given bandwidth. The Chebyshev
(equal ripple) low-pass filter transducer gain function is

jH�jω�j2 D GT D H0

1 C ε2T2
n�ω/ωc�

�5.12�

where ωc is the low-pass cutoff frequency. The value ε is a number <1 and
is a measure of the pass-band ripple. The Chebyshev function, Tn�x�, oscillates
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between C1 and �1 when its argument is less than 1. The poles of this transfer
function lie on an ellipse with no jω axis poles.

For x > 1, Tn�x� rapidly becomes large. The Chebyshev function can be
written in a form that clearly shows this characteristic:

Tn�x� D cos[n arccos�x�], 0 � x � 1 �5.13�

Tn�x� D cosh[n arccosh�x�], x > 1 �5.14�

Since Tn�x� < 1 in the pass band, the pass-band transfer function is

1

1 C ε2
� jH�jω�j2 � 1

Outside the pass band, Tn�x� increases approximately exponentially.
The Chebyshev functions can be found in terms of a polynomial of its argu-

ment from a recursion formula:

TnC1�x� D 2xTn�x�� Tn�1�x� �5.15�

The formula begins by setting T0�x� D 1 and T1�x� D x. Furthermore for n odd

Tn�0� D 0 and Tn�š1� D š1 �5.16�

while for n even

Tn�0� D ��1�n/2 and Tn�š1� D 1 �5.17�

The next few Chebyshev functions are shown below:

T2�x� D 2x2 � 1 �5.18�

T3�x� D 4x3 � 3x �5.19�

T4�x� D 8x4 � 8x2 C 1 �5.20�

T5�x� D 16x5 � 20x3 C 5x �5.21�

T6�x� D 32x6 � 48x4 C 18x2 � 1 �5.22�

If the maximum pass-band frequency is ωc and the minimum stop-band
frequency beyond which the attenuation is always greater than ˛min is ωs, then
the number of poles required in the function is n [1]:

n D
arccosh

[
1

ε
�10˛max/10 � 1��1/2

]

arccosh�ωs/ωc�
�5.23�
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Just as in the Butterworth approximation, there is a set of recursion formulas
for the Chebyshev filter. Finding expressions for the g values for the filter requires
first expanding the Chebyshev functions by its own set of recursion formulas. The
low-pass prototype filter structure (for a given number n of reactive elements)
is then equated to the nth-order filter function so that a correlation is made
between the circuit and the function. Fortunately the hard work has been done
in network synthesis books (e.g., [1,2]). The final recursion formulas are given
below:

g0 D 1 �5.24�

gnC1 D
{

1, n odd
tanh2�ˇ/4�, n even

�5.25�

g1 D 2a1

'
�5.26�

gk D 4ak�1ak
bk�1gk�1

, k D 2, 3, . . . , n �5.27�

ak D sin
[
�2k � 1��

2n

]
, k D 1, 2, . . . , n �5.28�

bk D '2 C sin2
(
k�

n

)
, k D 1, 2, . . . , n �5.29�

ˇ D ln
[

coth
(
Am

17.32

)]
�5.30�

Am D 10 log�ε2 C 1� �5.31�

' D sinh
(
ˇ

2n

)
�5.32�

One important difference between the Butterworth and Chebyshev approxi-
mations is the value for gnC1. The unequal impedance levels for the even-order
Chebyshev termination impedances is often avoided by simply restricting the
choices of n for the Chebyshev function to odd values. The circuit element
values for these two filter functions were found by using network synthesis tech-
niques after determining the poles of the transfer function. Other filter functions
are available and are briefly mentioned here.

5.4.3 The Inverse Chebyshev Filter

In this filter, equal ripples are found in the stop band while the pass band is
smooth. The inverse Chebyshev function is useful when it is necessary to control
the attenuation over the entire stop band. The transfer function and the minimum
number of poles needed to guarantee a maximum attenuation in the pass band
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for the inverse Chebyshev function is given below:

jH�jω�j2 D H0ε2T2
n�ωc/ω�

1 C ε2T2
n�ωc/ω�

�5.33�

n D
arccosh

[
1

ε
�10˛max/10 � 1��1/2

]

arccosh�ωc/ωp�
�5.34�

The actual circuit is generated using network synthesis techniques described in
Section 5.6.1. To do this, the polynomial expansion of the Chebyshev functions
will be needed.

5.4.4 The Thompson-Bessel Filter

The previous functions were designed to provide a specific magnitude in the
transfer response, while the phase was left uncontrolled. The Thompson-Bessel
filter is designed to provide a maximally flat time delay response. The ideal
Thompson-Bessel response would have a flat magnitude response, jH�jω�j D
1, and a phase response proportional to frequency, [argH�jω�] D �ωT. The
normalized time delay D is

D�ωT� D d [argH�jωT�]

dωT
�5.35�

where T is time delay of the filter. The transfer function designed to provide
maximally flat time delay is

H�sT� D Bn�0�

Bn�sT�
�5.36�

Letting y D sT, the recursion formula for the Bessel polynomials is

Bn�y� D �2n� 1�Bn�1�y�C y2Bn�2�y� �5.37�

where B0�y� D 1 and B1�y� D y C 1. The first few polynomials are as follows:

B2�y� D y2 C 3y C 3 �5.38�

B3�y� D y3 C 6y2 C 15y C 15 �5.39�

B4�y� D y4 C 10y3 C 45y2 C 105y C 105 �5.40�

Again, once the polynomials are known, network synthesis techniques can be
used to derive a low-pass prototype filter [1,2,3].
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5.5 THE ELLIPTIC FILTER

The low-pass filter can be characterized as having a pass band from ω D 0 to
ω D ωp with an attenuation no greater than H0 plus a small ripple. In addition
it is characterized as having a stop band from ωs to 1 with an insertion loss no
less than some high value, ˛min (Fig. 5.5). In the Chebyshev filter the pass-band
ripple is fixed to a certain maximum, but small, value while the attenuation in the
stop band increases monotonically with ω. The inverse Chebyshev filter produces
an equal ripple in the stop band and a monotonically decreasing insertion loss for
ω going from ωp toward ω D 0. The elliptic function filter equal ripple response
in both the pass band and in the stop band. This design provides a way of
not throwing away excess stop-band attenuation at high frequencies by allowing
redistribution of the attenuation over the whole stop band. As a consequence
the rate of cutoff may be increased by putting some of the transmission zeros
near the pass band. The cost for having equal ripple response in both the pass
band and in the stop band is a slightly more complicated circuit topology for the
elliptic filter (Fig. 5.5).

There is no simple recursion formula for the design of elliptic function filters.
Typically tables of values are derived numerically [4,5] and are used for the low-
pass prototype filter. These tabulated values have been incorporated in a program
called ELLIPTIC. In this program the desired maximum attenuation level in the
pass band, minimum attenuation in the stop band, the frequencies where the pass
band ends and the stop band begins, and finally the number of poles, n, are
balanced against each other to provide an elliptic filter design. If so desired, the
program will produce a SPICE net list that can be used to analyze the design. In
the PSPICE version of SPICE, the voltage is plotted using V(21) or VDB(21) to
display the insertion loss on a linear or log scale, respectively.

5.6 MATCHING BETWEEN UNEQUAL RESISTANCES

For a low-pass filter, perfect match cannot in principle be achieved when
impedance matching is used. In the preceding Butterworth and Chebyshev

50 50C1

C2

L2

C4

L4

C6

L6

C3 C5 C7

FIGURE 5.5 A seven-pole low-pass elliptic filter topology. When fp D 0.8 GHz
and fs D 1 GHz, C1 D 3.285 pF, C2 D 0.547 pF, L2 D 12.653 nH, C3 D 5.459 pF,
C4 D 2.682 pF, L4 D 9.947 nH, C5 D 4.846 pF, C6 D 2.040 pF, L6 D 8.963 nH, and
C7 D 2.231 pF.
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functions, the constant, H0, is �1, since a passive filter cannot produce gain
greater than 1. When the input and output resistance levels are equal, then H0 is
1. The ratio of the load to generator resistances introduces a constraint on H0.
For Butterworth filters this constraint is

RL

RG
D
(

1 C p
1 �H0

1 � p
1 �H0

)š1

�5.41�

while for Chebyshev filters this constraint is given as follows [1]:

RL

RG
D
(

1 C p
1 �H0

1 � p
1 �H0

)š1

, n odd �5.42�

RL

RG
D
(p

1 C ε2 C
√

1 C ε2 �H0p
1 C ε2 �

√
1 C ε2 �H0

)š1

, n even �5.43�

One might wonder if the generator and load consisted of complex impedances,
what technique might be used for matching. Without getting too involved with
that issue, it is known that such matching is not always possible. The impedances
must be “compatible” for matching to occur. One thing a designer can do, though,
is try to incorporate the reactive part of the load into the filter as much as possible.

5.6.1 The Darlington Procedure

A doubly terminated filter can be designed for any physically realizable transfer
function. A variety of different circuit realizations may be possible, but only
one will be described. However, this particular realization method is widely
used and provides practical filter design. Approximation theory determines the
transfer function jH�jω�j2 that comes closest to the ideal filter characteristics. In a
lossless, low-pass circuit with possibly unequal termination resistances (Fig. 5.6),
the reflected power j�jω�j2 can be found:

1 � jH�jω�j2 D j�jω�j2 D �jω���jω� �5.44�

RG C2 RL

L1 L3

FIGURE 5.6 Butterworth low-pass filter with unequal resistance terminations. When
RG D 20 � and RL D 80 �, L1 D 127.75 H, C2 D 0.01804 F, and L3 D 43.400 H.
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The final expression results from the magnitude being the product of the reflection
coefficient and its complex conjugate. This can be generalized by replacing jω
with the complex frequency s:

�s���s� D 1 � jH�s�j2 �5.45�

The right-hand side is a known function that is given in the form of a ratio of
polynomials in s. A requirement for realizability of an impedance or reflection
coefficient is that it be positive real. All the poles of the function must lie in
the left half side of the complex plane in order to avoid unrealizable growing
exponentials. Half of the poles of j�s�j2 lie in the left half side and half in
the right half side of the complex frequency plane. The function �s� can be
extracted from �s���s� by choosing only those poles in the left half side. The
zeros of the function need some further consideration. The choice of which zeros
to choose is more arbitrary, since there is not the same realizability restrictions
on the zeros. If the choice is made to use only the left half-plane zeros, the
resulting reflection coefficient and the corresponding driving point impedance is
the minimum phase function. The jω-axis zeros are even multiples of complex
conjugate pairs and are divided equally between �s� and ��s�.

The problem of actually finding the poles and zeros requires finding the roots
of the denominator and numerator polynomials. While these roots can be found
analytically for the Butterworth and Chebyshev filters, the roots for other func-
tions such as the Thompson-Bessel filter function must be found numerically.
The transfer function takes the form

jH�s�j2 D H0

F�s�
�5.46�

where F�0� D 1.
The dc transfer function is

j�0�j2 D 1 �H0 �5.47�

�0� D š
√

1 �H0 �5.48�

Since at dc in a low-pass circuit the series reactive elements are short circuits
and the shunt reactive elements are open circuits, the reflection coefficient is

�0� D RL � RG

RL C RG
�5.49�

Consequently

H0 D 4RL/RG

�RL/RG C 1�2
�5.50�

which of course equals 1 when both sides of the filter have equal terminations.
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Once the reflection coefficient is determined, the Darlington synthesis proce-
dure is used to obtain the circuit elements. The input impedance to the filter at
any frequency is given in terms of the reflection coefficient:

Zin D RG
1 C �s�

1 � �s�
�5.51�

The Cauer extraction technique for a ladder network can now be used. The
polynomials in the numerator and denominator are arranged in descending powers
of s. It will always be the case for a lossless transfer function that the highest
power of the numerator and denominator will differ by at least 1. If the numerator
is the higher-order polynomial, then an impedance pole at s D 1 (i.e., a series
inductor) can be extracted from the impedance function. This is done by synthetic
division. The fractional remainder is now inverted, and synthetic division again
carried out to extract an admittance pole at s D 1 (i.e., a shunt capacitor). The
process continues until only the load resistance or conductance remains.

As an example, consider a three-pole Butterworth filter with a 3 dB cutoff
frequency at 1 rad/s. The input resistance RG D 20 � and the output resistance
is RL D 80 �. The Butterworth transfer function is therefore

jH�ω�j D H0

1 C ω6
�5.52�

where from Eq. (5.50),

H0 D 16

25
�5.53�

and

j�ω�j2 D 1 � jH�ω�j2 D 1 C ω6 �H0

1 C ω6
�5.54�

Now replace ω with �js, factor the denominator into the six roots of 1, and
recombine into two cubic factors where one factor contains the left half-plane
roots and the other the right half-plane roots. This is the standard Butterworth
polynomial:

�s���s� D 9/25 � s6

��s3 C 2s2 � 2sC 1��s3 C 2s2 C 2sC 1�
�5.55�

In this case the denominator is readily factored analytically, but the roots of the
numerator when H0 6D 1 must be found numerically. The program POLY can
provide the complex roots of a polynomial with complex coefficients. In this
example all values are calculated using double precision arithmetic, though for
clarity only three or four significant figures are shown.
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The reflection coefficient containing only left half-plane poles and zeros is

�s� D s3 C 1.687s2 C 1.423sC 0.599

s3 C 2s2 C 2sC 1
�5.56�

The input impedance is found from Eq. (5.51):

Zin D 20
2s3 C 3.687s2 C 3.423sC 1.599

0s3 C 0.313s2 C 0.577sC 0.400s
�5.57�

Extraction of the impedance pole at s D 1 is done by synthetic division:

6.387s

0.313s2 C 0.577sC 0.400 2s3 C 3.687s2 C 3.423sC 1.599

2s3 C 3.687s2 C 2.555s

0s3 C 0s2 C 0.868sC 1.599

The remainder is inverted, and an admittance pole at s D 1 is extracted:

0.361s

0.868sC 1.599 0.313s2 C 0.577sC 0.400

0.313s2 C 0.577s

0s2 C 0sC 0.868sC 0.400

By inversion again and performing synthetic division, once more another
impedance pole at s D 1 is removed:

2.170s
0.400 0.868sC 1.599

The final remainder, 1.599/0.400 D 4.000 represents the normalized load
resistance, which is the expected value. Hence L0

1 D 6.387 H, C0
2 D 0.361 F, and

L0
3 D 2.170 H. The impedance level of the circuit is now adjusted from 1 � to
RG D 20 � by multiplying all the inductances and dividing all capacitances by
20 �. Thus L0

1 becomes L1 D 127.75 H, C0
2 becomes C2 D 0.01804 F, and L0

3
becomes L3 D 43.400 H. The final circuit is shown in Fig. 5.6. Verification of
this circuit is shown by a SPICE analysis found in Fig. 5.7. Near zero frequency
the insertion loss is 0.8 or �1.938 dB and at 1 rad/s (0.159 Hz); the loss has
increased by 3 dB.

Easier analytical methods are available for the Chebyshev filter, and these
are in fact used in the Chebyshev impedance transforming circuit described in
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FIGURE 5.7 Frequency response of the Butterworth low-pass filter.

Section 5.6.3. The Darlington method shown here can be used where a closed
form solution for the roots is not available.

5.6.2 Filter Type Transformation

Filter design is based on the design of a low-pass prototype circuit whose
impedance level is 1 � and whose low-pass cutoff frequency is ωc D 1 rad/s.
If the desired impedance level is to be changed from 1 to RL, then all inductors
and resistors should be multiplied by RL and all capacitors should be divided
by RL. If the circuit elements of the low-pass prototype are denoted by a “p”
subscript, then the new adjusted values can be found:

L D RLLp �5.58�

C D Cp

RL
�5.59�

R D RLRp �5.60�

To adjust the cutoff frequency from 1 rad/s to ωc, the low-pass circuit elements
are further modified in the following way:

L0 D L

ωc
�5.61�
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C0 D C

ωc
�5.62�

R0 D R �5.63�

Transformation of the low-pass filter to a high-pass filter can be accomplished
by another frequency transformation. The normalized complex frequency variable
for the low-pass prototype circuit is sn. On the jω-axis the pass band of the
low-pass filter occurs between ω D �1 and C1. If the cutoff frequency for the
high-pass filter is ωc, then the high-pass frequency variable is

s D ωc

sn
�5.64�

Applying this transformation will transform the pass-band frequencies of the low-
pass filter to the pass band of the high-pass filter. This is illustrated in Fig. 5.8.
The reactance of an inductor, L, in the low-pass filter becomes a capacitance,
Ch, in the high-pass filter:

Lsn D Lωc

s
D 1

Chs
�5.65�

or

Ch D 1

Lωc
�5.66�

Similarly application of the frequency transformation Eq. (5.64) will convert a
capacitor in the low-pass filter to an inductor in the high-pass filter:

Lh D 1

Cωc
�5.67�

jω +jω

–j ω

+j    oω

–j   oω

+1j

Low pass High pass

σ σ

–1j

FIGURE 5.8 Low-pass to high-pass transformation.
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A band-pass filter is specified to have a pass band from ω1 to ω2. The “center”
of the pass band is the geometric mean of the band edge frequencies, ω0 Dp
ω1ω2. The fractional bandwidth is w D �ω2 � ω1�/ω0. A band-pass circuit can

be formed from the low-pass prototype by using a frequency transformation that
will map the pass band of the low-pass filter to the pass band of the band-pass
filter. The desired frequency transformation is

sn D 1

w

(
s

ω0
C ω0

s

)
�5.68�

where s is the frequency variable for the bandpass circuit. To verify this expres-
sion for the jω-axis, Eq. (5.58) is rewritten as

ωn D 1

w

(
ω

ω0
� ω0

ω

)
�5.69�

A short table of specific values for the normalized low-pass prototype circuit and
the corresponding band-pass frequencies are shown in Table 5.1.

A graphic illustration of the frequency transformation is shown in Fig. 5.9. A
consequence of this transformation is that an inductor L in the low-pass prototype
filter becomes a series LC circuit in the band-pass circuit:

Lsn D Ls

wω0
C Lω0

ws
�5.70�

Similarly a capacitance in the low-pass filter is transformed to a parallel LC
circuit:

Csn D Cs

wω0
C Cω0

ws
�5.71�

Finally, the low-pass to band-stop filter frequency transformation is the recip-
rocal of Eq. (5.68):

sn D w

(
s

ω0
C ω0

s

)�1

�5.72�

All these transformations from the low-pass prototype filter are summarized in
Fig. 5.10.

TABLE 5.1 Low-Pass to Band-
pass Mapping

Bandpass ω Low-pass ωn

ω2 C1
ω0 0
ω1 �1

�ω1 C1
�ω0 0
�ω2 �1
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FIGURE 5.9 Low-pass to band-pass transformation.
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FIGURE 5.10 Filter conversion chart.

5.6.3 Chebyshev Bandpass Filter Example

The analytical design technique for a Chebyshev filter with two unequal resis-
tances has been implemented in the program called CHEBY. As an example of
its use, we will consider the design of a Chebyshev filter that matches a 15 to a
50 � load resistance. It will have n D 3 poles, center frequency of 1.9 GHz, a
fractional bandwidth w D �f2 � f1�/f0 D 20%. The program CHEBY is used
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to find the filter circuit elements. The program could have used the Darlington
procedure described in Section 5.6.1, but instead it used the simpler analytical
formulas [1]. The following is a sample run of the program:

Generator AND Load resistances 15.,50.
Passband ripple (dB) 0.2
Bandpass Filter? hY/Ni Y
Specify stopband attenuation OR n, hA/Ni N
Number of transmission poles n = 3
L(1) = .62405E + 02 C(2) = .25125E — 01 L(3) = .36000E + 02
Number of poles = 3 Ripple = .20000E + 00 dB
Center Frequency, Fo (Hz), AND Fractional Bandwidth,

w 1.9E9,.2
Through series LC. L1( 1) = .261370E — 07 C1( 1)

= .268458E — 12

RG RLL2C2

L1 C1 C3L3

FIGURE 5.11 A 15 : 50 Ohm Chebyshev band-pass filter, where L1 D 26.14 nH,
C1 D 0.2685 pF, L2 D 0.6668 nH, C1 D 10.52 pF, L3 D 15.08 nH, and C3 D 0.4654 pF.
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FIGURE 5.12 SPICE analysis of a Chebyshev filter.
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Shunt parallel LC. L2( 2) = .666805E — 09 C2( 2)
= .105229E — 10

Through series LC. L3( 3) = .150777E — 07 C3( 3)
= .465370E — 12

The resulting circuit shown in Fig. 5.11 can be analyzed using the SPICE
template described in Appendix G. The results in Fig. 5.12 show that the
minimum loss in the pass band is �1.487 dB, which corresponds to

p
H0 �

0.7101.

PROBLEMS

5.1 Design a band-pass filter with center frequency 500 MHz, fractional band-
width w D 5%, and pass band ripple of 0.1 dB. The out-of-band attenuation
is to be 10 dB 75 MHz from the band edge. The terminating impedances are
each 50 �. Using SPICE, plot the return loss (reflection coefficient in dB)
and the insertion loss over the pass band.

5.2 Design a band-pass filter with center frequency 500 MHz, fractional band-
width w D 5%, and pass band ripple of 0.1 dB. The out-of-band attenuation
is to be 10 dB 75 MHz from the band edge, and it is to transform a 50 �
source impedance to a 75 � load impedance. Using SPICE, plot the return
loss (reflection coefficient in dB) and the insertion loss over the pass band.

5.3 Design an elliptic function filter with the same specifications as in
Problem 5.1, and plot the results using SPICE.

5.4 Design a high-pass three-pole Butterworth filter with cutoff frequency of
900 MHz.
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CHAPTER SIX

Transmission Line Transformers

6.1 INTRODUCTION

The subject matter of Chapter 3 was impedance transformation. This subject is
taken up here again, but now with more careful attention given to the special
problems and solutions required for RF frequency designs. The discrete element
designs described previously can be used in RF designs with the understanding
that element values will change as frequency changes. The alternative to discrete
element circuits are transmission line circuits. The classical microwave quarter
wavelength transformer can be used up to hundreds of GHz in the appropriate
transmission line medium. However, at 1 GHz, a three-section quarter wavelength
transformer would be a little less than a meter long! The solution lies in finding
a transformation structure that may not work at 100 GHz but will be practical at
1 GHz.

The conventional transformer consists of two windings on a high-permeability
iron core. The flux, �, is induced onto the core by the primary winding. By
Faraday’s law the secondary voltage is proportional to d�/dt. For low-loss mate-
rials, the primary and secondary voltages will be in phase. Ideal Transformers
have perfect coupling and no losses. The primary-to-secondary voltage ratio is
equal to the turns ratio, n, between the primary and secondary windings, namely
Vp/Vs D n. The ratio of the primary to secondary current is Ip/Is D 1/n. This
implies conservation of power, VpIp D VsIs. As a consequence the impedance
seen by the generator or primary side in terms of the load impedance is

ZG D n2ZL

When the secondary side of the ideal transformer is an open circuit, the input
impedance of the transformer on the primary side is 1.

In a physical transformer the ratio of the leakage inductances on primary and
secondary sides is Lp/Ls D n. For the ideal transformer, Lp and Ls approach

105
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1, but their ratio remains finite at Lp/Ls D n. The physical transformer has an
associated mutual inductance, M D k

√
LpLs, where k is the coupling coefficient.

The leakage inductance together with the interwire capacitances limits the high-
frequency response. The transmission line transformer avoids these frequency
limitations.

6.2 IDEAL TRANSMISSION LINE TRANSFORMERS

It was found earlier, in Chapter 2, that inductive coils always come with stray
capacitance. It was this capacitance that restricted the frequency range for a stan-
dard coupled coil transformer. The transmission line transformer can be thought
of as simply tipping the coupled coil transformer on its side. The coil inductance
and stray capacitance now form the components for an artificial transmission line
whose characteristic impedance is

Z0 D
√
L

C

6.1�

The transmission line can be used, in principle, up to very high frequencies,
and in effect it reduces the deleterious effects of the parasitic capacitance. The
transmission line transformer can be made from a variety of forms of transmission
lines such as a two parallel lines, a twisted pair of lines, a coaxial cable, or a
pair of wires on a ferrite core. The transmission line transformer can be defined
as having the following characteristics:

1. The transmission line transformer is made up of interconnected lines whose
characteristic impedance is a function of such mechanical things as wire
diameter, wire spacing, and insulation dielectric constant.

2. The transmission lines are designed to suppress even mode currents and
allow only odd-mode currents to flow (Fig. 6.1).

3. The transmission lines carry their own “ground,” so transmission lines
relative to true ground are unintentional.

4. All transmission lines are of equal length and typically < �/8.
5. The transmission lines are connected at their ends only.
6. Two different transmission lines are not coupled together by either capac-

itance or inductance.

i o ie

io ie

FIGURE 6.1 A two-wire transmission line showing the odd- and even-mode currents.
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7. For a short transmission line, the voltage difference between the terminals
at the input port is the same as the voltage difference at the output port.

Some explanation of these points is needed to clarify the characteristics of the
transmission line transformer. In property 2, for a standard transmission line the
current going to the right must be equal to the current going to the left in order to
preserve current continuity (Fig. 6.1). Since only odd-mode currents are allowed,
the external magnetic fields are negligible. The net current driving the magnetic
field outside of the transmission line is low. The third point is implied by the
second. The transmission line is isolated from other lines as well as the ground.
The equality of the odd mode currents in the two lines of the transmission line
as well as the equivalence of the voltages across each end of the transmission
line is dependent on the transmission line being electrically short in length. The
analysis of transmission line transformers will be based on the given assumptions
above.

As an example consider the transmission line transformer consisting of one
transmission line with two conductors connected as shown in Fig. 6.2. The trans-
formation ratio will be found for this connection. Assume first that v1 is the
voltage across RG and i1 is the current leaving the generator resistance:

1. i1 is the current through the upper conductor of the transmission line.
2. The odd-mode current i1 flows in the opposite direction in the lower

conductor of the transmission line.
3. The sum of the two transmission line currents at the output node is 2i1.
4. The voltage at the output node is assumed to be vo. Consequently the

voltage at left side of the lower conductor in the transmission line is vo

above ground.
5. On the left-hand side, the voltage difference between the two conductors

is v1 � vo.

vo
RLRG

4

i11
vo

i1
0

v1 2i1
5

3

i1 2

FIGURE 6.2 Analysis steps for a transmission line transformer.
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This is the same voltage difference on the right hand side. Consequently,

vo � 0 D v1 � vo

vo D v1

2

If RG D v1/i1, then

RL D vo

2i1
D v1/2

2i1
D RG

4

6.2�

This 4 : 1 circuit steps down the impedance level by a factor of 4.
A physical connection for this transformer is shown in Fig. 6.3 where the

transmission line is represented as a pair of lines. In this diagram the nodes in
the physical representation are matched to the corresponding nodes of the formal
representation. The transmission line is bent around to make the B–C distance
a short length. The transmission line, shown here as a two-wire line, can take
a variety of forms such as coupled line around a ferromagnetic core, flexible
microstrip line, or coaxial line. If the transformer is rotated about a vertical axis
at the center, the circuit shown in Fig. 6.4 results. Obviously this results in a 1 : 4
transformer where RL D 4RG. Similar analysis to that given above verifies this
result. In addition multiple two-wire transmission line transformers may be tied
together to achieve a variety of different transformation ratios. An example of
three sections connected together is shown in Fig. 6.5. In this circuit the current
from the generator splits into four currents going into the transmission lines.
Because of the equivalence of the odd-mode currents in each line, these four
currents are all equal. The voltages on the load side of each line pair build up
from ground to 4 ð the input voltage. As a result, for match to occur, RL D
16RG.

The voltages and currents for a transmission line transformer (TLT) having a
wide variety of different interconnections and numbers of transmission lines can

B
A

A C

D

B

C

D

(a) (b)

FIGURE 6.3 A physical two-wire transmission line transformer and the equivalent formal
representation.
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RL
RG

FIGURE 6.4 An alternate transmission line transformer connection.

RG RL

FIGURE 6.5 A 16 : 1 transmission line transformer.

xV

yI

yV

xI
TLT

FIGURE 6.6 Symbol for general transmission line transformer.

be represented by the simple diagram in Fig. 6.6 where x and y are integers. The
impedance ratios, RG D 
x/y�2RL, range from 
1 : 1� for a one-transmission line
circuit to 
1 : 25� for a four-transmission line circuit with a total of 16 different
transformation ratios [1]. A variety of transmission line transformer circuits are
found in [1] and [2].
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6.3 TRANSMISSION LINE TRANSFORMER SYNTHESIS

All the transmission lines in the transmission line transformer shown in Fig. 6.5
have their left-hand sides near the generator connected in parallel and all their
right-hand sides near the load connected in series. In this particular circuit there
are three transmission lines, and analysis shows that Vin : Vout D 1 : 4, and RG :
RL D 1 : 16. The number of transmission lines, m, is the order of the transformer,
so that when all the transmission lines on the generator side are connected in
shunt and on the load side in series, the voltage ratio is Vin : Vout D 1 : 
m C 1�.
Synthesis of impedance transformations of 1 : 4, 1 : 9, 1 : 16, 1 : 25, and so on,
are all obvious extensions of the transformer shown in Fig. 6.5. The allowed
voltage ratios, which upon being squared, gives the impedance ratios as shown
in Table 6.1. To obtain a voltage ratio that is not of the form 1 : 
m C 1�, there is
a simple synthesis technique [3]. The voltage ratio is Vin : Vout D H : L, where
H is the high value and L the low value. This ratio is decomposed into an Vin :
Vout D H� L : L. If now H� L < L, this procedure is repeated where H0 D L
and L0 D H� L. This ratio is now Vout : Vin, which in turn can be decomposed
into H0 � L0 : L0. These steps are repeated until a 1 : 1 ratio is achieved, all along
keeping track which ratio that is being done, Vin : Vout or Vout : Vin.

An example given in [3] illustrates the procedure. If an impedance ratio of
RG : RL D 9 : 25 is desired, the corresponding voltage ratio is Vin : Vout D 3 : 5

Step 1 H : L D Vout : Vin D 5 : 3 ! 
5 � 3� : 3 D 2 : 3

Step 2 H : L D Vin : Vout D 3 : 2 ! 
3 � 2� : 2 D 1 : 2

Step 3 H : L D Vout : Vin D 2 : 1 ! 
2 � 1� : 1 D 1 : 1

Now working backward from step 3, a Vin : Vout D 1 : 2 transmission line trans-
former is made by connecting two transmission lines in shunt on the input side
and series connection on the output side (Fig. 6.7a). From step 2, the Vout is
already 2, so another transmission line is attached to the first pair in shunt on the
output side and series on the input side (Fig. 6.7b). Finally from step 1, Vin D 3

TABLE 6.1 Voltage Ratios for Transmission Line
Transformers

Number of Lines 1 2 3 4

1 : 1 2 : 3 3 : 4 4 : 5
1 : 2 1 : 2 3 : 5 5 : 7
— 1 : 3 2 : 5 5 : 8
— — 1 : 4 4 : 7
— — — 3 : 7
— — — 3 : 8
— — — 2 : 7
— — — 1 : 5
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FIGURE 6.7 Step-by-step procedure for synthesis for a desired impedance ratio.

already, so the input is connected in shunt with the another added transmis-
sion line and the outputs connected in series (Fig. 6.7c). The final design has
Vin : Vout D 3 : 5 as desired.

6.4 ELECTRICALLY LONG TRANSMISSION LINE TRANSFORMERS

One of the assumptions given in the previous section was that the electrical length
of the transmission lines was short. Because of this the voltages and currents at
each end of an individual line could be said to be equal. However, as the the line
becomes electrically longer (or the frequency increases), this assumption ceases
to be accurate. It is the point of this section to provide a means of determining
the amount of error in this assumption. Individual design goals would dictate
whether a full frequency domain analysis is needed.

As was pointed out in Chapter 4, the total voltage and current on a transmission
line are each expressed as a combination of the forward and backward terms
(Fig. 6.8). In this case let V2 and I2 represent the voltage and current at the load
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Z0

I2I1

V1 V2

+

––

+

FIGURE 6.8 An electrically long transmission line.

end, where VC and V� are the forward- and backward-traveling voltage waves:

V2 D VC C V� 
6.2�

I2 D VC

Z0
� V�

Z0

6.3�

Assuming that the transmission line is lossless, the voltage and current waves at
the input side, 1, are modified by the phase associated with the electrical length
of the line:

V1 D VCej� C V�e�j� 
6.4�

I1 D VC

Z0
ej� � V�

Z0
e�j� 
6.5�

The sign associated with the phase angle, C�, for VC is used because the reference
is at port 2 while a positive phase is associated with traveling from left to right.
The Euler formula is used in converting the exponentials to sines and cosines.
The voltage at the input, V1, is found in terms of V2 and I2 with the help of
Eqs. (6.2) and (6.3):

V1 D V2 cos � C jZ0I2 sin � 
6.6�

Similarly I1 can be expressed in terms of the voltage and current at port 2:

I1 D I2 cos � C j
V2

Z0
sin � 
6.7�

The 1 : 4 transmission line transformer shown in Fig. 6.4 is now reconsidered
in Fig. 6.9 to determine its frequency response. The generator voltage can be
expressed in terms of the transmission line voltages and currents:

Vg D 
I1 C I2�RG C V1 
6.8�

The nontransmission line connections are electrically short. Therefore the output
voltage across RL is Vo D V1 C V2, and

Vg D 
I1 C I2�RG C I2RL � V2 
6.9�
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FIGURE 6.9 An electrically long 1 : 4 transmission line transformer.

In Eqs. (6.9), (6.6), and (6.7), V1 is replaced by I2RL � V2 to give three equations
in the three unknowns I1, I2, and V2:

VG D I1RG C I2
RG C RL�� V2 
6.10�

0 D 0 C I2
jZ0 sin � � RL�C V2
1 C cos �� 
6.11�

0 D �I1 C I2 cos � C j
V2

Z0
sin � 
6.12�

The determinate of these set of equations is

 D �2RG
1 C cos ��� RL cos � C j sin �
(�RGRL

Z0
� Z0

)

6.13�

and the current I2 is

I2 D �VG
1 C cos ��



6.14�

Consequently the power delivered to the load from the source voltage is

Po D 1

2
jI2j2RL D 1

2

jVgj2
1 C cos ��2RL

[2RG
1 C cos ��C RL cos �]2 C [
RGRL C Z2
0/Z

2
0]� sin2 �


6.15�
Now the particular value of RL that guarantees maximum power transfer into

the load is found by maximizing Eq. (6.15). Let D represent the denominator in
Eq. (6.15):

dPo

dRL
D 0 D 1

2
jVGj2 
1 C cos ��2

D

ð
{

1 � RL

D

[
2[2RG
1 C cos ��C RL cos �] cos � C [Ð Ð Ð] sin2 �

]}


6.16�
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In the low-frequency limit where � ! 0, RL D 4RG. The optimum characteristic
impedance is found by maximization Po with respect to Z0, while this time
keeping the line length 6D 0. The result is not surprising, as it is the geometric
mean between the generator and load resistance:

Z0 D 2RG 
6.17�

The output power then when Z0 D 2RG and RL D 4RG is

Po D 1

2

jVGj2
1 C cos ��2

RG
1 C 3 cos ��2 C 4RG sin2 �

6.18�

This reduces to the usual form for the available power when � ! 0.
More complicated transmission line transformers might benefit from using

SPICE to analyze the circuit. The analysis above gives a clue to how the values
of Z0 and the relative values of RG and RL might be chosen with the help of a
low frequency analysis.

As an example consider the circuit in Fig. 6.9 again where RG D 50 " so
that RL D 200 " and Z0 D p

50 Ð 200 D 100 ", and the electrical length of the
transformer is 0.4 wavelength long at 1.5 GHz. The plot in Fig. 6.10 is the return
loss (D 20 log of the reflection coefficient) as seen by the generator voltage VG.

0.0
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FIGURE 6.10 Return loss for the frequency dependent transmission line transformer of
Fig. 6.9.
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The SPICE net list used to analyze this circuit makes use of the conversion
of voltages to S parameters:

Analysis of a circuit for S11 and S21
*
* R01 and R02 are input and output resistance levels.
* RL is the load resistance. The load may be

supplemented
* with additional elements.
*.PARAM R01=50, R02=50. RLOAD=50. IN1=-1/R01
.PARAM R01=50, R02=200. RLOAD=200. IIN=-1/R01
.FUNC N(R01,R02) SQRT(R02/R01)
R01 1 0 R01
VIN 10 11 AC 1
GI1 1 0 VALUE=-V(10,11)/R01
*GI1 1 0 10 11 ”-1/R01”
E11 10 0 1 0 2
R11 11 0 1
Xcircuit 1 2 TLTCKT
RL 2 0 RLOAD
E21 21 0 VALUE=V(2)*2/N(R01,R02)
* n = SQRT(R02/R01)
*E21 21 0 2 0 ”2/n”
R21 21 0 1
*
.SUBCKT TLTCKT 1 4
* Input side
* 4 cm = .1333 wavelength at 1 GHz
TLT4 1 0 4 1 Z0=200 F=1GHz NL=.1333
* Output side
.ENDS TLTCKT
* Code for S11 and S21
*.AC DEC ”num” ”f1” ”f2”
.AC LIN 301 .1MEG 2GHZ
.PROBE V(11) V(21)
.END

6.5 BALUNS

A balun (balanced–unbalanced) is a circuit that transforms a balanced transmis-
sion line to an unbalanced transmission. An example of a balanced line is the
two-wire transmission line. An unbalanced line is one where one of the lines
is grounded, such as in coaxial line or microstrip. One situation where this is
important is in feeding a dipole antenna with a coaxial line where the antenna



116 TRANSMISSION LINE TRANSFORMERS

is balanced and the coaxial line is unbalanced. One simple structure is shown in
Fig. 6.11 where the difference between the inputs of the antenna is forced to be
180° by addition of a half wavelength line between them. At RF frequencies, a
more practical way to perform this same function is to use a transmission line
transformer as shown in the example of the 1 : 1 balun in Fig. 6.12a. There is
no specified ground on the right-hand side of this circuit, but since the voltage
difference on the input side is V, the voltage across the load must also be V.

Dipole Antenna

Balun

Coax

Coax
Feed

+V –V

λ /2 Line

FIGURE 6.11 Balun example used for dipole antenna.

Feed Line

Dipole Antenna
+V –V

V

+

–

(b)

(a )

–

+
V

FIGURE 6.12 (a) Transmission line transformer implementation of a 
1 : 1� balun, and
(b) grounding one side gives a CV and �V to the two sides of the dipole antenna.
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RG RL

FIGURE 6.13 A balun with a RG : RL D 1 : 4 impedance ratio.

For the dipole application, where a CV is needed on one side and �V on the
other side, one of the output sides can be grounded as indicated in Fig. 6.12b.
The (RG : RL D 1 : 4) balun in Fig. 6.13 shows that impedance matching and
changing to a balanced line can be accomplished with a balun. Analysis of this
circuit may be aided by assuming some voltage, Vx, at the low side of RL. When
the voltage at the upper side of RL is found, it also contains Vx. The difference
between the lower and upper sides of RL removes the Vx.

6.6 DIVIDERS AND COMBINERS

Transmission lines can be used to design power dividers and power combiners.
These are particularly important in design of high-power solid state RF amplifiers
where the input can be split between several amplifiers or where the outputs of
several amplifiers may be effectively combined into one load. A very simple
two-way power divider is shown in Fig. 6.14. In this circuit RL D 2RG, and the

I 1

RG

V1 2V1  –  Vx

V1 Rn

RL

RL

Vx

I 1 / 2

I 1 / 2

FIGURE 6.14 A two-way power divider.
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transmission line characteristic impedance is designed to be Z0 D p
2RG. The

current in Rn ordinarily would be 0 because of equal voltages on either side of
that resistance. Under unbalanced load conditions, Rn can absorb some of the
unbalanced power and thus protect whatever the load is. When the two loads
are both 2RG. The input voltage is V1 on the top conductor, and the voltage
on the lower conductor is Vx on the left side. On the right-hand side the lower
conductor is V1, and so the top conductor must be 2V1 � Vx to ensure that both
sides of the transmission line have the same voltage across the terminals, that is,
V1 � Vx. Since the current flowing through the upper load resistor and the lower
load resistor must be the same, the voltage on either side of Rn is the same.
Consequently 2V1 � Vx D Vx or Vx D V1, so the voltage to current ratio at the
load is

RL D V1

I1/2
D 2RG 
6.19�

A two-way 180° power combiner shown in Fig. 6.15 makes use of a hybrid
coupler and a balun. The resistor Rn is used to dissipate power when the two
inputs are not exactly equal amplitude or exactly 180° out of phase so that
matched loading for the two sources is maintained. For example, consider when
I1 D I2, as shown in Fig. 6.15, so that I1 is entering the hybrid and I2 is leaving
the hybrid. The current flowing through the load, RL, is I0. The current flowing
into the hybrid transmission line from the top is I1 � I0, while the current

Io

I1

V1

V2

I2

Rn

Io

I1 – Io

Io – I2

Io

RL

FIGURE 6.15 A two-way 180° power combiner.
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flowing from the bottom is I0 � I2. The odd-mode current in the transmission
line forces is

I1 � I0 D I0 � I2

or
I0 D I1 
6.20�

All the current goes through the balun, and no current flows through the hybrid.
The current through Rn is therefore 0 leading to Vx D 0. The voltage difference
between the two ends of the transmission lines of the hybrid is the same, which
implies that

V1 � Vx D Vx � V2

or
V1 D �V2 
6.21�

and
V0 D V1 � V2 D 2V1 
6.22�

The matching load resistance is then

V0

I0
D RL D 2RG 
6.23�

When I1 and I2 are both entering the circuit so that I1 D �I2, and V1 D V2, then
voltages across the top and bottom of the transmission line in the hybrid circuit
of Fig. 6.15 are

V1 � Vx D Vx � V2

or
Vx D V1 
6.24�

The voltage across the load is V0 D 0 and I0 D 0. The current in the hybrid
transmission line is I1, so the current flowing through Rn is 2I1:

Rn D Vx

2I1
D V1

2I1
D 1

2
RG 
6.25�

The choices for RL and Rn ensure impedance matching for an arbitrary phase
relationship between I1 and I2. Optimum performance would be expected if the
characteristic impedances of the transmission lines were

Z0-balun D
p

2RG 
6.26�

Z0-hybrid D RGp
2


6.27�
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FIGURE 6.16 A four-way power divider.

The four-way power divider illustrated in Fig. 6.16 has some similarities with
the Wilkinson power divider used at microwave frequencies. In the Wilkinson
divider, matching impedances between the input and output is done by choosing
the quarter wavelength transmission lines to have a characteristic impedance
Z0 D p

NRG, where N is the power division ratio, and Rn D RG. In the present
circuit, impedance matching is done using an impedance transformer at the
voltage source (not shown in Fig. 6.16). If it is desired that all the output loads
and voltages be equal to one another, then it follows that the current in the
Rn resistors is 0. This can be shown easily as follows: The voltage difference
between the conductors on the right-hand side in each of the transmission lines
is Vo � V1. Then, for the left-hand side,

Vo � V1 D Va � Vd D Vb � Va D Vc � Vb D Vd � Vc 
6.28�

Combining the second and third expressions, then the third and fourth expres-
sions, and so on, leads to the following:

2Va D Vb C Vd 
6.29�

2Vb D Vc C Va 
6.30�

2Vc D Vb C Vd 
6.31�
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Rin RL

FIGURE 6.17 Transmission line transformer for Problem 6.1.

