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Abstract. Constraint-based routing is an invaluable part of a full-fledged
Quality of Service architecture. Unfortunately, QoS routing with multi-
ple additive constraints is known to be a NP-complete problem. Hence,
accurate constraint-based routing algorithms with a fast running time
are scarce, perhaps even non-existent. The need for such algorithms has
resulted in the proposal of numerous heuristics and a few exact solutions.
This chapter presents a thorough, concise, and fair evaluation of the
most important multi-constrained path selection algorithms known to-
day. A performance evaluation of these algorithms is presented based on
a complexity analysis and simulation results. Besides the routing algo-
rithm, dynamic aspects of QoS routing are discussed: how to cope with
incomplete or inaccurate topology information and (in)stability issues.

1 Introduction

The continuous demand for using multimedia applications over the Internet has
triggered a spur of research on how to satisfy the quality of service (QoS) re-
quirements of these applications, e.g., requirements regarding bandwidth, delay,
jitter, packet loss, and reliability. These efforts resulted in the proposals of sev-
eral QoS-based frameworks, such as Integrated Services (Intserv) [11], Differen-
tiated Services (Diffserv) [10], and Multi-Protocol Label Switching (MPLS) [79].



One of the key issues in providing QoS guarantees is how to determine paths
that satisfy QoS constraints. Solving this problem is known as QoS routing or
constraint-based routing.
The research community has extensively studied the QoS routing problem, re-

sulting in many QoS routing algorithms. In this chapter, we provide an overview
and performance evaluation for unicast6 QoS routing algorithms, which try to
find a path between a source node and a destination node that satisfies a set of
constraints.
Routing in general involves two entities, namely the routing protocol and the

routing algorithm. The routing protocol manages the dynamics of the routing
process: capturing the state of the network and its available network resources
and distributing this information throughout the network. The routing algorithm
uses this information to compute paths that optimize a criterion and/or obey
constraints. Current best-effort routing consists of shortest path routing that
optimizes the sum over the constituent links of a single measure like hopcount
or delay. QoS routing takes into account multiple QoS requirements, link dy-
namics, as well as the implication of the selected routes on network utilization,
turning QoS routing into a notoriously challenging problem. Despite its diffi-
culty, we argue that QoS routing is invaluable in a network architecture that
needs to satisfy traffic and service requirements. For example, in the context of
ATM (PNNI), QoS routing is performed by source nodes to determine suitable
paths for connection requests. These connection requests specify QoS constraints
that the path must obey. Since ATM is a connection-oriented technology, a path
selected by PNNI will remain in use for a potentially long period of time. It is
therefore important to choose a path with care. The Intserv/RSVP framework
is also able to guarantee some specific QoS constraints. However, this framework
relies on the underlying IP routing table to reserve its resources. As long as this
routing table is not QoS-aware, paths may be assigned that cannot guarantee
the constraints, which will result in blocking. In MPLS, which is a convergence
of several efforts aimed at combining the best features of IP and ATM, a source
node selects a path, possibly subject to QoS constraints, and uses a signaling
protocol (e.g. RSVP or CR-LDP) to reserve resources along that path. In the
case of Diffserv, QoS-based routes can be requested, for example, by network ad-
ministrators for traffic engineering purposes. Such routes can be used to ensure a
certain service level agreement [98]. These examples all indicate the importance
of constraint-based routing algorithms, both in ATM and IP. Depending on the
frequency at which constrained paths are requested, the computational complex-
ity of finding a path subject to multiple constraints is often a complicating but
decisive factor.
To enable QoS routing, it is necessary to implement state-dependent, QoS-

aware networking protocols. Examples of such protocols are PNNI [7] of the ATM
Forum and the QoS-enhanced OSPF protocol [5]. For the first task in routing

6 Multicast QoS routing faces different conceptual problems as discussed in [51]. An
overview of several multicast QoS algorithms was given in [81] and more recently in
[93].