Equations (6.29) and (6.31) clearly show that Va D Vc, and Eq. (6.30) shows that
Vb D Va and finally that Vd D Va. This means that there is no current flowing
in the Rn resistors and that on the right-hand side, Vo D V1. The current entering
each transmission line must then be I1/4, where I1 is the input current from the
source. The load currents are also I1/4, so the impedance transformation at the
input requires that RG D RL/4.

PROBLEMS

6.1 Indicate the direction of the currents in the transmission line transformer
shown in Fig. 6.17. Determine the value of Rin in terms of Rout.

6.2 For the 4 : 1 transformer shown in Fig. 6.2, calculate the output power, Po D
1/2jI2j2RL, where the frequency dependence of the transmission lines is used.
You will have three equations in the three unknowns I1, I2, and V2. The final
answer was given by Eq. (6.15).

6.3 Design a transmission line transformer that matches a 200 " load to a 50 "
source impedance. The transmission lines are to be 4 cm long, but the trans-
mission line characteristic impedance can be chosen to give an acceptable
match by not deviating from 50 " by more than 25 " to at least 2.5 GHz.
Using SPICE, plot the return loss at the input side as a function of frequency.
What is the return loss at 1 GHz?

6.4 Repeat Problem 6.3 for a transmission line transformer that matches 800 "
to 50 ". The SPICE analysis should again show the return loss versus
frequency. For this circuit, what is the return loss at 1 GHz?
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CHAPTER SEVEN

Class A Amplifiers

7.1 INTRODUCTION

The class A amplifier is typically used as the first amplification stage of a receiver
or transmitter where minimum distortion is desired. This comes with a cost of
relatively low efficiency. Since the first stages in an amplifier chain handle low-
power levels, the low efficiency of these amplifiers actually wastes little power.
The variety of amplifier classes are described in [1] and will be covered more
extensively in a later chapter. The primary properties of importance to class A
amplifier design are gain, bandwidth control, stability, and noise figure. These
are the topics that will be considered here.

7.2 DEFINITION OF GAIN [2]

In low-frequency circuits, gain is often thought of in terms of voltage or current
gain, such as the ratio of the output voltage across the load to the input applied
voltage. At radio frequencies it is difficult to directly measure a voltage, so
typically some form of power gain is used. But once the notion of power is
introduced, there are several definitions of power gain that might be used.

1. Power gain. This is the ratio of power dissipated in the load, ZL, to the
power delivered to the input of the amplifier. This definition is independent
of the generator impedance, ZG. Certain amplifiers, especially negative
resistance amplifiers, are strongly dependent on ZG.

2. Available gain. This is the ratio of the amplifier output power to the avail-
able power from the generator source. This definition depends on ZG but
is independent of ZL.

3. Exchangeable gain. This is the ratio of the output exchangeable power to
the input exchangeable power. The exchangeable power of the source is

122
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defined as

P D jVj2
4<fZGg , <fZGg 6D 0 �7.1�

For negative resistance amplifiers P < 0! Furthermore this definition is
independent of ZL.

4. Insertion gain. This is the ratio of output power to the power that would be
dissipated in the load if the amplifier were not present. There is a problem
in applying this definition to mixers or parametric upconverters where the
input and output frequencies differ.

5. Transducer power gain. This is the ratio of the power delivered to the load
to the available power from the source. This definition depends on both
ZG and ZL. It gives positive gain for negative resistance amplifiers as well.
Since the characteristics of real amplifiers change when either the load
or generator impedance is changed, it is desirable that the gain definition
reflect this characteristic. Thus the transducer power gain definition is found
to be the most useful.

7.3 TRANSDUCER POWER GAIN OF A TWO-PORT

The linear two-port circuit in Fig. 7.1 can be analyzed with the help of Fig. 7.2
and is characterized by its impedance parameters:

V1 D z11I1 C z12I2 �7.2�

V2 D z21I1 C z22I2 �7.3�

+

–
V2

+

–
V1

I2I1

[Z ]

FIGURE 7.1 Two-port circuit expressed in impedance parameters.

VG
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b1

Z L

ΓG Γi

2-Port
–

+

FIGURE 7.2 Equivalent circuit to determine the input available power.
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But the relationship between the port-2 voltage and current is determined by the
load impedance:

V2 D �I2ZL �7.4�

Substitution of this for V2 in Eq. (7.3) gives the input impedance. This is depen-
dent on both the contents of the two-port itself and the load:

Zin D V1

I1
D z11 � z12z21

z22 C ZL
�7.5�

This will be used to determine the transducer power gain. The power delivered
to the load is P2:

P2 D 1
2 jI2j2<fZLg �7.6�

Since the power available from the source is

P1a D jVGj2
8<fZGg �7.7�

the transducer power gain is

GT D P2

P1a
�7.8�

D 4<fZLg<fZGgjz21j2
j�ZG C z11��ZL C z22�� z21z21j2 �7.9�

Similar expressions can be obtained for y, h, or g parameters by simply replacing
the corresponding zij with the desired matrix elements and by replacing the
ZG and ZL with the appropriate termination. However, for radio frequency and
microwave circuits, scattering parameters are the most readily measured quanti-
ties. The transducer power gain will be found in terms of the scattering parameters
in the following section.

7.4 POWER GAIN USING S PARAMETERS

The available power, Pa, when the input of the two-port circuit is matched with
i D Ł

G, was given by Eq. (4.124) in Chapter 4.

Pa D
1
2 jbGj2

1 � jGj2 �7.10�

At the output side of the circuit, the power delivered to the load is given by the
following:

PL D 1
2 jb2j2�1 � jLj2� �7.11�

The transducer gain is simply the ratio of Eq. (7.11) to Eq. (7.10):

GT D jb2j2
jbGj2 �1 � jLj2��1 � jGj2� �7.12�
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As this stands, b2 and bG are not very meaningful. However, this ratio can be
expressed entirely in terms of the known S parameters of the two-port circuit.
From the description of the S parameters as a matrix corresponding to forward-
and backward-traveling waves, the two-port circuit can be represented in terms
of a flow graph. Each branch of the flow graph is unidirectional and the combi-
nation describes the S matrix completely. The presumption is that the circuit
is linear. The problem of finding b2/bG can be done using either algebra or
some flow graph reduction technique. The classical method developed for linear
systems is Mason’s nontouching loop rules. The method shown below is easier
to remember, but it is more complicated to administer to complex circuits that
require a computer analysis. For the relatively simple graph shown in Fig. 7.3,
the simpler method works well. This method of flow graph reduction is based
on four rules:

Rule 1. The cascade of two branches in series can be reduced to one branch with
the value equal to the product of the two original branches (Fig. 7.4a).

1bG = a1 S 21

S11 S22

S12

ΓG

ΓL

FIGURE 7.3 Flow graph equivalent of the two-port circuit in Fig. 7.2.
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FIGURE 7.4 Flow graph reduction rules for (a) two-series branches, (b) two-shunt
branches, (c) a self-loop, and (d) splitting a node.
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Rule 2. Two parallel branches can be reduced to one branch whose value is
the sum of the two original branches (Fig. 7.4b).

Rule 3. As illustrated in Fig. 7.4c, a self-loop with value Y with an incoming
branch X can be reduced to a single line of value

X

1 � Y
�7.13�

Rule 4. The transfer function remains unchanged if a node with one input
branch and N output branches can be split into two nodes. The input
branch goes to each of the new nodes. Similarly the transfer function
remains unchanged if a node with one output branch and N input
branches can be split into two nodes. The output branch goes to each
of the new nodes (Fig. 7.4d).

These rules can be used to finish the calculation of the transducer power gain
of Eq. (7.12) by finding b2/bG. The first step in this reduction is the splitting
of two nodes shown in Fig. 7.5a by use of rule 4. This forms a self-loop in the
right-hand side of the circuit. The lower left-hand node is also split into two
nodes (Fig. 7.5b). The incoming branches to the self-loop on the right-hand side
are modified by means of rule 3 (Figs. 7.5c). In the same figure another self-
loop is made evident on the left-hand side. In this case there are two incoming
branches modified by the self-loop. Use of rule 3 produces Fig. 7.5d. Splitting
the node by means of rule 4 results in Fig. 7.5e. The resulting self-loop modifies
the incoming branch on the left-hand side (rule 3). The result is three branches
in series (rule 1), so the transfer function can now be written by inspection:

b2 D
bG

1 � GS11

1 � S21S12LG

�1 � LS22��1 � GS11�

Ð S21

1 � LS22

b2

bG
D S21

�1 � LS22��1 � GS11�� S12S21GL
�7.14�

This ratio can be substituted into the transducer power gain expression (7.12).
Thus the transducer power gain is known in terms of scattering parameters of
the two-port and the terminating reflection coefficients:

GT D jS21j2�1 � jGj2��1 � jLj2�
j�1 � LS22��1 � GS11�� S12S21GLj2 �7.15�

This is the full equation for the transducer power gain. Other expressions making
use of approximations are strictly speaking a fiction, though this fiction is some-
times used to characterize certain transistors. For example, unilateral power gain
is found by setting S12 D 0. In real transistors S12 should be small, but it is never
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FIGURE 7.5 Demonstration of the amplifier flow graph.

actually 0. The maximum unilateral power gain is found by setting S12 D 0,
G D SŁ

11, and L D SŁ
22:

Gumax D jS21j2
�1 � jS11j2��1 � jS22j2� �7.16�

7.5 SIMULTANEOUS MATCH FOR MAXIMUM POWER GAIN

Maximum gain is obtained when both the input and output ports are simulta-
neously matched. One way to achieve this is to guess at a L and calculate i

(Fig. 7.6). The generator impedance then is made to match the complex conjugate
of i. With this new value of G, a new value of O is found. Matching this to
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ZG ZL

ΓG Γi ΓO ΓL

2-Port

FIGURE 7.6 The definition of the reflection coefficients for the two-port circuit.

L means the that L changes. This iterative process continues until both sides
of the circuit are simultaneously matched.

A better way is to recognize this as basically a problem with two equations
and two unknowns. Simultaneous match forces the following two requirements:

i D Ł
G D S11 C S21S12L

1 � LS22
�7.17�

O D Ł
L D S22 C S21S12G

1 � GS11
�7.18�

Since both of these equations have to be satisfied simultaneously, finding G and
L requires solution of two equations with two unknowns. These can be written
in terms of the determinate of the S matrix  as follows:

Ł
G D S11 � LS11S22 C S12S21L

1 � LS22

D S11 � L

1 � LS22
�7.19�

Ł
L D S22 � G

1 � GS11
�7.20�

Substitution of Eq. (7.20) into Eq. (7.19) eliminates L:

Ł
G D S11�1 � Ł

GS
Ł
11���SŁ

22 � Ł
G

Ł�
1 � Ł

GS
Ł
11 � jS22j2 C S22ŁŁ

G
�7.21�

This expression can be rearranged in the usual quadratic form. After taking the
complex conjugate, this yields the following:

2
G�S

Ł
22� S11�C G�1 � jS22j2 C jS11j2 � jjj2�� SŁ

11 CŁS22 D 0 �7.22�

This equation can be rewritten in the form

0 D �2
GC1 C GB1 �CŁ

1 �7.23�

where

C1 D S11 �SŁ
22 �7.24�

B1 D 1 C jS11j2 � jS22j2 � jj2 �7.25�
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The required generator reflection coefficient for maximum gain can be found:

Gm D CŁ
1

2jC1j2
[
B1 š

√
B2

1 � 4jC1j2
]

�7.26�

In similar fashion the load reflection coefficient (impedance) for maximum gain is

Lm D CŁ
2

2jC2j2
[
B2 š

√
B2

2 � 4jC2j2
]

�7.27�

where

C2 D S22 �SŁ
11 �7.28�

B2 D 1 C jS22j2 � jS11j2 � jj2 �7.29�

The parameters Bi and Ci are determined solely from the scattering parameters
of the two-port. The � sign is used when Bi > 0, and the C sign is used when
Bi < 0. Once the terminating reflection coefficients are known, the corresponding
impedances may be determined:

ZG D Z0
1 C G

1 � G
�7.30�

ZL D Z0
1 C L

1 � L
�7.31�

7.6 STABILITY

A stable amplifier is an amplifier where there are no unwanted oscillations
anywhere. Instability outside the operating band of the amplifier can still cause
unwanted noise and even device burnout. Oscillations can only occur when there
is some feedback path from the output back to the input. This feedback can
result from an external circuit, from external feedback parasitic circuit elements,
or from an internal feedback path such as through C in a common emitter bipolar
transistor. Of these three sources, the last is usually the most troublesome. The
following sections describe a method for determining transistor stability and some
procedures to stabilize an otherwise unstable transistor.

7.6.1 Stability Circles

The criteria for unconditional stability require that jij � 1 and joj � 1 for any
passive terminating loads. A useful amplifier may still be made if the terminating
loads are carefully chosen to stay out of the unstable regions. It is helpful to find
the borderline between the stable and the unstable regions. For the input side,
this is done by finding the locus of points of L that will give jij D 1. The
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borderline between stability and instability is found from Eq. (7.17) and (7.19)
when jij D 1:

1 D
∣∣∣∣
S11 �L

1 � LS22

∣∣∣∣ �7.32�

This equation can be squared and then split up into its complex conjugate pairs:

�1 � LS22��1 � Ł
LS

Ł
22� D �S11 �L��S

Ł
11 �ŁŁ

L� �7.33�

The coefficients of the different forms of L are collected together:

jLj2�jS22j2 � jj2�C L�S
Ł
11 � S22�C Ł

L�S11
Ł � SŁ

22�

D jS11j2 � 1 �7.34�

jLj2 C L

(
SŁ

11 � S22

jS22j2 � jj2
)

C Ł
L

(
S11Ł � SŁ

22

jS22j2 � jj2
)

D jS11j2 � 1

jS22j2 � jj2 �7.35�

Division of Eq. (7.35) by the coefficient of jLj2 shows that this equation can
be put in a form that can be factored by completing the square. The value jmj2
is added to both sides of the equation:

�L C mŁ��Ł
L C m� D jLj2 C Lm C Ł

Lm
Ł C jmj2 C jS11j2 � 1

jS22j2 � jj2 �7.36�

where

m
D SŁ

11 � S22

jS22j2 � jj2 �7.37�

Substitution of Eq. (7.37) into Eq. (7.36) upon simplification yields the following
factored form:

(
L C ŁS11 � SŁ

22

jS22j2 � jj2
)(

Ł
L C SŁ

11 � S22

jS22j2 � jj2
)

D jS12S21j2
�jS22j2 � jj2�2 �7.38�

This is the equation of a circle whose center is

CL D S11Ł � SŁ
22

jj2 � jS22j2 �7.39�

The radius of the load stability circle is

rL D
∣∣∣∣

S21S12

jj2 � jS22j2
∣∣∣∣ �7.40�
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The center and radius for the generator stability circle can be found in the same
way by analogy:

CG D S22Ł � SŁ
11

jj2 � jS11j2 �7.41�

rG D
∣∣∣∣

S21S12

jj2 � jS11j2
∣∣∣∣ �7.42�

These two circles, one for the load and one for the generator, represent the
borderline between stability and instability. These two circles can be overlayed
on a Smith chart. The center of the circle is located at the vectorial position
relative to the center of the Smith chart. The “dimensions” for the center and
radius are normalized to the Smith chart radius (whose value is unity).

The remaining issue is which side of these circles is the stable region.
Consider first the load stability circle shown in Fig. 7.7. If a matched Z0 D 50$

FIGURE 7.7 Illustration of the stability circles where the shaded region is unstable.
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transmission line were connected directly to the output port of the two-port circuit,
then L D 0. This load would be located in the center of the Smith chart. Under
this condition, Eq. (7.17) indicates that i D S11. If the known value of jS11j < 1,
then jij < 1 when the load is at the center of the Smith chart. If one point on
one side of the stability circle is known to be stable, then all points on that side
of the stability circle are also stable. The same rule would apply to the generator
side when it is replaced by a matched load D Z0.

Unconditional stability requires that both jij < 1 and joj < 1 for any passive
load and generator impedance attached to the ports. In this case, if jS11j < 1
and jS22j < 1, the stability circles would lie completely outside the Smith chart.
Conditional stability occurs when at least one of the stability circles intersects
the Smith chart. As long as the load and source impedances are on the stable
side of the stability circle, stable operation occurs. This choice may not, and
usually will not, coincide with the generator and load impedance for maximum
transducer power gain as given by Eqs. (7.26) and (7.27). Avoiding unstable oper-
ation will usually require compromising the maximum gain for a slightly smaller
but often acceptable gain. Clearly, using an impedance too close to the edge
of the stability circle can result in unstable operation because of manufacturing
tolerances.

7.6.2 Rollett Criteria for Unconditional Stability

It is often useful to determine if a given transistor is unconditionally stable for
any pair of passive impedances terminating the transistor. The two conditions
necessary for this are known as the Rollett stability criteria [3] and are given as
follows:

k D 1 � jS11j2 � jS22j2 C jj2
2jS12S21j ½ 1 �7.43�

jj � 1 �7.44�

Rollett’s original derivation was done using any one of the volt–ampere
immittance parameters, z, y, h, or g. Subsequently his stability equations were
expressed in terms of S parameters as shown in Eqs. (7.43) and (7.44). Others
arrived at stability conditions that appeared different from these, but it was
pointed out that most of these alternate formulations were equivalent to those
in Eqs. (7.43) and (7.44) [4]. The derivation of these two quantities will be given
in this section.

The first of these equations is based on unconditional stability occurring when
the load stability circle lies completely outside the Smith chart when jS11j < 1,
that is,

jCLj � rL ½ 1 �7.45�

or
rL � jCLj ½ 1 �7.46�
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where Eq. (7.46) describes the case where the stability circle contains the entire
Smith chart within it. Substitution of Eqs. (7.39) and (7.40) into Eq. (7.45) gives

jS22 � SŁ
11j � jS12S21j

jjj2 � jS22j2j ½ 1 �7.47�

Squaring Eq. (7.47) gives the following:

[jS22 � SŁ
11j � jS12S21j]2 ½ jjj2 � jS22j2j2 �7.48�

jS22 � SŁ
11j2 � 2jS12S21jjS22 � SŁ

11j
C jS12S21j2 ½ jjj2 � jS22j2j2 �7.49�

2jS12S21jjS22 � SŁ
11j � �jjj2 � jS22j2j2

C jS12S21j2 C jS22 � SŁ
11j2 �7.50�

The last term on the right-hand side of Eq. (7.50) can be expanded:

jS22 � SŁ
11j2 D �S22 � SŁ

11��S
Ł
22 � S11

Ł�

D jS22j2 � S11S22
Ł � SŁ

11S
Ł
22C jS11j2jj2 �7.51�

D jS22j2 C jj2jS11j2 � jS11S22j2
C �S11S22S

Ł
12S

Ł
21 � jS11S22j2 C SŁ

11S
Ł
22S12S21� �7.52�

Now expansion of jj2 gives the following:

jj2 D �S11S22 � S12S21��S
Ł
11S

Ł
22 � SŁ

12S
Ł
21�

D jS11S22j2 C jS12S21j2 � S11S22S
Ł
12S

Ł
21 � SŁ

11S
Ł
22S12S21 �7.53�

By subtracting jS12S21j inside the parenthesis in Eq. (7.52) and adding the same
value outside the parenthesis, the quantity inside the parenthesis is equivalent to
jj2 given in Eq. (7.53). Thus Eq. (7.52) can be factored as shown below:

jS22 � SŁ
11j2 D jS22j2 C jj2jS11j2 � jS11S22j2 C jS12S21j2 � jj2

D jS12S21j2 C �1 � jS11j2��jS22j2 � jj2� �7.54�

D υC ˛ˇ �7.55�

The expression (7.55) is based on the definitions

˛
D �1 � jS11j2� �7.56�

ˇ
D �jS22j2 � jj2� �7.57�

υ
D jS12S21j2 �7.58�
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The original inequality, Eq. (7.50), written in terms of these new variables is
given below:

2
p
υ
√
˛ˇ C υ � �˛ˇ C υ�C υ� ˇ2 �7.59�

By first squaring both sides and then canceling terms, Eq. (7.59) can be greatly
simplified:

4υ�˛ˇ C υ� � [�˛ˇ C 2υ�� ˇ2]2

4υ�˛ˇ C υ� � �˛ˇ C 2υ�2 � 2ˇ2�˛ˇ C 2υ�C ˇ4

4υ�˛ˇ C υ� � �˛ˇ�2 C 4υ�˛ˇ�C 4υ2 � 2ˇ2�˛ˇ C 2υ�C ˇ4

0 � �˛ˇ�2 � 2ˇ2�˛ˇ C 2υ�C ˇ4

� �˛� ˇ�2 � 4υ

1 � �˛� ˇ�2

4υ
�7.60�

Taking the square root of Eq. (7.60) yields

1 � ˛� ˇ

2
p
υ

D 1 � jS11j2 � jS22j2 C jj2
2jS12S21j D k �7.43�

Since the value of k is symmetrical on interchange of ports 1 and 2, the same
result would occur with the generator port stability circle.

The second condition for unconditional stability, Eq. (7.44) can also be demon-
strated based on the requirement that the jij < 1. The second term of the
right-hand side of Eq. (7.17) can be modified by multiplying it by 1 (D S22/S22)
and adding 0 (D S12S21 � S12S21) to the numerator. This results in the following:

jij D
∣∣∣∣S11 C LS12S21S22 C �S12S21 � S12S21�

�1 � LS22�S22

∣∣∣∣

D 1

jS22j
∣∣∣∣
S11S22�1 � LS22�� S12S21�1 � LS22�C S12S21

1 � LS22

∣∣∣∣

D 1

jS22j
∣∣∣∣C S12S21

1 � LS22

∣∣∣∣ < 1 �7.61�

The complex quantity, �1 � LS22� can be written in polar form as �1 �
jLS22jej)�. Any passive load must lie within the unit circle jLj < 1, so jLj is
set to 1. As described in [5], the quantity

1

1 � jS22jej)
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 S2221 –

 S22

1

 S2221 –

FIGURE 7.8 Representation of the circle with jLj D 1.

which appears in Eq. (7.61) is a circle, as pictured in Fig. 7.8, centered at

1

2

[
1

1 � jS22j C 1

1 C jS22j
]

D 1

1 � jS22j2
and with radius

1

2

[
1

1 � jS22j � 1

1 C jS22j
]

D jS22j
1 � jS22j2

Equation (7.61) is expressed in terms of this circle:

1

jS22j
∣∣∣∣C S12S21

1 � jS22j2 C S12S21jS22ej)j
1 � jS22j2

∣∣∣∣ < 1 �7.62�

The phase of the load is chosen so that it maximizes the left-hand side of
Eq. (7.62). However, it must still obey the stated inequality. This means that
Eq. (7.62) can be written as the sum of the two magnitudes without violating the
inequality condition:

1

jS22j
∣∣∣∣C S12S21

1 � jS22j2
∣∣∣∣C jS12S21j

1 � jS22j2 < 1

0 <
1

jS22j
∣∣∣∣C S12S21

1 � jS22j2
∣∣∣∣ < 1 � jS12S21j

1 � jS22j2
Comparison of the far right-hand side of this expression with 0 results in the
following inequality:

1 � jS22j2 > jS12S21j �7.63�

If the process had begun with the condition that joj < 1, then the result would
be the same as that of Eq. (7.63) with the 1’s and 2’s interchanged:

1 � jS11j2 > jS12S21j �7.64�
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When Eqs. (7.63) and (7.64) are added together,

2 � jS11j2 � jS22j2 > 2jS12S21j2 �7.65�

However, from the definition of the determinate of the S parameter matrix,

jj D jS11S22 � S12S21j < jS11S22j C jS12S21j �7.66�

When the term jS12S21j in Eq. (7.66) is replaced with something larger as given
in Eq. (7.65), the inequality is still true:

jj < jS11S22j C 1 � 1
2 �jS11j2 C jS22j2�

jj < 1 � 1
2 �jS11j � jS22j�2 < 1 �7.44�

An alternate, but equivalent set of requirements for stability, is [4]

k > 1 �7.67�

and either
B1 > 0 �7.68�

or
B2 > 0 �7.69�

7.6.3 Stabilizing a Transistor Amplifier

There are a variety of approaches to stabilizing an amplifier. In Section 7.6.1 it
was suggested that stability could be achieved from a potentially unstable tran-
sistor by making sure that the chosen amplifier terminating impedances remain
inside the stable regions at all frequencies as determined by the stability circles.

Another method would be to load the amplifier with an additional shunt or
series resistor on either the generator or load side. The resistor is incorporated
as part of the two-port parameters of the transistor. If the condition for uncondi-
tional stability is achieved for this expanded transistor model, then optimization
can be performed for the other circuit elements to achieve the desired gain and
bandwidth. It is usually better to try loading the output side rather than the input
side in order to minimize increasing the amplifier noise figure.

A third approach that is sometimes useful is to introduce an external feed-
back path that can neutralize the internal feedback of the transistor. The most
widely used scheme is the shunt–shunt feedback circuit shown in Fig. 7.9. The
y parameters for the composite circuit are simply the sum of the y parameters
of the amplifier and feedback two-port circuits:

[Yc] D [Ya] C [Yf] �7.70�
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FIGURE 7.9 Shunt–shunt feedback for stabilizing a transistor.
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FIGURE 7.10 Two-port representation of the feedback circuit.

To use this method, the transistor scattering parameters must be converted
to admittance parameters (Appendix D). The y parameters for a simple series
admittance, yfb can be found from circuit theory (Fig. 7.10):

y11f D y22f D i1
v1

∣∣∣∣
v2D0

D yfb �7.71�

y12f D y21f D i2
v1

∣∣∣∣
v2D0

D �yfb �7.72�

Consequently the composite y parameters are

y11c D y11a C y11f D y11a C yfb �7.73�

y12c D y12a C y12f D y12a � yfb �7.74�

y21c D y21a C y21f D y21a � yfb �7.75�

y22c D y22a C y22f D y22a C yfb �7.76�

If y12c could be made to be zero, then S12c would also be zero and unconditional
stability could be achieved:

g12a C jb12a D gfb C jbfb �7.77�

Since the circuit parameter g12a < 0, the value gfb < 0 must be true also. Since
it is not possible to have a negative passive conductance, complete removal of



138 CLASS A AMPLIFIERS

the internal feedback is not possible. However, the susceptance, b12a, can be
canceled by a passive external feedback susceptance. Although total removal of
y12a cannot be achieved, yet progress toward stabilizing the amplifier can often
be achieved. There is no guarantee that neutralization will provide a composite
y matrix that is unconditionally stable. In addition neutralization of the feedback
susceptance occurs at only one frequency.

As an example consider a transistor to have the following S parameters at a
given frequency:

S11a D 0.736 �102°

S21a D 2.216 104°

S12a D 0.106 48°

S22a D 0.476 �48°

�7.78�

For this transistor, k D 0.752 and jj D 0.294 as found from Eqs. (7.43) and
(7.44). Conversion of Eq. (7.78) to y parameters gives

y11a D 5.5307 Ð 10�3 C j1.9049 Ð 10�2 S

y12a D 3.9086 Ð 10�4 � j2.3092 Ð 10�3 S

y21a D 4.7114 Ð 10�2 � j2.1376 Ð 10�2 S

y22a D 5.4445 Ð 10�3 C j5.1841 Ð 10�3 S.

�7.79�

Nothing can be done about g12a, but b12a can be removed by setting bfb D b12a D
�2.3092. The composite admittance matrix becomes

y11c D 5.5307 Ð 10�3 C j1.6739 Ð 10�2 S

y12c D 3.9086 Ð 10�4 � j�0� S

y21c D 4.7114 Ð 10�2 � j1.9067 Ð 10�2 S

y22c D 5.4445 Ð 10�3 C j2.8750 Ð 10�3 S

�7.80�

The composite scattering parameters can now be found and the stability factor
calculated yielding k D 2.067 and jj D 0.4037. The transistor with the feedback
circuit is unconditionally stable at the given frequency. This stability has been
achieved by adding inductive susceptance in shunt with the transistor input and
output ports.

Broadband stability can be achieved by replacing the feedback inductor with an
inductor and resistor as shown in Fig. 7.11. A starting value for the inductor can
be found as described for the single frequency analysis. The resistor is typically
in the 200 to 800 $ range, but optimum values for R and L are best found by
computer optimization.
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R L

FIGURE 7.11 Broadband feedback stabilization.

7.7 CLASS A POWER AMPLIFIERS

Class A amplifiers, whether for small signal or large signal operation, are intended
to amplify the incoming signal in a linear fashion. This type of amplifier will not
introduce significant distortion in the amplitude and phase of the signal. A linear
class A power amplifier will introduce low harmonic frequency components and
low intermodulation distortion (IMD). An example of intermodulation distortion
can be described in terms of a double sideband suppressed carrier wave, which
is represented as

V

2
cos�ωc C ωm�t C V

2
cos�ωc � ωm�t �7.81�

where ωc is the high-frequency carrier frequency and ωm is the low-frequency
modulation frequency. Intermodulation distortion would result in frequencies at
ωc š nωm, and harmonic distortion would cause frequency generation at kωc š
nωm. The later harmonic distortion can usually be filtered out, but the intermod-
ulation distortion is more difficult to handle because the distortion frequencies
are near if not actually inside the system pass band. Clearly, this distortion in a
class A amplifier is a greater problem for power amplifiers than for small signal
amplifiers. Reduction of IMD depends on efficient power combining methods
and careful design of the transistors themselves.

A transistor acting in the class A mode remains in its active state throughout the
complete cycle of the signal. Two examples of common emitter class A amplifiers
are shown in Fig. 7.12. The maximum efficiency of the class A amplifier in
Fig. 7.12a has been shown to be 25%, for example [6]. However, if an RF coil
can be used in the collector (Fig. 7.12b), the efficiency can be increased to almost
50%. This can be shown by recognizing first that there is no ac current flow in
the bias source and no dc current flow in the load, RL. The total current flowing
in the transistor collector is

ic D IQ � Io sinωt �7.82�

and the total collector voltage is

Vce D VCC C Vo sinωt �7.83�
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FIGURE 7.12 Class A amplifiers with (a) collector resistor and (b) collector inductor.
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Io

Io,max

FIGURE 7.13 Magnitude of the output current and quiescent current of the class A
amplifier.

The quiescent current, IQ, and the output current, Io, is defined in Fig. 7.13.
When the load is drawing the maximum instantaneous power,

Io,max D IQ D Idc. �7.84�

At this point the maximum output voltage is

Vo,max D Io,maxRL �7.85�

and
jVo,maxj D VCC D Io,maxRL �7.86�

The dc power source supplies

Pdc D IdcVCC D V2
CC

RL
�7.87�



POWER COMBINING OF POWER AMPLIFIERS 141

The maximum average power delivered to the load can now be written in terms
of the supply voltage:

Po D jVo,maxj2
2RL

D V2
CC

2RL
�7.88�

If the RF input power is Pi, the power added efficiency is

0 D Po � Pi

Pdc
�7.89�

For high-gain amplifiers, Pi − Po and the maximum efficiency is 0 ³ 1
2 .

However, it should be noted that many times high-power amplifiers do not have
high gain, so the power added efficiency given by Eq. (7.89) offers a more useful
quality factor for a transistor than if Pi were neglected.

7.8 POWER COMBINING OF POWER AMPLIFIERS

Design of power FET amplifiers requires use of large gate periphery devices.
However, eventually, the large the gate periphery causes other problems such
as impedance matching especially at RF and microwave frequencies. Bandwidth
improvement can be obtained by combining several transistors, often on a single
chip. An example of combining two transistors is shown in Fig. 7.14 [7,8]. The
separation of the transistors may induce odd-order oscillations in the circuit,
even if the stability factor of the individual transistors (even-order stability) indi-
cate they are stable. This odd-order instability can be controlled by adding Rodd

between the two drains to damp out such oscillations. This resistor is typically
less than 400 $. Symmetry indicates no power dissipation when the outputs
of the two transistors are equal and in phase. An example of a four transistor
combining circuit is shown in Fig. 7.15, which now includes resistors Rodd1 and
Rodd2 to help suppress odd-order oscillations.

Rodd

50 Ω50 Ω

FIGURE 7.14 Power combining two transistors [7,8].
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Rodd1

Rodd2

50 Ω
50 Ω

Rodd1

FIGURE 7.15 Power combining four transistors [7,8].

PROBLEMS

7.1 Using the flow graph reduction method, verify the reflection coefficient found
in Eq. (7.17).

7.2 The measured scattering parameters of a transistor in an amplifier circuit are
found to be the following:

jS11j 6 S11 jS21j 6 S21 jS12j 6 S12 jS22j 6 S22

0.85 �32 3.8 �145 0.04 74 0.92 �15

(a) Determine the stability factor, k, for this transistor.

(b) Determine the y parameters for this circuit.

(c) Determine the circuit that would neutralize (almost unilateralize) the
circuit. While this procedure does not guarantee stability in all cases, it
always helps lead toward greater stability.

(d) Determine the new scattering parameters for the neutralized circuit.

(e) Determine the generator and load impedances that would give maximum
transducer power gain (not unilateral power gain).

(f) What is the value for the maximum transducer power gain.

7.3 Determine the transfer function for the flow graph in Fig. 7.16.

7.4 A certain transistor has the following S parameters:

S11 D 1.2, S21 D 4.0, S12 D 0, S22 D 0.9

Determine whether this transistor is unconditionally stable.
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FIGURE 7.16 Flow graph for Problem 7.3.
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CHAPTER EIGHT

Noise

8.1 SOURCES OF NOISE

The dynamic range of a communication transmitter or receiver circuit is usually
limited at the high-power point by nonlinearities and at the low-power point by
noise. Noise is the random fluctuation of electrical power that interferes with
the desired signal. There can be interference with the desired signal by other
unwanted deterministic signals, but at this point only the interference caused by
random fluctuations will be considered. There are a variety of physical mech-
anisms that account for noise, but probably the most common is thermal (also
referred to as Johnson noise or Nyquist noise). This can be illustrated by simply
examining the voltage across an open circuit resistor (Fig. 8.1). The resulting
voltage is not zero! The average voltage is zero, but not the instantaneous voltage.
At any temperature above absolute 0 K, the Brownian motion of the electrons
will produce random instantaneous currents. These currents will produce random
instantaneous voltages, and this leads to noise power.

Noise arising in electron tubes, semiconductor diodes, bipolar transistors, or
field effect transistors come from a variety of mechanisms. For example, for tubes,
these include random times of emission of electrons from a cathode (called shot
noise), random electron velocities in the vacuum, nonuniform emission over the
surface of the cathode, and secondary emission from the anode. Similarly, for
diodes, a random emission of electrons and holes produces noise. In a bipolar
transistor, there is in addition partition noise. This represents the fluctuation in
the path that charge carriers take between the base and the collector after leaving
the emitter. There is in addition 1/f, or flicker noise (where f is frequency), that
is caused by surface recombination of base minority carriers at the base-emitter
junction [1]. Clearly, as the frequency approaches dc, the flicker noise increases
dramatically. As a consequence intermediate amplifier stages are designed to
operate well above the frequency where 1/f noise is a significant contributor
to the total noise. Typically this frequency ranges from 100 Hz to 10 kHz. In a
field effect transistor, there is thermal noise arising from channel resistance, 1/f

144
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+ –
v(t)

i x

i y

FIGURE 8.1 Voltage across an open circuit resistor.

noise, and a coupling of the channel noise back to the gate where it is of course
amplified by the transistor gain. Noise also arises from reverse breakdown in the
avalanching of electrons in such devices as Zener diodes and IMPATT diodes.
At RF frequencies the two most common noise sources are the thermal noise and
the shot noise.

8.2 THERMAL NOISE

The random fluctuation of electrons in a resistance would be expected to rise as
the temperature increases, since the electron velocities and the number of colli-
sions per second increases. The noise voltage is expressed as an auto correlation
of the instantaneous voltage over a time period T:

hv2i D lim
T!1

1

2T

∫ T

�T
v2�t�d t �8.1�

The expression for thermal noise voltage has been derived in a variety of ways.
Harry Nyquist first solved the problem based on a transmission line model. Other
approaches included using a lumped element circuit, the random motion of elec-
trons in a metal conductor, and the radiation from a black body. These are all
basically thermodynamic models, and each method resulted in the same expres-
sion. The black body method is based on quantum mechanics and therefore
provides a solution for noise sources at both cryogenic and room temperatures.

8.2.1 Black Body Radiation

Classical mechanics is based on the continuity of energy states. When this theory
was applied to calculation of the black body radiation, it was found that the radia-
tion increased without limit. This so-called ultraviolet catastrophe was clearly not
physical. However, Max Planck was able to correct the situation by postulating
that energy states are not continuous but are quantized in discrete states. These
energy values are obtained by solving the Schrödinger equation for the harmonic
oscillator. The actual derivation is found in most introductory texts on quantum
mechanics [2]:

E D
(
n C 1

2

)
hf, n D 0, 1, 2, . . . �8.2�
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In this equation h D 6.547 Ð 10�34 J Ð s is Planck’s constant. If energy were contin-
uous, then the average energy could be obtained from the Boltzmann probability
distribution function, P�E�, by the following integral:

E D

∫ 1

0
EP�E�dE

∫ 1

0
P�E�dE

�8.3�

where

P�E� D C exp��ˇE� �8.4�

ˇ D 1

kT

and

C D 1
∑

e�ˇE

The value k D 1.380 Ð 10�23 J/°K is the Boltzmann constant and is essentially
the proportionality constant between energy measured in terms of Joules and
energy measured in terms of absolute temperature. Planck replaced the continuous
integrals in Eq. (8.3) with summations of the discrete energy levels [3]:

E D

1∑

nD0

EP�E�

1∑

nD0

P�E�
�8.5�

D

1∑

nD0

�n C 1/2�hfe�ˇ�nC1/2�hf

1∑

nD0

e�ˇ�nC1/2�hf

�8.6�

It may be easily verified by differentiation that

d

dˇ
ln
∑

e�ˇ�nC1/2�hf D �E �8.7�

The argument of the logarithm can be evaluated by recognizing it as an infinite
geometric series:

e�ˇhf/2
1∑

nD0

e�nˇhf D e�ˇh/2

1 � e�ˇhf �8.8�
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If Eq. (8.8) is substituted back into Eq. (8.7), the average energy can be found:

E D d

dˇ
[ln�1 � e�ˇhf�� ln e�ˇhf/2] �8.9�

D hfe�ˇhf

1 � e�ˇhf C hf

2

or

E D hf

ehf/kT � 1
C h

2
�8.10�

This will be used as the starting point for finding the noise power.

8.2.2 The Nyquist Formula

The thermal noise power in a given bandwidth f is obtained directly from
Eq. (8.10):

NT D hff

ehf/kT � 1
C hff

2
�8.11�

At room temperature the second term, hff/2, plays no role, but it may
be essential in finding the minimum noise figure for cyrogenically cooled
devices [4]. An approximation for the noise power can be found by expanding
Eq. (8.11) into a Taylor series:

NT ³ hff

[
1 C hf

kT
� 1
]�1

C hff

2
D kTf

[
1 C hf

2kT

]
�8.12�

At room temperature, hf/kT − 1, so this reduces to the usual practical formula
for noise power as given by Nyquist [5]:

NT D kTf �8.13�

If this is the available power, the corresponding mean-squared voltage is obtained
by multiplying this by four times the resistance, R:

hv2i D 4RNT

D 4RkTf �8.14�

The mean-squared noise current is

hi2i D 4GkTf �8.15�

where G is the associated conductance.
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8.3 SHOT NOISE

Shot noise arises from random variations of a dc current, I0, and is especially
associated with current carrying active devices. Shot noise is most apparent in a
current source with zero-shunt source admittance. For the purpose of illustration,
consider a current source feeding a parallel RLC circuit (Fig. 8.2). The inductor
provides a dc current path and is open to ac variations of the current. Hence the
resulting noise voltage appears across the resistor (which is presumed free of any
thermal noise). If an instrument could measure the current produced by randomly
arriving electrons, the instrument would record a series of current impulses for
each electron. If n is the average number of electrons emitted by the source in a
given time interval t, then the dc current is

I0 D qn

t
�8.16�

where q is the charge of an electron. Each current pulse provides an energy pulse
to the capacitor with the value of

E D q2

2C
�8.17�

The average shot noise power delivered to the load is then

Ns D nE
t

which in the light of Eqs. (8.16) and (8.17) becomes

Ns D nq2

2Ct

D qI0

2C
�8.18�

The equipartition theorem, as found in thermodynamics textbooks, states that
the average energy of a system of uniform temperature is equally divided among
the degrees of freedom of the system. If there are N degrees of freedom, then

E D N

2
kt �8.19�

I0 L C R < v 2>

FIGURE 8.2 Equivalent circuit for shot noise and for certain thermal noise calculations.
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A system with N degrees of freedom can be described uniquely by N variables.
The circuit in Fig. 8.2 has two energy storage elements, each containing an
average energy of kT/2. For the capacitor this average energy is

E D 1
2Chv2i D 1

2kT �8.20�

But it was found that the Nyquist noise formula predicted that hv2i D 4RkTf.
Consequently

C D 1

4Rf
�8.21�

Using Eq. (8.21) to replace the value of the capacitance in Eq. (8.18) gives the
desired formula for the shot noise power:

Ns D 2qRI0f �8.22�

The corresponding shot noise current is found by dividing by R:

hi2i D 2qI0f �8.23�

The shot noise current is directly proportional to the dc current as has been
verified experimentally.

8.4 NOISE CIRCUIT ANALYSIS

When a circuit contains several resistors, the total noise power can be calculated
by suitable combination of the resistors. Two resistors in series each produce a
mean-squared voltage, hv2i. Since the individual noise voltage sources are uncor-
related, the total hv2i is the sum of the hv2i of each of the two resistors. Similarly
two conductances in parallel each produce a mean-squared noise current, hi2i, that
may be added when the two conductances are combined, since the noise currents
are uncorrelated. It should be emphasized that two noise voltages hvi cannot be
added together, only the mean-squared values can be added. The use of an arrow
in the symbol for a noise current source is used to emphasize that this is a current
source. The use of C and � signs in the symbol for a noise voltage source are
used to emphasize that this is a voltage source. They do not imply anything
about the phase of the noise sources. When both series and parallel resistors are
present as shown in Fig. 8.3, then Thévenin’s theorem provides an equivalent
circuit and associated noise voltage. The output resistance is �R1 C R2�jjR3, and
the corresponding noise voltage delivered to the output is

hv2i D 4kT�R1 C R2�jjR3 �8.24�

When there is reactive element in the circuit such as that shown in the simple
RLC circuit in Fig. 8.4, the output noise voltage would be attenuated by the
magnitude of total admittance. If the admittance is constant over the bandwidth,
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FIGURE 8.3 Noise voltage from series and parallel resistors.