(i.e., the representation and dissemination of network-state information), both
OSPF and PNNI use link-state routing, in which every node tries to acquire a
“map” of the underlying network topology and its available resources via flood-
ing. Despite its simplicity and reliability, flooding involves unnecessary commu-
nications and causes inefficient use of resources, particularly in the context of
QoS routing that requires frequent distribution of multiple, dynamic parame-
ters, e.g., using triggered updates [3]. Designing efficient QoS routing protocols
is still an open issue that needs to be investigated further. Hereafter in Sections
2 and 3, we assume that the network-state information is temporarily static and
has been distributed throughout the network and is accurately maintained at
each node using QoS link-state routing protocols. Once a node possesses the
network-state information, it performs the second task in QoS routing, namely
computing paths based on multiple QoS constraints. In this chapter, we focus on
this so-called multi-constrained path selection problem and consider numerous
proposed algorithms. Before giving the formal definition of the multi-constrained
path problem, we explain the notation that is used throughout this chapter.
Let G(N,E) denote a network topology, where N is the set of nodes and

E is the set of links. With a slight abuse of notation, we also use N and E to
denote the number of nodes and the number of links, respectively. The number
of QoS measures (e.g., delay, hopcount, etc.) is denoted by m. Each link is char-
acterized by an m-dimensional link weight vector, consisting of m non-negative
QoS weights (wi(u, v), i = 1, ...,m, (u, v) ∈ E) as components. A QoS measure
of a path can either be additive (e.g., delay, jitter, the logarithm of 1 minus the
probability of packet loss), in which case the weight of that measure equals the
sum of the QoS weights of the links defining that path. Or the weight of a QoS
measure of a path can be the minimum(maximum) of the QoS weights along the
path (e.g., available bandwidth and policy flags). Constraints on min(max) QoS
measures can easily be treated by omitting all links (and possibly disconnected
nodes) which do not satisfy the requested min(max) QoS constraints. We call
this topology filtering. In contrast, constraints on additive QoS measures cause
more difficulties. Hence, without loss of generality, we assume all QoS measures
to be additive.
The basic problem considered in this chapter can be defined as follows:

Definition 1 Multi-Constrained Path (MCP) problem: Consider a network
G(N,E). Each link (u, v) ∈ E is specified by a link-weight vector of m additive
QoS weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li, i = 1, ...,m, the
problem is to find a path P from a source node s to a destination node d such

that wi(P )
def
=
P
(u,v)∈P wi(u, v) ≤ Li for i = 1, ...,m.

A path that satisfies all m constraints is often referred to as a feasible path.
There may be multiple different paths in the graph G(N,E) that satisfy the
constraints. According to Definition 1, any of these paths is a solution to the
MCP problem. However, it might be desirable to retrieve the path with smallest
length l(P ) from the set of feasible paths. This problem is called the multi-
constrained optimal path problem and is formally defined as follows:



Definition 2 Multi-Constrained Optimal Path (MCOP) problem: Consider
a network G(N,E). Each link (u, v) ∈ E is specified by a link-weight vector
of m additive QoS weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li,
i = 1, ...,m, the problem is to find a path P from a source node s to a destination
node d such that:
(i) wi(P )

def
=
P
(u,v)∈P wi(u, v) ≤ Li for i = 1, ...,m

(ii) l(P ) ≤ l(P ∗), ∀P ∗, P satisfying (i)

where l(P ) can be any function of the weights wi(P ), i = 1, ...,m, provided it
obeys the criteria for “length” or “distance” in vector algebra (see [87], Appendix
A). Minimizing a properly chosen length function can result in an efficient use
of the network resources and/or result in a reduction of monetary cost.
In general, MCP, irrespective of path optimization, is known to be an NP-

complete problem [26]. Because MCP and MCOP are NP-complete, they are
considered to be intractable for large networks. Accordingly, mainly heuristics
have been proposed for these problems. In Section 2, the lion’s share of the
published QoS algorithms is briefly described and compared based on extensive
simulations. Complexity will be an important criterion for evaluating the algo-
rithms. Complexity refers to the intrinsic minimum amount of resources needed
to solve a problem or execute an algorithm. Complexity consists of time com-
plexity and space complexity. Only the worst-case computational time-complexity
and the average execution time are considered here. There can be a significant
difference between these complexities. Kuipers and Van Mieghem [50] demon-
strated that under certain conditions and on average, the MCP problem can be
solved in polynomial time despite its worst-case NP-complete complexity. More-
over, there exist specific classes of graphs for which the MCP problem is not
NP-complete at all, e.g. if each node has only two neighbors [52].
This chapter follows the two-part structure of routing: the first two sections