< i 2 > R C L < v 2 >

FIGURE 8.4 Noise voltage from an RLC circuit.

f, which would be typically the case when the measured noise frequency, f,
is approximately a sinusoid where f × f, then

hv2i D hi2i
jGC j�ωC � 1/ωL�j2

D 4kTfG

jYj2 �8.25�

If the output resistance varies appreciably over the range of the noise bandwidth
f, then the individual noise “sinusoids” must be summed over the bandwidth,
resulting in the following integral:

hv2i D 4kT
∫

f

G

jYj2 df �8.26�

As a simple example, consider the noise generated from a shunt RC circuit
that would result from removing the inductance in Fig. 8.4:

hv2i D
∫ 1

0

4kTGdf

G2 C �ωC�2
�8.27�

D 4kTG

2�G2
Ð G
C

∫ 1

0

d�ωC/G�

1 C �ωC/G�2

D 2kT

�C
Ð �

2
D kT

C
�8.28�



AMPLIFIER NOISE CHARACTERIZATION 151

This expression does not say that the capacitor is the source of the noise voltage.
Indeed, experiments have shown that changing the temperature of the resistor
is what changes the output noise. When the 3 dB frequency point of the circuit
output impedance �f3dB D 2�/RC� is considered, the noise voltage in Eq. (8.28)
becomes

hv2i D 2�f3dBkTR

This looks similar to the Nyquist formula in its original form, Eq. (8.14).

8.5 AMPLIFIER NOISE CHARACTERIZATION

One important quality factor of an amplifier is a measure of how much noise
it adds to the signal while it amplifies it. The “actual noise figure,” F, is a
convenient measure of how the amplifier affects the total output noise. The noise
figure, which by the IEEE standards was considered analogous to “noise factor,”
has been defined [7] as the ratio of (1) the total noise power per unit bandwidth
at a corresponding output port when the standard noise temperature of the input
termination is 290 K to (2) that portion of the total noise power engendered at the
input frequency by the input termination. The standard 290 K noise temperature
approximates the actual noise temperature of most input terminations as follows:

F D actual noise output power at T0

available noise input power
Ð 1

GT

D NTout

kT0GTf
�8.29�

In this expression GT is the transducer power gain, and T0 D 290 K. The noise
figure is a measure of the total output noise after it leaves the amplifier divided by
the input noise power entering the amplifier and amplified by an ideal noiseless
gain GT. In an analog amplifier, the amplifier can only add noise, so F must
always be greater than one. The noise figure can also be expressed in terms of
the signal-to-noise ratio at the input to that at the output. If P represents the input
signal power, then

F D P/kT0f

GTP/NTout

D Sin/NTin

Sout/NTout
�8.30�

Since the signal-to-noise ratio will always be degraded as the signal goes through
the amplifier, again F > 1. The expression (8.30) is strictly true only if the input
temperature is 290 K. This is called the spot noise figure.

The portion of the total thermal noise output power contributed by the amplifier
itself is

Na D NTout � kT0GTf �8.31�

D �F � 1�kT0GTf �8.32�
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The factor, F � 1, is used in two alternative measures of noise. One of these is
noise temperature, which is particularly useful when dealing with very low noise
amplifiers where the dB scale typically used in describing noise figure becomes
too compressed to give insight. In this case the equivalent noise temperature is
defined as

Te D T0�F � 1� �8.33�

This is the temperature of the source resistance that when connected to the noise-
free two-port circuit will give the same output noise as the original noisy circuit.

Another useful parameter for the description of noise is the noise measure [6]:

M D F � 1

1 � �1/G�
�8.34�

This is particularly useful for optimizing a receiver in which, for example, a
trade-off has to be made between a low-gain low-noise amplifier and a high-gain
high-noise amplifier.

8.6 NOISE MEASUREMENT

Measurement of noise figure can be accomplished by using a power meter and
determining the circuit bandwidth and gain. However, it is inconvenient to deter-
mine gain and bandwidth each time a noise measurement is to be taken. The Y
factor method for determining noise figure is an approach where these two quan-
tities need not be determined explicitly. Actual noise measurements are done over
a range of frequencies. The average noise figure over a given bandwidth is [7]

F D

∫
F�f�GT�f�df
∫
GT�f�df

�8.35�

This represents a more realistic expression for an actual measurement of noise
figure than the spot noise figure.

An equivalent noise bandwidth f0 can be defined in terms of the maximum
gain over the band as ∫

GT�f�df D G0f0 �8.36�

so that

F D NTout

kT0G0f0
�8.37�

A measurement system that can be used to measure the noise figure of an amplifier
is shown in Fig. 8.5. This excess noise source in this circuit is gated on and off to
produce two values of noise measured at the output power detector, N1, and N2:
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Input
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FIGURE 8.5 Noise measurement using the Y factor method.

Nex D calibrated excess noise source at T2 � T0

N1 D NTout when excess noise source is off
N2 D NTout when excess noise source is on
Nin D noise from input termination
Na D noise added by the amplifier itself

The Y factor as the ratio of N2 to N1 is easily obtained:

Y D N2

N1
D G0Nin C G0Nex C Na

G0Nin CNa
�8.38�

D G0kT0f0 C G0k�T2 � T0�f0 C �F � 1�kT0G0f0

G0kT0f0 C �F � 1�kT0G0f0

D T2 � T0 C FT0

FT0

When solved for F,

F D T2 � T0

T0�Y � 1�
�8.39�

Since a calibrated noise source is used, �T2 � T0�/T0 is known. Also Y is known
from the measurement. The amplifier noise figure is then obtained. Modern noise
measurement instruments implicitly use the Y factor.

8.7 NOISY TWO-PORTS

The noise delivered to the output of a two-port circuit depends on the two-port
circuit itself and the impedance of the input excitation source. The noise figure
for a two-port circuit is given by the following:

F D Fmin C Rn

GG
[�GG � Gopt�

2 C �BG � Bopt�
2] �8.40�
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Fmin D minimum noise figure
Rn D equivalent noise resistance (usually device data are given in terms of a
normalized resistance, rn D Rn/50�
YG D GG C jBG D the excitation source admittance
Yopt D Gopt C jBopt D optimum source admittance where the minimum noise
figure occurs

While a designer can choose YG to minimize the noise figure, such a choice
will usually reduce the gain somewhat. Sometimes the noise figure is expressed
in terms of reflection coefficients, where

G D Y0 � YG

Y0 C YG
D ZG � Z0

ZG C Z0
�8.41�

where Y0 and Z0 are the characteristic admittance and impedance, respectively.
Then the noise figure is given as follows:

F D Fmin C 4rn
jG � optj2

�1 � jGj2�j1 C optj2 �8.42�

The noise figure expression (8.40) and its equivalent (8.42) are the basic expres-
sions used to optimize transistor amplifiers for noise figure. The derivation of
Eq. (8.40) is the subject of the following section. Readers not wishing to pursue
these details at this point may proceed to Section 8.9 without loss of continuity.

8.8 TWO-PORT NOISE FIGURE DERIVATION

The work described here is based on the IRE standards published between 1956
and 1960 [8,9]. A noisy resistor can be modeled as a noiseless resistor in series
with a voltage noise source. In similar fashion a two-port can be represented as a
noiseless two-port and two noise sources. These two noise sources are represented
in Fig. 8.6a as a voltage vn and a current in. The two-port circuit can be described
in terms of its ABCD parameters and internal noise sources as

v1 D Av2 C Bi2 C vn

i1 D Cv2 C Di2 C in
�8.43�

or, as shown in Fig. 8.6, as a noiseless circuit and the noise sources referred to
the input side. If the input termination, YG, produces a noise current, iG, then
the circuit is completed. The polarity markings on the symbols for these sources
merely point out the distinction between voltage and current sources. Being noise
sources, the polarities are actually random. The Thévenin equivalent circuit in
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Free
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+

FIGURE 8.6 Equivalent circuit (a) for two-port noise calculation, and (b) the equivalent
Theévenin circuit.

Fig. 8.6b shows that the short circuit current at the 10 –10 port is

hi2sci D hi2Gi C hjin C YGvnj2i �8.44�

D hi2Gi C hi2ni C jYGj2hv2
ni C YŁ

GhvŁ
nini C YGhiŁnvni �8.45�

The total output noise power is proportional to hi2sci, and the noise caused by the
input termination source alone is hi2Gi. The part between 10 –10 and 2–2 is noise
free; that is, it adds no additional noise to the output. All the noise sources are
referred to the input side, so the noise figure is

F D hi2sci
hi2Gi �8.46�

Part of the noise current source, in, is correlated and part is uncorrelated with
the noise voltage vn. The uncorrelated current is iu. The rest of the current is
correlated with vn and is given by �in � iu�. This correlated noise current must
be proportional to vn. The proportionality constant is the correlation admittance
given by Yc D Gc C jBc and is defined so that

in D iu C Ycvn �8.47�

While this defines Yc, its explicit value in the end will not be needed. The
mean value of the product of the correlated and uncorrelated current is of course
0. By definition, the average of the product of the noise voltage, vn, and the
uncorrelated noise current, iu, must also be 0. Using the complex conjugate of
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the current (which is a fixed phase shift) will not change this fact:

hvni
Ł
ui D 0 �8.48�

Rearranging Eq. (8.47) gives
in � iu
Yc

D vn �8.49�

The product of the noise voltage and the uncorrelated current in Eq. (8.48) can
be expressed by substitution of Eq. (8.49) into Eq. (8.48):

h�in � iu�i
Ł
ui D 0 �8.50�

Because hvniŁui D 0 from Eq. (8.48), the product of the noise voltage and the
correlated current can be found using Eq. (8.47):

hvni
Ł
ni D hvn�in � iu�

Łi D YŁ
chv2

ni �8.51�

The noise sources are determined by their corresponding resistances:

hv2
ni D 4kT0Rnf �8.52�

hi2ui D 4kT0Guf �8.53�

hi2Gi D 4kT0GGf �8.54�

The resistance, Rn, is the equivalent noise resistance for hv2
ni, and Gu is the

equivalent noise conductance for the uncorrelated part of the noise current, hi2ui.
The total noise current is the sum of the uncorrelated current and the remaining
correlated current:

hi2ni D hi2ui C hjin � iuj2i
D hi2ui C jYcj2hv2

ni �8.55�

D 4kT0f�Gu C RnjYcj2� �8.56�

Now the expression for the short circuit current in Eq. (8.45) can be modified by
Eq. (8.51):

hi2sci D hi2Gi C hi2ni C jYGj2hv2
ni C YŁ

GYchv2
ni C YGY

Ł
chv2

ni �8.57�

Furthermore hi2ni can be replaced by Eq. (8.55):

hi2sci D hi2Gi C hi2ui C jYcj2hv2
ni C jYGj2hv2

ni C YŁ
GYchv2

ni C YGY
Ł
chv2

ni �8.58�



TWO-PORT NOISE FIGURE DERIVATION 157

The noise figure, given by Eq. (8.46), can now be put in more convenient form:

F D 1 C hi2ui C hv2
ni�jYcj2 C jYGj2 C YŁ

GYc C YGYŁ
c�

hi2Gi �8.59�

D 1 C 4kT0GufC 4kT0Rnf�jYGj C jYcj�2
4kT0GGf

�8.60�

D 1 C Gu

GG
C Rn

GG
[�GG CGc�

2 C �BG C Bc�
2] �8.61�

The noise figure, F, is a function of the input termination admittance, YG,
and reaches a minimum when the source admittance is optimum. In particular,
the optimum susceptance is BG D Bopt D �Bc. The value for Fmin is found by
setting the derivative of F with respect to GG to zero and setting BG D �Bc.
This will determine the a value for GG D Gopt in terms of Gu, Ru, and Gc:

dF

dGG
D 0 D �Gu

G2
G

� Rn

G2
G

�GG C Gc�
2 C 2Rn

GG
�GG C Gc� �8.62�

Solution for GG yields

GG D Gopt D
√
Gu C RnG2

c

Rn
�8.63�

or

G2
c D G2

opt � Gu

Rn
�8.64�

Substituting this into Eq. (8.61) provides the minimum noise figure, Fmin:

Fmin D 1 C 1

Gopt

[
Gu C Rn

(
G2

opt C 2Gopt

√

G2
opt � Gu

Rn
CG2

opt � Gu

Rn

)]
�8.66�

D 1 C 2Rn

[
Gopt C

√

G2
opt � Gu

Rn

]
�8.67�

The correlation conductance, Gc, can be replaced from the total noise figure
expression in Eq. (8.61) by Eq. (8.64) to give the following expression for F:

F D 1 C Gu

GG
C Rn

GG

ð
[(
G2

G C 2GG

√

G2
opt � Gu

Rn
CG2

opt � Gu

Rn

)
C �BG � Bopt�

2

]
D 1 C Rn

GG
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ð
[(
G2

GC 2GG

√

G2
opt�

Gu

Rn
CG2

opt � 2GGGoptC 2GGGopt

)
C �BG � Bopt�

2

]

D 1 C Rn

GG

(
2GGGopt C 2GG

√

G2
opt � Gu

Rn

)

C Rn

GG
[�GG �Gopt�

2 C �BG � Bopt�
2] �8.68�

Noting Eq. (8.67), the desired expression is obtained:

F D Fmin C Rn

GG
[�GG � Gopt�

2 C �BG � Bopt�
2] �8.69�

8.9 THE FUKUI NOISE MODEL FOR TRANSISTORS

Fukui found an empirically based model that accurately describes the frequency
dependence of the noise for high-frequency field effect transistors [10]. This
model reduces to predicting the four noise parameters, Fmin, Rn, Ropt, and Xopt

where the later two parameters are formed from the reciprocal of Yopt. For the
circuit shown in Fig. 8.7, the Fukui relationships are as follows:

Fmin D 1 C k1fCgs

(
Rg C Rs

gm

)1/2

�8.70�

Rn D k2

gm
�8.71�

Lg Rg Cgd

Cgs

Ri

Rs

Vigm Cdsro

Rd Ld

Ls

FIGURE 8.7 Equivalent circuit for noise calculation for a FET.
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Ropt D k3

f

(
1

4gm
C Rs C Rg

)
�8.72�

Xopt D k4

fCgs
�8.73�

In these expressions, f is the operating frequency in GHz, the capacitance is in
pF, and the transconductance in Siemens. The constants k1, k2, k3, and k4 are
empirically based fitting factors. The expression for Ropt in Eq. (8.72) differs from
that originally given by Fukui, as modified by Golio [11]. The circuit elements of
the equivalent FET model in Fig. 8.7 can be extracted at a particular bias level.
The resistance, Ri, is often difficult to obtain, but for the purpose of the noise
estimation, it may be incorporated with the Rg. The empirically derived fitting
factors should be independent of frequency. They are not quite constant, but over
a range of 2 to 18 GHz average values for these are shown below [11]:

k1 D 0.0259
k2 D 2.966
k3 D 14.51
k4 D 162.6

These values can be used for approximate estimates of noise figure for both
metal semiconductor field effect transistors (MESFETs) as well as high-electron
mobility transistors (HEMTs).

The transistor itself can be modified to provide either improved noise char-
acteristics or improved power-handling capability by adjusting the gate width,
W. The drain current, Ids, increases with the base width W. Consequently those
equivalent circuit parameters determined by derivatives of Ids will also be propor-
tional to W. Also the capacitance between the gate electrode and the source
electrode or between the gate electrode and the drain electrode will be also
proportional to W. This is readily seen from the layout of a FET shown in
Fig. 8.8. The gate resistance, Rg, scales differently, since the gate current flows
in the direction of the width. Also the number of gate fingers, N, will reduce the
effective gate resistance. The gate resistance is then proportional to W/N. These
relationships may be summarized as follows:

gm / W

Rds / 1

W

Cgs / W

Cgd / W

Rg / W

N
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FIGURE 8.8 Typical FET layout.

These circuit elements can clearly be adjusted by scaling the transistor geometry.
This scaling will in turn change the noise characteristics. If a transistor with a
given geometry has a known set of noise parameters, then the noise characteristics
of a new modified transistor can be predicted. The scaling factors between the
new and the old transistor are

s1 D W0

W

s2 D W0/N0

W/N
�8.74�

As a result the new equivalent circuit parameters can be predicted [11]:

g0
m D gms1 �8.75�

R0
s D Rs

s1
�8.76�

R0
d D Rd

s1
�8.77�

C0
gs D Cgss1 �8.78�

R0
g D Rgs2 �8.79�
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The Fukui equations, (8.70) to (8.73), for the newly scaled equivalent circuit
parameters are given as follows:

F0
min D 1 C k1fC

0
gs

(
R0

g C R0
s

g0
m

)1/2

D 1 C �Fmin � 1�
(
s1s2Rg C Rs

Rg C Rs

)1/2

�8.80�

R0
n D Rn

s1
�8.81�

R0
opt D Ropt

s1

[
1 C 4gm�Rs C Rgs1s2�

1 C 4gm�Rs C Rg�

]
�8.82�

X0
opt D Xopt

s1
�8.83�

Reference should be made to [11] for a much fuller treatment of modeling
MESFETs and HEMTs.

The bipolar transistor has a much different variation of noise with frequency
than does the FET type of device. An approximate value for Fmin for the bipolar
transistor at high frequencies is [12]

Fmin ³ 1 C h

[
1 C

√
1 C 2

h

]
�8.84�

where

h
D qIcrb

kT

(
ω

ωT

)2

�8.85�

In this equation, Ic is the dc collector current, rb is the base resistance, and ωT is
the frequency where the short circuit current gain is 1. Values for Yopt and Rn are
also given in [12] but are rather lengthy. A somewhat more accurate expression
is given in [13].

Comparison of Eq. (8.84) with the corresponding expression for FETs,
Eq. (8.70), indicates that the bipolar transistor minimum noise figure increases
with f2, while that for the FET increases only as f. Consequently designs of
low-noise amplifiers at RF and microwave frequencies would tend to favor use
of FETs.

8.10 PROPERTIES OF CASCADED AMPLIFIERS

Ideally amplifiers are completely unilateral so that there is no feedback signal
returning to the input side. Under this condition analysis of cascaded amplifiers
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results in some interesting properties related to noise figure and efficiency. The
results obtained will be approximately valid for almost unilateral amplifiers, even
if some of the “amplifiers” are attenuators. The following two sections deal with
the total noise figure and total efficiency respectively of a cascade of unilateral
amplifiers.

8.10.1 Friis Noise Formula

The most critical part for achieving low noise in a receiver is the noise figure and
gain of the first stage. This is intuitively clear, since the magnitude of the noise
in the first stage will be a much larger percentage of the incoming signal than
it will be in subsequent stages where the signal amplitude is much larger. For a
receiver with n unilateral stages, the total noise figure for all n stages is [14]

FTn D NTn

kT0fG1G2 . . . Gn
�8.86�

where NTn is the total noise power delivered to the load. This can be expressed
in terms of the sum of the noise added by the last stage, Nn, and that of all the
previous stages multiplied by the gain of the last stage:

NTn D Nn C GnNT�n�1� �8.87�

If the nth stage were removed, and its noise figure measured alone, then its noise
figure would be

Fn D kT0Gnf CNn

kT0Gnf
�8.88�

or

Fn � 1 D Nn

kT0Gnf
�8.89�

By substituting Eq. (8.87) into Eq. (8.86) an expression for the noise figure is
obtained that separates the contributions of the noise coming from the last stage
only from the previous n� 1 stages:

FTn D Nn

�kT0fGn�G1G2 . . . Gn�1
C GnNT�n�1�

kT0fG1G2 . . . Gn�1Gn
�8.90�

Canceling the Gn in the second term and substituting Eq. (8.89) yields

FTn D Fn � 1

G1G2 . . . Gn�1
C NT�n�1�

kT0fG1G2 . . . Gn�1
�8.91�

The second term in Eq. (8.91) is the same as Eq. (8.86) except that n has been
reduced to n� 1. This process is repeated n times giving what is known as the
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Friis formula for the noise figure for a cascade of unilateral gain stages:

FTn D F1 C F2 � 1

G1
C F3 � 1

G1G2
C Ð Ð Ð C Fn � 1

G1G2 . . . Gn�1
�8.92�

Clearly the noise figure of the first stage is the most important contributor to
the overall noise figure of the system. If the first stage has reasonable gain, the
subsequent stages can have much higher noise figure without affecting the overall
noise figure of the receiver.

8.10.2 Multistage Amplifier Efficiency

For a multistage amplifier, the overall power efficiency can be found that will
correspond in some way with the overall noise figure expression. Unlike the
noise figure, however, the efficiency of the last stage will be found to be most
important. Again, this would appear logical since the last amplifying stage handles
the greatest amount of power so that poor efficiency here would waste the most
amount of power. For the kth stage of an n stage amplifier chain, the power
added efficiency is

,k D Pok � Pik

Pdk
�8.93�

where

Pok D output power of the kth stage
Pik D input power to the kth stage
Pdk D source of power which is typically the dc bias for the kth stage

If the input power to the first stage is Pi1, then

Pik D Pi1G1G2G3 . . . Gk�1 �8.94�

and for the kth stage alone
Pok D PikGk �8.95�

When Eq. (8.94) and Eq. (8.95) are substituted into the efficiency equation,
Eq. (8.93), the power from the power source can be found:

Pdk D G1G2 . . . Gk�1�Gk � 1�

,k
Pi1 �8.96�

The total added power for a chain of n amplifiers is

Pon � Pi1 D Pi1�G1G2G3 . . . Gn � 1� �8.97�

The efficiency for the whole amplifier chain is clearly given by the following:

,T D Pon � Pi1
n∑

iD1

Pdk

�8.98�
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Replacing the power levels in Eq. (8.98) with their explicit expression gives the
value for the overall efficiency of a chain of unilateral amplifiers:

,T D G1G2G3 . . . Gn � 1
G1 � 1

,1
C G1�G2 � 1�

,2
C Ð Ð Ð C G1G2 . . . Gn�1�Gn � 1�

,n

�8.99�

When each amplifier stage has a gain sufficiently greater than one, the overall
efficiency becomes

,T ³ 1
1

G2G3 . . . Gn,1
C Ð Ð Ð C 1

Gn,n�1
C 1

,n

�8.100�

This final equation illustrates that it is important to make the final stage the most
efficient one

8.11 AMPLIFIER DESIGN FOR OPTIMUM GAIN AND NOISE

The gain for a nonunilateral amplifier was previously given as Eq. (7.15) is
repeated here:

GT D jS21j2�1 � jGj2��1 � jLj2�
j�1 � GS11��1 � LS22� � S12S21GLj2 �8.101�

If S12 is set to zero, thereby invoking the unilateral approximation for the amplifier
gain, then

GT ³ 1 � jGj2
j1 � GS11j2 jS21j2 1 � jLj2

j�1 � LS22j2 �8.102�

This approximation of course removes the possibility of analytically determining
the transistor stability conditions. Using this expression, a set of constant gain
circles can be drawn on a Smith chart for a given transistor. That is, for a given set
of device scattering parameters and for a fixed load impedance, a set of constant
gain circles can be drawn for a range of generator impedances expressed here in
terms of G.

The noise figure was previously found in Eq. (8.40). As was done for the
constant gain circles, constant noise figure circles can be drawn for a range of
values for the generator admittance, YG D GG C jBG. The optimum gain occurs
when G D SŁ

11, and the minimum noise figure occurs when YG D Yopt. These
two source impedances are rarely the same, but a procedure is available that
at least optimizes both of these parameters simultaneously [15]. As seen on the
Smith chart in Fig. 8.9, it appears that the least damage to either the gain or
the noise figure is obtained if the actual chosen generator impedance lies on a
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FIGURE 8.9 Constant gain and noise figure circles.
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FIGURE 8.10 Series inductive feedback can be used to lower noise figure.

line between SŁ
11 and Yopt. It has been found that addition of series inductance,

such as shown in Fig. 8.10, will lower the minimum noise figure of the circuit
because it lowers the effective Fmin and rn. This series inductance also increases
the real part of the input impedance. The output impedance does not affect the
noise figure, but it can be manipulated to adjust the gain.
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FIGURE 8.11 Noise current developed by a series RL circuit.

PROBLEMS

8.1 What is the noise voltage at the output of Fig. 8.2 when the capacitor is
removed from the circuit?

8.2 What is the noise current from a noise voltage source in a series RL circuit
shown in Fig. 8.11.

8.3 Derive Eqs. (8.80) to (8.83).
8.4 A MESFET has a base width W D 300 µm and at 2 GHz with a given

bias is found to have gm D 75 mS, Rg D 1 -, Rd D 5 -, Rs D 3 -, and
Cgs D 0.4 pF. What are the four noise parameters Fmin, Rn, Ropt, and Xopt?
If the base width is changed to W0 D 200 µm and the number of base fingers
remains unchanged, what are the four noise parameters?

8.5 A three-stage amplifier consists of three individual unilateral amplifiers. The
first one (the input stage) has a gain G1 D 10 dB, a noise figure F1 D 1.5,
and an efficiency ,1 D 1%. For stage 2, G2 D 20 dB, F2 D 10, and ,2 D 5%.
For stage 3, G3 D 5 dB, F3 D 15, and ,3 D 50%. What is the overall total
noise figure for the cascaded amplifier? What is the overall total efficiency
for the cascaded amplifier?
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CHAPTER NINE

RF Power Amplifiers

9.1 TRANSISTOR CONFIGURATIONS

Earlier in Chapter 7, class A amplifiers were treated. Some discussion was given
to its application as a power amplifier. While class A amplifiers are used in
power applications where linearity is of primary concern, they do so at the cost
of efficiency. In this chapter a description of power amplifiers that provide higher
efficiency than the class A amplifier. Before describing these in detail, it should
be recalled that a single transistor amplifier can be installed in one of four different
ways: common emitter, common base, common collector (or emitter follower),
and common emitter with emitter degeneracy. Although there are always excep-
tions, the common emitter circuit is used in amplifiers where high voltage gain is
required. The common base amplifier is used when low input impedance and high
output impedance is desired. This is accompanied with a current gain ³ 1. The
emitter follower is used when high-input impedance and low-output impedance
is desired. This is accompanied with a voltage gain ³ 1. The common emitter
with emitter degeneracy is used when improved stability is needed with respect to
differences in the transistor short circuit current gain (ˇ) with some degradation
in the voltage gain. These are illustrated in Fig. 9.1 in which the bias supplies
are not shown. These properties are described in detail in most electronics texts.

The transistor itself can be in one of four different states: saturation, forward
active, cutoff, and reverse active. It is in the forward active region, when for
the bipolar transistor, the base–emitter junction is forward biased and the base–
collector junction is reverse biased. These states are illustrated in Fig. 9.2 for a
npn transistor. An actual bipolar transistor requires a base–emitter voltage greater
than 0.6 to 0.7 volts for it to go into the active state.

The voltage swing of a class A amplifier will remain in the forward active
region throughout its entire cycle. If the signal current is given as follows:

io�ωt� D OIC sinωt �9.1�
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(a) Common
      Emitter

(b) Common
      Base

(c) Emitter
     Follower

(d ) Emitter
     Degeneracy

FIGURE 9.1 (a) Common emitter, (b) common base, (c) common collector or emitter
follower, and (d) common emitter with emitter degeneracy.

VBC

VBE

IV

III II

I
I  –  Saturation

II  –  Forward Active

III  –  Cut Off

IV  –  Reverse Active

FIGURE 9.2 The four bias regions for a npn bipolar transistor.

and the dc bias current is Idc, then the total instantaneous current is

Idc C OIC sinωt �9.2�

For the class A amplifier, OIC < IC, so the entire waveform of the ac signal is
amplified without distortion. The conduction angle is 360°. For the amplifiers
under consideration in this chapter, the transistor(s) will be operating during part
of their cycle in either cutoff or saturation, or both.

9.2 THE CLASS B AMPLIFIER

The class B amplifier is biased so that the transistor is on only during half of
the incoming cycle. The other half of the cycle is amplified by another transistor
so that at the output the full wave is reconstituted. This is illustrated in Fig. 9.3.
While each transistor is clearly operating in a nonlinear mode, the total input wave
is directly replicated at the output. The class B amplifier is therefore classed as
a linear amplifier. In this case the bias current, IC D 0. Since only one of the
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Q2 on

Q1 on

iout

FIGURE 9.3 The reconstituted waveform of a class B amplifier.

transistors is cut off when the total voltage is less than 0, only the positive half
of the wave is amplified. The conduction angle is 180°. The term, class AB
amplifier, is sometimes used to describe the case when the dc bias current is
much smaller than the signal amplitude, OIC, but still greater than 0. In this case,

180° < conduction angle − 360°

9.2.1 Complementary (npn/pnp) Class B Amplifier

Figure 9.4a shows a complementary type of class B amplifier. In this case tran-
sistor Q1 is biased so that it is in the active mode when the input voltage,
vin > 0.7 and cut off when the input signal vin < 0.7. The other half of the signal

–VCC

RL

Q1

Q2

Q3

IQ

Vb

vin

VCC

+

–

(a)

–VCC

RL

R1
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Q1

Q2

Q3

IQ

Vb

vin

VCC

+

–

(b)

–VCC

RL

Q1

Q2

Q4

Q3

IQ

vin

VCC

+

–

(c)

FIGURE 9.4 (a) The basic complementary class B amplifier, (b) class B amplifier with
diode compensation to reduce crossover distortion, and (c) class B amplifier with a VBE

multiplier to reduce crossover distortion.
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is amplified by transistor Q2 when vin < �0.7. When no input signal is present,
no power is drawn from the bias supply through the collectors of Q1 or Q2, so the
class B operation is attractive when low standby power consumption is an impor-
tant consideration. There is a small region of the input signal for which neither
Q1 nor Q2 is on. The resulting output will therefore suffer some distortion.

The npn transistor Q1 in the class B circuit in Fig. 9.4a has its collector
connected to the positive power supply, VCC, and its emitter connected to the
load, RL. The collector of the pnp output transistor, Q2, has its collector connected
to the negative supply voltage VEE, which is often equal to �VCC, and its emitter
also connected to the load, RL. The bases of Q1 and Q2 are connected together
and are driven by the collector of the input transistor Q3. The input transistor,
Q3, has a bias current source, IQ feeding its collector, which also provides base
current for Q1. The input voltage, vin to the input transistor Q3 is what drives
the output stage. It is tempting when doing hand or SPICE calculations to start
with vin. However, because a small change in base voltage of Q3 makes a large
change in the collector voltage of Q3, it is easier to start the analysis at the base
of Q2. This base voltage can be called VX.

When VX D 0, both the output transistors Q1 and Q2 are turned off because the
voltage is less than the 0.7 volts necessary to turn the transistors on. If VX > 0.7,
then Q1 (npn) is on and Q2 (pnp) is off. Current is then drawn from the power
supply, VCC, through Q1 to produce the positive half-wave of the signal in the
load. If VX < 0.7, then Q1 (npn) is off and Q2 (pnp) is on. The voltage VX is
made negative by turning Q3 on thus bringing the collector voltage of Q3 closer
to VEE which is less than zero. An extreme positive or negative input voltage puts
the turned on output transistor (either Q1 or Q2) into saturation. The maximum
positive output voltage is

VC
O D VCC � VCE1�sat� �9.3�

and the maximum negative output voltage is

V�
O D �VEE C VEC2�sat� �9.4�

Typically the value for VCE�sat� ³ 0.2 volts for a bipolar transistor. More design
details are available from a variety of sources, such as [1].

9.2.2 Elimination of the Dead Band

The 1.2 to 1.4 volt range in the base voltages of Q1 and Q2 can be substantially
compensated by addition of two diodes in series between the bases of Q1 and
Q2 (Fig. 9.4b). These diodes are named, respectively, D4 and D5. For purposes
of calculation, let VX stand for the voltage at the collector of the driver transistor
Q3, which is the same as the base voltage for the pnp output transistor Q2. To get
to the base of Q1 from VX now requires going through the two series-connected
diodes “backwards,” from cathode to anode. If VX > 0 but not so high as to turn
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off the diodes D4 and D5, then Q1 is on as described Fig. 9.4a. The voltage
across the load is

VC
O D VX C VD4 C VD3 � VBE1 �9.5�

To make VX < 0, the input voltage to the driver Q3 must be a positive voltage.
The npn output transistor Q1 is turned off, and the excess bias current from IQ
flows through the diodes D4 and D5 and then through the now turned on Q3.
The output voltage is not affected directly by the diodes now:

V�
O D VEB2 C VX �9.6�

Under this condition, the value of VX is actually a negative number. In the middle
when VX D 0, the output voltage across RL is

VC
O D VD4 C VD5 � VBE1 ³ VBE �9.7�

and
V�

O D VBE2 D VBE �9.8�

If the forward diode voltage drops are equal to the base–emitter drops of the
transistors, there is no discontinuity in VO in going from negative to positive
input voltages.

In actual production circuits, tight specifications are needed on diodes D4 and
D5, since they are in the base circuit of the output transistors and consequently
carry much less current than the output power devices. The discrepancy between
the high-power and low-power devices can be alleviated by using the VBE multi-
plier shown in Fig. 9.4c. In this circuit the base–emitter voltage of Q4 sets the
current through R2:

IR2 D VBE4

R2
�9.9�

Assuming the base current of Q4 is negligible, the voltage drop between the
bases of the output transistors Q1 and Q2 is

VCE4 D IR2�R1 C R2� D VBE4

(
R2

R1
C 1
)

D VBE1 C VEB2 �9.10�

When the voltage at the base of Q2 is positive, the load voltage is

VC
O D VX C VBE4

(
R2

R1
C 1
)

� VBE1 �9.11�

and where VX < 0,
V�

O D VEB2 C VX �9.12�
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In the middle where VX D 0 the VC
O and V�

O can be forced to be equal by
adjustment of the resistors R1 and R2,

VO D VBE4

(
R2

R1
C 1
)

� VBE1 D VEB2 �9.13�

In addition to reducing or eliminating the dead band zone, the compensation
circuits in Fig. 9.4b and 9.4c also provide for temperature stability, since a change
in the temperature changes the transistor VBE value. The compensation circuit
and the power transistors vary in the same way with temperature, since they are
physically close together.

Another aspect that deserves attention is the actual value of the current source,
IQ. Since this supplies the base current for the npn output transistor Q1, IQ must
be large enough to not “starve” Q1 when it is drawing the maximum current
through its collector. This means that IQ ½ IC1/ˇ1.

9.2.3 The Composite pnp Transistor

One of the primary problems in using this type of class B amplifier is the
requirement for obtaining two equivalent complementary transistors. The problem
fundamentally arises because of the greater mobility of electrons by over a 3 : 1
factor over that of holes in silicon. The symmetry of the gain in this circuit
depends on the two output transistors having the same short circuit base to
collector current gain, ˇ D ic/ib. When it is not possible to obtain a high ˇ pnp
transistor, it is sometimes possible to use a composite transistor connection. A
high-power npn transistor, Q1, is connected to a low-power low ˇ pnp transistor,
Q2, as shown in Fig. 9.5. Normally the base–emitter junctions of the composite
and single pnp transistor are forward biased so that the Shockley diode equation
may be used to describe the bias currents. For Q2 in the composite circuit,

IC2 D �ISe
qVEB/kT �9.14�

Q2
Q1B

E

C

IB

IC1

IC

IE

B

E

C

IB

IC

IE

=

FIGURE 9.5 A composite connection for a pnp transistor.
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The collector current for Q1 in the composite circuit is the same as the collector
current for the single pnp transistor:

IC D �ˇ1 C 1�IC2 D ��ˇ1 C 1�ISe
VBE/kT �9.15�

The composite circuit has the polarity of a pnp transistor with the gain of an npn
transistor.

9.2.4 Small Signal Analysis

The three fundamental parameters that characterize an amplifier are its voltage
gain, Av, input resistance, Rin, and output resistance, Rout. In the circuit shown
in Fig. 9.4a, neither Q1 nor Q2 are on simultaneously. If Q1 is on, Q2 is an
open circuit and need not be considered as part of the ac analysis. A small signal
hybrid � model (Fig. 9.6) for a bipolar transistor consists of a base resistance,
rb, base–emitter resistance, r�, collector–emitter resistance, ro, transconductance,
gm, and short circuit current gain ˇ D gmr�. There are in addition high-frequency
effects caused by reactive parasitic elements within the device. Since the voltage
gain of an emitter follower is ³ 1, the voltage gain of the Q3 and Q1 combina-
tion is

Av D �gm3RL�eff� �9.16�

The effective load resistance RL�eff� seen by the first transistor, Q3, is the same
as the input resistance of the emitter follower circuit Q1. Circuit analysis of the
low-frequency transistor hybrid model would give (Appendix F)

RL�eff� D r�1 C rb1 C �ˇ1 C 1��ro1jjRL� �9.17�

³ ˇ1RL �9.18�

rex

rcrb

rp rοgmVp CcsCp

C  

rµ

µ

FIGURE 9.6 The small signal hybrid � model of a bipolar transistor.
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The voltage gain is then found by substitution:

AC
v D �gm3[r�1 C rb1 C �ˇ1 C 1��ro1jjRL�] �9.19�

³ �gm3ˇ1RL �9.20�

The low-frequency input resistance to the actual class B amplifier is given by
RL�eff� in Eq. (9.17), and the output resistance is

Rout D r� C Rbb C rb
1 C ˇ

�9.21�

Thus the input resistance is high and the output resistance is low for a class B
amplifier, which enables it to drive a low-impedance load with high efficiency.

9.2.5 All npn Class B Amplifier

The complementary class B amplifier shown in Fig. 9.4 needs to have symmet-
rical npn and pnp devices. In addition this circuit also requires complementary
power supplies. These two problems can be alleviated by using the totem pole or
all npn transistor class B amplifier. This circuit requires only one power supply,
and it has identical npn transistors that amplify both the positive and negative
halves of the signal. However, it requires that the two transistors operate with an
input phase differential of 180°. This circuit is illustrated in Fig. 9.7. Clearly, the
cost of the all npn transistor amplifier is the added requirement of two center-
tapped transformers. These are necessary to obtain 180° phase difference between
Q1 and Q2. The center tapped transformer also provides dc isolation for the
load. When the input voltage is positive, Q1 is on and Q2 is off. When the
input voltage is negative, the input transformer induces a positive voltage at the
“undotted” secondary winding which turns Q2 on. The output of Q2 will induce
on the output transformer a positive voltage on the “undotted” terminal and a
negative voltage on the “dotted” terminal. The negative input voltage swing is
thus replicated as a negative voltage swing at the output. The transformer turns

v in VBB VCC

RL

R 'LC

Filter

L

Q1

Q2 1 : n

–

+

FIGURE 9.7 The all npn class B amplifier.
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ratio can be used for impedance matching. The output filter is used to filter out
any harmonics caused by crossover or other sources of distortion. The filter is
not necessary to achieve class B operation, but it can be helpful.

9.2.6 Class B Amplifier Efficiency

The maximum efficiency of a class B amplifier is found by finding the ratio of the
output power delivered to the load to the required dc power from the bias voltage
supply. In determining efficiency in this way, power losses caused by nonzero
base currents and crossover distortion compensation circuits used in Fig. 9.4b
and 9.4c are neglected. Furthermore the power efficiency rather than the power
added efficiency is calculated so as to form a basis for comparison for alternative
circuits. It is sufficient to do the calculation during the part of the cycle when
Q1 is on and Q2 is off. The load resistance in Fig. 9.7 is transformed through to
the primary side of the output transformer, loading the transistors with a value
of RL.

The magnitude of the collector current that flows into RL is OIC. The ac
current is

io�ωt� D OIC sin�ωt� �9.22�

and the voltage is
vo�ωt� D OICRL sin�ωt� �9.23�

Since the collector–base voltage must remain positive to avoid the danger of
burning out the transistor, OVC D OICRL 	 VCC. The maximum allowable output
power delivered to the load is

Po D
OV2

C

2RL
�9.24�

Now a determination of the dc current supplied by the bias supply is needed.
The magnitude of the current delivered by the bias supply to the load by Q1 is

iBB1 D OIC sin�ωt�, 0 < ωt < � �9.25�

and for Q2,
iBB2 D �OIC sin�ωt�, � < ωt < 2� �9.26�

The total current is then OICj sin�ωt�j, which is shown in Fig. 9.8. The dc current
from the bias source(s) is found by finding the average current:

Idc D 1

T

∫ T/2

0

OIC1 sinωtdt

D �
OIC1

ωT
cosωt

∣∣∣∣
T/2

0
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Idc

IC

∧

FIGURE 9.8 Waveform for finding the average dc current from the power supply.

D �
OIC1

�2�/T�T

[
cos
(

2�

T

T

2

)
� 1
] ∣∣∣∣

T/2

0

D �
OIC1

2�
[�1 � 1] �9.27�

Idc D
OIC1

�
D 1

�

VO

RL
�9.28�

The power drawn from both of the power supplies by both of the output transis-
tors is

Psupply D 2VCCIdc D 2

�

VCC

RL
Ð VO �9.29�

Thus the output power is proportional to VO, and is the average power drawn
from the power supply. The power delivered to the load is

PL D jVOj2
2RL

�9.30�

The efficiency is the ratio of these latter two values:

� D PL

Psupply
D jVOj2

2RL

�

2

RL

VCCVO
�9.31�

� D �

4

VO

VCC
�9.32�

The maximum output power occurs when the output voltage is VCC � VCE�sat�:

PL�max� D 1

2

�VCC � VCE�sat��2

RL
�9.33�

�max D �

4

VCC � VCE�sat�

VCC
³ 78.5% �9.34�

This efficiency for the class B amplifier should be compared with the maximum
efficiency of a class A amplifier, where �max D 25% when the bias to the collector
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is supplied through a resistor and �max D 50% when the bias to the collector is
supplied through an RF choke.

9.3 THE CLASS C AMPLIFIER

The class C amplifier is useful for providing a high-power continuous wave (CW)
or frequency modulation (FM) output. When it is used in amplitude modulation
schemes, the output variation is done by varying the bias supply. There are
several characteristics that distinguish the class C amplifier from the class A or
B amplifiers. First of all it is biased so that the transistor conduction angle is
<180°. Consequently the class C amplifier is clearly nonlinear in that it does not
directly replicate the input signal like the class A and B amplifiers do (at least
in principle). The class A amplifier requires one transistor, the class B amplifier
requires two transistors, and the class C amplifier uses one transistor. Topolog-
ically it looks similar to the class A except for the dc bias levels. It was noted
that in the class B amplifier, an output filter is used optionally to help clean up
the output signal. In the class C amplifier, such a tuned output is necessary in
order to recover the sine wave. Finally, class C operation is capable of higher
efficiency than either of the previous two classes, so for the appropriate signal
types they become very attractive as power amplifiers.

The class C amplifier shown in Fig. 9.9 gives the output circuit for a power
bipolar transistor (BJT) with the required tuned circuit. An N-channel enhance-
ment-mode metal oxide semiconductor field effect transistor (MOSFET) can be
used in place of the BJT. The Q of the tuned circuit will determine the bandwidth
of the amplifier. The large inductance RF coil in the collector voltage supply
ensures that only dc current flows there. During that part of the input cycle when
the transistor is on, the bias supply current flows through the transistor and the
output voltage is approximately 90% of VCC. When the transistor is off, the
supply current flows into the blocking capacitor. The current waveform at the
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RFC

RFC
Lo

RL

Vbb

CBRG

Vcc

–

–

+

+

VGsin   tω
∧

–

+

FIGURE 9.9 A simple class C amplifier where VBB determines the conduction angle.