concentrate on the routing algorithm, while the remaining sections emphasize
the routing dynamics. In Section 2 we present an overview of the most impor-
tant MCP algorithms. Section 3 continues with a performance evaluation of the
algorithms listed in Section 2, and based on the simulation results deduces the
fundamental concepts involved in QoS routing. The origins of incomplete or inac-
curate topology state information are explained in Section 4. Section 5 provides
an overview for QoS protocols and Section 6 treats stability of QoS routing.
Finally, Section 7 concludes the chapter and lists open issues.

2 Overview of MC(O)P Algorithms

As a prerequisite to the subsequent discussion, we assume the reader is familiar
with single-parameter shortest path algorithms (e.g., Dijkstra’s and the Bellman-
Ford algorithms). Cormen et al. [18] provided an excellent introduction on such
algorithms. On the more theoretical level, the monumental treatise of Schri-
jver [83] encompasses nearly the whole field of combinatorial optimization. Of
particular interest to QoS routing algorithms is the in-depth treatment of NP-
completeness, polynomial time algorithms, and path and flow algorithms.



2.1 Jaffe’s Approximate Algorithm

Jaffe [36] presented twoMCP algorithms. The first is an exact pseudo-polynomial-
time algorithm with a worst-case complexity of O(N5b logNb), where b is the
largest weight in the graph. Because of this prohibitive complexity, only the
second algorithm, hereafter referred to as Jaffe’s algorithm, is discussed. Jaffe
proposed using a shortest path algorithm on a linear combination of the two link
weights:

w(u, v) = d1 · w1(u, v) + d2 · w2(u, v) (1)

where d1 and d2 are positive multipliers.

1/d1

1/d2

w1(P)

w2(P)

L2

L1

Fig. 1. Representation of the link weight vector w (P ) in two dimensions. The dotted
rectangle spanned by the constraints L 1 and L2 forms the space of feasible paths.
Jaffe’s scanning procedure first encounters the encircled node, which is the path with
minimal length.

Each line in Figure 1 shows equilength paths with respect to (w.r.t.) the
linear length definition (1). Jaffe’s algorithm searches the path weight space
along parallel lines specified by w (P ) = c. As soon as this line hits a path
represented by the encircled black dot, the algorithm returns this path as the
shortest w.r.t. the linear length definition (1). Figure 1 also illustrates that the
shortest path based on a linear combination of link weights does not necessarily
reside within the constraints. Jaffe had also observed this fact, so he subsequently
provided a nonlinear path length function of the form f(P ) = max{w1(P ), L1}+
max{w2(P ), L2}, whose minimization can guarantee finding a feasible path if
such a path exists. However, because no simple shortest path algorithm can cope
with this nonlinear length function, Jaffe approximated the nonlinear length
by the linear length function (1). Andrew and Kusuma [1] generalized Jaffe’s
analysis to an arbitrary number of constraints, m, by extending the linear length



function to

l(P ) =
mX
i=1

diwi(P ) (2)

and the nonlinear function to

f(P ) =
mX
i=1

max (wi(P ), Li)

For the simulations in Section 3, we have used di =
1
Li
which maximizes the

volume of the solution space that can be scanned by linear equilength lines (2)
subject to wi(P ) ≤ Li. Furthermore, we have used Dijkstra’s algorithm [22] with
Fibonacci heaps, leading to a complexity for Jaffe’s algorithm of O(N logN +
mE).
If the returned path is not feasible, then Jaffe’s algorithm stops, although the

search could be continued by using different values for di, which might result in
a feasible path. Unfortunately, in some cases, even if all possible combinations of
di are exhausted, a feasible path may not be found using linear search. As shown
in [87], an exact algorithm must necessarily use a nonlinear length function, even
though a nonlinear function cannot be minimized with a simple shortest path
algorithm.