THE CLASS C AMPLIFIER 179

idc
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ψ

IC
∧

FIGURE 9.10 The collector current waveform for class C operation.

collector can be modeled as the waveform shown in Fig. 9.10:

iC�ωt� D
{
IC � OIC sin�ωt�, � 	 ωt 	 C 
0, otherwise

�9.35�

For class C operation, the magnitude of the quiescent current is jICj < OIC. The
point where quiescent current equals the total current is

iC

(
3�

2
š  

)
D 0 D IC � OIC sin

(
3�

2
š  

)

0 D IC C OIC cos �9.36�

This determines the value of the quiescent current in terms of the conduction
angle 2 :

IC D �OIC cos �9.37�

The dc current from the power supply is the average of the total collector
current iC�"�:

Idc D 1

2�

∫ 2�

0
iC�"�d"

D 1

2�

∫ �3�/2�C 

�3�/2�� 
�IC � OIC sin "�d"

D 1

�
� IC C OIC sin � �9.38�
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Evaluation of the integral makes use of the trigonometric identity, cos�˛š ˇ� D
cos˛ cosˇ Ý sin˛ sin ˇ. From Eq. (9.36) the dc current is

Idc D
OIC

�
�sin �  cos � �9.39�

This gives the dc current from the power supply in terms of OIC and the conduction
angle  , so power supplied by the source is

Pin D VCCIdc �9.40�

The ac component of the current flows through the blocking capacitor and into
the load. Harmonic current components are shorted to ground by the tuned circuit.
The magnitude of the output voltage at the fundamental frequency is found using
the Fourier method:

OVO D � 1

�

∫ 2�

0
iC�"�RL sin "d" �9.41�

D �RL

�

∫ �3�/2�C 

�3�/2�� 
�IC � OIC sin "� sin "d"

D RL

�



2IC�� cos "�

∣∣∣∣∣

�3�/2�C 

�3�/2�� 
C

OIC

2

(
" � sin 2"

2

) ∣∣∣∣∣

�3�/2�C 

�3�/2�� 



 �9.42�

D RL

�

[
2IC sin C

OIC

2

{
�2 �� 1

2
[sin�3� C 2 �� sin�3� � 2 �]

}]

�9.43�
The quiescent current term, IC, is replaced by Eq. (9.37) again, and the trigono-
metric identity for sin ˛ cos ˇ is used:

OVO D RLOIC

�

[
� sin 2 C  � 1

4
�� sin 2 � sin 2 �

]
�9.44�

OVO D RLOIC

2�
�2 � sin 2 � �9.45�

The ac output power delivered to the load is

PO D
OV2

O

2RL
�9.46�

The efficiency (neglecting the input power) is simply the ratio of the output
ac power to the input dc power. The maximum output power occurs when OVO D
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VCC. The maximum efficiency is then [2]

�max D POmax

Pdc
D
(
V2

CC

2RL

)(
1

VCCIdc

)
�9.47�

D 2 � sin 2 

4�sin �  cos �
�9.48�

A plot of this expression (Fig. 9.11) clearly illustrates the efficiency in terms of
the conduction angle for class A, B, and C amplifiers. The increased efficiency
of the class C amplifier is a result of the collector current flowing for less than
a half-cycle. When the collector current is maximum, the collector voltage is
minimum, so the power dissipation is inherently lower than class B or class A
operation.

Another important parameter for the power amplifier is the ratio of the maxi-
mum average output power where OVO D VCC, to the peak instantaneous output
power:

r D POmax

VCmaxiCmax
�9.49�
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FIGURE 9.11 Power efficiency for class A, B, and C amplifiers.
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The maximum average output power occurs when OVO D VCC and is given by

POmax D V2
CC

2RL
�9.50�

D
OI2

CR
2
L

4�2

�2 � sin 2 �2

2RL
�9.51�

The maximum voltage at the collector is the output voltage ac voltage swing plus
the bias voltage:

VCmax D 2VCC D
OICRL

2�
�2 � sin 2 � �9.52�

The maximum current is

iCmax D IC C OIC D �OIC cos C OIC. �9.53�

The ratio of the maximum average power to the peak power from (9.49) is [2]

r D 2 � sin 2 

8��1 � cos �
�9.54�

A plot of this ratio as a function of conduction angle in Fig. 9.12 shows that
maximum efficiency of the class C amplifier occurs when there is no output

Class C B AB

0 45 90 270 315 360135 180 225

Conduction Angle

0.000

0.025

0.050

0.075

0.100

0.125

0.150

P
ow

er
 R

at
io

, r

FIGURE 9.12 Maximum output power to the peak power ratio.
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power. Nevertheless, Figs. 9.11 and 9.12 indicate the trade-offs in choosing the
appropriate conduction angle for class C operation.

9.4 CLASS C INPUT BIAS VOLTAGE

Device SPICE models for RF power transistors are relatively rare. Manufacturers
often do supply optimum generator and load impedances that have been found to
provide the rated output power for the designated frequency. The circuit shown
in Fig. 9.9 is a generic example of a 900 MHz amplifier with a bandwidth of
18 MHz in which the manufacturer has determined empirically the optimum ZG

and ZL. The Q of the output tuned circuit then is

Q D f0

f
�9.55�

The Q determines the inductance and capacitance of the output resonant circuit:

C D Q

ω0RL
�9.56�

L D RL

ω0Q
�9.57�

Furthermore, if the desired output power is POmax, the collector voltage source,
VCC, and the maximum collector current is icmax, then the average to peak power
ratio, r, is found from Eqs. (9.49) and (9.54). Iterative solution of Eq. (9.54)
gives the value for the conduction angle,  . This will then allow for estimation
of the maximum efficiency from Eq. (9.48). Alternatively, for a given desired
efficiency, the conduction angle,  , can be obtained by iterative solution of
Eq. (9.48). Numerically it is useful to take the natural logarithm of Eq. (9.48)
before searching iteratively for a solution:

ln �max D ln�2 � sin 2 �� ln[4�sin �  cos �] �9.58�

The efficiency expression can be modified to account for the non zero saturation
collector–emitter voltage.

�max D 2 � sin 2 

4�sin �  cos �

(
VCC � Vsat

VCC

)
�9.59�

To achieve the desired conduction angle, the emitter–base junction must be biased
so that the transistor will be in conduction for the desired portion of the input
signal. Collector current flows when VBE > 0.7. First it is necessary to deter-
mine the required generator voltage amplitude, OVG, that will produce the desired
maximum output current. This is illustrated in Fig. 9.13 where the input ac signal
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VBE –VBB VG

∧

ψ

FIGURE 9.13 Conduction angle dependence on VBB.

is superimposed on the emitter bias voltage. The input voltage commences to rise
above the turn on voltage of the transistor at

OVBB D VBE � OVG cos �9.60�

In this way the base bias voltage is determined.

9.5 THE CLASS D POWER AMPLIFIER

Inspection of the efficiency and output power of a class C amplifier reveals that
100% efficiency only occurs when the output power is zero. A modification of
class B operation shown in [3] indicates that judicious choice of bias voltages
and circuit impedances provide a clipped voltage waveform at the collector of the
BJT while, in the optimum case, retaining the half sine wave collector current. In
the limit the clipped waveform becomes a square wave. This is no longer linear,
and thus is distinguished from the class B amplifier.

The class D amplifier shown in Fig. 9.14 superficially looks like a class B
amplifier except for the input side bias. In class D operation the transistors act as

–

+
vin VCC

RL

R 'L

L C

M2

M1

1 : n Filter

FIGURE 9.14 Class D power amplifier.
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near ideal switches that are on half of the time and off half of the time. The input
ideally is excited by a square wave. If the transistor switching time is near zero,
then the maximum drain current flows while the drain–source voltage, VDS D 0.
As a result 100% efficiency is theoretically possible. In practice the switching
speed of a bipolar transistor is not sufficiently fast for square waves above a
few MHz, and the switching speed for field effect transistors is not adequate for
frequencies above a few tens of MHz.

9.6 THE CLASS F POWER AMPLIFIER

“A class F amplifier is characterized by a load network that has resonances at
one or more harmonic frequencies as well as at the carrier frequency” [2, p. 454].
The class F amplifier was one of the early methods used to increase amplifier
efficiency and has attracted some renewed interest recently. The circuit shown
in Fig. 9.15 is a third harmonic peaking amplifier where the shunt resonator is
resonant at the fundamental and the series resonator at the third harmonic. More
details on this and higher-order resonator class F amplifiers are found in [4].
When the transistor is excited by a sinusoidal source, it is on for approximately
half the time and off for half the time. The resulting output current waveform is
converted back to a sine wave by the resonator, L1, C1. The L3, C3 resonator is
not quite transparent to the fundamental frequency, but blocks the third harmonic
energy from getting to the load. The drain or collector voltage, it would seem,
will range from 0 to twice the power supply voltage with an average value of
VCC. The third harmonic voltage on the drain or collector, if it has the appro-
priate amplitude and phase, will tend to make this device voltage more square
in shape. This will make the transistor act more like a switch with the attendant
high efficiency. It is found that maximum “squareness” is achieved if the third
harmonic voltage is 1/9th of the fundamental voltage. This will give a maximum
collector efficiency of 88.4% [2, pp. 454–456].

VCC

CB

L3

L1 C1 RL

C3

FIGURE 9.15 Class F third harmonic peaking power amplifier.
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The Fourier expansion of a square wave with amplitude from C1 to �1 and
period 2� is

4

�

(
sin x C sin 3x

3
C sin 5x

5
C Ð Ð Ð

)

Consequently, to produce a square wave voltage waveform at the transistor
terminal, the load must be a short at even harmonics and large at odd harmonics.
Ordinarily only the fundamental second harmonic and third harmonic impedances
are determined. In the typical class F amplifier shown in Fig. 9.15, the L1C1 tank
circuit is resonant at the output frequency, f0, and the L3C3 tank circuit is reso-
nant at 3f0. It has been pointed out [5] that the blocking capacitor, CB, could be
used to provide a short to ground at 2f0 rather than simply acting as a dc block.

The design of the class F amplifier final stage proceeds by first determining C1

from the desired amplifier bandwidth. The circuit Q is assumed to be determined
solely by the L1, C1, and RL. Thus

Q D ω0C1RL D ω0

ω

or

C1 D 1

RLω
�9.61�

Once C1 is determined, the inductance must be that which resonates the tank
at f0:

L1 D 1

ω2
0C1

�9.62�

At 2f0 the L1C1 tank circuit has negative reactance, and the L3C3 tank circuit
has positive reactance. The capacitances CB and C3 can be set to provide a short
to ground:

� 1

2ω0CB
C 2ω0L3

1 � �2ω0�2L3C3
C 2ω0L1

1 � �2ω0�2L1C1
D 0 �9.63�

On multiplying through Eq. (9.63) by ω0 and recognizing that L3C3 D 1/9ω2
0,

L1C1 D 1/ω2
0, this equation reduces to

0 D � 1

CB
C 2/�9C3�

1 � 4/9
C 2/C1

1 � 4

or
1

CB
D 4

5C3
� 4

3C1
�9.64�

which is the requirement for series resonance at 2f0. In addition, at the funda-
mental frequency, CB and the L3C3 tank circuit can be tuned to provide no
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reactance between the transistor and the load, RL. This eliminates the approxi-
mation that the L3C3 has zero reactance at the fundamental:

0 D � 1

ω0CB
C ω0L3

1 � ω2
0L3C3

�9.65�

CB D 8C3 �9.66�

This value for CB can be substituted back into Eq. (9.64) to give a relationship
between C3 and C1:

C3 D 81

160
C1 �9.67�

In summary, C1 is determined by the bandwidth Eq. (9.61), L1 by Eq. (9.62), C3

from Eq. (9.67), L3 from its requirement to resonate C3 at 3f0, and finally CB

from Eq. (9.66). These equations are slightly different than those given by [5],
but numerically they give very similar results. In addition interstage networks
are presented in [5] that aim at reducing the spread in circuit element values, and
hence this helps make circuit design practical.

Additional odd harmonics can be controlled by adding resonators that make
the collector voltage have a more square shape. In effect an infinite number of odd
harmonic resonators can be added if a */4 transmission line at the fundamental
frequency replaces the lumped element third harmonic resonator (Fig. 9.16). This
of course is useful only in the microwave frequency range where the transmission
line length is not overly long.

At the fundamental the admittance seen by the collector is

Y0
L D Y2

0

�1/RL�C sC1 C �1/sL1�
�9.68�

CB

CB

Z 'L

Z 0 L1 C1R2
RL

R1

VCC

RFC

Vin sin(   t )

λ /4

ω
–

+

FIGURE 9.16 Class F transmission line power amplifier. Here CB D 1 µF, Z0 D 20 -,
C1 D 936.6 pF, L1 D 33.39 pH, RL D 42.37 -, VCC D 24, R1 D 5 k-, R2 D 145 k-.
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The */4 transmission line in effect converts the shunt load to a series load:

Z0
L D Z2

0

RL
C sC1Z

2
0 C Z2

0

sL1
�9.69�

in which

R0
L D Z2

0

RL

L0 D C1Z
2
0

C0 D Z2
0

sL1

At the second harmonic, the transmission line is */2 and the resonator �L,C�
is a short, so Z0

L�2ω0� D 0. The effective load for all the harmonics can easily
found at each of the harmonics:

Z0
L�2ω0� D 0, */2

Z0
L�3ω0� D 1, 3*/4

Z0
L�4ω0� D 0, *

Z0
L�5ω0� D 1, 5*/4

...

While this provides open and short circuits to the collector, it is not obvious
that these impedances, which act in parallel with the output impedance of the
transistor, will provide the necessary amplitude and phase that would produce a
square wave at the collector.

An example of a class F amplifier design using the idealistic default SPICE
bipolar transistor model illustrates what these waveforms might look like. As in
the class C amplifier example, assume that the center frequency is 900 MHz, that
the bandwidth is 18 MHz, and consequently that the circuit Q D 50. Furthermore,
as in the class C amplifier example, assume that the collector looks into a load
resistance of R0

L D 9.441 - and that Z0 D 20 - is chosen. For the series resonant
effective load, the load at the end of the transmission line can be found:

R0
L D Z2

0

RL
D 42.37 -

Q D 50 D ω0L0

R0
L

or
L0 D 374.6 nH
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and

C0 D 1

ω2
0L

0 D 83.47 fF

L D Z2
0C

0 D 33.39 pH

C D L0

Z2
0

D 0.9366 nH

Even with all the assumptions regarding the transistor and lossless, dispersion-
less elements, the results are still not pretty. The transistor is biased to provide
0.8 volts at the base (Fig. 9.16). When the ac input voltage amplitude at the base
of the transistor is 0.11 volts, the resulting collector current is shown in Fig. 9.17.
This is hardly a half sine wave as one might expect from an over simplified anal-
ysis. The graph in Fig. 9.18 shows at least the rudiments of a square wave on the
collector. The places where the voltage exceeds 2VCC is a result of constructive
interference of various traveling waves. Nevertheless, an average output power
on the load, RL, of approximately 5.5 W is achieved as seen from the instanta-
neous output power in Fig. 9.19. The power-added efficiency for this circuit is
found from the SPICE analysis. The dc input power is 5.656 W, and the ac input
power is 2.363 mW. The power-added efficiency is then

� D Pout � Pin�ac

Pdc
�9.70�

D 97.4%
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FIGURE 9.17 Class F collector current when the ac VG D 0.11 volts.
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FIGURE 9.18 Class F collector voltage when the ac VG D 0.11 volts.
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FIGURE 9.19 Class F collector load power when the ac VG D 0.11 volts.
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FIGURE 9.20 Class F collector load power as a function of VG.

The bad news is that the output power is very sensitive to the amplitude of the
ac input voltage, VG, as demonstrated in Fig. 9.20. A more extensive harmonic
balance analysis of a physics based model for a metal semiconductor field effect
transistor (MESFET) showed that a power added efficiency of 75% can be
achieved at 5 GHz [6].

9.7 FEED-FORWARD AMPLIFIERS

The concept of feed-forward error control was conceived in a patent disclosure
by Harold S. Black in 1924 [7]. This was several years prior to his more famous
concept of feedback error control. An historical perspective on the feed-forward
idea is found in [8]. The feedback approach is an attempt to correct an error after
it has occurred. A 180° phase difference in the forward and reverse paths in a
feedback system can cause unwanted oscillations. In contrast, the feed-forward
design is based on cancellation of amplifier errors in the same time frame in
which they occur. Signals are handled by wideband analog circuits, so multiple
carriers in a signal can be controlled simultaneously. Feed-forward amplifiers are
inherently stable, but this comes at the price of a somewhat more complicated
circuit. Consequently feed-forward circuitry is sensitive to changes in ambient
temperature, input power level, and supply voltage variation. Nevertheless, feed-
forward offers many advantages that have brought it increased interest.

The major source of distortion, such as harmonics, intermodulation distortion,
and noise, in a transmitter is the power amplifier. This distortion can be greatly
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FIGURE 9.21 Linear feed-forward amplifier.

reduced using feed-forward design. The basic idea is illustrated in Fig. 9.21,
where it is seen that the circuit consists basically of two loops. The first one
contains the main power amplifier, and the second loop contains the error ampli-
fier. In the first loop, a sample of the input signal is coupled through “coup1”
reducing the signal by the coupling factor �C1 dB. This goes through the delay
line with insertion loss of �D1 dB into the comparator coupler “coup3.” At
the same time the signal passing through the main amplifier with gain G1 dB
is sampled by coupler “coup2” reducing the signal by �C2 dB, the attenuator
by �L1 dB, and the coupler “coup3” by �C3 dB. The delay line is adjusted
to compensate for the time delay in the main amplifier as well as the passive
components so that two input signals for “coup3” are 180° out of phase but
synchronized in time. The amplitude of the input signal when it arrives at the
error amplifier is

�C1 � D1 � [G1 � C2 � L1 � C3] �9.71�

which should be adjusted to be zero. What remains is the distortion and noise
added by the main amplifier which is in turn amplified by the error amplifier by
G2 dB. At the same time the signal from the main amplifier with its distortion
and noise is attenuated by D2 dB in the second loop delay line. The second
delay line is adjusted to compensate for the time delay in the error amplifier. The
relative phase and amplitude of the input signals to “coup4” are adjusted so that
the distortion terms cancel. The output distortion amplitude

�D2 � [�C2 � L1 � C3 CG2 �C4] �9.72�

should be zero for complete cancellation to occur.
The error amplifier will also add distortion and noise to its input signal so that

perfect error correction will not occur. Nevertheless, a dramatic improvement
is possible, since the error amplifier will be operating on a smaller signal (only
distortion) that will likely lie in the linear range of the amplifier. Further improve-
ment may be accomplished by treating the entire amplifier in Fig. 9.21 as the
main amplifier and adding another error amplifier with its associated circuitry [8].
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A typical implementation of a feed-forward system is described in [9] for an
amplifier operating in the frequency range of 2.1 to 2.3 GHz with an RF gain
of 30 dB, and an output power of 1.25 W. This amplifier had intermodulation
products at least 50 dB below the carrier level. Their design used a 6 dB coupler
for “coup1,” a 13 dB coupler for “coup2,” a 10 dB coupler for “coup3,” and an
8 dB coupler for “coup4.” In some designs the comparator coupler, “coup3,” is
replaced by a power combiner.

The directional coupler itself can be implemented using microstrip or stripline
coupled lines at higher frequencies [10] or by a transmission line transformer.
A variety of feed forward designs have been implemented, some using digital
techniques [11,12].

PROBLEMS

9.1 If the crossover discontinuity is neglected, is a class B amplifier considered
a linear amplifier or a nonlinear amplifier? Explain your answer.

9.2 A class B amplifier such as that shown in Fig. 9.7 is biased with an 18 volt
power supply, but the maximum voltage amplitude across each transistor
is 16 volts. The remaining 2 volts is dissipated as loss in the output trans-
former. If the amplifier is designed to deliver 12 W of RF power, find the
following:
(a) The maximum RF collector current
(b) The total dc current from the power supply
(c) The collector efficiency of this amplifier.

9.3 The class C amplifier shown in Fig. 9.9 has a conduction angle of 60°. It is
designed to deliver 75 W of RF output power. The saturated collector–emitter
voltage is known to be 1 volt, and the power supply voltage is 26 volts. What
is the maximum peak collector current.
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CHAPTER TEN

Oscillators and Harmonic
Generators

10.1 OSCILLATOR FUNDAMENTALS

An oscillator is a circuit that converts energy from a power source (usually a
dc power source) to ac energy. In order to produce a self-sustaining oscillation,
there necessarily must be feedback from the output to the input, sufficient gain to
overcome losses in the feedback path, and a resonator. There are number of ways
to classify oscillator circuits, one of those being the distinction between one-port
and two-port oscillators. The one-port oscillator has a load and resonator with
a negative resistance at the same port, while the two-port oscillator is loaded in
some way at the two ports. In either case there must be a feedback path, although,
in the case of the one-port, this path might be internal to the device itself.

An amplifier with positive feedback is shown in Fig. 10.1. The output voltage
of this amplifier is

Vo D aVi C aˇVo

which gives the closed loop gain

A D Vo

Vi
D a

1 � aˇ �10.1�

The positive feedback allows an increasing output voltage to feedback to the
input side until the point is reached where

aˇ D 1 �10.2�

This is called the Barkhausen criterion for oscillation and is often described
in terms of its magnitude and phase separately. Hence oscillation can occur

195
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FIGURE 10.1 Circuit with positive feedback.
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FIGURE 10.2 Four possible ways to connect the amplifier and feedback circuit. The
composite circuit is obtained by adding the designated two-port parameters. The units for
“gain” are as shown.
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when jaˇj D 1 and 6 aˇ D 360°. An alternate way of determining conditions for
oscillation is determining when the value k < 1 for the stability circle as described
in Chapter 7. Still a third way will be considered later in Section 10.4.

10.2 FEEDBACK THEORY

The active amplifier part and the passive feedback part of the oscillator can
be considered as a pair of two two-port circuits. Usually the connection of these
two-ports occurs in four different ways: series–series, shunt–shunt, series–shunt,
and shunt–series (Fig. 10.2). A linear analysis of the combination of these two
two-ports begins by determining what type of connection exists between them. If,
for example, they are connected in series–series, then the best way to describe
each of the two-ports is in terms of their z parameters. A description of the
composite of the two two-ports is found by simply adding the z parameters of the
two circuits together. Thus, if [za] and [zf] represent the amplifier and feedback
circuits connected in series–series, then the composite circuit is described by
[zc] D [za] C [zf]. The form of the feedback circuit itself can take a wide range
of forms, but being a linear circuit, it can always be reduced to a set of z, y, h or
g parameters, any one of which can be represented by k for the present. The term
that feeds back to the input of the amplifier is k12f. The k12f term, though small,
is a significant part of the small incoming signal, so it cannot be neglected. The
open loop gain, a, of the composite circuit is found by setting k12f D 0. Then,
using the normal circuit analysis, the open loop gain is determined. The closed
loop gain is found by including k12f in the closed loop gain given by Eq. (10.1).
The Barkhausen criterion for oscillation is satisfied when ak12f D aˇ D 1.

10.3 TWO-PORT OSCILLATORS WITH EXTERNAL FEEDBACK

There are a wide variety of two-port oscillator circuits that can be designed.
The variety of oscillators results from the different ways the feedback circuit
is connected to the amplifier and the variety of feedback circuits themselves.
Five of these shown in Fig. 10.3 are known as the Colpitts, Hartley, Clapp-
Gouriet [1,2], Armstrong, and Vackar [2,3] oscillators. The Pierce oscillator is
obtained by replacing the inductor in the Colpitts circuit with a crystal that acts
like a high Q inductor. As shown the first four of these feedback circuits are
drawn in a series–series connection, while the Vackar is drawn as a series–shunt
configuration. Of course a wide variety of connections and feedback circuits are
possible. In each of these oscillators, there is a relatively large amount of energy
stored in the resonant reactive circuit. If not too much is dissipated in the load,
sustained oscillations are possible.

The Colpitts is generally favored over that of the Hartley, because the Colpitts
circuit capacitors usually have higher Q than inductors at RF frequencies and
come in a wider selection of types and sizes. In addition the inductances in the
Hartley circuit can provide a means to generate spurious frequencies because it
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FIGURE 10.3 Oscillator types: (a) Colpitts, (b) Hartley, (c) Clapp-Gouriet, (d)
Armstrong, and (e) Vackar.

is possible to resonate the inductors with parasitic device capacitances. Because
the first element in the Colpitts circuit is a shunt capacitor, it can be said to be
a low-pass circuit. For similar reasons the Hartley is a high-pass circuit and the
Clapp-Gouriet is a bandpass circuit. There is an improvement in the frequency
stability of the tapped capacitor circuit over that of a single LC tuned circuit [1].
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In a voltage-controlled oscillator application, it is often convenient to vary the
capacitance to change the frequency. This can be done using a reverse biased
varactor diode as the capacitor. If the capacitance shown in Fig. 10.4a changes
because of say a temperature shift, the frequency will change by

df

f
D �dC0

2C0
�10.3�

However, the tapped circuit in Fig. 10.4b in which C2 is used for tuning a Colpitts
circuit has a frequency stability given by

df

f
D �C0

C2

dC2

C2
�10.4�

This has an improved stability by the factor of C0/C2. Furthermore, by increasing
C0 so that C1 and C2 are increased by even more while adjusting the inductance
to maintain the same resonant frequency, the stability can be further enhanced.
The Clapp-Gouriet circuit exhibits even better stability than the Colpitts [2].
In this circuit, C1 and C2 are chosen to have large values compared to the
tuning capacitor C3. The minimum transistor transconductance, gm, required for
oscillation for the Clapp-Gouriet circuit increases / ω3/Q. While the Q of a
circuit often rises with frequency, it would not be sufficient to overcome the
cubic change in frequency. For the Vackar circuit, the required minimum gm to
maintain oscillation is / ω/Q. This would tend to provide a slow drop in the
amplitude of the oscillations as the frequency rises [2].

The oscillator is clearly a nonlinear circuit, but nonlinear circuits are difficult to
treat analytically. In the interest of trying to get a design solution, linear analysis is
used. It can be said that a circuit can be treated by small signal linear mathematics
to just prior to it’s breaking into oscillation. In going through the transition
between oscillation and linear gain, the active part of the circuit does not change
appreciably. As a justification for using linear analysis, the previous statement
certainly has some flaws. Nevertheless, linear analysis does give remarkably
close answers. More advanced computer modeling using methods like harmonic
balance will give more accurate results and provide predictions of output power.

L LC0

C1

C2

(a) (b)

FIGURE 10.4 (a) Simple LC resonant circuit and (b) tapped capacitor LC circuit used
in the Colpitts oscillator.
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As an example, consider the Colpitts oscillator in Fig. 10.5. Rather than
drawing it as shown in Fig. 10.3a as a series–series connection, it can be drawn
in a shunt–shunt connection by simply rotating the feedback circuit 180° about
its x-axis. The y parameters for the feedback part are

y11f D sC1 C 1

sL
�10.5�

y22f D sC2 C 1

sL
�10.6�

y12f D �1

sL
�10.7�

The equivalent circuit for the y parameters now may be combined with the
equivalent circuit for the active device (Fig. 10.6). The open loop gain, a, is
found by setting y12f D 0.

vo

vgs
D gm C y12f

�1/RD�C y22f
�10.8�

In the usual feedback amplifier theory described in electronics texts, the y21f term
would be considered negligible, since the forward gain of the feedback circuit
would be very small compared to the amplifier. This cannot be assumed here.

RD

C1

C2

L

FIGURE 10.5 Colpitts oscillator as a shunt–shunt connection.
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FIGURE 10.6 Equivalent circuit of the Colpitts oscillator.
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The open loop gain, a, for the shunt–shunt configuration is

a D vo

ii
D vo

�vgsy11f
D � gm C y12f

y11f[�1/RD�C y22f]
�10.9�

The negative sign introduced in getting ii is needed to make the current go north
rather than south as made necessary by the usual sign convention. Finally, by the
Barkhausen criterion, oscillation occurs when ˇa D 1:

1 D ay12f D y12f�gm C y12f�

y11f[�1/RD�C y22f]
�10.10�

Making the appropriate substitutions from Eqs. (10.5) through (10.7) results in
the following:

�
(
gm � 1

sL

)
D sL

[(
sC1 C 1

sL

)
1

RD
C
(
sC1 C 1

sL

)(
sC2 C 1

sL

)]
�10.11�

Both the real and imaginary parts of this equation must be equal on both sides.
Since s D jω0 at the oscillation frequency, all even powers of s are real and all
odd powers of s are imaginary. Since gm in Eq. (10.11) is associated with the
real part of the equation, the imaginary part should be considered first:

1

sL
D sL

(
s2C1C2 C C1

L
C C2

L
C 1

s2L2

)
�10.12�

When this is solved, the oscillation frequency is found to be

ω0 D
√
C1 C C2

LC1C2
�10.13�

Solving the real part of Eq. (10.11) with the now known value for ω0 gives
the required value for gm:

gm D C1

RDC2
�10.14�

The value for gm found in Eq. (10.14) is the minimum transconductance the
transistor must have in order to produce oscillations. The small signal analysis
is sufficient to determine conditions for oscillation assuming the frequency of
oscillation does not change with current amplitude in the active device. The large
signal nonlinear analysis would be required to determine the precise frequency
of oscillation, the output power, the harmonic content of the oscillation, and the
conditions for minimum noise.
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An alternative way of looking at his example involves simply writing down
the node voltage circuit equations and solving them. The determinate for the two
nodal equations is zero, since there is no input signal:

 D

∣∣∣∣∣∣∣

sC1 C 1

sL

�1

sL
�1

sL
C gm sC2 C 1

sL
C 1

RD

∣∣∣∣∣∣∣
�10.15�

This gives the same equation as Eq. (10.11) and of course the same solution.
Solving nodal equations can become complicated when there are several ampli-
fying stages involved or when the feedback circuit is complicated. The method
shown here based on the theory developed for feedback amplifiers can be used
in a wide variety of circuits.

10.4 PRACTICAL OSCILLATOR EXAMPLE

The Hartley oscillator shown in Fig. 10.7 is one of several possible versions for
this circuit [4]. In this circuit the actual load resistance is RL D 50 �. Directly
loading the transistor with this size resistance would cause the circuit to cease
to oscillate. Hence the transformer is used to provide an effective load to the
transistor of

R D RL

(
n2

n3

)2

�10.16�

and at the same time L2 acts as one of the tapped inductors. By solving the
network in Fig. 10.7b in the same way describe for the Colpitts oscillator, the

C
C

1 2

Vg

+

–

L1

L1

L3L2

gmVg

VDD

L2 R

RL

(b)(a)

FIGURE 10.7 (a) Practical Hartley oscillator and (b) equivalent circuit.
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frequency of oscillation and minimum transconductance can be found:

ω0 D 1p
C�L1 C L2�

�10.17�

gm D L2

L1R
�10.18�

For a 10 MHz oscillator biased with VDD D 15 V, the inductances, L1 and L2 are
chosen to be both equal to 1 µH. The capacitance from Eq. (10.17) is 126.6 pF. If
the minimum device transconductance for a 2N3819 JFET is 3.5 mS, then from
Eq. (10.18), R > 285 �. Choosing the resistance R to be 300 � will require the
transformer turns ratio to be

n2

n3
D
√
R

RL
D 2.45

and

L3 D L2

(
n3

n2

)2

D 1 Ð
(

1

2.45

)2

D 0.1667 !H

These circuit values can be put into SPICE to check for the oscillation.
However, SPICE will give zero output when there is zero input. Somehow a
transient must be used to start the circuit oscillating. If the circuit is designed
correctly, oscillations will be self-sustaining after the initial transient. One way
to initiate a start up transient is to prevent SPICE from setting up the dc bias
voltages prior to doing a time domain analysis. This is done by using the SKIPBP
(skip bias point) or UIC (use initial conditions) command in the transient state-
ment. In addition it may be helpful to impose an initial voltage condition on a
capacitance or initial current condition on an inductance. A second approach is
to use the PWL (piecewise linear) transient voltage somewhere in the circuit to
impose a short pulse at t D 0 which forever after is turned off. The first approach
is illustrated in the SPICE net list for the Hartley oscillator.

Hartley Oscillator Example. 10 MHz, RL = 50.
* This will take some time.
L1 1 16 1u
VDC 16 0 DC -1.5
C 1 2 126.7p IC=-15
L2 3 2 1u
L3 4 0 .1667u
K23 L2 L3 .9999 ;Unity coupling not allowed
RL 4 0 50.
J1 2 1 0 J2N3819
.LIB EVAL.LIB
VDD 3 0 15
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FIGURE 10.8 10 MHz Hartley oscillator time domain response.

*.TRAN <print step> <final time> <no print>
>step ceiling> SKIPBP
.TRAN 2n 3uS 0 7nS SKIPBP
.PROBE
.OP
.END

The result of the circuit analysis in Fig. 10.8 shows the oscillation building
up to a steady state output after many oscillation periods.

10.5 MINIMUM REQUIREMENTS OF THE REFLECTION COEFFICIENT

The two-port oscillator has two basic configurations: (1) a common source FET
that uses an external resonator feedback from drain to gate and (2) a common
gate FET that produces a negative resistance. In both of these the dc bias and the
external circuit determine the oscillation conditions. When a load is connected
to an oscillator circuit and the bias voltage is applied, noise in the circuit or start
up transients excites the resonator at a variety of frequencies. However, only the
resonant frequency is supported and sent back to the device negative resistance.
This in turn is amplified and so the oscillation begins building up.

Negative resistance is merely a way of describing a power source. Ohm’s law
says that the resistance of a circuit is the ratio of the voltage applied to the current
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flowing out of the positive terminal of the voltage source. If the current flows
back into the positive terminal of the voltage source, then of course it is attached
to a negative resistance. The reflection coefficient of a load, ZL, attached to a
lossless transmission line with characteristic impedance, Z0, is

 D ZL � Z0

ZL C Z0
�10.19�

Just like viewing yourself in the mirror, the wave reflected off a positive
resistance load would be smaller than the incident wave. It is not expected that
an image in the mirror would be brighter than the incident light. However, if the
<fZLg < 0, then it would be possible for  in Eq. (10.19) to be greater than 1.
The “mirror” is indeed capable of reflecting a brighter light than was incident
on it. This method is sometimes used to provide amplifier gain, but it can also
produce oscillations when the denominator of Eq. (10.19) approaches 0.

The conditions for oscillation then for the two-port in Fig. 10.9 are

k < 1 �10.20�

and

ZG D �Zi �10.21�

where k is the amplifier stability factor and Zi is the input impedance of the
two-port when it is terminated by ZL. The expression for oscillation in terms of
reflection coefficients is easily found by first determining the expressions for i

and G:

i D Ri � Z0 C jXi

Ri C Z0 C jXi
�10.22�

G D RG � Z0 C jXG

RG C Z0 C jXG
�10.23�

If ZG is now replaced by �Zi in Eq. (10.23),

G D �Ri � Z0 � jXi

�Ri C Z0 � jXi
D 1

i
�10.24�

Zi Zo

ΓG Γi Γo ΓL

ZG ZL
[S ]

FIGURE 10.9 Doubly terminated two-port circuit.
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Thus Eqs. (10.21) and (10.24) are equivalent conditions for oscillation. In any
case, the stability factor, k, for the composite circuit with feedback must be less
than one to make the circuit unstable and thus capable of oscillation.

An equivalent condition for the load port may be found from Eq. (10.24).
From Eq. (7.17) in Chapter 7, the input reflection coefficient for a terminated
two-port was found to be

i D S11 C S12S21L

1 � S22L

D S11 �L

1 � S22L
D 1

G
�10.25�

where  is the determinate of the S-parameter matrix. Solving the right-hand
side of Eq. (10.25) for L gives

L D 1 � S11G

S12 �G
�10.26�

But from Eq. (7.21),

o D S22 C S12S21G

1 � S11G

D S22 �G

1 � S11G
D 1

L
�10.27�

The last equality results from Eq. (10.26). The implication is that if the conditions
for oscillation exists at one port, they also necessarily exist at the other port.

10.6 COMMON GATE (BASE) OSCILLATORS

A common gate configuration is often advantageous for oscillators because they
have a large intrinsic reverse gain (S12g) that provides the necessary feedback.
Furthermore feedback can be enhanced by putting some inductance between the
gate and ground. Common gate oscillators often have low spectral purity but
wide band tunability. Consequently they are often preferred in voltage-controlled
oscillator (VCO) designs. For a small signal approximate calculation, the scat-
tering parameters of the transistor are typically found from measurements at a
variety of bias current levels. Probably the S parameters associated with the
largest output power as an amplifier would be those to be chosen for oscillator
design. Since common source S parameters, Sij, are usually given, it is neces-
sary to convert them to common gate S parameters, Sijg. Once this is done, the
revised S parameters may be used in a direct fashion to check for conditions of
oscillation.
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The objective at this point is to determine the common gate S parameters
with the possibility of having added gate inductance. These are derived from the
common source S parameters. The procedure follows:

1. Convert the two-port common source S parameters to two-port common
source y parameters.

2. Convert the two-port y parameters to three-port indefinite y parameters.
3. Convert the three-port y parameters to three-port S parameters.
4. One of the three-port terminals is terminated with a load of known reflection

coefficient, r.
5. With one port terminated, the S parameters are converted to two-port S

parameters, which could be, among other things, common gate S parame-
ters.

At first, one might be tempted to convert the 3 ð 3 indefinite admittance
matrix to a common gate admittance matrix and convert that to S parameters.
The problem is that “common gate” usually means shorting the gate to ground,
which is fine for y parameters, but it is not the same as terminating the gate with
a matched load or other impedance, Zg, for the S parameters.

The first step, converting the S parameters to y parameters, can be done using
the formulas in Table D.1 or Eq. (D.10) in Appendix D. For example, if the
common source S parameters, [Ss], are given the y parameter matrix is

[Ys] D Y0





�1 � S11s��1 C S22s�C S12sS21s

Ds

�2S12s

Ds

�2S21s

Ds

�1 C S11s��1 � S22s�C S12sS21s

Ds





�10.28�

where

Ds
D �1 C S11s��1 C S22s�� S12sS21s �10.29�

Next the y parameters are converted to the 3 ð 3 indefinite admittance matrix.
The term “indefinite” implies that there is no assumed reference terminal for the
circuit described by this matrix [5]. The indefinite matrix is easily found from
its property that the sum of the rows of the matrix is zero, and the sum of the
columns is zero. Purely for convenience, this third row and column will be added
to the center of the matrix. Then the y11 will represent the gate admittance, the
y22 the source admittance, and the y33 the drain admittance. The new elements
for the indefinite matrix are then put in between the first and second rows and in
between the first and second columns of Eq. (10.28). For example, the new y12 is

y12 D Y0

[
2S12s � �1 � S11s��1 C S22s�C S12sS21s � S12sS21s

Ds

]
�10.30�
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The values for y21, y23, and y32 are found similarly. The new y22 term is found
from y22 D �y21 � y23. The indefinite admittance matrix is then represented as
follows:

[Y] D




g s d
g y11 y12 y13

s y21 y22 y23

d y31 y32 y33



 �10.31�

The S parameter matrix for 3 ð 3 or higher order can be found from Eq. (D.9)
in Appendix D:

S D F�I�GŁY��ICGY��1F�1 �10.32�

In this equation I is the identity matrix, while G and F are defined in Appendix
D. When the measurement characteristic impedances, Z0, are the same in all
three ports, the F and the F�1 will cancel out. Determining S from Eq. (10.32)
is straightforward but lengthy. At this point the common terminal is chosen. To
illustrate the process, a common source connection is used in which the source
is terminated by a load with reflection coefficient, rs, as shown in Fig. 10.10.
If the source is grounded, the reflection coefficient is rs D �1. The relationship
between the incident and reflected waves is

b1 D S11a1 C S12a2 C S13a3

b2 D S21a1 C S22a2 C S23a3

b3 D S31a1 C S32a2 C S33a3

�10.33�

Solution for S11s is done by terminating the drain at port 3 with Z0 so that a3 D 0.
The source is terminated with an impedance with reflection coefficient

rs D a2

b2
�10.34�

or for any port

a1

a2 rs b2

G11 D3

S2
b1

a3

b3

2

FIGURE 10.10 Three-port with source terminated with rs.
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ri D Zi � Zref

Zi C Zref
�10.35�

The reflection coefficient is determined relative to the reference impedance which
is the impedance looking back into to the transistor. With Eq. (10.34), b2 can be
eliminated in Eq. (10.33) giving a relationship between a1 and a2:

a2

rs
D S21a1 C S22a2

a2 D S21a1

1/rs � S22
�10.36�

The ratio between b1 and a1 under these conditions is

S11s D b1

a1
D S11 C S12S21

1/rs � S22
�10.37�

This represents the revised S11s scattering parameter when the source is terminated
with an impedance whose reflection coefficient is rs. In similar fashion the other
parameters can be easily found, as shown in Appendix E. The numbering system
for the common source parameters is set up so that the input port (gate side)
is port-1 and the output port (drain) is port-2. Therefore the subscripts of the
common source parameters, Sijs, range from 1 to 2. In other words, after the
source is terminated, there are only two ports, the input and output. These are
written in terms of the three-port scattering parameters, Sij, which of course have
subscripts that range from 1 to 3.

The common gate connection can be calculated using this procedure. The
explicit formulas are given in Appendix E. For a particular RF transistor, in which
the generator is terminated with a 5 nH inductor, the required load impedance on
the drain side to make the circuit oscillate is shown in Fig. 10.11 as obtained from
the program SPARC (S-parameters conversion). Since a passive resistance must
be positive, the circuit is capable of oscillation only for those frequencies in which
the resistance is above the 0 � line. An actual oscillator would still require a
resonator to force the oscillator to provide power at a single frequency. A numer-
ical calculation at 2 GHz that illustrates the process is found in Appendix E.

When the real part of the load impedance is less than the negative of the real
part of the device impedance, then oscillations will occur at the frequency where
there is resonance between the load and the device. For a one-port oscillator, the
negative resistance is a result of feedback, but here the feedback is produced by
the device itself rather than by an external path. Specific examples of one-port
oscillators use a Gunn or IMPATT diode as the active device. These are normally
used at frequencies above the band of interest here. On the surface the one-port
oscillator is in principle no different than a two-port oscillator whose opposite side
is terminated in something that will produce negative resistance at the other end.
The negative resistance in the device compensates for positive resistance in the
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FIGURE 10.11 Plot of load impedance required for oscillation when generator side is
terminated with a 5 nH inductor.

resonator. Noise in the resonator port or a turn on transient starts the oscillation
going. The oscillation frequency is determined by the resonant frequency of a
high-Q circuit.

10.7 STABILITY OF AN OSCILLATOR

In the previous section, a method has been given to determine whether a circuit
will oscillate or not. What is yet to be addressed is whether the oscillation will
remain stable in the face of a small current transient in the active device. The
simple equivalent circuit shown in Fig. 10.12 can be divided into the part with
the active device, and the passive part with the high-Q resonator. The current
flowing through the circuit is

i�t� D A�t� cos�ωt C -�t�� D <fA�t�ejωtC-�t�g �10.38�

where A and - are slowly varying functions of time. The part of the circuit with
the active device is represented by Zd�A, ω� and the passive part by Z�ω�. The
condition for oscillation requires that the sum of the impedances around the loop
to be zero:

Zd�A, ω�C Z�ω� D 0 �10.39�
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Zd(A,   )ω ωZ (  )

FIGURE 10.12 Oscillator model when the passive impedance Z�ω� is separated from
the active device Zd�A, ω�.

Ordinarily the passive circuit selects the frequency of oscillation by means of
a high-Q resonator. The relative frequency dependence of the active device is
small, so Eq. (10.39) can be approximated by

Zd�A�C Z�ω� D 0 �10.40�

In phaser notation the current is

I D Aej- �10.41�

and

Z�ω� D R�ω�C jX�ω� �10.42�

so that the voltage drop around the closed loop in Fig. 10.12 is

0 D <f[Z�ω�C Zd�A�]Ig
D [R�ω�C Rd�A�]A cos�ωt C -�� [X�ω�C Xd�A�]A sin�ωt C -� �10.43�

The time rate of change of the current is found by taking the derivative of
Eq. (10.38):

di

dt
D �A

(
ω C d-

dt

)
sin�ωt C -�C dA

dt
cos�ωt C -�

D <
{[
j

(
ω C d-

dt

)
C 1

A

dA

dt

]
AejωtC-

}
�10.44�

Ordinarily, in ac circuit analysis, d/dt is equivalent to jω in the frequency
domain. Now, with variation in the amplitude and phase, the time derivative is
equivalent to

d

dt
! jω0 D j

[
ω C d-

dt
� j 1

A

dA

dt

]
�10.45�

The Taylor series expansion of Z�ω0� about ω0 is

Z

(
ω C d-

dt
� j 1

A

dA

dt

)
³ Z�ω0�C dZ

dω

(
d-

dt
� j 1

A

dA

dt

)
�10.46�
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Consequently an expression for the voltage around the closed loop can be found:

<f�ZC Zd�Ig D
[
R�ω0�C Rd�A�C dR

dω

d-

dt
C dX

dω

1

A

dA

dt

]
A cos�ωt C -�

�
[
X�ω0�C Xd�A�C dX

dω

d-

dt
� dR

dω

1

A

dA

dt

]
A sin�ωt C -�

�10.47�

Multiplying Eq. (10.47) by cos�ωt C -� and then by sin�ωt C -� and finally inte-
grating will produce, by the orthogonality property, the following two equations:

0 D R�ω�C Rd�A�C dR

dω

d-

dt
C dX

dω

1

A

dA

dt
�10.48�

0 D �X�ω�� Xd�A�� dX

dω

d-

dt
C dR

dω

1

A

dA

dt
�10.49�

Multiplying Eq. (10.48) by dX/dω and Eq. (10.49) by dR/dω and adding will
eliminate the d-/dt term. A similar procedure will eliminate dA/dt. The result is

0 D [R�ω�C Rd�A�]
dX

dω
� [X�ω�C Xd�A�] C

∣∣∣∣
dZ�ω�

dω

∣∣∣∣
2 1

A

dA

dt
�10.50�

0 D [X�ω�C Xd�A�]
dX

dω
C [R�ω�C Rd�A�] C

∣∣∣∣
dZ�ω�

dω

∣∣∣∣
2 d-

dt
�10.51�

Under steady state conditions the time derivatives are zero. The combination of
Eqs. (10.50) and (10.51) gives

dR/dω

dX/dω
D R�ω�C Rd�A�

X�ω�C Xd�A�
D �X�ω�C Xd�A�

R�ω�C Rd�A�
�10.52�

The only way for this equation to be satisfied results in Eq. (10.40). However,
suppose that there is a small disturbance in the current amplitude of υA from
the steady state value of A0. Based on Eq. (10.40) the resistive and reactive
components would become

R�ω0�C Rd�A� D R�ω0�C Rd�A0�C υAdRd�A�

dA

D υA
dRd�A�

dA
�10.53�

X�ω0�C Xd�A� D υA
dXd�A�

dA
�10.54�
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The derivatives are of course assumed to be evaluated at A D A0. Substituting these
into Eq. (10.50) gives the following differential equation with respect to time:

0 DυAdRd�A�

dA

dX�ω�

dω
� υAdXd�A�

dA

dR�ω�

dω
C
∣∣∣∣
dZ�ω�

dω

∣∣∣∣
2 1

A0

dυA

dt
�10.55�

or

0 DυASC ˛dυA
dt

�10.56�

where

S
D ∂Rd�A�

∂A

dX�ω�

dω
� ∂Xd�A�

∂A

dR�ω�

dω
> 0 �10.57�

and

˛
D
∣∣∣∣
dZ�ω�

dω

∣∣∣∣
2 1

A0
�10.58�

The solution of Eq. (10.56) is

υA D Ce�St/˛

which is stable if S > 0. The Kurokawa stability condition for small changes
in the current amplitude is therefore given by Eq. (10.57) [6]. As an example,
consider the stability of a circuit whose passive circuit impedance changes with
frequency as shown in Fig. 10.13 and whose device impedance changes with
current amplitude as shown in the third quadrant of Fig. 10.13. As the current
amplitude increases, Rd�A� and Xd�A� both increase:

∂Rd�A�

∂A
> 0

∂Xd�A�

∂A
> 0

As frequency increases, the passive circuit resistance, R�ω�, decreases and the
circuit reactance, X�ω�, increases:

∂R�ω�

∂ω
< 0

∂X�ω�

∂ω
> 0

From Eq. (10.57) this would provide stable oscillations at the point where Z�ω�
and �Zd�A� intersect. If there is a small change in the current amplitude, the
circuit tends to return back to the A0, ω0 resonant point.
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FIGURE 10.13 Locus of points for the passive and active oscillator impedances.

If there is a small perturbation in the phase rather than the amplitude of the
of the current, the stability criterion is

S0 D ∂Xd�-�

∂-

dX�ω�

dω
C ∂Xd�-�

∂-

dR�ω�

dω
> 0 �10.59�

This is found by substituting into Eq. (10.51) with the appropriate Taylor series
approximation for a change in phase.

10.8 INJECTION-LOCKED OSCILLATORS

A free running oscillator frequency can be modified by applying an external
frequency source to the oscillator. Such injection-locked oscillators can be used as
high-power FM amplifiers when the circuit Q is sufficiently low to accommodate
the frequency bandwidth of the signal. If the injection signal voltage, V, is at a
frequency close to but not necessarily identical to the free running frequency of
the oscillator, is placed in series with the passive impedance, Z�ω�, in Fig. 10.12,
then the loop voltage is

[Z�ω�C Zd�A�]I D V �10.60�
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The amplitude of the current at the free running point is A0 and the relative phase
between the voltage and current is -. Hence

Z�ω� D �Zd�A�C jVj
A0
e�j- �10.61�

Up to this point the passive impedance has been left rather general. As a
specific example, the circuit can be considered to be a high-Q series resonant
circuit determined by its inductance and capacitance together with some cavity
losses, RC, and a load resistance, RL:

Z�ω� D j

(
ωL � 1

ωC

)
C RC C RL �10.62�

Since ω is close to the circuit resonant frequency ω0,

Z�ω� D j
L

ω
�ω2 � ω2

0�C RC C RL

³ j2Lωm C RC C RL �10.63�

where ωm D ω � ωm.
Equation (10.61) represented in Fig. 10.14 is a modification of that shown

in Fig. 10.13 for the free running oscillator case. If the magnitude of the injec-
tion voltage, V, remains constant, then the constant magnitude vector, jVj/A0,
which must stay in contact with both the device and circuit impedance lines,

–Zd(A )

2L∆   mω

A0

ω

θ

Z (   )ω

1

ω 2

V

FIGURE 10.14 Injection-locked frequency range.



216 OSCILLATORS AND HARMONIC GENERATORS

will change its orientation as the injection frequency changes (thereby changing
Z�ω�). However, there is a limit to how much the jVj/A0 vector can move because
circuit and device impedances grow too far apart. In that case the injection lock
ceases. The example in Fig. 10.14 is illustrated the simple series-resonant cavity
where the circuit resistance is independent of frequency. Furthermore the jVj/A0

vector is drawn at the point of maximum frequency excursion from ω0. Here
jVj/A0 is orthogonal to the Zd�A� line. If the frequency moves beyond ω1 or
ω2, the oscillator loses lock with the injected signal. At the maximum locking
frequency,

j2ωmL cos 2j D jVj
A0

�10.64�

The expressions for the oscillator power delivered to the load, P0, the available
injected power, and the external circuit Qext are

P0 D 1

2
RLA

2
0 �10.65�

Pi D jVj2
8RL

�10.66�

Qext ³ ω0L

RL
�10.67�

When these are substituted into Eq. (10.64), the well-known injection locking
range is found [7]:

ωm D ω0

Qext

√
Pi

P0

1

cos 2
�10.68�

The total locking range is from ω0 Cωm to ω0 �ωm. The expression
originally given by Adler [8] did not included the cos 2 term. However, high-
frequency devices often exhibit a phase delay of the RF current with respect
to the voltage. This led to Eq. (10.68) where the device and circuit impedance
lines are not necessarily orthogonal [7]. In the absence of information about the
value of 2, a conservative approximation for the injection range can be made by
choosing cos 2 D 1. The frequency range over which the oscillator frequency can
be pulled from its free-running frequency is proportional to the square root of the
injected power and inversely proportional to the circuit Q as might be expected
intuitively.

10.9 HARMONIC GENERATORS

The nonlinearity of a resistance in a diode can be used in mixers to produce a
sum and difference of two input frequencies (see Chapter 11). If a large signal is
applied to a diode, the nonlinear resistance can produce harmonics of the input
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voltage. However, the efficiency of the nonlinear resistance can be no greater
than 1/n, where n is the order of the harmonic. Nevertheless, a reverse-biased
diode has a depletion elastance (reciprocal capacitance) given by

dv

dq
D S D S0

(
1 � v

-

)5
�10.69�

where - is the built-in voltage and typically is between 0.5 and 1 volt posi-
tive. The applied voltage v is considered positive when the diode is forward
biased. The exponent 5 for a varactor diode typically ranges from 0 for a step
recovery diode to 1

3 for a graded junction diode to 1
2 for an abrupt junction diode.

Using the nonlinear capacitance of a diode theoretically allows for generation of
harmonics with an efficiency of 100% with a loss free diode. This assertion is
supported by the Manley-Rowe relations which describe the power balance when
two frequencies, f1 and f2, along with their harmonics are present in a lossless
circuit:

1∑

mD0

1∑

nD�1

mPm,n
mf1 C nf2

D 0 �10.70�

1∑

nD0

1∑

mD�1

nPm,n
mf1 C nf2

D 0 �10.71�

These equations are basically an expression of the conservation of energy. From
(10.70)

P1 D �
1∑

mD2

Pm,0, n D 0 �10.72�

The depletion elastance given by Eq. (10.69) is valid for forward voltages up to
about v/- D 1

2 . Under forward bias, the diode will tend to exhibit diffusion capac-
itance that tends to be more lossy in varactor diodes than the depletion capacitance
associated with reverse-biased diodes. Notwithstanding these complexities, an
analysis of harmonic generators will be based on Eq. (10.69) for all applied volt-
ages up to v D -. This is a reasonably good approximation when the minority
carrier lifetime is long relative to the period of the oscillation. The maximum
elastance (minimum capacitance) will occur at the reverse break down voltage,
VB. The simplified model for the diode then is defined by two voltage ranges:

S

Smax
D
(
- � v

- � VB

)5
, v � - �10.73�

S

Smax
D 0, v > - �10.74�
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Integration of Eq. (10.69) gives

�
∫ -

v

- d�1 � v/-�

�1 � v/-�
D S0

∫ q-

q
dq �10.75�

�- � v�1�5

1 � 5 D S0�q- � q� �10.76�

This can be evaluated at the breakdown point where v D VB and q D QB. Taking
the ratio of this with Eq. (10.76) gives the voltage and charge relative to that at
the breakdown point:

- � v

- � VB
D
(
q- � q
q- � QB

)1/�1�5�
�10.77�

For the abrupt junction diode where 5 D 1
2 , it can be that it is possible to produce

power at mf1 when the input frequency is f1 except for m D 2 [9]. Higher-order
terms require that the circuit support intermediate frequencies called idlers. While
the circuit allows energy storage at the idler frequencies, no external currents can
flow at these idler frequencies. Thus multiple lossless mixing can produce output
power at mf1 with high efficiency when idler circuits are available.

Design of a varactor multiplier consists in predicting the input and output load
impedances for maximum efficiency, the value of the efficiency, and the output
power. A quantity called the drive, D, may be defined where qmax represents the
maximum stored charge during the forward swing of the applied voltage:

D D qmax � QB
q- � QB �10.78�

If qmax D q-, then D D 1. An important quality factor for a varactor diode is
the cutoff frequency. This is related to the series loss, Rs, in the diode:

fc D Smax � Smin

28Rs
�10.79�

When D ½ 1, Smin D 0. When fc/nf1 > 50, the tabulated values given in [10]†
provide the necessary circuit parameters. These tables have been coded in the
program MULTIPLY. The efficiency given by [10] assumes loss only in the diode
where fout D mf1:

9 D e˛fout/fc �10.80�

† Copyright1965. AT&T. All rights reserved. Reprinted with permission.
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The output power at mf1 is found to be

Pm D ˇ
ω1�- � VB�2

Smax
�10.81�

The values of ˛ and ˇ are given in [9,10]. If the varactor has a dc bias voltage,
Vo, then the normalized voltage is

Vo,norm D - � Vo

- � VB
�10.82�

This value corresponds to the selected drive level. Finally, the input and load
resistances are found from the tabulated values. The elastances at all supported
harmonic frequencies up to and including m are also given. These values are
useful for knowing how to reactively terminate the diode at the idler and output
frequencies. A packaged diode will have package parasitic circuit elements, as
shown in Fig. 10.15, that must be considered in design of a matching circuit.
When given these package elements, the program MULTIPLY will find the appro-
priate matching impedances required external to the package. Following is an
example run of MULTIPLY in the design of a 1–2–3–4 varactor quadrupler
with an output frequency of 2 GHz. The bold numbers are user input values.

Input frequency, GHz. =
0.5

Diode Parameters
Breakdown Voltage =
60

Built-in Potential phi =
0.5

Specify series resistance or cutoff frequency,
Rs OR fc. <R/F>
f

Zero Bias cutoff frequency (GHz), fc =
50.

Junction capacitance at 0 volts (pF), Co =
0.5

Cp

Rin Rs Ls C(v)

FIGURE 10.15 Intrinsic varactor diode with package.
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Package capacitance (pF), Series inductance (nH) =
0.1, 0.2

For a Doubler Type A
For a 1-2-3 Tripler Type B
For a 1-2-4 Quadrupler Type C
For a 1-2-3-4 Quadrupler Type D
For a 1-2-4-5 Quintupler Type E
For a 1-2-4-6 Sextupler Type F
For a 1-2-4-8 Octupler Type G
For a 1-4 Quadrupler using a SRD, Type H
For a 1-6 Sextupler using a SRD, Type I
For a 1-8 Octupler using a SRD, Type J
Ctrl C to end
d

Type G for Graded junction (Gamma = .3333)
Type A Abrupt Junction (Gamma=.5)
Choose G or A
g

Drive is 1.0< D < 1.6.
Linear extrapolation done for D outside this range.
Choose drive.
2.0

Input Freq = 0.5000 GHz, Output Freq = 2.0000 GHz,
fc = 50.0000 GHz, Rs = 31.4878 Ohms.
Pout = 78.50312 mWatt, Efficiency = 75.47767%
At Drive 2.00, DC Bias Voltage = -7.76833
Harmonic elastance values
S0( 1) = 0.197844E+13
S0( 2) = 0.313252E+13
S0( 3) = 0.296765E+13
S0( 4) = 0.263791E+13
Total Capacitance with package cap.
CT0( 1) = 0.605450E-12
CT0( 2) = 0.419232E-12
CT0( 3) = 0.436967E-12
CT0( 4) = 0.479087E-12
Inside package, Rin = 643.400 RL = 346.470
Diode model Series Ls, Rin+Rs, S(v) shunted by Cp
Required impedances outside package.
Zin = 456.218 + j -606.069
Zout = 208.267 + j -242.991
Match these impedances with their complex conjugate
Match idler 2 with conjugate of 0 + j -379.181
Match idler 3 with conjugate of 0 + j -242.125
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PROBLEMS

10.1 In Appendix D derive (D.9) from (D.10).
10.2 In Appendix E derive the common gate S parameters from the presumably

known three-port S parameters.
10.3 Prove the stability factor S0 is that given in Eq. (10.59).
10.4 The measurements of a certain active device as a function of

current give Zd�10 mA� D �20 C j30 � and Zd�50 mA� D �10 C j15 �.
The passive circuit to which this is connected is measured at
two frequencies: Zc�800 MHz� D 12 � j10 � and Zc�1000 MHz� D 18 �
j40 �. Determine whether the oscillator will be stable in the given ranges
of frequency and current amplitude. Assume that the linear interpolation
between the given values is justified.
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CHAPTER ELEVEN

RF Mixers

11.1 NONLINEAR DEVICE CHARACTERISTICS

A typical mixer is a three-port circuit that accepts two signals at two different
frequencies and produces at the third port a signal that is the sum or difference of
the two input frequencies. Production of a new frequency or frequencies requires a
nonlinear device. The two most common semiconductor nonlinear characteristics
are of the form eqV�t�/kT as found in pn junction diodes or bipolar junction
transistors and of the form IDSS�1 � V�t�/VT�2 as found in field effect transistors.
Schottky barrier diodes are not described here, since they are mostly used out of
necessity for low-noise high-microwave frequency applications.

Consider a pn junction nonlinearity that is excited by two signals (plus a dc
term):

V�t� D Vdc C Vp cosωpt C V1 cosω1t �11.1�

The device current would then be of the form

I�t� D Ise
Vdc/VT[eVp cosωpt Ð eV1 cosω1t] �11.2�

where the thermal voltage, VT, is defined as kT/q, k is Boltzmann’s constant, T
is the absolute temperature, and q is the magnitude of the electronic charge. It is
known, however, that this can be simplified by expressing it in terms of modified
Bessel functions because

ez cos � D I0�z�C 2
1∑

nD1

In�z� cosn� �11.3�

where In�z� is the modified Bessel function of order n and argument z [1]. The
Bessel function has the property that as n increases and z decreases the function
itself decreases. The two exponentials in Eq. (11.2) indicate there are two infinite

222
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series of the form shown in Eq. (11.3): the first with summation index n and
the second with index m. The current given in Eq. (11.2) can be found by the
appropriate substitution:

I�t� D Ise
Vdc/VT

[
I0�Vp�C 2

1∑

nD1

In�Vp� cosnωpt

]

ð
[
I0�V1�C 2

1∑

mD1

In�V1� cosmω1t

]

D Idce
Vdc/VTI0�Vp�I0�V1�

C 2Idce
Vdc/VT

(
I0�V1�

1∑

nD1

In�Vp� cosnωpt C I0�Vp�
1∑

mD1

Im�V1� cosmω1t

)

C 4Idce
Vdc/VT

[ 1∑

nD1

In�Vp� cosnωpt

]
Ð
[ 1∑

mD1

Im�V1� cosmω1t

]
�11.4�

The basic result is a set of frequencies nωp C mω1 where n and m can take on
any integer. The actual current values at any given frequency would be greatly
modified by circuit impedances at these frequencies as well as by variations in
the device itself. In the usual mixer application shown in Fig. 11.1, the amplitude
of the local oscillator voltage, Vp, is typically 40 dB greater than the RF signal
voltage V1. Consequently the number of frequencies drops to

ωn D nωp C ω0 �11.5�

The higher-order mixing products are reduced in amplitude by approximately
1/n. The usual desired output for a receiver is the intermediate frequency (IF),
ω0. The frequencies of primary interest are given the following names:

RF

LO

IF

fp

f1 f0

FIGURE 11.1 Schematic diagram for a mixer.
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ωp Local oscillator (pump) frequency
ω0 D ω1 � ωp Intermediate frequency
ω1 RF signal frequency
ω�1 D �ωp C ω0 Image frequency
ω2 D 2ωp C ω0 Sum frequency

In the FET type of nonlinearity, the current as a result of excitation given by
Eq. (11.1) is

I�t�

IDSS
D
(

1 � Vp

VT
cosωpt � V1

VT
cosω1t

)2

�11.6�

D 1 � 2
(
Vp

VT
cosωpt C V1

VT
cosω1t

)
C V2

p

2V2
T

(
1 C cos 2ωpt

)

C V2
1

2V2
T
�1 C cos 2ω1t�

C VpV1

V2
T

(
cos�ωp C ω1�t C cos�ωp � ω1�t

)
�11.7�

While it may appear that the FET is “less nonlinear” than the pn junction type
of nonlinearity, it should be remembered that the circuit into which the device is
embedded will reflect back into the nonlinear device and create multiple mixing
products. However, ultimately the frequencies will follow, at least potentially,
the values shown in Fig. 11.2.

Readily apparent from the foregoing, a measure of patience is necessary to
unravel all the frequency terms and their relative amplitudes. The nonlinear device
is sometimes modeled as a power series of the applied voltages:

I�t� D Idc C aV�t�C bV2�t�C cV3�t� . . . �11.8�

0ω

pω
2    pω

3    pω
n    pω

1ω
2ω

3ω
–1ω

–2ω
–3ω

–nω nω

Image Signal Sum
LO 2nd Order

Idlers
3rd Order

Idlers
mth Order

Idlers

FIGURE 11.2 Frequency components in a mixer.
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Rather than directly determining the mixing products by multiplication, it is more
convenient to determine these in the frequency domain by employing the Fourier
transform [2]. The most convenient way of writing the Fourier transform pair is
symmetrically where f is used rather than ω:

g�t� D
∫ 1

�1
G�f�e�j2�ftdf �11.9�

G�f� D
∫ 1

�1
g�t�ej2�ftd t �11.10�

The Fourier transform of an exponential function is a Dirac delta function:

F�e�jωa� D 2�υ�ω � ωa� �11.11�

If two voltages are represented as Va D cos�ωat C �a� and Vb D cos�ωbt C �b�.
These are to be multiplied together. Before doing this, they can each be converted
into the frequency domain by Eq. (11.10) and substituted into the convolution
theorem:

Go�f� D
∫ 1

�1
Ga���Gb�f� ��d� �11.12�

For sinusoidal voltages the integral is simply a series of υ functions that are trivial
to integrate. The process proceeds most easily graphically. The function Ga���
is fixed, and the Gb�f� �� is allowed to slide from right to left. The nonzero
parts of the integration occurs when υ functions coincide.

As an example, consider the frequencies that would result from the product
of two voltages:

Va�t� Ð Vb�t� �11.13�

where
Va�t� D cos�2�f1t C �1�

and
Vb�t� D cos�2�f2t C �2�

The Fourier transform of Va�t� is

Ga�f� D
∫ 1

�1
Va�t�e

j2�ftd t �11.14�

D
∫ 1

�1

1

2

[
ej�2�f1tC�1� C e�j�2�f1tC�1�

]
ej2�ft 2�d t

2�

D 1

2

[
υ�fC f1�e

j�1 C υ�f� f1�e
�j�1

]
�11.15�
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   2θ–   2θ
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1
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1
2

–f1 λf10
(a)

FIGURE 11.3 Graphical integration of the convolution integral where (a) is Ga���, (b) is
Gb�f� ��, and (c) is the result of the integration.

A similar function results from Vb�t�. The Fourier transform, Ga���, is shown
in Fig. 11.3a, which displays both the magnitude and the phase of terms. The
term Gb����, which is found in similar fashion, is offset by f as indicated in
Eq. (11.12) and is seen in Fig. 11.3b. As f increases, Gb�f� �� moves from left
to right. No contribution to the convolution integral occurs until fC f2 D f1 or
f D �f1 � f2. This is the leftmost line shown in Fig. 11.3c. As f continues to
increase, all four intercepts between Ga��� and Gb�f� �� are found. While the
amount of effort in using the frequency domain approach described here and the
time domain approach of multiplying sines and cosines in this example is about
the same, adding a third frequency quickly tilts the ease of calculation toward
the frequency domain approach.

11.2 FIGURES OF MERIT FOR MIXERS

The quality of a mixer rests on a number of different mixer parameters which of
course must fit the application under consideration. The first of these is conversion
loss, L. This is the ratio of the delivered output power to the input available power.

L D output IF power delivered to the load, P0

available RF input signal power, P1

Clearly, the conversion loss is dependent on the load of the input RF circuit as
well as the output impedance of the mixer at the IF port. The conversion loss for
a typical diode mixer is between 6 and 7 dB.
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The noise figure is a measure of the noise added by the mixer itself to the
RF input signal as it gets converted to the output IF. It specifically excludes the
noise figure of the following IF amplifier and neglects the 1/f flicker noise. In
practice, the mixer noise figure is very nearly the same as the conversion loss.

The isolation is the amount of local oscillator power that leaks into either the
IF or the RF ports. For double-balanced mixers this value typically lies in the 15
to 20 dB range.

A single- or double-balanced mixer will convert energy in the upper or lower
sidebands with equal efficiency. Consequently noise in the sideband with no
signal will be added to the IF output, which of course will increase the noise
figure by 3 dB in the IF port. Image rejection mixers will block this unwanted
noise from the IF port.

The conversion compression is the RF input power, above which the RF input
in terms of the IF output deviates from linearity by a given amount. For example,
the 1 dB compression point occurs when the conversion loss increases by 1 dB
above the conversion loss in the low-power linear range. A typical value of 1.0 dB
compression occurs when the RF power is C7 dBm and the LO is C13 dBm.

The LO drive power is the required LO power level needed to make the mixer
operate in optimal fashion. For a double-balanced mixer, this is typically C6 dBm
to C20 dBm.

The dynamic range is the maximum RF input power range for the mixer. The
maximum amplitude is limited by the conversion compression, and the minimum
amplitude is limited by the noise figure.

The input intercept point is the RF input power at which the output power
levels of the undesired intermodulation products and the desired IF output would
be equal. In defining the input intercept point, it is assumed that the IF output
power does not compress. It is therefore a theoretical value and is obtained by
extrapolating from low-power levels. The higher this power level, the better is the
mixer. Sometimes an output intercept point is used. This is the input intercept
point minus the conversion loss. The idea of intercept points is described in
greater detail in Section 11.6.

The two-tone third-order intermodulation point is a measure of how the mixer
reacts when two equal amplitude RF frequencies excite the RF input port of the
mixer.

11.3 SINGLE-ENDED MIXERS

Mixers are usually classed as single ended, single balanced, or double balanced.
The technical advantages of the double-balanced mixer over the other two usually
precludes using the slightly lower cost of the single-ended or single-balanced types
in RF circuits. The are used, though, in millimeter wave circuits where geometrical
constraints and other complexities favor using the simpler single-ended mixer.

The single-ended mixer in Fig. 11.4 shows that the RF input signal and the
local oscillator signal enter the mixer at the same point. Some degree of isolation
between the two is achieved by using a directional coupler in which the RF
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FIGURE 11.4 Single-ended mixer.

signal enters the direct port and the local oscillator enters through the coupled
port. The amplitude of the local oscillator, even after passing through the coupler,
is large enough to turn the diode on and off during each cycle. Indeed, the LO
power is so large as to cause clipping of the LO voltage, thereby approximating
a square wave. The small RF signal is then presented with alternately a short
or open circuit at the LO rate. It is this turning on and off of the RF frequency
that produces the jnfp š f1j set of frequencies. The one of most interest in the
standard receiver is f0 D fp � f1. Among the disadvantages of the single-ended
mixer are a high-noise figure, a large number of frequencies generated because
of the nonlinear diode, a lack of isolation between the RF and LO signals, and
large LO currents in the IF circuit. The RF to LO isolation problem can be very
important, since the LO can leak back out of the RF port and be radiated through
the receiver antenna. The LO currents in the IF circuit would have to be filtered
out with a low-pass filter that has sufficient attenuation at the LO frequency to
meet system specifications. It does have the advantage of requiring lower LO
power than the other types of mixers.

Rather than using a switching diode, a FET can be switched at the LO rate.
One such design is when the LO and RF signal both enter the FET gate and
the output IF signal is developed in the drain circuit. The nonlinearity of the
FET implies that fewer spurious signals are generated than the “more” nonlinear
diode. Furthermore it is possible to achieve conversion gain between the input
RF and output IF signals. A second alternative would be to excite the gate with
the RF signal and the source with the LO; then the output IF is developed in the
drain. This circuit offers improved isolation between the RF and LO signals but
at the cost of higher LO power requirements. The dual gate FET is often used in
which one gate is excited with the LO and the other with the RF. The IF is again
developed in the drain circuit. This circuit offers even better isolation between
RF and LO but its gain is somewhat lower.

11.4 SINGLE-BALANCED MIXERS

The single-balanced (or simply balanced) mixer has either two or four diodes as
shown in the examples of Fig. 11.5. In all of these cases, when the LO voltage
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FIGURE 11.5 Four possible single-balanced mixers.

has a large positive value, all the diodes are shorted. When the LO voltage has a
large negative value, all the diodes are open. In either case, the LO power cannot
reach the IF load nor the RF load because of circuit symmetry. However, the
incoming RF voltage sees alternately a path to the IF load and a blockage to the
IF load. The block may either be an open circuit to the IF load or a short circuit
to ground.
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FIGURE 11.6 Single-balanced mixer waveform.

As before, it is assumed that the LO voltage is much greater than the RF
voltage, so Vp × V1. The LO voltage can be approximated as a square wave
with period T D 1/fp that modulates the incoming RF signal (Fig. 11.6). A
Fourier analysis of the square wave results in a switching function designated
by S�t�:

S�t� D 1

2
C

1∑

nD1

sin�n�/2�

n�/2
cosnωpt �11.16�

If the input RF signal is expressed as V1 cosω1t, then the output voltage is this
multiplied by the switching function:

V0 D V1 cosω1t Ð S�t� �11.17�

D V1 cosω1t

(
1

2
C

1∑

nD1

sin�n�/2�

n�/2
cosnωpt

)
�11.18�

Clearly, the RF input signal voltage will be present in the IF circuit. However,
only the odd harmonics of the local oscillator voltage will effect the IF load.
Thus the spurious voltages appearing in the IF circuit are

f1, fp C f1, 3fp š f1, 5fp š f1, . . .

and all even harmonics of fp are suppressed (or balanced out).

11.5 DOUBLE-BALANCED MIXERS

The double-balanced mixer is capable of isolating both the RF input voltage and
the LO voltage from the IF load. The slight additional cost of some extra diodes
and a balun is usually outweighed by the improved intermodulation suppression,
improved dynamic range, low conversion loss, and low noise. The two most
widely used double balanced mixers for the RF and microwave band are the
“ring” mixer and the “star” mixer depicted in Fig. 11.7. In the single-balanced
mixer all the diodes were either turned on or turned off, depending on the instan-
taneous polarity of the local oscillator voltage. The distinguishing feature of the
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(a)

(b)
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f0
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FIGURE 11.7 Double-balanced mixers using (a) ring diode design and (b) diode star
design.

double-balanced mixer is that half the diodes are on and half off at any given
time. The diode pairs are switched on or off according to the local oscillator
polarity. Thus the path from the signal port with frequency f1 to the intermediate
frequency port, f0, reverses polarity at the rate of 1/fp.

In Fig 11.7a, when the LO is positive at the upper terminal, diodes D1 and
D2 are shorted while diodes D3 and D4 are open. Current from the RF port
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flows out of node C. As far as the RF frequency is concerned, nodes A and B lie
midway between the positive and negative RF signal voltage. Therefore at the
signal frequency, f1, nodes A and B are at zero potential. During this instant,
current is drawn from nodes A and B by way of the LO transformer secondary.
The RF signal current is induced into the RF transformer secondary and on out
to the IF load. When the LO switches to the negative polarity, diodes D3 and D4
are shorted and diodes D1 and D2 are open. The RF signal current will then flow
into node D and on to nodes A and B as before. Now, however, the RF current
at f1 flows in the opposite direction in the RF signal transformer secondary and
thus out of the IF load. The switching of the polarity at the LO frequency, fp,
of the current in the IF circuit produces the difference frequency, f0. Symmetry
would suggest that the IF power could be extracted from the center tap of the LO
secondary rather than the RF signal secondary. However, the LO power, being
so much higher than the RF signal power, the isolation between the LO and IF
would be poorer.

An analysis of this mixer can be done in SPICE in which the diodes are
replaced by ideal voltage switches. An example of this is illustrated in Fig. 11.8
in which the local oscillator is set at 900 MHz and the RF signal is at 800 MHz.
The resulting time domain output shown in Fig. 11.9 is not easily interpreted. The
Fourier transform in Fig. 11.10 clearly shows the resulting IF output frequency
at 100 MHz along with other frequencies generated by the mixer.

The star circuit shown in Fig. 11.7b also acts as a double-balanced mixer. An
advantage over the ring mixer is that the central node of the four diodes allows
direct connection to the IF circuit. On the other hand, the star mixer requires
a more complicated transformer in the RF signal and LO ports. When the LO
voltage is positive, diodes D1 and D2 are shorted and diodes D3 and D4 are
open. The RF signal current from the upper terminals of the secondary winding
flows to the IF port. When the LO voltage is negative, diodes D3 and D4 are
shorted and diodes D1 and D2 open. The current then flows from the lower
terminals of the RF signal transformer secondary. The RF signal current in the
IF circuit has switched polarity. The switching rate produces an output at the
difference frequency, f0. In both these cases the switching function is shown in
Fig. 11.11. Fourier analysis provides the following time domain representation
of the switching function, which differs from Eq. (11.18) by a lack of a dc term:

S�t� D 2
1∑

nD1

sin�n�/2�

n�/2
cosnωpt �11.19�

The IF voltage is found as before for the single-balanced mixer:

V0 D V1 cosω1t Ð S�t�

D 2V1 cosω1t

( 1∑

nD1

sin�n�/2�

n�/2
cosnωpt

)
�11.20�
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Double Balanced Diode Mixer
* Local Oscillator
VP 10 0 SIN(0 2. 900E6)
RP 10 1 .01
RRF 20 4 .01
* RF signal
VRf 20 0 SIN(0 .2 800E6)
LP 1 0 1uH
LPA 2 0 .5uH
LPB 0 3 .5uH
KP1 LP LPA LPB 1
LR 4 0 1uH
LRA 5 6 .5uH
LRB 6 7 .5uH
KRF1 LR LRA LRB 1
* Ideal voltage switches represent diodes.
SD1 2 7 2 7 SWMOD
SD2 5 2 5 2 SWMOD
SD3 7 3 7 3 SWMOD
SD4 3 5 3 5 SWMOD
RLIF 6 0 50
.MODEL SWMOD VSWITCH (RON=.2, ROFF=1.E5 VON=.7

VOFF=.6)
.PROBE
.OP
* Start Final Begin Prt ceiling
.TRAN 1nS 50nS 0
*.TRAN .05nS 20nS 0 10pS
* IF output is V(6)
.PRINT TRAN V(6)
.END

FIGURE 11.8 SPICE net list for diode ring mixer.

Clearly, there is no RF signal nor LO voltage seen in the IF circuit, nor any even
harmonics of the LO voltage.

The description above of mixers has assumed the use of ideal diodes. The
diodes are in fact either pn or Schottky barrier (metal–semiconductor) junc-
tions with a nonzero forward voltage drop and nonzero leakage current in
the reverse bias condition. The Schottky barrier devices are particularly useful
when low noise is required at high microwave frequencies. The device and
package parasitic elements limit mixer frequency response, although designs
based on the above analysis have been made to work at frequencies exceeding
26 GHz.
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FIGURE 11.9 Time domain response of a double-balanced mixer using ideal switches.
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components off the double-balanced mixer.



DOUBLE-BALANCED TRANSISTOR MIXERS 235

+1

S(t)

–1
t

T

FIGURE 11.11 Double-balanced mixer waveform.

=

FIGURE 11.12 Transmission line transformer equivalent to the center-tapped transformer.

This analysis was also based on the availability of ideal center-tapped trans-
formers. At RF frequencies, these can be realized using transmission line trans-
formers, as shown in Fig. 11.12.

The double-balanced ring mixer described above used a single diode in each
arm of the ring. Such a mixer is termed a class 1 mixer. Class 2 mixers are
obtained by replacing the single diode in each arm of the ring with two diodes in
series or with a diode or resistor in series (Fig. 11.13). The precision resistor in
the later case can be adjusted to improve the ring balance and thus the intermod-
ulation distortion. More complex ring elements can be used to further improve
intermodulation distortion with the added cost of increasing the amount of LO
power required to drive the diodes. More detailed information on design of RF
and microwave mixers is available in [3,4].

11.6 DOUBLE-BALANCED TRANSISTOR MIXERS

Transistors can also be used as the mixing element in all three types of mixers
described above, though only the double-balanced configuration is described here.
These are called active mixers because they provide the possibility of conversion
gain that the diode mixers are not capable of doing. They produce approximately
the same values of port isolation and suppression of even harmonic distortion as
the diode mixers. One example of such a circuit is a transistor ring of enhance-
ment mode n-channel MOSFETs in which the gate voltage must exceed zero in
order for the transistor to turn on (Fig. 11.14). When the LO voltage is positive
as indicated, the pair of transistors on the right-hand side is turned on, and the
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MIXER CLASS CIRCUIT LO POWER (dBm)

Class 1 +7  to  +13

+13  to  +24

+13  to  +24

+20  to  +30

+20  to  +30

+20  to  +30

Class 2, Type 1

Class 2, Type 2

Class 3, Type 1

Class 3, Type 2

Class 3, Type 3

FIGURE 11.13 Double-balanced mixer classes is based on the elements in each branch.
Required LO power levels increases with circuit complexity. (From [5].)

left-hand pair is turned off. When the LO voltage is negative, the two pairs of
transistors switch roles. In this process the path from the RF signal switches back
and forth between the positive and negative IF ports at the LO switching rate.
While the balance of the polarity of the RF signal voltage precludes it from being
seen at the IF port, the difference frequency generated by the switching action
does appear across the IF terminals.

An alternative design is based on the Gilbert cell multiplier [6]. An anal-
ysis of the elementary Gilbert cell in Fig. 11.15 is most easily accomplished by
assuming that the base and reverse bias saturation currents are negligible, that
the output resistances of the transistors are infinite, and that the bias source is
ideal. Considering, for the moment, transistors Q1, Q2, and Q5 current continuity
demands,

IC5 D IC1 C IC2 �11.21�
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FIGURE 11.14 Double-balanced mixer using MOSFETs.
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FIGURE 11.15 Gilbert cell used as a modulator.
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The ratio of the Schottky diode equations with negligible saturation current gives
a second relationship:

IC1

IC2
D eVBE1/VT

eVBE2/VT
D eV1/VT �11.22�

Combining of these two equations gives an expression for IC1. In like manner
the currents for Q2, Q3, and Q4 are found:

IC1 D IC5

1 C e�V1/VT
�11.23�

IC2 D IC5

1 C eV1/VT
�11.24�

IC3 D IC6

1 C eV1/VT
�11.25�

IC4 D IC6

1 C e�V1/VT
�11.26�

For Q5 and Q6 the collector currents are

IC5 D IEE

1 C e�V2/VT
�11.27�

IC6 D IEE

1 C eV2/VT
�11.28�

The output voltage is proportional to the difference of the currents through the
collector resistors:

VO D [�IC1 C IC3�� �IC2 C IC4�]R �11.29�

D [�IC1 � IC4�� �IC2 � IC3�]R

D R�IC5 � IC6�

1 C e�V1/VT
� R�IC5 � IC6�

1 C eV1/VT

D IEER

1 C e�V1/VT

(
1

1 C e�V2/VT
� 1

1 C eV2/VT

)

� IEER

1 C eV1/VT

(
1

1 C e�V2/VT
� 1

1 C eV2/VT

)

D IEER

1 C e�V1/VT

(
eV2/2VT

eV2/2VT C e�V2/2VT
� e�V2/VT

e�V2/2VT C eV2/2VT

)

� IEER

1 C eV1/VT

(
eV2/2VT

eV2/2VT C e�V2/2VT
� e�V2/2VT

e�V2/2VT C eV2/2VT

)

D IEER tanh
(
V2

2VT

)
tanh

(
V1

2VT

)
�11.30�
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Gilbert Cell
VRF 1 4 SIN (0 .2 800MEG ) DC 0
VP 8 9 SIN (0 2 900MEG ) DC 0
VCC 7 0 DC 15
VEE 0 12 DC 15
Q1 2 1 3 DEVICE
Q2 6 4 3 DEVICE
Q3 2 4 5 DEVICE
Q4 6 1 5 DEVICE
Q5 3 8 10 DEVICE
Q6 5 9 10 DEVICE
Q7 11 11 12 DEVICE
Q8 10 11 13 DEVICE
R1 7 11 15
R2 13 12 100
RC1 7 2 30k
RC2 7 6 30k
.MODEL DEVICE NPN
.PROBE
.DC VRF -100m 100m 10m VP -100m 100m 20m
* Print step, Final time, Print start, Step ceiling
.TRAN 1nS 100nS 0
* IF output is V(2,6)
* DC analysis
.TF V(6) VRF
*.TF V(6) VP
.END

FIGURE 11.16 SPICE list for the Gilbert multiplier.

Since tanh x ³ x for x − 1, the monomial type of multiplication between the
two input voltages will occur as long as Vi − 2VT, where i D 1, 2. At the other
extreme, when x × 1, tanh x ³ 1.

The modulator application typically has one large input voltage (LO) and one
small one (RF signal). A positive value of the LO voltage, shown as V1 in
Fig. 11.15, will then cause Q1 and Q4 to be turned on, while Q2 and Q3 are
turned off. As in the previous double-balanced mixers, the LO switches the RF
signal voltage path to the IF port at the frequency, fp, so that the difference
frequency is generated. A SPICE analysis of the Gilbert cell (Fig. 11.16) again
demonstrates the production of an IF output between the collectors of Q1 and Q2.

This same circuit can be realized using field effect transistors. In either case
a large RF signal input can cause the mixer to operate outside of its linear
region. The mixer dynamic range can be improved by adding emitter (source)
degeneracy. This is a small resistor (usually in the 100’s of Ohms) in the emitter
circuit. Another scheme is to introduce a filter between the lower two transistors
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and the upper ones [7]. Distortion products produced in Q5 and Q6 are thus
filtered out before the RF signal reaches the transistors being switched by the
LO. A 20 dB improvement in dynamic range over the conventional Gilbert cell
is reported using this filtering technique.

11.7 SPURIOUS RESPONSE

The previous sections considered some representative mixer circuits. Here some
of the primary mixer performance criteria for mixers are described. The first
of these are the spurious frequencies generated when the mixer is excited by a
single tone RF signal. A second measurement of mixer performance results from
exciting it with two tones near to each other that produces two IF terms. The
latter is termed two-tone intermodulation distortion.

Single-tone intermodulation is an effect of the imbalance in the transformers
or the diodes used in the mixer. A distinction is made between the inherent
nonlinear current–voltage curve of a diode and the nonlinearity associated with
the switching action of the diode [8]. Fitting a polynomial function to an ideal
diode characteristic whose current is zero when off, and whose i–V slope is
a straight line when the diode is on, would yield a polynomial fitting function
with many powers of the independent variable. Indeed, the switching of the
diodes appears to be the predominant effect in a mixer. Analytical estimates
of intermodulation distortion suppression can be made solely on the basis of
the switching action of the diodes in the mixer rather than on any curvature of
individual diode curves. Such an expression is presented in Appendix H. That
equation has also been coded in the program IMSUP as described in Appendix H.
Basically the intermodulation suppression in dBc (dB below the carrier) is Snm
for a set of frequencies nfp š mf1.