2.2 Iwata’s Algorithm

Iwata et al. [35] proposed a polynomial-time algorithm to solve the MCP prob-
lem. The algorithm first computes one (or more) shortest path(s) based on one
QoS measure and then checks if all the constraints are met. If this is not the
case, the procedure is repeated with another measure until a feasible path is
found or all QoS measures are examined. A similar approach has been proposed
by Lee et al. [55]. In the simulations we only evaluate Iwata’s algorithm.
The problem with Iwata’s algorithm is that there is no guarantee that any

of the shortest paths w.r.t. each individual measure is close to a path within
the constraints. This is illustrated in Figure 2, which shows the twenty shortest
paths of a two-constraint problem applied to a random graph with 100 nodes.
Only the second and third shortest path for measure 1 and the second and fourth
shortest path for measure 2 lie within the constraints.
In our simulations we will only consider one shortest path per QoS measure

computed via Dijkstra’s algorithm, leading to a complexity of O(mN logN +
mE).

2.3 SAMCRA: A Self-Adaptive Multiple Constraints Routing
Algorithm

SAMCRA [87] is a successor of TAMCRA, a Tunable Accuracy Multiple Con-
straints Routing Algorithm [21, 20]. TAMCRA and SAMCRA are based on three
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Fig. 2. Twenty shortest paths for a two-constraint problem. Each path is represented as
a dot and the coordinates of each dot are its path-length for each measure individually.

fundamental concepts: (1) a nonlinear measure for the path length, (2) a k-
shortest path approach [17], and (3) the principle of non-dominated paths [33].
These three principles are explained next.

1. Nonlinear path-length measure. Figure 3 illustrates that the curved equi-
length lines of a nonlinear length function scan the constraints area in a
more efficient way than the linear equilength lines of linear length defini-
tions. The formula in Figure 3b is derived from Holder’s q-vector norm [27].
Ideally, the equilength lines should perfectly match the boundaries of the
constraints. Scanning the constraint area without ever selecting a solution
outside the constraint area is only achieved when q →∞. Motivated by the
geometry of the constraints surface in m-dimensional space, the length of
a path P is defined, equivalent to Holder’s q-vector norm with q → ∞, as
follows [21]:

l(P ) = max
1≤i≤m

µ
wi(P )

Li

¶
(3)

A solution to the MCP problem is a path whose weights are all within the
constraints: l(P ) ≤ 1. Depending on the specifics of a constrained optimiza-
tion problem, SAMCRA can be used with different length functions, provided
they obey the criteria for length in vector algebra. Examples of length func-
tions were given in [87]. The length function (3) treats all QoS measures as
equally important. An important corollary of a nonlinear path length such
as (3) is that the subsections of shortest paths in multiple dimensions are not
necessarily shortest paths. This suggests considering more than the shortest
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Fig. 3. Scanning procedure with (a) straight equilength lines. (b) curved equilength
lines.

path, leading us to the k-shortest path approach.

2. k-shortest path algorithm. This algorithm (e.g., as presented in [17]) is essen-
tially Dijkstra’s algorithm, with extensions to return not only the shortest
path to a given destination but also the second shortest, the third short-
est, . . . , the kth shortest path. In SAMCRA the k-shortest path concept
is applied to intermediate nodes i on the path from the source node s to
the destination node d to keep track of multiple sub-paths from s to i. Not
all sub-paths are stored, but the search space is reduced by applying the
principle of non-dominance.

3. Principle of non-dominance. A path Q is said to be dominated by a path
P if wi(P ) ≤ wi(Q) for i = 1, ..,m, with an inequality for at least one i.
SAMCRA only considers non-dominated (sub)-paths. This property allows
it to efficiently reduce the search space without compromising the solution.
“Dominance” can be regarded as a multidimensional relaxation. The latter is
a key aspect of single-parameter shortest path algorithms (such as Dijkstra
and Bellman-Ford).