Two-tone intermodulation distortion is best explained by following a simple
experimental procedure. Normally one RF signal excites the RF port of the mixer,
which then produces the IF output frequency along with various higher-order
terms that can be easily filtered out of the IF circuit. Now consider exciting the
RF port of the mixer with two RF signals, f1a and f1b, spaced close together,
which thus lie within the pass band of the mixer input. The nonlinear mixer
circuit will then produce the following frequencies:

�šm1f1a š m2f1b�š nfp �11.31�

The order of the mixing product is m1 C m2. It would be nice if the IF output were
only jf1a � fpj and jf1b � fpj, since that would represent the down-converted
signal to the IF output. Those terms containing harmonics of fp would be far
outside the band of interest and could be filtered out. There are essentially two
possibilities for the second-order intermodulation products:

�š1f1a š 1f1b�š fp

�š1f1a Ý 1f1b�š fp
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In the first case, the output is near 3fp, and therefore well outside the IF
pass band. The second case presents an output frequency slightly above or
below the local oscillator frequency, fp, which again is well outside the IF pass
band. However, the third-order intermodulation products do present a special
problem:

�š2f1a Ý 1f1b�š fp

�š1f1a Ý 2f1b�š fp

A numerical example illustrates what occurs with the third-order intermodulation
products. If fp D 500 MHz, the desired RF input signal is f1a D 410 MHz, and
a second signal of the same amplitude is at f1b D 400 MHz. The first-order
products would give the desired output IF frequencies and a high frequency that
could be easily filtered out:

jf1a š fpj D 90, 910 MHz

jf1b š fpj D 100, 900 MHz

The third-order intermodulation products would be

j2f1a � f1b š fpj D j820 � 400 š 500j D 80, 920 MHz

j2f1b � f1a š fpj D j800 � 410 š 500j D 110, 890 MHz

As shown if Fig. 11.17, the undesired 80 and 110 MHz third-order intermodu-
lation products could lie inside the IF pass band and thus distort the signal. The
surest defense against this is to keep the amplitudes of the third-order intermod-
ulation products small.

The measure of the size of the third-order intermodulation product is the
intersection of third-order term with the desired first-order term, f0 D fp � f1,
(Fig. 11.17). The second-order intermodulation product is a result of having two

IF

2f1a–f1b–fp 2f1b–f1a–fp 2f1b–f1a 2f1a–f1b

f1a–fp
fp f1b f1af1b–fp

LO
RF

FIGURE 11.17 Third-order intermodulation distortion.
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RF signals that are multiplied together because of a quadratic nonlinearity:

[A cosω1at Ð B cosω1bt] cosωpt

The resulting amplitude proportional to AB will increase 2 dB when A and B
each increase by 1 dB. The third-order intermodulation product is a result of a
cubic nonlinearity:

[A2 cos2 ω1at Ð B cosω1bt] cosωpt

The resulting amplitude proportional to A2B will increase by 3 dB for every 1 dB
rise in A and B. Thus, when the RF signal rises by 1 dB, the desired IF term
will rise by 1 dB, but the undesired third-order intermodulation term rises by
3 dB (Fig. 11.18). The interception of the extrapolation of these two lines in the
output power relative to the input power coordinates is called the third-order
intercept point. The input power level where this intersection occurs is called
the input intercept point. The actual third-order intermodulation point cannot be
directly measured, since that point must be found by extrapolation from lower-
power levels. It nevertheless can give a single-valued criterion for determining the
upper end of the dynamic range of a mixer (or power amplifier). The conversion
compression on the desired output curve is the point where the desired IF output
drops by 1 dB below the linear extrapolation of the low level values.

The range of mixer LO frequencies and RF signal frequencies should be
chosen so as to reduce to a minimum the possibility of producing intermodulation
products that will end up in the IF bandwidth. When dealing with multiple bands
of frequencies, keeping track of all the possibilities that may cause problems is
often done with the aid of computer software. Such programs are available free
of charge off the internet, and other programs that are not so free.

P
ou

t, 
dB

m

P in, dBm

Conversion
Compression Intercept Point

FIGURE 11.18 Two-tone third-order intermodulation intercept point.
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11.8 SINGLE-SIDEBAND NOISE FIGURE AND NOISE TEMPERATURE

The frequency independent noise power from a resistor is to a good approximation
kT where k is Boltzmann’s constant, and T is the absolute temperature. In the
two-port circuit shown in Fig. 11.19, a generator resistance, RG, produces noise
with an equivalent noise temperature of TG. The network itself is characterized
as having a certain transducer power gain, GT, and noise temperature. When
describing the noise temperature of a two-port, it must be decided if the noise is
measured at the input or the output. The noise power at the output is presumably

Tout D GTTin �11.32�

where Tin is the noise temperature referred to the input port and GT is the trans-
ducer power gain. For mixers, this is the conversion gain between the signal
and IF ports. In the land where amplifiers are broadband, linear and have wide
dynamic range, Eq. (11.32) is accurate. However, low-level random noise volt-
ages may not necessarily be amplified the same way a clean sinusoid would. But
to wander from this idealistic world would complicate things beyond their basic
usefulness for the present discussion. So the noise power delivered to the load,
ZL, is

NL D k�GTTG C Tout� �11.33�

or

TL D GTTG C Tout

D GT�TG C Tin� �11.34�

While the load will generate its own noise, this is defined out of the equation.
What is described here is the noise delivered to the load.

The noise figure is sometimes defined in terms of the signal-to-noise ratio at
the input to the signal-to-noise ratio at the output of a two-port:

F D Si/Ni
So/No

D Si
So

Ð No

Ni

D 1

GT
Ð GT�TG C Tn�

TG

D
(

1 C Tn
TG

)
�11.35�

GTTG

Tin

TL

FIGURE 11.19 Noise within the circuit is referred to the input side.
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The noise figure depends on the temperature of the generator. This ambiguity in
noise figure is removed by choosing by convention that the generator is at room

temperature, TG D 290°K
D T0. Thus the noise characteristics of a two-port

such as a mixer (the LO port being conceptually ignored) can be characterized
with either noise figure or noise temperature. Because of the greater expansion
of the temperature scale over that of noise figure in dB, noise temperature is
preferred when describing very low noise systems and noise figure for higher-
noise systems. However, the concept of noise temperature becomes increasingly
convenient when describing mixers with their multiple frequency bands.

The noise figure of a mixer can be described in terms of single-sideband (SSB)
noise figure or double-sideband (DSB) noise figure. If the IF term, ω0 in Fig. 11.2
comes solely from the signal ω1 and the image frequency ω�1 is entirely noise
free, then the system is described in terms of its single-sideband noise figure,
FSSB (Fig. 11.20a). Double-sideband noise figure comes from considering both
the noise contributions of the signal and the image frequencies (Fig. 11.20b). In
general, the output noise of the mixer will be the sum of the noise generated
within the mixer itself and the noise power coming into the mixer multiplied by
the mixer conversion gain. The noise power from inside the mixer itself can be
referred to either the output port or the input port as described by Eq. (11.32).
If all the internal mixer noise is referred back to the input RF signal port, then
this will designated as NSSB. The total noise power delivered to the load is found
by multiplying NSSB by the RF port conversion gain, Grf, and adding to this
the power entering from the signal source, NG, at both the RF signal and image
frequencies:

NL D �NSSB CNG�Grf CNGGim �11.36�

The gains at the RF signal and image frequencies, Grf and Gim, are typically very
close to being the same since these two frequencies are close together. The terms
in this definition are readily measurable, but Eq. (11.36) is at variance with the
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+
ω p

NSSB

NG

NG

(a)

–

+

ω –1

ω 1

ω 0

ω –1

ω 1

ω 0

ω p

NDSB

NDSB

NG

NG

(b)

FIGURE 11.20 Mixer noise specification using (a) single-sideband noise, and (b) double-
sideband noise.
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way the IEEE standards define single-sideband noise figure. For further discussion
on this point, see [3]. The single-sideband noise figure is conventionally defined
as the ratio of the total noise power delivered to the load to the noise power
entering at the RF signal frequency from a generator whose temperature is T0

and when the mixer itself is considered to be noise free:

FSSB D NL

NGGrf
�11.37�

Making the assumption Grf D Gim,

FSSB D NSSBGrf C 2GrfNG

GrfNG

D TSSB

T0
C 2 �11.38�

Since NSSB is referred to the mixer input, so its associated noise temperature,
TSSB, is also referred to the input side.

If the internal mixer noise power is referred back to both the RF frequency
band and the image frequency band, then this power will be designated as the
double-sideband power, NDSB. For the double-sideband analysis, both the RF
signal and image frequencies are considered as inputs to the mixer. In this case
the total power delivered to the load is

NL D �NG CNDSB��Grf CGim� �11.39�

The double-sideband noise figure is determined by taking the ratio of the power
delivered to the load and the power from both of these frequency bands if the
mixer were considered noise free:

FDSB D NL

�Grf CGim�NG
�11.40�

Substituting Eq. (11.39) into Eq. (11.40) and again assuming that Grf D Gim,

FDSB D TDSB

T0
C 1 �11.41�

In the single-sideband case, all mixer noise power is referred to the mixer input
at the RF signal frequency. In the double-sideband case, all the mixer noise is
referred to the mixer input at both the RF signal and image frequencies. Since
the internal mixer power is split between the two frequency bands,

TSSB D 2TDSB �11.42�



246 RF MIXERS

so that

FSSB D TSSB

T0
C 2 D 2TDSB

T0
C 2 D 2FDSB �11.43�

This illustrates the of-stated difference between single- and double-sideband noise
figures. Noise figure specification of a mixer should always state which of these
is being used.

PROBLEMS

11.1 Using the Fourier transform pair, show that F�e�jωa� D 2�υ�ω � ωa�.
11.2 Two closely separated frequencies are delivered to the input signal port of

a mixer of a receiver. The center frequency of the receiver is 400 MHz,
and the two input frequencies are at 399.5 and 400.5 MHz. The mixer has a
conversion loss of 6 dB and the local oscillator is at 350 MHz. The power
level of these two input frequencies is �14 dBm (dB below a milliwatt).
At this input power, the third-order modulation products are at �70 dBm.
(a) What are the numerical values for the output frequencies of most

concern to the receiver designer?
(b) What is the output third-order intercept point?
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CHAPTER TWELVE

Phase Lock Loops

12.1 INTRODUCTION

Phase lock loops (PLL) are not a recent invention. Their use became widespread
with the availability of high-quality integrated circuit operational amplifiers (op-
amps) in the 1960s. This versatile circuit has found applications across the frequency
spectrum in consumer, commercial, deep space, and military projects. Tracking
Voyager through the solar system and tuning a car radio are made to order uses for
a PLL. To understand a PLL, a good working knowledge of RF techniques, oscil-
lator design, closed loop control theory, analog circuit design, and digital circuit
design is required. A comprehension of each of the components and its place in
the system is essential. Fortunately not all of this knowledge is required at once.
The books listed at the end of this chapter can each provide an in-depth insight into
areas beyond the present scope [1–5]. This discussion will begin with the basic
concepts and rapidly expand these ideas into practical considerations.

12.2 PLL DESIGN BACKGROUND

Discussion of the PLL draws heavily on many other areas of analysis, which
includes an understanding of the principles of closed loop control theory. From
control theory comes the concept of negative feedback to tailor the performance of
closed loop systems. Response time, transient performances, bandwidth, damping
ratio, and phase margin are used to describe PLL operation. The type and order
of a closed loop system define the complexity and response to a stimulus.

In most PLL’s, at least two of the components, the voltage-controlled oscillator
(VCO) and phase detector, are high-frequency components. There may also be
amplifiers, mixers, frequency multipliers, and other oscillators. To use these items,
a familiarity with RF design practices and terminology is important.

Frequency multiplication may require digital integrated circuits (ICs) within
the PLL. These ICs require digital control words to set the desired frequency.

247
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Many integrated circuits are presently available that combine many of the PLL
functions on a single chip. Most of the interface control is digital.

Analog circuit design is perhaps the most demanding of the circuit areas within
a PLL. Op-amps are used in many of the filtering circuits used within a loop.
Inverting and noninverting circuits are required for loop filters and search circuits.
Integrators, dc amplifiers, Schmitt triggers, and offset circuits are used to set the
loop operation. Resistor/capacitor circuits provide phase shift for stability. The
oscillator is an intrinsic part of a PLL, and its design in itself is a specialized
and technically challenging area.

12.3 PLL APPLICATIONS

A phase lock loop is a frequency domain device that can be used to multiply,
divide, or filter different frequencies. Consider a space probe rapidly moving
away from the earth. To recover data from the probe, the transmitter frequency
must be known. The signal is very weak because of the distance, and the low
signal-to-noise ratio requires a very small receiver filter bandwidth to recover
the data. However, because of the relative motion, there is a significant and
changing Doppler shift to the transmit frequency. The system requires a filter
that may be only a few Hertz wide operating at a varying frequency that is
centered at several GHz.

An electronic phase lock loop is one form of a closed loop system. The
cruise control is another. A switching power supply, a camera’s light meter,
a radio’s automatic gain control, the temperature control in a building, a car’s
emission system controls, and a Touch-Tone dialing system are examples of
closed loop systems. A broadcast receiver changes frequency with a button push
or electronically. Each time the station is accurately centered with no manual
adjustment required. Physically these PLLs are all very different working at
different jobs and in different environments. However, they all must follow the
same rules, and the loops must all be stable.

A clear understanding of the concept of feedback control is illustrated by an
everyday situation of the simple action of controlling the speed of a car. If the
desired speed is 60 mph, then this becomes the reference. Any deviation from
this speed is an error. The accelerator pedal is the control element. On level
terrain, a constant pressure on the pedal will maintain constant speed. As the car
goes up a hill, it will slow down. The difference between the actual speed and
the reference value generates an error. This error generates a command to push
the accelerator pedal. Pushing the pedal will increase the speed, but there will
continue to be a slight error. As the car crests the hill and starts down, the speed
will increase. Releasing pedal pressure will slow the acceleration, but an error
will remain until a steady state condition is again reached. For this example, the
driver’s brain is the feedback path. The driver controls the sense of the feedback
by knowing when to push and when to release the pedal. By his reaction time,
he controls how close to the reference he maintains the car’s speed. He may
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decide to rapidly change the correction to tightly match the desired speed, or he
may choose to compensate slowly so his speed averages out to the correct value.
His actions coupled with the car’s controls form a system closely analogous to
a phase lock loop. Replace the human with an electrical circuit that senses the
speed error, include another circuit that tempers the response time, and couple it
to the accelerator controls. This is the typical cruise control system. The elements
of understanding the operation of a phase lock loop are all available here. The
next step is to apply the concepts of this example to the classical elements that
make up a PLL.

12.4 PLL BASICS

A PLL is a closed loop system used for frequency control. Several building
blocks are common to most PLL designs:

1. The phase detector
2. The loop filter
3. The voltage-controlled oscillator

Figure 12.1 illustrates the connection of these blocks to make a complete
phase lock loop. The phase detector has two inputs and one output. This block
can be realized by a specialized mixer described in Chapter 11 where the IF port
passband goes down to dc. If the two input signals are very close in frequency,
then the output will contain a term at twice the input frequency and a term
that is almost zero frequency. The loop error signal in the PLL is the near-zero
term. This signal contains everything that is needed to control the VCO. This
error signal goes to the loop filter for amplification and frequency limiting. The
loop filter may be as simple as a capacitor and a resistor, or it can be one or
more operational amplifiers with many resistors and capacitors. The loop filter
is generally a simple circuit that requires an in depth analysis. It is the “glue”
that holds all the other parts together and makes the PLL work the way it is
supposed to work. The VCO is the control element of this loop. The input is a
control voltage from the loop filter, while the output is the required frequency.

Phase
Detector

Loop
Filterf ref foutVCO

FIGURE 12.1 Basic phase lock loop.
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Frequency is the time rate of change of phase, so phase is the time integral
of frequency. Consequently, if the frequency of the VCO is proportional to the
tuning voltage, the output phase is proportional to the integral of tuning voltage.
The output frequency can range from a few Hertz to many GHz. The VCO output
becomes the second input to the phase detector.

When the loop is first turned on, the VCO frequency is not controlled. The
loop filter output voltage can be anywhere between the high and low limits set
by the power supply. However, the phase detector produces an error voltage that
is the difference between the VCO frequency and the reference frequency. Like
the cruise control example, this signal tells the loop filter whether the VCO is
going too fast or too slow relative to the reference frequency. The loop filter is
“smart enough” to know what to do. If the error signal indicates that the VCO
frequency is less than the reference, the loop filter adjusts the control voltage
to raise the VCO frequency. If the VCO frequency is too high, the loop filter
changes the voltage and lowers the VCO frequency. The loop filter design sets
how fast this happens. Some loops may be designed for a fast bumpy ride, while
others may require a slow smooth ride. When the loop filter has done its job, the
VCO frequency will exactly match the reference frequency, and the two inputs
will have a constant phase difference. This match in frequency and constant phase
difference will be maintained even if the reference frequency changes. With each
change, the PLL again goes through the settling out process. If the reference is
noisy, the PLL is in a continual state of change, working hard to follow the input.
If a PLL were nothing more than a box with the same frequency in and out, it
would not be much of an invention. Happily there is a lot more to it than that.
Before preceding any farther, the basic idea of the frequency control by a closed
loop operation must be clarified.

12.5 LOOP DESIGN PRINCIPLES

There are many design rules that go into a successful, stable closed loop design,
but many of these details are beyond the scope of his text. However, this discus-
sion will lead to an understanding of how the loop works and how to select
parts to customize its operation. From the overall system point of view, the
PLL designer must know the overall requirements and be able to translate these
requirements into the PLL parameters for the design.

With a PLL, the important top-level parameters are the input and output
frequency, the response time, the loop bandwidth and the loop damping ratio. The
top-level view concentrates on these system level values. The detailed aspects
of the phase detector and VCO must be considered. These are usually high-
frequency parts requiring high-frequency design techniques. The design of the
loop filter requires an understanding of analog design techniques. Figure 12.2
illustrates the PLL block diagram, which includes a frequency divider in the
feedback path. Both frequencies coming into the phase detector must be the
locked together at the same frequency. This will force the output frequency,
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Phase
Detector

Loop
Filterf ref foutVCO

Divide
by N

FIGURE 12.2 Phase lock loop with a frequency divider.

fout, to be N times the reference frequency, fref. Familiarity with digital circuit
design is required to complete the design. A PLL design is not just a system
design nor an RF design nor an analog design, but it is a combination of all
these areas. The actual design process can be summarized by three principles.

1. Know each component. The components of a PLL, the VCO, phase detector,
loop filter, and frequency divider must be thoroughly understood and tested
as stand-alone individual components. Testing of the actual parts must show
that they each meet the design goals. These tests may extend far beyond
the information on the manufacturer’s data sheet.

2. Test the components together. The individual components must work correc-
tly when connected together in an open loop configuration. The loop filter
must put out enough voltage to drive the VCO. The VCO must have enough
output to drive the frequency divider. The phase detector output must be
large enough for the loop filter to use. An open loop analysis must show the
correct phase margin and bandwidth for stability. These issues are resolved
with an open loop analysis.

3. Compare the closed loop configuration to the design goals. A closed loop
analysis should show that the final connection matches the system level
design goals. Both test measurement techniques and analysis can be applied
for PLL design verification.

12.6 PLL COMPONENTS

The basic building blocks, except in exotic applications, are those shown in
Fig. 12.2. This section describes in greater depth each of these functions.

12.6.1 Phase Detectors

Phase detectors come in many configurations. These include those with logic level
inputs, passive and active analog versions, and sampling versions used for high-
frequency multiplication. In addition there are phase detectors with automatic
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frequency search features to aid in initial frequency acquisition. In its simplest
form, a phase detector is a frequency mixer. As described in Chapter 11, when
two signals come into the mixer, the output consists primarily in the sum and
difference frequencies. The sum frequency is filtered out by the loop filter. The
difference frequency, historically called the beat note, is typically a few kHz
or less in a PLL. If the two input frequencies are exactly the same, the phase
detector output is the phase difference between the two inputs. This loop error
signal is filtered and used to control the VCO frequency. The two input signals
can be represented by sine waves:

V1 D Va sin�ω1t C �1	 �12.1	

V2 D Vb sin�ω2t C �2	 �12.2	

The difference frequency term is the error voltage given as

Ve D Km Ð V1 Ð V2 D KmVaVb
2

cos[�ω1 � ω2	t C ��1 � �2	] �12.3	

where Km is a constant describing the conversion loss of the mixer. Equa-
tion (12.3) gives the time-varying cosine waveform at the beat note frequency.
When the two frequencies are identical, the output voltage is a function of the
phase difference, � D �1 � �2:

Ve D KmVaVb
2

cos��	 �12.4	

This is maximum when � D 0°, a minimum when � D 180°, and zero when
� D 90° or 270° (Fig. 12.3).

When modeling a PLL in the frequency domain, the phase detector can be
modeled as

Kpd
a

aC s
�12.5	

which at low frequencies is simply the slope of the voltage with relation to the
phase curve. The units for Kpd is volts/rad:

Kpd D dVe

d�
D �KmVaVb

2
sin��	 �12.6	

Thus Kpd D 0 when� D 0° or 180° and a maximum absolute value at� D 90°

or 270°.

12.6.2 Voltage-Controlled Oscillator

The voltage-controlled oscillator is the control element for a PLL in which
the output frequency changes monotonically with the tuning voltage. A linear
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FIGURE 12.4 Voltage-controlled oscillator tuning.

frequency versus tuning voltage is an adequate model for understanding its oper-
ation (Fig. 12.4):

ωout D Kvco Ð Vtune C ω0 �12.7	

In a PLL the ideal VCO output phase may be expressed as

��t	 D ω0t C
∫ t

0
KvcoVtuned t C �0 �12.8	
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where ω0 is the free-running VCO frequency when the tuning voltage is zero
and Kvco is the tuning rate with the dimension of rad/s-volt.

The error voltage from the phase detector first steers the frequency of the VCO
to exactly match the reference frequency, and then holds it there with a constant
phase difference. It is modeled as having a low-frequency gain Kvco and one or
more poles of the following form:

Kvco

s�sC a	
�12.9	

12.6.3 Loop Filters

A loop filter is a low-frequency circuit that filters the phase detector error voltage
with which it controls the VCO frequency. While it can be active or passive,
it is usually analog and very simple. In extreme cases it might be an entire
microprocessor. This discussion will be limited to analog loop filters, such as
the representative topologies shown in Fig. 12.5. Figure 12.5a shows an op-amp
integrator with nearly infinite dc gain. This is the loop filter often associated
with the type 2 PLL. The order and type of a PLL is defined in Section 12.9.
Figure 12.5b shows an op-amp loop filter with a finite gain and is associated
with a type 1 PLL. Figure 12.5c is a passive filter used with a phase detector
whose output is current rather than voltage. This type of detector is frequently
found in synthesizer ICs and is associated with a type 2 PLL. While the loop
filter is a simple circuit, its characteristic is important in determining the final

Type 2 PLL

Vpd R1 Vtune

R2

C

Type 2 PLL Type 1 PLL

Vpd
Vtune

Rin

Rs C

−

+

Vpd
Vtune

Rin

Rp

Rs C

−

+

FIGURE 12.5 Loop filter used in a (a) type-2 PLL, (b) type-1 PLL, and (c) type-2 PLL.
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closed loop operation. The wrong design will make the loop unstable causing
oscillation or so slow that it is unusable. The loop filters shown in Fig. 12.5 are
modeled by

F�s	 D sC a

sn�sC b	�s C c	
�12.10	

where a is a zero and b and c are poles.

12.6.4 Frequency Dividers

When the output frequency must be a multiple of the input frequency, frequency
dividers may be included in a PLL. Most dividers are a digital circuit, although
analog techniques dating from 1939 are available for very high frequency devi-
sion. With the availability of complete synthesizers on a single IC, fewer stand-
alone divider circuits are on the market. Most dividers have a division ratio
equal to a binary number or switchable from a binary to a binary C1 (e.g.,
divide by 64 or 65). The upper limit on the input frequency is about 3 GHz,
although only a few ICs will go that high. Divide by four circuits has been
demonstrated with inputs above 14 GHz, but this is a very specialized device not
required by most PLLs. For a linear analysis when the loop bandwidth is much
less than the reference frequency, dividers are modeled as a gain element with a
value D 1/N.

12.7 LINEAR ANALYSIS OF THE PLL [1]†

From the perspective of the time domain, the control voltage for the VCO is

Vtune�t	 D Vtune�0�t	C
∫ t

0
ve�t	f�t � �	d� �12.11	

where f�t	 is the impulse response of the filter. Now the Laplace transform of
f�t	 is

F�s	 D
∫ 1

0
f�t	e�std t, t > 0 �12.12	

and the inverse transform can be obtained in principle by the contour integral
shown below:

f�t	 D 1

2�i

∫ 1

�1
F�s	estds, <s > 0 �12.13	

† This material is based on A. J. Viterbi, Principles of Coherent Communication, 1966, by permission
of the McGraw-Hill Company.
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Then the VCO frequency is

d�2�t	

d t
D ω0 C KmVaVb

2

∫ t

0
f�t � �	 cos���	 �12.14	

where ��t	 D �1�t	� �2�t	. Consequently, a the general equation describing
the phase error is

d�

d t
D d�1

d t
� ω0 � KmVaVb

2

∫ t

0
f�t � �	 cos���	d� �12.15	

For a given input phase �1, the solution of this equation describes the exact
operation of the PLL. However, to avoid carrying along ω0, a new phase variable
may be defined:

 1�t	
D �1�t	� ω0t �12.16	

 2�t	
D �2�t	� ω0t �12.17	

The equation for the phase error is now given without ω0:

d�

d t
D d 1

d t
� KmVaVb

2

∫ t

0
f�t � �	 cos���	d� �12.18	

This suggests an alternate representation for the phase lock loop shown in
Fig. 12.6. In this representation the multiplier is replaced by a subtracter and
a cosinusoidal nonlinearity, while the VCO is replaced by an integrator.

When the phase error � deviates from 90° by a small amount, cos�� C
90°	 ³ �. Then Eq. (12.18) becomes

d 1

d t
D d�

d t
CK

∫ t

0
f�t � �	���	d� �12.19	

where

K D KmVaVb
2

�12.20	

f1(t )

f2(t )

df2(t )
dt

∆f(t ) cosf

cos ( ) K Filter f (t )

dt

−

+

FIGURE 12.6 Time domain nonlinear phase lock loop.
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If the Laplace transform of  1�t	 is represented by Q �s	 and the Laplace transform
of ��t	 is represented by  Q��s	, then the Laplace transform of Eq. (12.19) is

s Q��s	CKF�s	 Q��s	 D s Q 1�s	 �12.21	

This linear frequency domain equation for the PLL can be represented as shown
in Fig. 12.7.

The solution for the phase error gives

 Q��s	 D
Q 1�s	

1 CKF�s	/s
�12.22	

so that the phase shift at the output of the PLL is

Q 2�s	 D Q 1�s	� Q��s	
Q 2�s	
Q 1�s	

D P�s	 D G�s	

1 CG�s	
�12.23	

where G�s	 D VaVbKm/2F�s	/s. The phase error can in turn be written in terms
of this transfer function:

 Q��s	 D Q 1�s	� Q 2�s	 D [1 � P�s	] Q 1�s	 �12.24	

If, for example, the phase of the incoming signal is �1�t	 D ωt C �0 and the
PLL has no filter, F�s	 D 1. Readjusting the phase reference as was done in
Eqs. (12.16) and (12.17) gives

 1 D �1 � ω0t �12.25	

D �ω � ω0	t C �0 �12.26	

In the frequency domain this becomes

Q 1�s	 D ω � ω0

s2
C �0

s
�12.27	

f1(s)

f2(s)

∆f (s)

K F (s)
−

+

1/s

~ ~

~

FIGURE 12.7 Frequency domain linear phase lock loop.
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The phase error is found from Eq. (12.22):

 Q��s	 D 1

K/s

[
ω � ω0

s2
C �0

s

]
�12.28	

The inverse transform in this case is straightforward and gives the phase error in
the time domain:

��t	 D ω � ω0

K
�1 � e�Kt	C �0e

�Kt �12.29	

The steady state phase error is found by allowing t ! 1:

��t D 1	 D ω � ω0

K
�12.30	

Clearly, the phase will change when the incoming frequency changes, so that
phase lock is not achieved.

The insertion of a low-pass filter into the PLL will produce lock. An active
filter such as that shown in Fig. 12.8 is recognized as basically a noninverting
amplifier. The inverting amplifier has right half-plane poles and is therefore
unstable. For the noninverting case the voltage gain can be found by writing
node equations at the input nodes of the operational amplifier:

F�s	 D Vo

Vi
D 1 C R2 C 1/sC

R1
D
(

1 C R2

R1

)
C 1

sCR1
�12.31	

The phase transfer factor is found from Eq. (12.23):

P�s	 D
Q 2�s	
Q 1�s	

D K[�1 C R2/R1	R1CsC 1]

s2CR1 CCR1K�1 C R2/R1	sCK
�12.32	

Thus, using Eq. (12.24), the phase error is easily obtained:

 Q��s	 D [1 � P�s	] 1�s	 �12.33	

Vi

+

− +

−

V0

R1
R2 C

FIGURE 12.8 Possible active low-pass filter for the PLL.
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 Q��s	 D �ω � ω0	CR1 C �0CR1s

s2CR1 C CR1K�1 C R2/R1	sCK
�12.34	

Rather than find the inverse transform this time, the final value theorem may be
used to find the steady state phase error:

lim
t!1��t	 D lim

s!0
s Q��s	 D 0 �12.35	

In this case the phase error is independent of frequency and in the steady state
is zero.

12.8 LOCKING A PHASE LOCK LOOP

The previous sections examined each of the elements in a PLL. As an example
of how these parts go together, consider a simple loop with no frequency divider.
Also assume that initially the loop is not locked and that the reference frequency
is 100 MHz. A VCO tuning voltage of 5 volts is required to make the VCO
frequency be 100 MHz. The phase detector can produce a cosine wave beat note
of 1 volt peak to peak.

To simplify the design, a type 1 loop filter will be used. This is an inverting
op-amp circuit with a gain of 100 at low frequency and a gain of 0.1 at high
frequency (Fig. 12.9). With the loop unlocked, the VCO frequency could be
anywhere within its operating limits. Assume that it is operating at 101 MHz, so
that there is a 1 MHz beat note at the phase detector output when the reference
frequency is first applied. This beat note frequency is high enough to only be
amplified with a gain of 0.1 by the loop filter. The VCO tuning voltage will be
modulated by the phase detector output of 0.1 volt peak to peak, but this voltage
will not cause any significant change in the VCO frequency.

With the VCO frequency too far away from the reference frequency, there is
not enough gain in the loop to bring the loop into lock. However, if the VCO

Vpd
Rin
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+
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Vtune

C

Rp

+60
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G
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B

FIGURE 12.9 (a) Type 1 loop filter and (b) its frequency response.



260 PHASE LOCK LOOPS

frequency is 100.1 MHz when the reference frequency was applied, the beat note
frequency would be 100 kHz. That is well within the high-gain frequency range
of the loop filter for this design. The amplified beat note voltage modulates the
VCO frequency. As the VCO frequency swings closer to the reference frequency,
the beat note frequency gets even lower, it enters an even higher-gain region of
the loop filter. This action accelerates the VCO frequency change until it crosses
the reference frequency. At this point the beat note frequency is zero. The PLL
has been designed as a stable closed loop system, and the VCO is at the same
frequency as the reference. The transient phase detector output voltage and the
VCO tuning voltage are shown in Figs. 12.10 and 12.11, respectively. The input
voltage to the VCO is 5 volts when the PLL is at frequency lock. Since the loop
filter has a dc inverting gain of 100, the voltage at the phase detector output is

Ve D 4

�100
D �50 mV �12.36	

The maximum voltage it could reach is 1.0 volt, so from Eq. (12.4) the phase
difference is � D arccos�Ve/0.5 Ð 1.0	 D 95.7°. The loop filter will keep the
VCO at 100 MHz and maintain a 95.7° phase difference between the two phase
detector inputs.

An oscillator accumulates 360° of phase rotation in each cycle. If the frequency
increases it will accumulate more phase rotation in a given period of time. If the
VCO tries to drift higher in frequency, it will quickly accumulate more phase
rotation. The phase detector output voltage will go up, and the loop filter will
amplify this change, which will lower the VCO control voltage. The VCO output

FIGURE 12.10 Phase detector voltage as the PLL pulls into lock.
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FIGURE 12.11 VCO tuning voltage as PLL pulls into lock.

frequency will drop and return to 100 MHz. The situation is similar for the VCO
trying to move lower in frequency. This is the effect of the negative feedback
within the loop. The battle for control goes on continuously. Small changes in the
VCO due to temperature, noise, or even gravity cause small frequency changes.
The PLL will not tolerate errors due to frequency or phase changes. When an
error voltage develops at the phase detector output, the loop filter will amplify it,
and the VCO frequency and phase will return to the correct value. The corrective
action of the loop will make whatever adjustments are required to hold the phase
and frequency constant.

It is important to understand that the initial beat note frequency must be well
within the loop filter’s bandwidth to achieve lock without frequency aiding. In
any loop the first event is to bring the VCO frequency in line with the reference
frequency. Once the circuit is in lock, a steady state phase relationship that
satisfies the loop feedback and dc requirements is found and that will hold its
lock frequency.

12.9 LOOP TYPES

The PLL is a closed loop system controlled by negative feedback. The closed
loop gain P(s) is described by

H�s	 D G�s	

1 CG�s	/N
�12.37	
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where G�s	 is the open loop or forward gain, and G�s	/N is called the loop gain.
For this discussion, the forward gain G(s) is the product of the phase detector
gain, the loop filter gain, and the VCO gain. The frequency divide ratio is N.

The number of pure integrators (or number of poles at the frequency origin)
in the denominator of Eq. (12.37) determines the type of the system. This can
be produced by an op-amp integrator with near-infinite dc gain. Obviously this
cannot be produced with a passive filter where the maximum gain is 1. A VCO
is a pure phase integrator that will contribute one pole to the type determination.
Therefore a PLL will be at least type 1. A loop filter with a finite dc gain will
not increase the type number. A loop filter with an integrator will increase the
type to 2.

The order of the PLL is the degree of the denominator polynomial of
Eq. (12.37). The loop filter op-amp has at least two significant breakpoints: one
at a frequency between 1 and 100 kHz and a second above 10 MHz. The VCO
has frequency roll-offs in its modulation performance. A low-pass filter may
be included in the phase detector output to further reduce the unwanted high
frequencies.

In the previous example using a type 1 loop, the only pure integrator is the
VCO, so there is only one pole at dc. The loop filter has a dc inverting gain of
100. If the VCO gain is 1 MHz/volt and the reference frequency is changed to
103 MHz, the VCO tuning voltage will now be 8 volts. With a gain of �100,
the phase detector voltage must be Ve D 8/��100	 D �80 mV.

This represents an angular difference of � D arccos�Ve/0.5 Ð 1.0	 D 99.7° in
contrast to 95.7° found earlier when the reference frequency was 100 MHz. The
phase difference between the VCO and reference frequency was 95.7 degrees.
If the reference frequency continues to change, the VCO frequency will change
to match it, which in turn will change the phase detector output voltage. As
the reference frequency changes in a type 1 loop, the phase difference changes.
This is an important characteristic that is sometimes desirable and other times
unacceptable.

If the dc gain of the loop filter is increased to 1000, the phase detector output
voltage for a 100 MHz lock is only �5 mV. For phase lock at 103 MHz, the
phase detector output voltage is �8 mV. These values represent phase differ-
ences, �, of 90.57° and 90.92°, respectively. If the dc gain is further increased,
the change of � with frequency will further decrease. If the gain is increased to
the limit, the dc feedback resistor, Rp, will approach an open circuit, and the loop
filter dc gain will increase to infinity. The loop filter in Fig. 12.5b is transformed
to that shown in Fig. 12.5a.

This loop filter is now a pure integrator. The total number of integrators for
the PLL with this loop filter is two: one for the VCO and one for the loop filter.
This loop filter used in a PLL creates a type-2 loop. Among the features of this
loop is the constant phase shift between the VCO and reference frequency that
is maintained with a change in frequency.

Type-1 and type-2 loops constitute the majority of applications. Type-3
and higher loops are required to solve frequency change problems in unusual
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situations. For example, a ground-launched missile must track an orbiting satellite
during its own launch and orbital insertion. During the launch phase, the rocket is
consuming fuel and thus reducing its mass. With a constant force, its acceleration
will be increasing at an increasing rate. As the satellite comes overhead its
transmit frequency is shifted due to the relative motion with the rocket. This
shift is constantly changing at an increasing rate. Then the booster separates
from the rocket, and the force goes to zero during coast. To track the satellite
frequency with no phase error requires a PLL type of at least four. Most high-
type loops are used to solve complicated motional problems. This discussion will
not cover the design details of loops of a type higher than two.

12.10 NEGATIVE FEEDBACK IN A PLL

A frequency change that generates a change in the phase of a stable negative
feedback loop generates a correction for the phase error. In the previous example
the type 1 loop filter was described as having a dc inverting gain of 100. The
VCO requires 5 volts to produce a 100 MHz output. An open loop connection of
the PLL components will demonstrate what is called the “sense” of the loop. For
open loop testing the VCO is connected to a manually adjustable power supply.
With the power supply set at 5 volts, there will be a low-frequency beat note
observed at the phase detector output. If the voltage is changed to either 4 or
6 volts, the beat note will be 1 MHz. With a mixer as the loop phase detector,
the beat note will be a cosine wave at the difference frequency, 1 MHz. The
frequency of the VCO cannot be determined from looking at the beat note. The
beat note shows the frequency difference between the two signals, but it does not
tell which signal is the higher or lower frequency. A complete description of the
difference frequency between the VCO and reference requires both a direction
and a magnitude. With the loop out of lock, this type of phase detector can only
determine magnitude, j�j. The VCO frequency must be forced close enough to
the reference frequency for the beat note to be inside the loop bandwidth for a
PLL with this type of phase detector to pull into phase lock.

In the previous example the VCO frequency increased as the tuning voltage
increased. Many VCOs have the opposite characteristic; that is, the frequency
decreases with increased tuning voltage. This difference does not change the
stability or operation of the closed loop if a mixer is used as the phase detector.
If the loop locked up at 90° difference between the two inputs with the positive
slope VCO, it will lock up at 270° with the negative slope VCO. The phase
detector output in either case will be correct to speed up or slow down the VCO
to match the reference input frequency and phase.

Most synthesizer ICs and PLLs using frequency dividers or logic ICs have a
different type of phase detector. Using flip-flops to count the input edges, these
phase detectors produce an error voltage that has not only a magnitude but also a
sense of the direction between the two inputs. The output is a series of voltage or
current pulses. The loop filter averages these pulses to form the control voltage
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for the VCO. A pulse duty cycle above 50% indicates that the VCO frequency is
higher than the reference frequency, and a duty cycle of less than 50% indicates
that the VCO frequency is lower. If the VCO is running faster than the reference
frequency, the control voltage will force it toward the correct value. If the VCO
is running too low, the error voltage will drive the frequency higher. This type
of phase detector can drive a PLL into lock even when the VCO and reference
frequencies are a great distance apart, far outside the loop bandwidth. The typical
IC synthesizer will have a pin available to reverse the sense of the error voltage
to accommodate VCOs of either positive or negative tuning slope.

12.11 PLL DESIGN EQUATIONS

A phase lock loop design requires the basic understanding of the locking mech-
anism as previously discussed. However, the values for the loop filter and other
components must be carefully selected to assemble a stable loop. These values
can be both analyzed and synthesized using basic closed loop equations and
linear algebra.

The normal phase lock loop model includes a phase detector, a loop filter, a
VCO and a frequency divider connected as shown in Fig. 12.12. Each block is
described by a gain value that may be a constant or a function of frequency. The
frequency response of the closed loop is typically displayed as a Bode plot with
a minimum frequency of 1 Hz and a maximum frequency between 10 kHz and
10 MHz. This describes the filtering bandwidth and in turn the transient response
of the PLL to the input voltage spectrum, Vin.

12.11.1 Inverting Loop Filter

The analysis proceeds by writing the voltage equations at points Ve and Vo.
Combining these equations produces the well-known equation for closed loop
gain of a system with negative feedback. When Kpd is the phase detector gain,
F�s	, is the noninverting loop filter function, and Kvco/s is the VCO gain, the

Kpd F(s)

÷N

Kvco/s

Phase
Detector

Loop
Filter VCO

Vo

–

+
Vin

Ve Vtune

FIGURE 12.12 Frequency domain closed loop model for a PLL.
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error voltage is easily found:

Ve D
(
Vin � Vo

N

)
Kpd �12.38	

Vo D
(
Vin � Vo

N

)
Ð
(
KpdF�s	

Kvco

s

)
�12.39	

This is solved for the voltage transfer function:

H�s	
D Vo

Vin
D KpdF�s	Kvco/s

1 C f[KpdF�s	Kvco/s]/Ng

D G�s	

1 CG�s	/N
�12.40	

A similar analysis for a PLL with an inverting loop filter gives a similar equation
except for a sign reversal. Positive feedback is used at the summer block since
the sign reversal has already occurred in the inverting amplifier:

H�s	 D G�s	

1 �G�s	/N
�12.41	

In either case, when the gain, G�s	, is large, jH�s	j ³ N.
These equations for closed loop gain can now be used to determine the loop

filter values required for a desired bandwidth and damping ratio. The procedure
initially assumes a second-order type-1 loop, since that is most frequently used.
A type 2 loop can then be easily derived. The transfer function for the filter in
Fig. 12.5b is

F�s	 D �Rpjj[Rs C �1/Cs	]

Rin

D � �RpRs/Rin	sCC �Rp/Rin	

�Rp C Rs	sCC 1
�12.42	

The open loop gain is

G�s	 D F�s	KpdKvco

s
�12.43	

For a type 1 PLL, Rp ! 1 and

F�s	 D �RssCC 1

RinsC
�12.44	

When Eqs. (12.43) and (12.44) are substituted into the expression for the gain
of the closed loop PLL, Eq. (12.41), the result is clearly of second order in
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the denominator:

H�s	 D � [KpdKvco�Rp C sCRs	Rp/Rin]/C�Rp C Rs	

s2 C s[1/C�Rp C Rs	C �KpdKvco/NRin	�RpRs/Rp C Rs	]
C [KpdKvcoRp/NRinC�Rp C Rs	]

�12.45	

The denominator can be converted to the familiar form used in control theory,
s2 C 2�ωnsC ω2

n where � is the damping factor and ωn is the natural frequency
of the system. In this case,

ωn D
√

KpdKvcoRp

NRinC�Rp C Rs	
�12.46	

� D �1/C	C �KpdKvcoRpRs/NRin	

2ωn�Rp C Rs	
�12.47	

For the type-2 PLL when Rp ! 1,

ωn D
√
KpdKvco

NCRin
�12.48	

and

� D KpdKvcoRs

NRin2ωn
�12.49	

The design specification for a PLL is typically given in terms of a damping
ratio and natural frequency. The design task is to determine circuit values that
will meet these specifications. For ease of writing, define

Kt
D KpdKvco

N
�12.50	

Furthermore, the filter response at dc is

Fdc D � Rp

Rin
�12.51	

Thus Eq. (12.46) can be rearranged to give

Rp C Rs D �KtFdc

Cω2
n

�12.52	

and this substituted into Eq. (12.47) to give

Rp C Rs D �KtFdc

Cω2
n

D 1

2Cωn�
� KtFdcRs

2ωn�
�12.53	
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Using Eq. (12.52) to replace Rs above,

�KtFdc

Cω2
n

D 1

2Cωn�
� KtFdc

2ωn�

(�FdcKt

Cω2
n

� Rp

)
�12.54	

If, in addition to the damping ratio and the natural frequency, values for C
and the dc gain are chosen, then the required resistance values can be found as
summarized below. Solution of Eq. (12.54) gives the value for Rp.

Rp D 1

KpdKvcoC

[
2�KpdKvco

ωn
C KpdKvcoFdc

Nω2
n

� N

Fdc

]

D 1

KtC

[
2�Kt

ωn
C KtFdc

Nω2
n

� 1

Fdc

]
�12.55	

Rs D �KpdKvcoFdc

NCω2
n

� Rp

D �KtFdc

Cω2
n

� Rp �12.56	

Rin D � Rp

Fdc
�12.57	

The type 2 PLL equations are found by allowing Rp ! 1.
Figure 12.13 illustrates the expected PLL bandwidth verses frequency for

several values of damping ratio. These results are calculated for a second-order
loop with a natural frequency of 1 Hz. The results can be easily scaled for loops
requiring higher natural frequencies. When � < 1, the PLL is under damped and
peaking occurs. The response of such a loop to a disturbance will be a damped
oscillation that finally converges to the final answer. When � > 1, the PLL is
overdamped. The �3 dB gain frequency for a damping of 1.0 is 2.4 Hz. If a �3
dB frequency of 50 kHz were required with a damping of 1.0, then a natural
frequency of 20.833 kHz would be chosen. The requirements of the PLL design
and the available parts will determine the best choice for the natural frequency
and damping ratio.

A second-order loop can be built either as type 1 or type 2 with either an
inverting or noninverting loop filter. The actual loop order may be several orders
higher than 2 when all the extraneous poles are considered. A good design
procedure initially ignores these poles and assumes ideal VCOs, phase detec-
tors, op-amps, and so on, with which it determines a set of loop filter values
based on the second-order model. Subsequently nonideal parts can then be added
to the model and the analysis refined as more values become available. Computer
modeling is encouraged for this process.
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FIGURE 12.13 PLL response with natural frequency of 1 Hz and various damping
ratios.

12.11.2 Noninverting Loop Filter

Design equations can be developed for a noninverting loop filter like that shown
in Fig. 12.5. The filter transfer function is

F�s	 D 1 C Rpjj[Rs C �1/sC	]

Rin

D 1 C �Rp/Rin	C sC[�RpRs/Rin	C Rp C Rs]

1 C sC�Rp C Rs	
�12.58	

The closed loop gain is found by substituting Eq. (12.58) into Eq. (12.37) while
making use of Eq. (12.50):

H�s	 D NKtf1 C �Rp/Rs	C sC[�RpRs/Rin	C Rp C Rs]g
s[1 C sC�Rp C Rs	] C f1 C �Rp/Rin	
C sC[1 C �RpRs/Rin	C Rp C Rs]gKt

�12.59	

D [NKt/C�Rp C Rs	]f1 C �Rp/Rs	C sC[�RpRs/Rin	C Rp C Rs]g
s2 C sf[1/C�Rp C Rs	] C [RpRsKt/�Rp C Rs	Rin]

CKtg C [�Rin C Rp/�Rp C Rs	]Kt/C	

�12.60	
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From this the loop natural frequency and damping ratio can be identified:

ωn D
√

�Rin C Rp	Kt

�Rp C Rs	RinC
�12.61	

� D Rin CCRpRsKt C Rin�Rp C Rs	CKt

2ωnC�Rp C Rs	Rin
�12.62	

The typical synthesis procedure is to design a PLL with a given natural
frequency and damping ratio using a specified capacitance,C. Solving Eq. (12.61)
for Rp C Rs and substituting this into Eq. (12.62) gives an equation in terms of
one unknown, Rp. First, from Eq. (12.61),

Rs D Kt�Rp C Rin	

RinCω2
n

� Rp �12.63	

then substitution gives

Kt�Rp C Rin	

RinCω2
n

D 1

2�ωnCRin

[
Rin CCRpKt

(
Kt�Rin C Rs	

RinCω2
n

� Rp

)

C CKtRin
Kt�Rin C Rp	

RinCω2
n

]
�12.64	

This has one unknown, Rp, that can be solved by the quadratic formula as follows:

0 D R2
p�K

2
t �CKtRinω

2
n	C Rp2KtRin�Kt� � ωn	

C R2
in�ω

2
n CK2

t � 2�Ktωn	 �12.65	

So, if

a D K2
t � CKtRinω

2
n �12.66	

b D 2KtRin�Kt� � ωn	 �12.67	

c D R2
in�ω

2
n CK2

t � 2�Ktωn	 �12.68	

then

Rp D �bC p
b2 � 4ac

2a
�12.69	

Again, the value of Rin is associated with the voltage gain of the noninverting
loop filter:

Rin D Rp

Fdc � 1
�12.70	

The value for Rs is obtained from Eq. (12.63).



270 PHASE LOCK LOOPS

The type 2 PLL parameters with the noninverting loop filter can be found
by letting Rp ! 1. Thus the design equations for a given natural frequency,
damping ratio, and capacitance are

ω2
n D Kt

RinC
�12.71	

or

Rin D Kt

Cω2
n

�12.72	

and the damping ratio is

2ωn� D 0 C RsKt

Rin
CKt �12.73	

or

Rs D Rin
2ωn� �Kt

Kt
�12.74	

The value for Kt is given by Eq. (12.50).

12.12 PLL OSCILLATORS

A phase lock loop will have a least two oscillators associated with it: the reference
oscillator and the voltage controlled oscillator. The reference is typically a fixed
frequency, but in some applications it may change over a wide frequency range.
In any event, the VCO must be able to follow it.

The types of oscillators used depend on the design requirements and the
frequency range. Low-frequency oscillators use a resistor capacitor combina-
tion to set the frequency. A larger charging current in the capacitor results in
a higher-oscillation frequency. These oscillators can be used from a few hertz
to several megahertz. They can sweep a wide frequency range, but the output
is usually noisy and drifts rapidly with temperature. This oscillator is frequently
found in simple PLL ICs.

An LC oscillator’s frequency is set by a combination of inductors and capac-
itors in a resonant circuit. This oscillator is useful from about 100 kHz to some-
what above 5 GHz. A high Q network will produce a very clean output with
a small tuning range. Frequency control of a voltage-controlled version can be
built either by varying a dc voltage in the circuit or, more commonly, by adding
a voltage-controlled capacitor, called a varactor diode, to the resonant network.
A varactor is a low-loss reverse-biased diode whose depletion capacitance has
been optimized for large change with changes in bias. Reverse-biased voltages
range from about 2 volts to 28 volts. Capacitance values range from fractions of
a pF to 500 pF.
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Oscillator design at any frequency is a specialized area. The design or purchase
of either the reference oscillator or the VCO is an activity that should be comple-
ted before the PLL design is attempted. Available power supply voltages will
determine the tuning voltage available for the VCO. Simulations can determine
an approximate tuning rate for the VCO, from which an appropriate oscillator
type can be picked from the various available types and manufacturer’s data
sheets. The characteristics of both oscillators should be well defined.

12.13 PHASE DETECTOR TYPES

Previous sections have introduced both the mixer and flip-flop-based phase detec-
tors. These are the two main configurations that are widely used, although there
are many specialized variations of each type. A sampling phase detector is a third
type that is frequently used in RF and microwave applications. A careful study
of the design requirements will usually point to the correct choice.

12.13.1 Mixer Phase Detectors

Mixers with a dc coupled output make an excellent phase detector. At high
frequencies, a mixer may be either active (with transistors) or passive (with
diodes). The diode versions provide better dc stability and are generally preferred.
The diode mixer is the best choice for low-noise designs or when the PLL
reference input is a low-level signal buried in noise. When the PLL is locked
and running closed loop, both frequencies will be exactly the same. The two
inputs are applied to the RF and local oscillator (LO) ports of the mixer, and the
beat note output comes from the intermediate frequency (IF) port. The IF port is
loaded with a total resistance of 50 to 1000 ". Blocking capacitors are used to
ac couple the signals into the two input ports, but the IF output port must not be
ac coupled. A mixer must be chosen that is appropriate for the frequency range
and power level of the inputs. The beat note output is typically 100 mV to 1 volt
peak to peak, depending on the mixer type and application. The mixer type phase
detector is the best choice when the input signal is pulsed or noncontinuous. The
ability of this type of detector to resolve an angular difference is limited to š90°.
It has no ability to determine which input is the higher frequency. Thus it is not
capable of frequency discrimination.

12.13.2 Sampling Phase Detectors

Sampling phase detectors (SPD) can be used in a phase lock loop to produce
an output frequency that is an integer multiple of the reference frequency. This
mixer relies on a device to generate a comb of frequencies at multiples of the
reference. The VCO then mixes with the correct spectral line to produce an error
signal. A SPD is used in a phase lock loop where the output frequency is an
integer multiple of the input frequency. If fout D N Ð fin Cf, the SPD output
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is a cosine wave of frequency f. If fout is exactly N times fin, the SPD output
is a dc level proportional to the phase difference between its two inputs. The
input frequency, fin, is typically between 50 and 200 MHz at a power level of
C20 dBm or higher, and fout can be at any harmonic of fin up to 18 GHz. The
low-frequency high-power input signal produces a comb of spectral lines inside
the SPD where lines up to the 150th multiple are useful.

A sampling phase detector is one of the best choices for a very high frequency
PLL where excellent phase noise is a requirement. However, an external circuit is
usually required to bring the VCO into lock range. Additionally provisions must
be made to ensure that the VCO will be locked to the correct multiple of fin.

12.13.3 Flip-Flop Phase Detector with Frequency Acquisition Aiding

All of the other phase detectors previously discussed have a major drawback.
They produce an output equal to the difference between the two input frequencies,
either a cosine wave or a triangle wave. However, this output does not have
information about whether the VCO is too high in frequency or too low. A PLL
using these phase detectors must also include a sweep or search circuit to initially
bring the VCO close enough to lock. This can involve a substantial amount of
circuitry. The phase detector circuit shown in Fig. 12.14a uses positive edge
triggered D type flip-flops to overcome this problem. The D inputs are connected
to a logic 1. Figure 12.14b illustrates the timing sequence. The signal, f1 positive
edge arrives first causing Q1 to clock high. Later positive edge of f2 causes Q2
to clock high. Two 1’s at the NAND gate’s input cause its output to go low and
clear both Q1 and Q2. The output at Q2 is a pulse whose duty cycle represents
the time delay between f1 and f2. The pulse at Q2 is very short, being the sum
of the propagation times through the flip-flops and gates. Of course, if f2 arrives
before f1, then the output pictures are reversed.

The outputs, Q1 and Q2, turn on the current sources. These current sources
either source or sink current to the capacitor which ramps up or down the phase
detector output voltage. The action of this circuit is identical to the op-amp
integrator. So the phase detector has added another integrator to the PLL. A PLL
using this circuit will be at least a type 2 loop.

The advantage to this circuit is the self-searching capability. If f1 is higher
than f2, the output voltage will go to the positive voltage limit. If f1 is lower
than f2, the output voltage will go to the negative voltage limit. If f1 equals f2,
the output voltage will be proportional to the phase difference. Thus this circuit
can sense which input frequency is higher. The output voltage can then be used
to drive the VCO in the correct direction to bring the loop into lock. Once the
two frequencies are the same, this circuit becomes a phase detector and drives
the VCO for no phase error.

This phase detector circuit is used in many present-day frequency synthe-
sizer ICs, where its built-in search capability makes it ideal for a variety of
applications. However, there are at least two drawbacks to this circuit that force
limits on its usage. The largest problem is the short pulse on one of the flip-flop
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FIGURE 12.14 (a) Phase detector using a D flip-flop and (b) the timing chart.
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outputs. With high-speed logic, this pulse is only a few nanoseconds long. If
f1 and f2 are high in frequency, this may be a significant part of their period.
This pulse dead time due to propagation delays results in a nonlinear phase
detector transfer curve. In older versions there were flat spots with zero gain
and regions where the gain reversed its slope. The pulse also contributes heavily
to the output noise, and it can easily add 20 dB of noise to the PLL output
even in the most modern devices. The second problem is that the searching
capability can become confused if there is any interruption in either f1 or
f2. This circuit should be used in applications where very low phase noise
is not required and the inputs are continuous. For this phase detector the gain is
Kpd D 1/4�.

12.13.4 Exclusive OR Phase Detector

An exclusive OR gate works as a frequency doubler and phase detector. Fig-
ure 12.15 illustrates a typical connection for the phase detector. For correct
operation, both inputs f1 and f2 must be at the same frequency, and both must
have 50% duty cycles. The XOR output will be a logic level waveform at twice
the input frequency. The duty cycle of the output depends on the phase difference
between the two inputs. Phase shifts of 90° or 270° produce a 50% output. The
RC low-pass filter produces a dc value proportional to the duty cycle. For a 90°

or a 270° phase difference, the filter output is one-half the difference between
the logic high- and logic low-output voltages.

The XOR gate is the functional equivalent of the balanced mixer. This circuit
is useful for PLL applications requiring a high-frequency VCO to be divided
down and locked to a low-frequency logic level frequency reference. This phase
detector is suitable for low-phase noise applications, but it frequently requires
an external search circuit to initially achieve lock. The gain, Kpd, of this phase
detector is 1/� volts/rad.
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R

C

Phase
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Output

0 360
Phase Difference

Doubled
Frequency
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FIGURE 12.15 Exclusive OR phase detector.



DESIGN EXAMPLES 275

12.14 DESIGN EXAMPLES

Example 1. The phase lock loop design shown in Fig. 12.16 requires an output
frequency of 1600 MHz and the reference oscillator is 100 MHz. The design
approach chosen is to use an inverting type-2 loop filter with a frequency divider
and a mixer phase detector. The VCO chosen shows a typical tuning slope of
1 MHz/volt. Measurements of the phase detector output show a cosine wave
that is 100 mV peak to peak. A 3 dB bandwidth of 100 kHz is required with a
damping ratio of 1.

a. Using a 100 pF capacitor, find the remaining loop filter values.
b. Using a 10 k" Rin, find the remaining loop filter values.

Solution 1. From the graph in Fig. 12.13, the 3 dB frequency for a damping
ratio of 1 is at 2.45 Hz. The type 2 circuit for this example is shown in Fig. 12.16.
If 100 kHz 3 dB frequency is required, the natural frequency is found from
scaling the graph. Thus fn D 100 kHz/2.45 D 41 kHz. The output frequency
is 16 times the input frequency, so N D 16. The value for Kvco is specified at
1 MHz/volt. The phase detector output is a cosine wave. If the loop locks at 90°

or 270°, the phase detector output voltage is zero. For a positive Rin, the slope
is the first derivative evaluated at 270°, so Kpd D 50 mV/rad.

For part a, use the equations derived earlier with C set at 100 pF. Then Kt D
[�1 Ð 50	/16] Ð 2� Ð 103, and from Eq. (12.48), Rin D 2.96 k". Finally Eq. (12.49)
gives Rs D 77.6 k".

For part b, Rin D 10 k". With Rin set, C D 29.6 pF and Rs D 262.4 k".

Example 2. The synthesizer design shown in Fig. 12.17 requires an output
frequency from 900 to 920 MHz. The output frequency can be changed in 1 kHz
steps by changing the divide ratio. Design a PLL using a synthesizer IC and an
external VCO. The synthesizer IC data sheet lists the current mode phase detector
output as 5 mA/rad. The VCO data sheet lists the tuning rate at 10 MHz/volt.

Solution 2. The output frequency must be an integer multiple of the reference
frequency, so the reference frequency is 1 kHz. The circuit diagram is shown

÷16

–
+ VCO

CRs

fout = 1600 MHz
fref = 100 MHz

Rin

Phase
Detector

FIGURE 12.16 PLL for Example 1.
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VCO

Synthesizer
IC

f ref = 1 kHz

Divide by
N Control

Rs

C

900–920 MHz

fout

FIGURE 12.17 Synthesizer design for Example 2.

in Fig. 12.17. The divide ratio must change from 900 MHz/1 kHz or 9 Ð 105 to
920 MHz/1 kHz or 9.2 Ð 105. The midpoint value, 9.1 Ð 105, can be used for the
design. A damping ratio of 1 is chosen for a rapid settling time when the divide
ratio changes. The loop filter must attenuate the pulses from the phase detector
output running at 1 kHz. Figure 12.13 shows that 14 dB of attenuation can be
expected at 10 times the natural frequency. With a slope of �20 dB/decade,
34 dB attenuation can be expected at 100 times the natural frequency. Choosing
fn D 10 Hz will work with a 1 kHz reference frequency. Here the value of Kt

is in dimensions of V/A:

Kt D KvcoKpd

N
Ð MHz

volt
Ð mA

Hz
Ð 2� rad

Hz

Evaluation of this gives Kt D 0.345 A/V. To find Rs and C, Kt must be multiplied
by Rin. This will cancel the Rin in Eqs. (12.46) and (12.47). Thus from the design
equations Rs D 364 " and C D 87.45 �F.

Example 3. A frequency synthesizer contains a phase lock loop circuit. Inspec-
tion shows that the loop filter is to be a type 1 noninverting configuration. The
data sheets for the phase detector show that the output waveform has a slope of
100 mV/rad. The VCO nominal output frequency is 3 GHz with a tuning rate
of 100 MHz/volt. The reference is a 100 MHz crystal oscillator. If Rin D 620 ",
Rs D 150 ", Rp D 56 k", and C D 1 nF, what is the expected 3 dB bandwidth
and damping ratio for this PLL?

Solution 3. With a 3 GHz output and a 100 MHz reference, the frequency divide
ratio N must be 30. Also Kt D 2.094 Ð 106. Substituting the given circuit values
into the analysis equations show that fn D 293.7 kHz and the damping ratio
� D 0.709. The curve for � D 0.709 is not shown in Fig. 12.13, but a value can
be found by interpolation. The 3 dB frequency for � D 0.5 is 1.8 Hz. The 3 dB
frequency for � D 1 is 2.45 Hz. A linear approximation for 0.709 is 2.07 Hz.
The 3 dB frequency for this PLL is approximately 2.07 Ð fn D 608 kHz.
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PROBLEMS

12.1 A phase lock loop can be described in the frequency domain in terms of
the input and output phase angles shown in Fig. 12.7. The input phase is
Q�1�s	 D aC b/s2. The filter transfer function is

F�s	 D 1 C sCR2

1 C sC�R1 C R2	

(a) What is the steady state phase error?
(b) What is the steady state phase error if the capacitance C D 1?
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CHAPTER THIRTEEN

Emerging Technology

13.1 INTRODUCTION

The rapid surge in wireless telephones has revolutionized the way people commu-
nicate with one another and has brought new impetus to design of radio frequency
circuits. The ubiquitous cell phone appears to be only the beginning of possibil-
ities for new forms of communication.

The military introduced the first wireless communication system, and it was
limited to voice. The mobile voice service allowed effective deployment of forces
in the battle. The equipment was bulky and voice quality was poor. Other agen-
cies such as police, fire, ambulance, marine, and aviation have used mobile
communications to facilitate their operations. After World War II the Federal
Communications Commission (FCC) established a citizens band at 460 MHz
and below allowing private individuals the opportunity to use mobile radio
for personal purposes. It is estimated that there were 800,000 authorizations
in 1970. Although the “cellular” phone system was conceived by Bell Tele-
phone Laboratories in 1947, the first public system known as Advanced Mobile
Phone Service (AMPS), was introduced in 1972 by AT&T (Bell System) in the
United States [1,2]. The AMPS phone system was followed by the introduction
of Nordic Mobile Telephone (NMT) and Theater Army Communication System
(TACS) in Europe, and additional work in Japan. Untethering the telephone and
enabling people to conduct communications away from the office and home, and
on the move, heralded the wireless era with the goal: “communications-anywhere-
anytime.” These first generation systems were analog and used frequency modu-
lation. The 1980s witnessed the development of integrated circuits, frequency
synthesizers, high-capacity high-speed switch technology, and the like. This
resulted in Public Land Mobile Radio (PLMR) networks in the Ultra-High-
Frequency bands (UHF), allowing communications for users of Public Switched
Telephone Networks (PSTN) or Integrated Service Digital Networks (ISDN) on
the move.

278
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Second-generation systems such as the Global System for Mobile (GSM),
Digital Cellular Services (DCS), US Time Division Multiple Access (TDMA) and
Code Division Multiple Access (CDMA) digital standards (TIA’s IS–54/IS–136,
and IS–95), Digital European Cordless Telephone (DECT), and the British
Personal Access Communications Systems (PACS) appeared in the late 1980s
and early 1990s. These systems in the 900 or 1800 MHz frequency band use
complex modulation schemes such as Gaussian minimum shift keying (GMSK),
frequency shift keying (FSK), or quadrature phase shift keying (QPSK). The
second-generation systems are much more flexible in channel allocation, and
they automatically select a base station with strongest signal to communicate.
In addition to voice communication, a range of data services is provided by
these systems. Presently second-generation systems are commercially deployed
in many countries of the world with the subscriber base exceeding 400 million.

Third-generation (3G) wireless systems [3,4] are evolving with the aim
of universal access worldwide and a single set of standards meeting a
wide range of services and applications. These systems will truly fulfill
the dream of “communication-anywhere-anytime.” The International Mobile
Telecommunications–2000 (IMT–2000) serves as a catalyst and provides the
framework for worldwide wireless access by linking the diverse systems of
the terrestrial and satellite-based networks. IMT–2000 focuses on such issues
as spectrum needs, higher data rate capabilities, Internet Protocol (IP)-based
service needs of IMT–2000 and systems beyond IMT–2000. Third-generation
systems envision a single universal personal communicator or device capable of
roaming globally for voice, data, and video services. There would be provisions
for multimedia applications and wide range of video-teleconferencing, high-
speed Internet, speech and high-data-rate communication. Systems will use the
Broadband Integrated Services Digital Network (B–ISDN) to access the Internet
and other information libraries at high speed. The wireless infrastructure will
support data rates to the handset of up to 2 Mb/s for stationary use, 384 kb/s
at walking pace, and 144 kb/s for vehicles traveling at speeds of up to 60 mph.
These systems will enable network operators to radically change the services
available on cellular networks. Third-generation systems will require significant
investment in technology and resources. The system deployment is expected in
the early twentyfirst century with potentially billions of users.

Researchers are beginning to talk about the fourth-generation (4G) systems
with powerful attributes such as flexibility and adaptability [5]. Global mobility
functions will be supported by software defined radios (SDR), use of digital
signal processing (DSP) methods, and low-cost intelligent multimode terminals.
Visions of wearable wireless networks with biodegradable sensors embedded in
the user’s clothes are being proposed. These disposable supersmart systems would
be a really low-cost “throw-away price.” The multimedia access and system
functionality will make the user the “six million dollar man” or the “bionic
woman,” a rather interesting futuristic concept. The three driving forces for the
future global communication remain unchanged as bandwidth, spectrum conser-
vation, and mobility. These areas are currently challenging engineers and research
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groups in both large and small countries around the world as well as university
laboratories. Additionally the communication network infrastructure has to meet
reasonable cost targets to attract investments for enabling technology develop-
ment. This chapter briefly reviews these three items and presents the efforts to
improve efficiency and management.

13.2 BANDWIDTH

Today the three transmission modes are copper cable lines, wireless, and optical
fiber lines. Telephone lines, as they are currently configured, limit digital data
transmission to 56 kb/s. Digital subscriber lines are available that give 1 to 10 Mb/s
data rate, but the expense and availability of these still preclude their widespread
use. Fiber lines can provide the required bandwidth for most users, but their cost
also precludes widespread use. The use of the wireless in the unlicensed wireless
bands of 2 to 5 GHz and 20 to 40 GHz can provide data rates in the 5 Mb/s and 10
to 1000 Mb/s, respectively. The economic solution appears to bring fiber lines to a
base station, and provide wireless for the last 3 to 5 km individual users. This may
ease deployment and lower infrastructure cost. These systems are not significantly
affected by multipath because of the high placement of antennas and their narrow
beam width. The disadvantages to wireless broadband systems are its restriction
to line-of-sight signal transmission resulting in less than 100% coverage, weather
effects on radio signals, new technical challenges for commercial application of
millimeter wave electronics, and a lack of standards [6].

In 1998 the FCC auctioned the frequency spectrum between 27.5 and
31.3 GHz for local distribution of video, voice, and data for what is called local
multipoint distribution service (LMDS). This would provide two-way wireless
communications at a high data rate. There are multipoint systems in the 24
to 26 GHz frequency bands as well. Actual frequency plans and bandwidth
allocations vary: in the United States (24.25–24.45 GHz and 25.05–25.25 GHz), in
Korea (24.25–24.75 GHz and 25.5–26.0 GHz), Germany (24.55–25.05 GHz and
25.56–26.06 GHz), and so on. Bandwidths in the 39 GHz band (38.6–40 GHz)
and in the 60 GHz band (59–64 GHz) have also been reserved for future
communication systems. Wider bandwidths are naturally available at higher-
frequency bands. The need for wider bandwidth is quite clear, since users will
demand more and more high-quality multimedia and data applications.

13.3 SPECTRUM CONSERVATION

In apparent direct contradiction to the desire for greater bandwidth described in
the previous section is the need to conserve spectrum for use by a larger number of
people. The three major digital modulation schemes used today, namely frequency
division multiple access (FDMA), time division multiple access (TDMA), and
code division multiple access (CDMA), each attempt to bring acceptable voice
quality service at a minimum cost in spectrum usage. In addition, use of a smart
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antenna that can follow a mobile unit with a narrow width beam also provides a
method to conserve (or reuse) spectrum. The cost of a smart antenna is still too
high, and this solution still rests in the future. Power levels between two nearly
adjacent cells must be kept low enough to avoid interference between the cells.
Multiple antennas can sometimes be used along with appropriate digital signal
processing to minimize or cancel this interference. All this activity has spurred
innovations in diverse areas like voice encoding, antenna design, and linearizing
power amplifiers for both amplitude and phase flatness. One example of the later
is the feed-forward amplifier.

Since separate channels are spaced close together, and in order to avoid inter-
ference in the adjacent channels, a high demand is placed not only on the linearity,
amplitude flatness and phase flatness but also on phase noise and spurious
emissions of the receiver and transmitter [7]. Nonlinearities can cause “spec-
tral regrowth” in adjacent channels. The degree of linearity can be expressed in
terms of (1) a carrier-to-interference ratio, (2) the third-order intercept point, or
(3) an adjacent channel power ratio. The third-order intercept point method is the
same as that described for mixers in Chapter 11, and as described there, it relates
the degree of linearity to a single number. Amplifier linearity is especially crucial
when faced with the problem of transmitting digital signals with a short rise time
through a narrow channel. Use of more complex modulation schemes such as
quadrature phase shift keying (QPSK) and 16 or 64 quadrature amplitude modu-
lation (16QAM, 64QAM) give a special challenge to linear amplifiers because of
the shrinking of the distance between symbols (amplitude and phase margin). In
many ways the amplifier linearity specification has become more important than
the amplifier noise figure.

Noise, though, cannot be neglected, for it eventually will degrade signal
quality. The Friis formula described in Chapter 8 will give an overoptimistic
view of the noise figure, especially in the millimeter wave wireless systems of
the future. Broadband noise from the transmitter as well as the phase noise in the
local oscillator of the mixer can add significant noise to the desired intermediate
frequency (IF) signal.

13.4 MOBILITY

Mobile two-way communications technology has come a long way from the large
radio transmitters and receivers to the hand-held cellular telephone. In making
this possible, base stations that service areas in the 20 to 30 mile radius must be
able to detect a call from anywhere within its boundary and link it eventually
with another caller through the telephone system. The problem of making and
maintaining contact between people becomes more challenging in areas where
there are large obstructions such as buildings and forests. If the mobile caller is
traveling in a car at 55 mph and passes from one cell to another, there must be
some facility to hand off the call to the new base station. While many of these
problems have been solved, there remain many improvements that can be made.
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13.5 WIRELESS INTERNET ACCESS

Progress in wireless communication has been characterized as three generations
of systems (and now maybe even four). The first of these, 1G, has been char-
acterized by the analog mobile cellular telephones acting in concert with a local
base station. The second generation, 2G, has been characterized as expansion to
a global system for mobile (GSM) communication, using the digital TDMA and
CDMA systems. However, this second generation has remained limited in band-
width and has been limited in carrying data. The third generation, 3G, has been
driven by a desire for wireless internet access with high-data-rate capability, as
well as the globalization of wireless communication at any time. While the details
of how this will work are still being planned, there appears to be a clear desire
to put such a system in the hands of consumers shortly. One of the proposed
systems is based on what has been termed generic packet radio service (GPRS).
This system defines new radio and network interfaces that can handle intermittent
bursts of data. It is capable of supporting asymmetric data transmission and the
necessary capacity on demand.

The technical requirements for designing a mobile internet protocol includes
the ability to retain the same permanent address when a mobile unit changes
location, security that may be done by means of data encryption, and its inde-
pendence of particular wireless technology. In analog systems and in systems that
look analog to the user, such as normal telephone calls even when an intermediate
step is digital, the user can interpolate between data errors or noise to understand
the message. However, in strictly digital systems where binary data are being
sent, the entire packet of data must be correct, or at least correctable, before
the receiver can process it. Wireless data systems must have low bit error rate,
and this is compromised by multipath transmission and nonuniform user power
levels. The multipath problem can be alleviated by using a multi-carrier modula-
tion system or better, a multi-code system where the data stream is spread over
the entire available bandwidth, and by dividing the data stream into a number of
parallel low data rate streams [8].

Another application for wireless systems is fulfilling the FCC regulations for
location of mobile 911 calls. The basic requirement is that a mobile 911 call be
located to within an accuracy of 50 meters 67% of the time and within 150 meters
95% of the time. The typical method is to use triangulation by measuring the
time of arrival or angle of arrival of a mobile signal together with receiver
signal strength to at least three base stations. Because of buildings, foliage, and
other location dependent peculiarities, location data would in many cases need
to be supplemented with software mapping of the particular region. Use of the
global positioning satellite alone has been ruled out because of the length of
time required by the satellite to acquire signals and the weak signal strength
from the satellite, especially inside buildings. However, it could be used as a
supplement.

Wireless systems are seeking also to make an inroad to reduce copper wire
within the home and office by replacing cable to handheld electronic devices.
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This project has been called bluetooth. At this point, bluetooth is not a recog-
nized standard but is based on using known technology and protocols as much
as possible. It operates in the unlicensed 2.4 to 2.487 GHz industrial scientific
and medical band, which is almost uniformly accepted around the world. Each
receiver must have a sensitivity of �70 dBm and have its own burned-in address.
Significant work will be required for bluetooth to be compatible with the Internet,
but that is a possibility.

13.6 KEY TECHNOLOGIES

Under the 1962 Communications Satellite Act, COMSAT and later in 1964
INTEL–SAT, an International Telecommunications Satellite Organization was
created in an effort to make communication available to all nations. Ironically
the Bell System, the organization that conceived the satellite idea and launched
the first Telstar, was also required to cease work on satellite technology. Instead,
Bell was asked to develop fiber-optic technology. Satellite-based systems such
as Iridium, Globalstar, ICOG, Teledesic, and Skybridge, among many others,
are being designed in the 1.6 GHz, 2.2 GHz, 6 GHz, 12–14 GHz, 30 GHz, and
48 GHz bands. These satellites are planned to be in the low earth orbit to geosta-
tionary orbits around the globe. Although these space-based communication
systems are expensive, they are emerging. In addition to satellites, innovative
solutions of using high-altitude platform (aircraft and tethered balloon)-based
systems such as high-altitude long operation (HALO) are in planning and initial
testing. For cost and operational purposes, these systems, although feasible today,
would primarily service high-density traffic in metropolitan areas. Details of these
space based and high altitude systems can be found in published materials in
technical journals.

The years 1980 to 2000 have been characterized as the personal computer
era, while the years 2000 to 2020 may be characterized as the Internet era [9].
The personal computer era has driven industry to produce digital micropro-
cessors and memory. The next phase of development may well be producing
systems on a chip (SOC), which will start sharing the past progress expressed
by Moore’s law† in the digital chip industry. The shrinking of transistors alone
will not be sufficient. Rather, an integration of digital signal processing (DSP)
and analog functions into a mixed signal (digital and analog) on a single chip
will be required. Wireless internet access requires a radio (excluding most likely
the power amplifier), a modem, an applications processor, and some form of
power management. The incompatibility of analog and digital electronics resides
primarily in the voltage requirements for the two technologies. Lower voltage
increases logic speed and efficiency, while higher voltage improves analog RF
and baseband circuits. Thus, for a true systems on a chip application, fundamental
design changes in analog device designs will need to be made.

This was first expressed by Gordon Moore, co-founder of Intel, in 1965. The “law” states that the
data storage of a microchip will double every 12 to 18 months.
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The beginning premise of this book was that there is a boundary between
radio frequency and microwave designs. Implied also is the boundary between
analog and digital designs. It is clear that these demarcations are not part of the
creation order itself but a separation that has been used for our own convenience.
Clearly, future developments will be based on engineers being well versed in all
these camps.
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APPENDIX A

Example of a Solenoid Design

The design of a solenoid inductor was described in Chapter 2. An example
for a 100 nH solenoid design at 200 MHz is shown below using the program
SOLENOID where the bold type indicates user inputs. After initial values for
the solenoid are given, the form length and number of integral turns are modi-
fied, but the form diameter remains unchanged. The interwire capacitance, C, the
self-resonant frequency, Fres, and the Q are calculated.

Frequency in Hz for Q calculation = 200.E6
Geometry -> Inductance, type <G>
Inductance -> n, the number of turns, type <L>
L
Desired inductance, L (H), initial form Length,
Form Diameter - inches, Initial value for no. turns
100.E-9, 0.5, 0.1, 20
Number of turns = 13.00000
AWG = 21.0 Wire Diameter = 0.284625E-01
Final Length = 0.576708E + 00 in.

Pitch = 0.44362E-01 Wire Diameter = 0.28462E-01 in.
Turn Diameter = 0.12846E+00 in. Form Diameter

= 0.10000E+00 in.
L = 0.10002E+00 �H

C = 0.203350E+00 pF Fres = 0.111600E+04 MHz
Q = 0.649760E+02 at F = 0.200000E+03 MHz
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APPENDIX B

Analytical Spiral Inductor
Model

Modeling equations for spiral inductors given in [1,2] are collected here for
convenience. A straight line of length l, width w, thickness t, resistivity �, and
in a material of permeability �0 has the following inductance:
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If inhomogeneous current density across the conductor cross section is to be
considered, an additional expression is found in [1].

The single-loop inductor is illustrated in Fig. B.1 where the total angular
rotation, �0, is somewhat less than 360°. The inductance is found by numerical
integration of the following equation:
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FIGURE B.1 Single-loop inductor.
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The inductance of a circular spiral with n turns (with air bridge) consists of n
static inductances, Li, i D 1, . . . , n, as found above plus mutual inductance terms
between the ith and jth line segments. This mutual inductance is
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where

kij D 4ab

�a C b
2
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a D ri C �i � 0.5
�w C s
 �B.10


b D ri C �j � 0.5
�w C s
 �B.11


In this expression for the mutual inductance, ri is the inner radius of the inner
most turn of the circular spiral, w is the conductor width, and s is the spacing
between turns. The outer most radius of the outer most turn is determined by
these parameters together with the number of turns, n. The K�kij
 and E�kij
 are
the complete elliptic integrals of the first and second kind, respectively. If there
is a ground plane underneath the spiral conductor a distance h away, there is an
additional mirrored mutual inductance, Mm

ij given by Eq. (B.8) where
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kij D 4ab

4h2 C �a C b
2
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and where a and b are given by Eqs. (B.10) and (B.11). The inductance of the
multiple-turn circular spiral is then
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The associated capacitances are shown in Fig. B.2, which were given by
[3,4,5]:
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The arguments of the elliptic integrals are

k D s

h

(
s

h
C 2w

h

)
�B.15


k0 D
√

1 � k2 �B.16


The dielectric coupling capacitance is
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FIGURE B.2 Capacitances associated with the coupled microstrip.
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The main capacitance to ground is

Cm D ε0εrw

h
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The fringing capacitances are
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The capacitance, Cf, is the fringing capacitance of a single microstrip line of
width w/h, characteristic impedance, Z0, and effective dielectric constant εeff in
which the velocity of light in a vacuum is c. The microstrip parameters can be
calculated based on Section 4.7.4. Hence the total even-mode capacitance is

Ce D Cm C Cf C Cf0 �B.22


and the odd-mode capacitance is

Co D Cm C Cf C Cga C Cge �B.23
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APPENDIX C

Double-Tuned Matching Circuit
Example

Assume that an impedance transformation is required between a 50 � source
and a 15 � load. The matching is to be done using the double-tuned matching
circuit described in Chapter 3 for the program DBLTUNE. The center frequency
is at 4 MHz, the bandwidth is 100 kHz, and the pass band ripple is 0.5 dB. The
capacitances and transformer parameters are to be determined. In the following
computer output, the bold characters are the responses the program expects from
the user. Furthermore, in this example, the verbose mode is chosen by choosing
to display the intermediate results. An analysis of this circuit using SPICE is
shown in Fig. C.1.

Display intermediate results? < Y/N > Y
Center Freq, Bandwidth (Hz) = ? 4.E6, 100.E3
Fm1 = 0.396480E+07 Fm2 = 0.403551E+07
GTMIN = 0.99992E+00
Passband ripple in dB = ? 0.5
Resistance Ratio r = 0.19841E+01
Q2 m1 = 0.97432E+00 Q2 m2 = 0.10097E+01
Generator and Load resistances values = 50., 15.
L2’ = 0.56259E+02 �H C2’ = 0.28140E+02pF
RL’ = 0.79332E+05 Bm1 = 0.19480E-01 Bm2 = -0.20193E-01
Given terminal resistances: RG = 0.500E+02 RL

= 0.150E+02
Input Circuit: C1 = 0.446554E+05pF L11 = 0.354637E-01�H
Output Circuit: C2 = 0.148828E+06pF L22

= 0.106441E-01�H
Transformer coupling coefficient k = 0.250991E-01
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Double-Tuned Parallel Matching
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FIGURE C.1 Double-tuned matching circuit example.
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APPENDIX D

Two-Port Parameter Conversion

D.1 TWO-PORT VOLTAGE AND WAVE PARAMETERS

Conversion between the z, y, h, and g two-port voltage-current parameters is
simply rearrangement of two linear equations relating voltages and currents at
the two ports. Converting between these and the S parameters requires relating the
voltage waves to voltages and currents. This latter relationship always includes
the characteristic impedance, Z0, by which the S parameters are defined. Typically
this value is 50 �. Table D.1 shows this conversion. The program PARCONV is
basically a code of many of the conversions in Table D.1.

The definitions of the various two-port parameters are described below. In
each case it is assumed that the current is flowing into the port terminal.

[
v1

v2

]
D
[
z11 z12

z21 z22

] [
i1
i2

]
	D.1


[
i1
i2

]
D
[
y11 y12

y21 y22

] [
v1

v2

]
	D.2


[
v1

i2

]
D
[
h11 h12

h21 h22

] [
i1
v2

]
	D.3
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i1
v2

]
D
[
g11 g12

g21 g22
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]
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[
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i1

]
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[
A B
C D

] [
v2

�i2
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[
b1

b2

]
D
[
S11 S12

S21 S22
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a2

]
	D.6
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294 TWO-PORT PARAMETER CONVERSION

For conversion to and from S parameters for circuits with more than two
ports, the following formulas may be used [1]. Each variable is understood to be
a matrix representing the S, z, or y parameters. The conversion formulas are

S D F	Z�GŁ
	ZCG
�1F�1 	D.7


Z D F�1	I� S
�1	SGCGŁ
F 	D.8


S D F	I�GŁY
	ICGY
�1F�1 	D.9


Y D F�1G�1	IC S
�1	I� S
F 	D.10


where

F D





1

2
p
Z01

0 . . . 0

0
1

2
p
Z02

. . . 0

...
...

. . .
...

0 0 . . .
1

2
p
Z0n





	D.11


and

G D





Z01 0 . . . 0
0 Z02 . . . 0
...

...
. . .

...
0 0 . . . Z0n



 	D.12


The I in Eqs. (D.8) through (D.10) is the square identity matrix, and the Z0i,
i D 1, . . . , n, are the characteristic impedances associated with each of the ports.
An example of the usage of PARCONV is shown below. In using the program
make sure to include the decimals with the input data. The bold values represent
user inputs to the program. To exit the program, use Ctrl. C.

TYPE SOURCE AND LOAD REFERENCE IMPEDANCE Z01,Z02 =
50.,50.

Y --> S = YS OR S --> Y = SY
Z --> S = ZS OR S --> Z = SZ
ABCD --> S = AS OR S --> ABCD = SA
H --> S = HS OR S --> H = SH
H --> Z = HZ OR Z --> H =ZH
SY

INPUT S11, MAG. AND PHASE (deg)
.9,-80.

INPUT S21, MAG. AND PHASE (deg)
1.9,112.

INPUT S12, MAG. AND PHASE (deg)
.043,48.
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INPUT S22, MAG. AND PHASE (deg)
.7,-70.

Y(1,1) = 0.162912E-02 J 0.156482E-01
Y(1,2) = 0.304363E-03 J -0.759390E-03
Y(2,1) = 0.360540E-01 J -0.262179E-02
Y(2,2) = 0.483468E-02 J 0.123116E-01
Y --> S = YS OR S --> Y = SY
Z --> S = ZS OR S --> Z = SZ
ABCD --> S = AS OR S --> ABCD = SA
H --> S = HS OR S --> H = SH
H --> Z = HZ OR Z --> H =ZH

TABLE D.2 S Parameter to Hybrid Parameter Conversion Chart

S h

S11 S11
	h11 � Z0
	h22Z0 C 1
� h12h21Z0

	h11 C Z0
	h22Z0 C 1
� h12h21Z0

S12 S12
2h12Z0

	h11 C Z0
	h22Z0 C 1
� h12h21Z0

S21 S21
�2h21Z0

	h11 C Z0
	h22Z0 C 1
� h12h21Z0

S22 S22
	h11 C Z0
	1 � h22Z0
C h12h21Z0

	h11 C Z0
	h22Z0 C 1
� h12h21Z0

h11 Z0
	1 C S11
	1 C S22
� S12S21

	1 � S11
	1 C SS22
C S12S21
h11

h12
2S12

	1 � S11
	1 C SS22
C S12S21
h12

h21
�2S21

	1 � S11
	1 C SS22
C S12S21
h21

h22
1

Z0

	1 � S11
	1 � S22
� S12S21

	1 � S11
	1 C SS22
C S12S21
h22

REFERENCES

1. K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microwave
Theory Tech., Vol. MTT-11, pp. 194–202, 1965.
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APPENDIX E

Termination of a Transistor Port
With a Load

In the three-port circuit in Fig. E.1, one of the three ports is terminated with an
impedance that has a reflection coefficient relative to the reference impedance
Zref:

ri D Zi � Zref

Zi C Zref
�E.1�

In this expression the subscript i represents s, g, or d depending on whether the
device connection is common source, gate, or drain terminated with Zs, Zg, or
Zd. The incident and scattered waves from the three-port is

b1 D S11a1 C S12a2 C S13a3 �E.2�

b2 D S21a1 C S22a2 C S23a3 �E.3�

b3 D S31a1 C S32a2 C S33a3 �E.4�

When one of the ports is terminated with ri, then the circuit really is a two-port.
The scattering parameters for the common source, gate, and drain connection is
shown below:

Common source

S11s D S11 C S12S21

1/rs � S22
�E.5�

S12s D S13 C S12S23

1/rs � S22
�E.6�
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G 11

S 2

D 3 2

b1

a1

b3

b2a2 rs

a3

FIGURE E.1 Three-port with source terminated with rs.