Both SAMCRA and TAMCRA have a worst-case complexity of

O(kN log(kN) + k2mE)

For TAMCRA the number of paths considered during execution (k) is fixed,
and hence the complexity is polynomial. SAMCRA self-adaptively controls this
k, which can grow exponentially in the worst case. Knowledge about k is crucial
to the complexity of SAMCRA. An upper bound on k is kmax = be(N − 2)!c,
which is a bound on the total number of paths between a source and a destination
in G(N,E) [88]. If the constraints/measures have a finite granularity, another
upper bound applies:



kmax = min

µ Qm
i=1 Li

maxj(Lj)
, be(N − 2)!c

¶
where the constraints Li are expressed as an integer number of a basic unit.
The self-adaptivity in k makes SAMCRA an exact MCOP algorithm: SAM-

CRA guarantees finding the shortest path within the constraints provided that
such a path exists. In this process, SAMCRA only allocates queue space when
truly needed and self-adaptively adjusts the number of stored paths k in each
node. In TAMCRA the allocated queue space is predefined via k. In our simu-
lations, we choose k = 2 for TAMCRA since this small value already produces
good results. Of course, better performance can be achieved with a larger k.
Simulation results for different values for k can be found in [21].
Kuipers and Van Mieghem [53] have proposed an exact hybrid MCP al-

gorithm, that integrates the speed of TAMCRA with the exactness of SAM-
CRA. This hybrid algorithm called HAMCRA may be considered a form of bi-
directional search. Bi-directional search is a powerful method in one-dimensional
unicast routing, but is unfortunately not fully extendible to m-dimensional rout-
ing [53]. Finally, a link-disjoint paths algorithm DIMCRA [31], a heuristic derived
from SAMCRA, returns two link-disjoint paths both obeying a same constraints
vector.

2.4 Chen’s Approximate Algorithm

Chen and Nahrstedt [12] provided an approximate algorithm for the MCP prob-
lem. This algorithm first transforms the MCP problem into a simpler problem
by scaling down m− 1 (real) link weights to integer weights as follows:

w∗i (u, v) =
»
wi(u, v) · xi

Li

¼
for i = 2, 3, . . . ,m,

where xi are predefined positive integers. The simplified problem consists of
finding a path P for which w1(P ) ≤ L1 and w∗i (P ) ≤ xi, 2 ≤ i ≤ m. A solution
to this simplified problem is also a solution to the original MCP problem, but
not vice versa (because the conditions of the simplified problem are more strict).
Since the simplified problem can be solved exactly, Chen and Nahrstedt have
shown that the MCP problem can be exactly solved in polynomial time provided
that at least m− 1 QoS measures have bounded integer weights.
To solve the simplified MCP problem, Chen and Nahrstedt proposed two

algorithms based on dynamic programming: the Extended Dijkstra’s Shortest
Path algorithm (EDSP) and the Extended Bellman-Ford algorithm (EBF). The
algorithms return a path that minimizes the first (real) weight provided that the
other m− 1 (integer) weights are within the constraints. The EBF algorithm is
expected to give better performance in terms of execution time when the graph is
sparse and the number of nodes is relatively large. We have chosen to implement
the EBF version for our simulations.



The complexities of EDSP and EBF are O(x22 · · ·x2mN2) and O(x2 · · ·xmNE),
respectively. To achieve good performance, large xi’s are needed, which makes
this approach rather computationally intensive for practical purposes. By adopt-
ing the concept of non-dominance, like in SAMCRA, this algorithm could7 reduce
its search space, resulting in a faster execution time.

2.5 Randomized Algorithm

Korkmaz and Krunz [48] proposed a randomized heuristic for the MCP problem.
The concept behind randomization is to make random decisions during the ex-
ecution of an algorithm [68] so that unforeseen traps can potentially be avoided
when searching for a feasible path. The proposed randomized algorithm is di-
vided into two parts: an initialization phase and a randomized search. In the
initialization phase, the algorithm computes the shortest paths from every node
u to the destination node d w.r.t. each QoS measure and w.r.t. the linear com-
bination of all m measures. This information will provide lower bounds for the
path weight vectors of the paths from u to d. Based on the information obtained
in the initialization phase, the algorithm can decide whether there is a chance of
finding a feasible path or not. If so, the algorithm starts from the source node s
and explores the graph using a randomized breadth-first search (BFS). In con-
trast to the conventional BFS, which systematically discovers every node that is
reachable from node s, the randomized BFS discovers nodes from which there
is a good chance to reach the destination d. By using the information obtained
in the initialization phase, the randomized BFS can check whether this chance
exists before discovering a node. If there is no chance of reaching the destination,
the algorithm foresees the trap and avoids exploring such nodes any further. We
will refer to this search-space reducing technique as the look-ahead property.
The objectives of the look-ahead property are twofold. First, the lower-bound
vectors obtained in the initialization phase are used to check whether a sub-path
from s to u can become a feasible path. This is a search-space reducing tech-
nique. Second, a different preference rule for extracting nodes can be adopted
based on the predicted end-to-end length, i.e. the length of the sub-path weight
vector plus the lower bound vector. The randomized BFS continues searching
by randomly selecting discovered nodes until the destination node is reached. If
the randomized BFS fails in the first attempt, it is possible to execute only the
randomized BFS again so that the probability of finding a feasible path can be
increased.
Under the same network conditions, multiple executions of the randomized

algorithm may return different paths between the same source and destination
pair, providing some load balancing. However, some applications might require
the same path again. In such cases, path caching can be used [76].
The worst-case complexity of the randomized algorithm is O(mN logN +

mE). For our simulations, we only executed one iteration of the randomized
BFS.
7 In Section 3 we have simulated all algorithms in their original forms, without any
possible improvements.



2.6 H_MCOP

Korkmaz and Krunz [49] also provided a heuristic called H_MCOP. This heuris-
tic tries to find a path within the constraints by using the nonlinear path length
function (3) of SAMCRA. In addition, H_MCOP tries to simultaneously mini-
mize the weight of a single “cost” measure along the path. To achieve both ob-
jectives simultaneously, H_MCOP executes two modified versions of Dijkstra’s
algorithm in the backward and forward directions. In the backward direction,
H_MCOP uses Dijkstra’s algorithm for computing the shortest paths from every
node to the destination node d w.r.t. w(u, v) =

Pm
i=1

wi(u,v)
Li

. Later on, these
paths from every node u to the destination node d are used to estimate how
suitable the remaining sub-paths are. In the forward direction, H_MCOP uses
a modified version of Dijkstra’s algorithm. This version starts from the source
node s and discovers each node u based on a path P , where P is a heuristically
determined complete s-d path that is obtained by concatenating the already
traveled sub-path from s to u and the estimated remaining sub-path from u to
d. Since H_MCOP considers complete paths before reaching the destination,
it can foresee several infeasible paths during the search. If paths seem feasible,
then the algorithm can switch to explore these feasible paths based on the min-
imization of the single measure. Although similar to the look-ahead property,
this technique only provides a preference rule for choosing paths and cannot be
used as a search-space reducing technique.
The complexity of the H_MCOP algorithm is O(N logN + mE). If one

deals only with the MCP problem, then H_MCOP should be stopped whenever
a feasible path is found during the search in the backward direction, reducing
the computational complexity. The performance of H_MCOP in finding feasible
paths can be improved by using the k-shortest path algorithm and by eliminating
dominated paths.

2.7 Limited Path Heuristic

Yuan [99] presented two heuristics for the MCP problem. The first “limited
granularity” heuristic has a complexity of O(NmE), whereas the second “limited
path” heuristic (LPH) has a complexity of O(k2NE), where k corresponds to
the queue size at each node. The author claims that when k = O(N2 log2N),
the limited path heuristic has a very high probability of finding a feasible path,
provided that such a path exists. However, applying this value results in an
excessive execution time.
The performance of both algorithms is comparable when m ≤ 3. For m > 3,

LPH performs better than the limited granularity heuristic. Hence, we will only
evaluate LPH. Another reason for not considering the limited granularity heuris-
tic is that it closely resembles the algorithm of Chen and Nahrstedt (Section 2.4).
LPH is an extended Bellman-Ford algorithm that uses two of the fundamental

concepts of TAMCRA. Both use the concept of non-dominance and maintain at
most k paths per node. However, TAMCRA uses a k-shortest path approach,
while LPH stores the first (and not necessarily shortest) k paths. Furthermore



LPH does not check whether a sub-path obeys the constraints, but only at
the end for the destination node. An obvious difference is that LPH uses a
Bellman-Ford approach, while TAMCRA uses a Dijkstra-like search. Simulations
reveal that Bellman-Ford-like implementations require more execution time than
Dijkstra-like implementations, especially when the graphs are dense. To conform
with the queue size allocated for TAMCRA, we set k = 2 in the simulations for
LPH.