S21s D S31 C S32S21

1/rs � S22
�E.7�

S22s D S33 C S23S32

1/rs � S22
�E.8�

Common gate

S11g D S22 C S12S21

1/rg � S11
�E.9�

S12g D S23 C S21S13

1/rg � S11
�E.10�

S21g D S32 C S31S12

1/rg � S11
�E.11�

S22g D S33 C S31S13

1/rg � S11
�E.12�

Common drain

S11d D S11 C S13S31

1/rd � S33
�E.13�

S12d D S12 C S13S32

1/rd � S33
�E.14�

S21d D S21 C S23S31

1/rd � S33
�E.15�

S22d D S22 C S23S32

1/rd � S33
�E.16�
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A numerical example illustrates the process. A given transistor with a set of
common source S parameters at 2 GHz is given below:

S11 D 0.136 6 86

S21 D 3.025 6 6

S12 D 0.085 6 �164

S22 D 0.304 6 �136

These are then converted to two-port y parameters. These will be called y11, y31,
y13, and y33. The indefinite admittance matrix is formed by adding a third row
and column such that the sum of each row and the sum of each column is zero.
The resulting 3 ð 3 set of y parameters are obtained:

y11 D 9.681 Ð 10�3 � 7.695 Ð 10�3

y12 D �12.77 Ð 10�3 C 6.776 Ð 10�3

y13 D �3.086 Ð 10�3 C .9194 Ð 10�3

y21 D 104.2 Ð 10�3 C 20.85 Ð 10�3

y22 D �82.89 Ð 10�3 C 14.39 Ð 10�3

y23 D �21.28 Ð 10�3 C 6.452 Ð 10�3

y31 D �113.8 Ð 10�3 C 13.15 Ð 10�3

y32 D �95.65 Ð 10�3 C 7.618 Ð 10�3

y33 D �18.19 Ð 10�3 C 5.533 Ð 10�3

These are then converted to three-port S parameters using Eq. (10.32) [1]:

S11 D 1.6718 6 � 168.12°

S12 D 1.6573 6 3.639°

S13 D 1.0103 6 13.684°

S21 D 3.1794 6 � 157.77°

S22 D 2.0959 6 14.185°

S23 D 0.7156 6 74.511°

S31 D 1.6455 6 70.181°

S32 D 2.7564 6 � 167.02°

S33 D 2.1085 6 � 153.87°
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At this point it is desired to transform these parameters to common gate parame-
ters in which the gate is connected to ground through a short circuit. The resulting
common gate two-port S parameters are found from Eqs. (E.9) through (E.12):

S11g D 5.317 6 170.925°

S21g D 10.772 6 � 14.852°

S12g D 2.496 6 177.466°

S22g D 6.250 6 � 7.553°

With the transistor now characterized in the orientation that it is to be used in
the oscillator, a choice is made for the impedance at the generator side. If this
impedance is chosen to be a 5 nH inductor, the output reflection coefficient is

o D 1.7775 6 � 30.35°

This shows that oscillation is possible under these loading conditions. The
expressions given above for the revised S parameters can be found in [2] using
slightly different notation.

REFERENCES

1. K. Kurokawa, “Power Waves and the Scattering Matrix,” IEEE Trans. Microwave
Theory Tech., pp. 194–202, 1965.
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pp. 133–150, 1985.
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APPENDIX F

Transistor and Amplifier
Formulas

The following formulas are meant as a reminder of the fundamentals given in
most standard electronics textbooks. Notation for the formulas have the tradi-
tional meanings. Depletion capacitances are all given with a negative sign in
the denominator as in C D C0/�1 � V/��� . Consequently, when the junction is
reverse biased, the minus sign turns into a positive sign. Figure F.1 presents the
basic FET features and symbols.

Bipolar Transistor Parameters (BJT)

DESCRIPTION FORMULA

Collector current IC D IS exp
(
qVBE

kT

)

Transconductance gm D qIC

kT

Input resistance r� D ˇ0

gm

Output resistance ro D VA

IC

Base charging capacitance CD D �Fgm

Emitter base junction Cje D AE

(
qεNB

Vj

)1/3

Input capacitance C� D CD C Cje

Collector base C� D C�o

[1 � �VBC/ oc�]1/3
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Collector substrate Ccs D Ccso

[1 � �Vsc/ os�]1/2

Transition frequency fT D 1

2�

gm

�C� C C��

Thermal voltage VT D kT

q
D 0.259 V

FET Symbols

NMOS Depletion.
NJFET

PMOS Depletion.
PJFET

NMOS Enhance.

PMOS Enhance.

ID

VGS

p-Channel JFETn-Channel JFET

n-Channel MOSFET —
Enhancement

n-Channel MOSFET —
Depletion

p-Channel MOSFET —
Enhancement

p-Channel MOSFET —
Depletion

FIGURE F.1 FET symbols.



302 TRANSISTOR AND AMPLIFIER FORMULAS

Junction Field Effect Transistor Parameters (JFET)

DESCRIPTION FORMULA

Saturated drain current ID D IDSS

(
1 � VGS

VP

)2(
1 � VDS

VA

)

VDS ½ VGS � VP

Ohmic region drain current ID D Go



VDS C 3

2

� 0 C VGS � VDS�3/2

�� 0 C VGS�3/2

� 0 C VP�1/2





VDS < VGS � VP

G0 D 2aW

L
�c

ID ³ K
[
2�VGS � VP�VDS � V2

DS

]

Transconductance gm D 2IDSS

VP

(
1 � VGS

VP

)

Output resistance ro D VA

ID

Gate source capacitance Cgs D Cgs0

[1 � �VGS/ 0�]1/3

Gate drain capacitance Cgd D Cgd0
(

1 � VGD

 0

)1/3

Gate substrate capacitance Cgss D Cgss0

[1 � �VGSS/ 0�]1/2

N Channel JFET VP < 0

P Channel JFET VP > 0

Metal Oxide Semiconductor Field Effect Transistor Parameters (MOSFET)

DESCRIPTION FORMULA

Saturation region drain
current

ID D �CoxW

2L
�VGS � Vt�2

(
1 � VDS

VA

)

VDS ½ VGS � Vt

Ohmic region drain current ID D �CoxW

2L

[
2�VGS � Vt�VDS � V2

DS

]

ð
(

1 � VDS

VA

)

VDS < VGS � Vt
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Oxide capacitance Cox D εox

tox

Transconductance gm D �Cox
W

L
�VGS � Vt�

Output resistance ro D jVAj
ID0

Input capacitance Cin D CGS C CGD D CoxLW

Transition frequency fc D gm

2�Cin
D �s�VGS � Vt�

2�L2

Surface mobility holes �s D 200 cm2/V-s

Surface mobility electrons �s D 450 cm2/V-s

N CHANNEL JFET P CHANNEL JFET

IDSS > 0 IDSS < 0

VP < 0 VP > 0

gmo
�2IDSS

VP
gmo D �2IDSS

VP

K
D IDSS

V2
P

> 0 K
D IDSS

V2
P

< 0

VP < VGS for jIDSj > 0 VGS < VP for jIDSj > 0

NMOS ENHANCEMENT PMOS ENHANCEMENT

Vt > 0 Vt < 0

VGS > Vt VGS < Vt

K
D �nCoxW

2L
> 0 K

D �pCoxW

2L
< 0

NMOS DEPLETION PMOS DEPLETION

Vt < 0 Vt > 0

VGS > Vt < 0 for jIDSj > 0 VGS < Vt < 0 for jIDSj

K
D �nCoxW

2L
> 0 K

D �pCoxW

2L
< 0
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Small Signal Single-Transistor Amplifier Configurations

MOSFET BJT

Common source Common emitter

Rin D RG D R1jjR2 Rin D �r� C rb�jjRB ³ r�
Rout D RDjjr0 Rout D Rcjjr0
AV D �gm�r0jjRDjjRL� / 1/

p
ID AV D �gm�Rcjjr0jjRL�

Source degeneration Emitter degeneration

Rin D RG D R1jjR2 Rin D r� C RE�ˇ C 1�

³ r��1 C gmRE�

Rout D r0[1 C �gm C gmb�RS] Rout D REjjr� C r0
[
1 C gm�r�jjRE�

]

CRS ³ r0�1 C gmRE�

Gm D gm

1 C �gm C gmb�RS
Gm D gm

1 C gmRE

Commmon gate Common base

Rin D RD

1 C RD�gm C gmb�
Rin D re D ˛0

gm
C rb
ˇ C 1

³ ˛0

gm

³ 1

gm C gmb

Rout D RD Rout D r0�1 C ˇ�jjRc

Gm D gm C gmb Gm D gm

(
1

1 C rb/r�

)
³ gm

AV D gm�RcjjRL�

AI D gmRc

Rc C RL

RE

1 C gmRE
³ gmre D ˛0

Common drain (source follower) Commmon collector (emitter follower)

Rin D R1jjR2 Rin D r� C rb C �ˇ C 1��r0jjRE�

Rout D r0
1 C r0�gm C gmb�

Rout D r� C RBB C rb
1 C ˇ

³ 1

gm
C RBB C rb

1 C ˇ

³ 1

gm C gmb

AV D gm�RSjjr0�
1 C �RSjjr0��gm C gmb�

AV D 1
1 C [�RBB C rb C r��/
�REjjr0��ˇ C 1�]

³ 1

³ 1

1 C gmb/gm
³ 1



APPENDIX G

Transformed Frequency
Domain Measurements Using
Spice

G.1 INTRODUCTION

Time domain measurements taken on an automatic network analyzer can be easily
replicated theoretically for dispersionless transmission lines using the SPICE time
domain program simulation. A technique is presented here that gives the type, value,
and position of the measured discontinuity directly from time domain measure-
ments. Furthermore the effect of multiple discontinuities can be replicated by SPICE.

Microwave impedance measurements have evolved from the slotted line to the
computer-controlled automatic network analyzer. One of the major innovations
of the network analyzer made possible by its broadband frequency capability was
the simulation of time domain measurements. Though fundamentally a frequency
domain machine, the network analyzer has been very useful in doing time domain
analysis of broadband circuits. This was demonstrated by the pioneering work
of Hines and Stinehelfer [1]. Fundamentally time domain equipment such as
the time domain reflectometer have lagged because of the requirement for fast
switching devices. However, that has not been true of the software side, as the
widespread use of SPICE can readily attest. Here it will be demonstrated how
time domain measurements on the network analyzer can be simulated using the
transient analysis in SPICE.

There have been several papers that have shown how S parameters can be
plotted using SPICE [2,3,4]. SPICE can be used to model physical directional
couplers by the interconnection of three transmission lines [5]. By this means, a
SPICE model was developed for the characteristics of a network analyzer in the
frequency domain. However, the above-mentioned applications are not using the
time domain capability of SPICE.
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First of all, the SPICE S-parameter simulation can be expanded to include
unequal input and output impedance levels. This is useful in analyzing impedance
steps and transformers with two different resistance levels. Second, rather than
using ac steady state voltage sources, a time domain pulse can be used. The
automatic network analyzer is made to simulate a time domain reflectometer by
mathematically producing an “impulse” that can be replicated in SPICE approx-
imately by using the PULSE function or more accurately by the piecewise linear
(PWL) transient function. This SPICE replica of the network analyzer “impulse”
can be used to show how various circuit elements react to this “impulse.” Simple
formulas are given that can be used to obtain the value of the inductance, capac-
itance, or impedance step directly from time domain “impulse” data.

G.2 FREQUENCY DOMAIN S-PARAMETERS

In [4] the S parameters were obtained for a given circuit from SPICE for a two-
port circuit in which the input and output resistances were both 50 �. However,
the conversion circuit used to obtain the S parameters can be modified so that
the two ports of the circuit are at different impedance levels (Fig. G.1). This is
done by the addition of an ideal transformer whose turns ratio is

n D
√
R02

R01
�G.1�

where R01 and R02 are the characteristic impedance levels of the input and output
sides, respectively. The input impedance, Z1, looking into the transformer from
the port-1 side is

Z1 D ZL

n2
�G.2�

which is equal to R01 when ZL D R02. The voltage drop caused by the independent
current source of value 1/R01 is

V1 D 1

R01
�R01jjZ1� D Z1

R01 C Z1
�G.3�

The voltage at node 11 in Fig. G.1 is numerically the same as S11, since

V�11� D 2V1 � Vin D Z1 � R01

Z1 C R01
�G.4�

For the output side, the secondary current in the transformer is I2 D I1/n. The
portion of current going into the transformer primary from the current source
side is

I1 D 1

R01
�R01jjZ1�

1

Z1
D 1

Z1 C R01
�G.5�
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The voltage at node 2 is

V2 D �I2ZL D �I1

n
ZL D �ZL

�Z1 C R01�n
�G.6�

The voltage across R21 with the marked polarity is V�21� D �2V2/n which, upon
replacing V2 with the value above, gives a value for V�21� that is numerically
equal to S21:

V�21� D 2ZL

�Z1 C R01�n2
D 2ZL

ZL C R02
D S21 �G.7�

The right-hand side is obtained using Eqs. (G.1) and (G.2). For a matched load
when ZL D R02, S21 D 1 as expected. Finding the S22 and S12 for a circuit is
achieved by direct analogy. A suggested SPICE listing for finding the S param-
eters with unequal source and load impedance levels is shown in Section G.6.

G.3 TIME DOMAIN REFLECTOMETRY ANALYSIS

Time domain reflectometer (TDR) measurements from an automatic network
analyzer can be directly compared with a theoretical circuit model in the time
domain in SPICE. All that is required is to make the two modifications described
in Section G.7. Of course, a near-ideal impulse can be implemented in SPICE,
but the point of view taken here is to calculate time domain data that would
actually be measured using the time domain feature on a network analyzer. Two
actual time domain “impulses” were measured on a network analyzer under the
conditions in which the maximum frequency was 18 and 26 GHz, respectively.
A third “impulse” with a maximum frequency of 50 GHz was calculated from
Hewlett Packard’s Microwave Development System (MDS) program. This was
justified on the basis that (1) the program and the network analyzer use the same
algorithm for the chirp-Z transform and (2) the measured and calculated 18 GHz
“impulses” are nearly identical. Circuit responses to “impulses” with different
maximum frequency content will of course differ, so the time domain response
must be always coupled to the frequencies used in producing the “impulse.”

Two options for representing the network analyzer “impulse” are illustrated in
Fig. G.2. The approximate impulse is modeled in SPICE as a PULSE, while the
more accurate approach is achieved by using the piecewise linear (PWL) SPICE
function. In the present case, the PWL function uses 77 different x, y coordinate
pairs to represent the 26 GHz “impulse.” The result is indistinguishable from the
measured “impulse” within the resolution of the graph in Fig. G.2. A similar fit
was made for the 18 and 50 GHz “impulses.” The piecewise linear fit of the
network analyzer “impulses” for use in SPICE are found in Section G.7. The
approximate trapezoidal pulse for a 50 � source impedance has the advantage
of providing results similar to the PWL approximation with a lot less data entry.
However, to closely represent the actual time domain response of the network
analyzer, the piecewise linear approach should be used.
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FIGURE G.2 Measured and approximate trapezoidal 26 GHz pulse used in SPICE
analysis.

G.4 TIME DOMAIN IDENTIFICATION OF CIRCUIT ELEMENTS

Time domain analysis of discontinuities in broadband circuits enables determining
the type of circuit element, the position of the circuit element, and the size of
the circuit element causing the discontinuity. For example, if a shunt capac-
itance is causing the discontinuity, the time domain “impulse” reflection first
goes below the baseline, then rises above the baseline and then settles back to
the baseline, looking roughly like a single-period sine wave. Figure G.3 shows a
typical response to a shunt capacitance and series inductance that are a half wave
length apart at 10 GHz. The typical response for a series capacitance is shown
in Fig. G.4. A shunt inductance response would look like the negative of the
series capacitance. The shunt capacitance, series inductance, series capacitance,
shunt inductance, and step in characteristic impedance all have their peculiar time
domain signatures.

In general, the larger the discontinuity, the larger is the j�t�j of the time
domain response. For the larger shunt capacitances, the magnitude of the dip
below the baseline is not equal to the magnitude of the rise above the baseline.
So there is some ambiguity in choosing what part of the curve to use to predict the
value of the shunt capacitance. A series of capacitance values were tested using
both the piecewise linear representation for the network analyzer time domain
“impulse.” The results in Fig. G.5 show that if the algebraic maximum of �t�
(the second extremum) is chosen, there are two possible values of capacitance for
�t�. However, the maximum value of the negative excursion of �t� (the first
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FIGURE G.3 Time domain response from a shunt capacitor separated from a series
inductor by a 100 ps 50 � transmission line.
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FIGURE G.4 Typical time domain response for a series capacitor.
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FIGURE G.5 Maximum and minimum values of the time domain response for a shunt
capacitance using the piecewise linear approximation to the measured “impulse.”

extremum) is monotonic, and hence it gives a unique value for the capacitance.
The series inductance response is a mirror image to the shunt capacitance about
the �t� D 0 line. Thus the first maximum of �t� is monotonically related to the
value of the series inductance. It is this first maximum of j�t�j that can be used
to find the value of the two types of discontinuities.

The time domain not only allows determination of the discontinuity type and
size but also the discontinuity position in time. Here again there is some ambiguity
in the part of the “impulse” response curve that should be used to find the position.
For shunt capacitances, a position midway between the lower and upper part of
the curve could be used, that is, where �t� D 0. A comparison of this choice with
the theoretical distance is provided in Fig. G.6, where it is seen that this method
is accurate if the discontinuity is very small. However, for larger discontinuities a
better choice would be at the location of the first extremum of j�t�j.

The minimum �t� of the shunt capacitor, the maximum �t� of the series
inductor, the maximum �t� of the series capacitance, the minimum �t� of the
shunt inductance, and the peak �t� (either negative or positive) of the impedance
step can each be described by a simple formula that could be readily stored in a
handheld calculator. These formulas are listed below. The parameters for these
expressions are in Table G.1 for the 18 GHz, 26 GHz, and 50 GHz “impulses.”

Shunt capacitance:

C D � A

1 C B
�G.8�
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FIGURE G.6 Estimated position (in time) of a shunt capacitor using the minimum value
of �t� and the position where �t� D 0.

TABLE G.1 Expressions for the Reactance Element Values in Terms of 0

Maximum Shunt C, pF Series L, nH Series C, pF Shunt L, nH
Frequency CD�A/�1 C B� LD�A/�1 C B� CD �1 � A�/B LD �1�A�/B
18 GHz A D 1.212 A D �2.965 A D 0.9379 A D �0.9239
pulse B D 0.9887 B D �0.9908 B D 1.691 B D �0.6892
26 GHz A D 0.8216 A D �2.061 A D 0.9068 A D �0.9275
pulse B D 1.004 B D �1.010 B D 2.624 B D �1.036
50 GHz A D 0.4275 A D �1.091 A D 0.9279 A D �0.8770
pulse B D 0.9875 B D �1.010 B D 4.801 B D �1.9885

Series inductance:

L D � A

1 C B
�G.9�

Series capacitance:

C D 1 � A

B
�G.10�

Shunt inductance:

L D 1 � A

B
�G.11�
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Step in characteristic impedance:

Z0
0 D Z0

1 C 

1 � 
�G.12�

Measurements of a given series-mounted chip capacitor on a LCR meter at, say
1 MHz, would not necessarily give accurate correlation with a time domain model
of a simple series capacitance as modeled by Eq. (G.10) or direct measurements
on a network analyzer. However, a better fit with the time domain data can
be obtained by using a model of a high-frequency capacitor as described in
Chapter 2.

G.5 MULTIPLE DISCONTINUITIES

The formulas above are correct when there is only one significant discontinuity
in the circuit that is being measured. When there are multiple discontinuities, the
SPICE analysis will also display the results that would be expected in a real time
domain reflectometer measurement. The gating error in measuring a discontinuity
in the presence of other discontinuities is analyzed in [6]. That analysis uses a
rectangular gating function with a depth of 40 dB rather than the chirp-Z trans-
form in the network analyzer software. Four sources of error are identified. The
first is out-of-gate attenuation associated with incomplete suppression of reflec-
tions outside the gating function. The second is truncation error where the gate is
made too narrow to pick up all of the response due to the discontinuity in ques-
tion. The third is masking error where the transmission coefficients of previous
discontinuities reduces the signal getting to the discontinuity under investiga-
tion. The fourth is multi-reflection aliasing error that occurs when the circuit has
commensurate line lengths, and the residual reflection of one discontinuity adds
to or subtracts from the reflection of the discontinuity under investigation.

When two discontinuities are sufficiently separated in time, each can be
analyzed separately, though the accuracy of predicting the later discontinuities
from the formulas in Table G.1 are less accurate than when there is only one
discontinuity. Three impedance steps are set up such that if they were alone,
they would have had a �t� of 0.3, 0.2, and 0.1, respectively (Fig. G.7), as
is done by [6]. However, when the three steps are put in one circuit suitably
separated from one another, the SPICE analysis shows that �t� D 0.3 (0%
error), �t� D 0.181 (9.6% error), and �t� D 0.087 to 0.076 (12.9% to 24%
error depending on whether line lengths are commensurate). The estimated errors
in [6] are 0%, 12%, and 20%, respectively, which correlate well with the SPICE
results given the approximations that are employed.

In addition the technique described here can be used in a wide variety of
circuits to model two elements that are too close together to be resolved separately
in time. Adjustment of a theoretical time domain model to make its response
match that of the measured time domain measurements gives a method to extract
an equivalent circuit in the time domain.
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FIGURE G.7 Predicted response from three discontinuities whose actual reflection coef-
ficients are 0.3, 0.2, and 0.1.

G.6 SAMPLE SPICE LIST

The SPICE listing below can be used to find the S11�D V�11� and S21�D V�21��
parameters when the source and load resistances are 50 �, and the circuit is
terminated with a 50 � load. These may be changed in the PARAM statement.
The circuit to be analyzed is entered in the SUBCKT section. The number of
frequencies and the frequency range must also be added to the ac statement. The
following net list was used in PSPICE. Other versions of SPICE may require
some minor modifications as noted in the net list.

Analysis of a circuit for S11 and S21
*
* R01 and R02 are input and output resistance levels.
* RL is the load resistance. The load may be

supplemented
* with additional elements.
.PARAM R01=50, R02=50. RLOAD=50. IIN=-1/R01
.FUNC N(R01,R02) SQRT(R02/R01)
R01 1 0 R01
VIN 10 11 AC 1
GI1 1 0 VALUE=-V(10,11)/R01
*GI1 1 0 10 11 ”-1/R01”
E11 10 0 1 0 2
R11 11 0 1
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Xcircuit 1 2 netname
RL 2 0 RLOAD
E21 21 0 VALUE=V(2)*2/N(R01,R02)
* n = SQRT(R02/R01)
*E21 21 0 2 0 ”2/n”
R21 21 0 1
*
.SUBCKT netname ”first node” ”last node”
* Input side
* .
* .
* .
* Output side
.ENDS netname
* Code for S11 and S21
*.AC DEC ”num” ”f1” ”f2”
.PROBE V(11) V(21)
.END

G.7 IMPULSE RESPONSE SPICE NET LIST MODIFICATION

Time domain analysis with SPICE requires replacing the AC statement with a
TRAN statement similar to the following:

.TRAN .01ps 250ps 0 .2ps

In addition the VIN statement should be replaced with one containing either
the PULSE or the PWL transient function. The pulse statement has the form
PULSE(initial volt, pulse volt, delay time, rise time, fall time, pulse width,
period). The measured “impulse” from the time domain measurements from
the network analyzer is approximated by the following PULSE statements. The
18 GHz pulse, with base width of 94.019 ps, is approximated as follows:

VIN 10 11 PULSE(0 1 0 39.482p 39.491p 15.05p)

The 26 GHz pulse, with a base width of 64.150 ps, is approximated as follows:

VIN 10 11 PULSE(0 1 0 26.395p 28.477p 9.278p)

Alternately, the more accurate piecewise linear fit could be used. The 18 GHz
“impulse” is approximated using 81 points:

VIN 10 11 PWL(0ps 0, 1.5ps 0.0037, 3.0ps 0.0089,
4.5ps 0.0156,
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+ 6.0ps 0.0237, 7.5ps 0.0336, 9.0ps 0.0452,
10.5ps 0.0589,

+ 12.0ps 0.0745, 13.5ps 0.0922, 15.0ps 0.1121,
16.5ps 0.1342,

+ 18.0ps 0.1584, 19.5ps 0.1848, 21.0ps 0.2134,
22.5ps 0.2441,

+ 24.0ps 0.2767, 25.5ps 0.3111, 27.0ps 0.3472,
28.5ps 0.3848,

+ 30.0ps 0.4236, 31.5ps 0.4634, 33.0ps 0.5038,
34.5ps 0.5448,

+ 36.0ps 0.5858, 37.5ps 0.6267, 39.0ps 0.6671,
40.5ps 0.7065,

+ 42.0ps 0.7448, 43.5ps 0.7815, 45.0ps 0.8162,
46.5ps 0.8489,

+ 48.0ps 0.8789, 49.5ps 0.9062, 51.0ps 0.9304,
52.5ps 0.9513,

+ 54.0ps 0.9687, 55.5ps 0.9824, 57.0ps 0.9922,
58.5ps 0.9983,

+ 60.0ps 1.0002, 61.5ps 0.9982, 63.0ps 0.9922,
64.5ps 0.9823,

+ 66.0ps 0.9686, 67.5ps 0.9512, 69.0ps 0.9303,
70.5ps 0.9061,

+ 72.0ps 0.8788, 73.5ps 0.8487, 75.0ps 0.8161,
76.5ps 0.7813,

+ 78.0ps 0.7446, 79.5ps 0.7064, 81.0ps 0.6669,
82.5ps 0.6266,

+ 84.0ps 0.5857, 85.5ps 0.5446, 87.0ps 0.5037,
88.5ps 0.4633,

+ 90.0ps 0.4235, 91.5ps 0.3847, 93.0ps 0.3471,
94.5ps 0.3111,

+ 96.0ps 0.2767, 97.5ps 0.2441, 99.0ps 0.2135,
100.5ps 0.1849,

+ 102.0ps 0.1585, 103.5ps 0.1342, 105.0ps 0.1122,
106.5ps 0.0923,

+ 108.0ps 0.0746, 109.5ps 0.0591, 111.0ps 0.0455,
112.5ps 0.0338,

+ 114.0ps 0.0240, 115.5ps 0.0158, 117.0ps 0.0092,
118.5ps 0.0040,

+ 120.0ps 0)

The piecewise linear fit for the 26 GHz “impulse” is approximated using 77
points:

VIN 10 11 PWL(0ps 0,1ps .005, 2ps .015, 3ps .0267,
4ps .0402,
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+ 5ps .0556, 6ps .0731, 7ps .0925, 8ps .1140,
9ps .1375,

+ 10ps .1632, 11ps .1909, 12ps .2204, 13ps .2519,
14ps .2850,

+ 15ps .3198, 16ps .3560, 17ps .3933, 18ps .4318,
19ps .4709,

+ 20ps .5106, 21ps .5505, 22ps .5904, 23ps .6299,
24ps .6688,

+ 25ps .7067, 26ps .7433, 27ps .7784, 28ps .8116,
29ps .8427,

+ 30ps .8713, 31ps .8972, 32ps .9202, 33ps .9401,
34ps .9566,

+ 35ps .9697, 36ps .9792, 37ps .9850, 38ps .9871,
39ps .9855,

+ 40ps .9801, 41ps .9710, 42ps .9584, 43ps .9423,
44ps .9227,

+ 45ps .9001, 46ps .8745, 47ps .8462, 48ps .8155,
49ps .7825,

+ 50ps .7477, 51ps .7112, 52ps .6734, 53ps .6346,
54ps .5952,

+ 55ps .5553, 56ps .5154, 57ps .4756, 58ps .4363,
59ps .3979,

+ 60ps .3604, 61ps .3240, 62ps .2891, 63ps .2557,
64ps .2240,

+ 65ps .1942, 66ps .1663, 67ps .1404, 68ps .1166,
69ps .0948,

+ 70ps .0751,71ps .0575, 72ps .0418, 73ps .0279,
74ps .0160,

+ 75ps .0058, 76ps 0)

The piecewise linear fit for the 50 GHz “impulse” is approximated using 46
points:

VIN 10 11 PWL( 0ps -4.530E-03, 1ps -611.4E-06,
2ps 6.941E-03,

+ 3ps 0.019, 4ps 0.037, 5ps 0.061, 6ps 0.091,
7ps 0.130,

+ 8ps 0.175, 9ps 0.229, 10s 0.289, 11ps 0.355,
12ps 0.425,

+ 13ps 0.500, 14ps 0.576, 15ps 0.651, 16ps 0.724,
17ps 0.792,

+ 18ps 0.854, 19ps 0.906, 20ps 0.948, 21ps 0.979,
22ps 0.996,

+ 23ps 1.000, 24ps 0.990, 25ps 0.967, 26ps 0.931,
27ps 0.884,



318 TRANSFORMED FREQUENCY DOMAIN MEASUREMENTS USING SPICE

+ 28ps 0.828, 29ps 0.763, 30ps 0.693, 31ps 0.618,
32ps 0.542,

+ 33ps 0.467, 34ps 0.394, 35ps 0.325, 36ps 0.262,
37ps 0.204,

+ 38ps 0.155, 39ps 0.112, 40ps 0.077, 41ps 0.049,
42ps 0.028,

+ 43ps 0.013, 44ps 3.141E-03, 45ps -2.711E-03)
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APPENDIX H

Single-Tone Intermodulation
Distortion Suppression for
Double-Balanced Mixers

An expression is given in [1] for the suppression for single-tone intermodulation
distortion in a double-balanced mixer. This is repeated below as well as coded
in the program IMSUP. The intermodulation suppression in dBc (dB below the
carrier) is Snm for a set of frequencies nfp š mf1.

Snm D �jmj � 1�PC 20 log�jAnmj� �H.1�

P is the difference in dB of RF signal and LO powers.
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Boo D 1 C υ4 C ˛�υ3 C υ2�� jmj[υ4 � υ2 � ˛�υ3 C υ2�� ˇ�υ3 C υ4�]

Bee D �1 C υ4 � ˛�υ3 � υ2�� jmj[υ4 � υ2 � ˛�υ3 � υ2�C ˇ�υ3 � υ4�]
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Boe D jmj[�υ4 � υ2 C ˛�υ3 C υ2�C ˇ�υ4 � υ3�]

Beo D jmj[υ4 C υ2 C ˛�υ3 � υ2�� ˇ�υ4 C υ3�]

BIF D Boo�m D 1�

The ˛ and ˇ represent the isolation in the LO and RF transformers resulting from
their imbalance. The imbalance is illustrated in Fig. H.1 which is the same as
used in Fig. 11.5 except the diode numbering convention has been made here to
conform to that used in [1].

LO isolation D 20 log�1 � ˛�

RF isolation D 20 log�1 � ˇ�

The values for υ are a measure of the inequality of the forward voltages across
the diodes:

υ2 D V2

V1

υ3 D V3

V1

υ4 D V4

V1

Under ideal conditions

˛ D ˇ D υ2 D υ3 D υ4 D 1

Typical values for isolation by the transformers are 10 to 15 dB, while the
values for υ range from 0.85 to 1.15.

–
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+

+

+
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–   VLα
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FIGURE H.1 Double-balanced mixer with transformer and diode imbalance.
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The equations have been implemented in a program called IMPSUP, which
determines the single-tone intermodulation suppression for a given set of frequency
harmonics of the RF signal and LO oscillator, the relative RF signal and LO power
levels, the peak value of the LO voltage, imbalances resulting in finite isolation
in the transformers, and imbalances in the diode forward voltage drops. A sample
run of IMSUP shows the intermodulation suppression for a variety of frequency
harmonics:

LO and RF Signal Transformer Isolation (typ.
10 to 15 dB)
10.,10.

Ring diode voltage ratios: V2/V1, V3/V1, V4/V1 = ?
Typically .85 to 1.15 (ideally =1)
0.85, 0.90, 1.15
Difference in LO and RF power in dB (typ. -20.)
-20.
Peak LO voltage = ?
3.

Forward diode saturation voltage (typ. 0.1)
IM product n x FL +- m x Frf: n,m = ?
1, 1
For intermodulation product n x m = 1 1
IM Suppression = 0.000000E+00 dBc
New n,m values only? <Y/N>
y
IM product n x FL +- m x Frf: n,m = ?
2, 1

For intermodulation product n x m = 2 1
IM Suppression = -0.437641E+02 dBc
New n,m values only? <Y/N>
y
IM product n x FL +- m x Frf: n,m = ?
3, 1
For intermodulation product n x m = 3 1
IM Suppression = -0.954243E+01 dBc
New n,m values only? <Y/N>
y
IM product n x FL +- m x Frf: n,m = ?
3, 2

For intermodulation product n x m = 3 2
IM Suppression = -0.602423E+02 dBc
New n,m values only? <Y/N>
n

Completely new mixer specs? <Y/N>
n

fin
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Index

ABCD matrix, see ABCD parameters
ABCD parameters, 30, 53–56, 58, 74,

154
Active filter, 84
Active load, 13
Actual noise figure, 151
Admittance parameters, see y parameters
AM, 3, 4
Ampère’s law, 67, 69
AMPS, 278
ASITIC, 27
Available gain, 122

B-ISDN, 279
Balun(s), 115–118
Bandwidth efficiency, 1
Bandwidth, 35, 47, 159, 178, 280
Barkhausen criterion, 195, 197, 201
Beat note, 252, 259–261, 263, 271
Black body radiation, 145
Bluetooth, 283
Boltzmann probability, 145
Butterworth, 89–90, 92, 95–97

Capacitance
fringing, 29–30

Capacitor
resonances, 17
alumina, 16
BaTiO3, 16–17
coupled microstrip, 26
hybrid, 14–15, 20
interdigital, 18
loss, 15–19

metal — insulator — metal, 18
monolithic, 14, 17, 20
NPO, 16–17
Porcelain, 16–17

Capacity, 3, 5–7
Cascaded amplifiers, 161
Cauer extraction, 97
CDMA, 3, 279–280, 282
Channel, 4
Characteristic admittance, 154
Characteristic impedance, 61–62, 65, 67,

72–73, 77–78, 102–103, 106, 114,
119–120, 154, 205, 289, 294, 306,
309

CHEBY, 102
Chebyshev, 90–92, 94–96, 98, 102
Circuit Q, 33, 44
Class A amplifier(s), 3, 122, 168, 181
Class A power amplifier(s), 139
Class AB amplifier(s), 3
Class B amplifier(s), 169–171, 173,

175–177, 181
Class C amplifier(s), 3, 178–179,

181–183, 188
Class D amplifier, 184
Class F amplifier, 185–186, 188
Coaxial transmission line, 67–68, 115
Collector efficiency, 185
Combiner(s), 117–118
Combining, power 141–142
COMSAT, 283
Conduction angle, 169, 170, 178–179,

183–184
Conductivity, 9–10
Conductor loss, 70–71, 73
Conversion compression, 227, 242
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Conversion gain, 243
Conversion loss, 226
Convolution, 225–226
Curvilinear squares, 12
Cutoff frequency, 85

Damping factor, see Damping ratio
Damping ratio, 247, 250, 265–267, 269,

276
Darlington method, 99
Darlington procedure, 95, 97, 103
DBLTUNE, 49, 290
DCS, 278
DECT, 279
Dependent states, 6
Dielectric loss, 69, 71, 73
Discontinuities, 309, 311, 313
Divider(s), 117

frequency, 251, 255, 259
Double tuned circuit, 45–47, 290–291
DSB, see Noise
DSP, 279, 283
Dynamic range, 144, 227, 230, 242–243

Effective dielectric constant, 71–73, 289
Efficiency, 122, 139, 141, 162, 164,

168–169, 176–178, 180–185, 217,
218

multistage amplifier, 163
power added, 189, 191

ELLIPTIC, 94
Elliptic filter, 94
Error voltage, 254, 261
Even mode voltage, 28–29
Even-mode current, 106
Exchangeable gain, 122

FCC, 278, 282
FDMA, 3, 280
Feed-forward amplifier(s), 191–192
Feedback, 129, 136–138, 161, 191,

195–197, 200, 202, 206, 209, 247,
250, 261, 263

Filter(s)
all pass, 86–87, 94
bandpass, 86–87, 89, 101–102
bandstop, 86–87, 89, 101
high pass, 86–87, 89, 100
ideal, 85, 89
low pass, 85–87, 89, 94–95,

100–102, 228, 258, 262
low pass prototype, 89–90, 92–93,

99–101

Final value theorem, 259
Flow graph, 125
FM, 3
Fourier transform, 225–226, 232
Fractional bandwidth, 101–102
Friis formula, 162–163, 281
FSK, 279
Fukui equations, 161
Fukui noise model, 158

g parameters, 52, 74, 132, 197, 292
Generators, harmonic, 216
GMSK, 279
GPRS, 282
Group delay, 85–86
Group velocity, 62
GSM, 278, 282

h parameters, 51, 74, 132, 197, 292
HALO, 283
Harmonic generators, see Multiplier(s)
Hybrid coupler, 118

Ideal transformer, 46–47, 105, 306
Image frequency, 224, 244–245
Image impedance, 54–57, 59
Image propagation constant, 57–58
Impedance match(ing), 36, 95, 141
Impedance parameters, see z parameters
Impedance transformation, 105, 121
Impedance transformer, 120
IMSUP, 240, 319, 321
IMT-2000, 279
Indefinite admittance matrix, 78–79,

207, 298
Indefinite scattering matrix, 80, 82
Inductor(s)

circular spiral, 26
ferrite(s), 22–23
microstrip, 26
monolithic, 26
proximity effect, 22
self resonance, 21
spiral, 26–28, 30, 286
loss, 20, 22

Information, 1, 3–7
Injection locking range, 216
Input intercept point, 227
Insertion gain, 122
INTEL-SAT, 283
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Intercept point
input, 227, 242
output, 227
Third-order, 242, 281

Intermodulation distortion, 139, 191, 235
Third-order, 227, 241–242
Two-tone, 240
suppression, 230

Inverse Cheybyshev, 92–94
IP, 279
ISDN, 278
Isolation, 227–228, 235, 320–321

L circuit, 37–40
Ladder network(s), 88–89, 97
Laplace Transform, 255, 257
LMDS, 280
LO drive power, 227
Loop bandwidth, 250
Loop filter(s), 249–250, 254, 260–261,

264–265, 268–269, 276
Loop gain, 261–262, 265
Loss tangent, 16–17
Loss, conversion, 230

Manley-Rowe relations, 217
Mason’s nontouching loop rules, 125
Maximum gain, 129
Maxwell equation(s), 66, 74
Microstrip, 26, 71–72, 115
MICSTP, 73
Minimum phase, 88–89
Minimum transconductance, 201
Mixer(s), 247

active, 235
class 1, 235
class 2, 235
class 3, 236
double-balanced, 227, 230, 232,

234–237, 274, 319
ring, 230–231
single balanced, 227–230, 232
single-ended, 227
star, 230–232

Modulation, 1
Modulator, 239
Multiplier(s), 216, 218, 247, 256

Gilbert cell, 236–240
MULTIPLY, 218–219

Nagaoka correction factor, 24
Natural frequency, 266–267, 269

Negative resistance, 204
NMT, 278
Noise figure, 122, 151–154, 157,

161–162, 164–165, 227, 243–244
double-sideband, 244, 246
single-sideband, 243–246

Noise measure, 152
Noise temperature, 151–152, 243–244
Noise, 1, 155, 191–192, 201, 204,

210, 230
flicker, 3, 144
Johnson, 144
minimum, 201, 203
Nyquist, 144
shot, 148–149
spot, 151

Nyquist formula, 147, 149, 151

Odd mode voltage, 28–29
Odd-mode current, 106–107
Ohmic contact, 13
Op-amp, see Operational amplifier(s)
Open loop gain, 201, 262
Operational amplifier(s), 247–249, 254,

258–259, 262, 267, 272
Oscillator(s)

Armstrong, 197–198
Clapp-Gouriet, 197–199
Colpitts, 197–200, 202
Hartley, 197–198, 202–203
injection-locked, 214
Pierce, 197–198
Vackar, 197–199
voltage controlled, 199, 206, 249–254,

256, 259–264, 270–272, 275

� circuit, 39–41, 45
PACS, 279
Parallel plate line, 66
PARCONV, 292, 294
Phase detector(s), 247, 249, 250–254,

259–264, 271–272, 274–275
flip-flop, 272–273
sampling, 270–272

Phase error, 257–259
Phase margin, 247, 250
Phase velocity, 62
PLMR, 278
POLY, 97
Positive real, 96
Power amplifier(s), 3, 141, 191, 281
Power gain, 122
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Probability, 6–7, 146
PSTN, 278

QPSK, 279, 281

Reflection coefficient, 62–63, 74–75,
77–78, 96–98, 114, 129, 204–205,
207–209, 296

Resistor
diffused, 10
metal film, 11

Resonant frequency, 35–36, 37
Response time, 247, 250
Return loss, 114
Rollett criteria, 132

S parameter(s), 74, 77, 115, 124–126,
128–129, 132, 136, 138, 206–209,
292, 294–296, 298–299, 306–308

Saturated resistor, 14
Scattering matrix, see S parameter(s)
Scattering parameters, see S parameter(s)
Schottky barrier, 13, 222, 233
SDR, 279
Selectivity, 85
Series — series, 51, 52, 197
Series — shunt, 51–52
Shockley diode equation, 173
Shunt — series, 52–53
Shunt — shunt, 51, 200–201
Signal-to-noise ratio, 151, 243
Skin depth, 21–22
Smith chart, 63–64, 131–133, 164
SOC, 283
SOLENOID, 23, 26, 285
Solenoid, 23, 285

parasitic capacitance, 25
Q, 25–26

SPARC, 209
Spectral regrowth, 281
Spurious voltages, 230
SSB, see Noise
SSB, see Noise figure, single-sideband
Stability, 122, 129–134, 136–138, 141,

198
amplifier, 205
factor, 206
Kurokawa, 213
oscillator, 210
temperature, 173

Sum frequency, 224

T circuit, 41–42, 45
TACS, 278
Tapped C, see Tapped capacitor
Tapped capacitor, 42–45
TDMA, 3, 278, 280, 282
TDR, see Time domain reflectometer
Telegrapher’s equation(s), 59–61, 63,

65–66
Temperature coefficient, 11, 74
Thompson-Bessel, 93, 96
Time domain reflectometer, 305–306,

308, 313
Transducer power gain, 89, 123–124,

126, 243
Transient(s), 204, 210, 247, 264
Transmission coefficient, 74, 77–78
Transmission line equation, 61, 63
Transmission line(s), 59–62, 65–66, 71,

106–116, 118–121, 132, 305, 310
Two-wire line, 65–66
Type 1 PLL, 254, 259, 262, 265, 267, 276
Type 2 PLL, 254, 262, 265, 267, 270,

275
Type 3 PLL, 262

UHF, 278
Unilateral

amplifiers, 162, 164
approximation, 164
power gain, 126–127

Unloaded Q, 36

VCO, see Oscillator(s)
Voltage coefficient, 11

Wilkinson divider, 120

y matrix, see y parameters
y parameters, 51, 53, 74, 78, 132,

136–138, 197, 200, 207, 292, 294,
298

Y factor, 152–153

z parameters, 51–54, 56, 74, 123, 132,
197, 292, 294

16QAM, 281
1G, 282
2G, 282
3G, 279, 282
4G, 279
64QAM, 281
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