2.8 A*Prune

Liu and Ramakrishnan [57] considered the problem of finding not only one but
multiple (K) shortest paths satisfying the constraints. The length function used
is the same as Jaffe’s length function (2). The authors proposed an exact algo-
rithm called A*Prune. If there are no K feasible paths present, the algorithm
will only return those that are within the constraints. For the simulations we
took K = 1.
For each QoS measure, A*Prune first calculates the shortest paths from the

source s to all nodes i ∈ N\{s} and from the destination d to all nodes i ∈
N\{d}. The weights of these paths will be used to evaluate whether a certain
sub-path can indeed become a feasible path (similar look-ahead features were also
used in [48]). After this initialization phase, the algorithm proceeds in a Dijkstra-
like fashion. The node with the shortest predicted end-to-end length8 is extracted
from a heap and then all of its neighbors are examined. The neighbors that
cause a loop or lead to a violation of the constraints are pruned. The A*Prune
algorithm continues extracting/pruning nodes untilK constrained shortest paths
from s to d are found or until the heap is empty.
IfQ is the number of stored paths, then the worst-case complexity isO(QN(m+

h+logQ)), where h is the number of hops of the retrieved path. This complexity
is exponential, because Q can grow exponentially with G(N, E). The authors
in [57] indicated that it is possible to implement a Bounded A*Prune algorithm
with a polynomial-time complexity, at the risk of losing exactness.

2.9 “Specialized” QoS Routing Algorithms

Several works in the literature have aimed at addressing special yet important
sub-problems in QoS routing. For example, researchers addressed QoS routing
in the context of bandwidth and delay. Routing with these two measures is not
NP-complete. Wang and Crowcroft [95] presented a bandwidth-delay based rout-
ing algorithm, which simply prunes all links that do not satisfy the bandwidth
constraint and then finds the shortest path w.r.t. delay in the pruned graph.
A much researched problem is the NP-complete Restricted Shortest Path (RSP)
problem. The RSP problem only considers two measures, namely delay and cost.

8 The length function is a linear function of all measures (2). If there are multiple
sub-paths with equal predicted end-to-end lengths, the one with the so-far shortest
length is chosen.



The problem consists of finding a path from s to d for which the delay obeys
a given constraint and the cost is minimum. In the literature, the RSP prob-
lem is also studied under different names such as the delay-constrained least-
cost path, minimum-cost restricted-time path, and constrained shortest path.
Many heuristics were proposed for this problem, e.g. [32, 78, 39, 30]. Several path
selection algorithms based on different combinations of bandwidth, delay, and
hopcount were discussed in [74] (e.g. widest-shortest path and shortest-widest
path). In addition, new algorithms were proposed to find more than one feasible
path w.r.t. bandwidth and delay (e.g. Maximally Disjoint Shortest and Widest
Paths) [86]. Kodialam and Lakshman [44] proposed bandwidth guaranteed dy-
namic routing algorithms. Orda and Sprintson [75] considered pre-computation
of paths with minimum hopcount and bandwidth guarantees. They also provided
some approximation algorithms that take into account certain constraints during
the pre-computation. Guerin and Orda [29] focused on the impact of advance
reservation on the path selection process. They described possible extensions
to path selection algorithms in order to make them advance-reservation aware,
and evaluated the added complexity introduced by these extensions. Fortz and
Thorup [24] investigated how to set link weights based on previous measure-
ments so that the shortest paths can provide better load balancing and can
meet the desired QoS constraints. The path selection problem becomes simpler
when dependencies exist between the QoS measures, for example as a result of
implementing specific scheduling schemes at network routers [60]. Specifically,
if Weighted Fair Queueing (WFQ) scheduling is being used and the constraints
are on bandwidth, queueing delay, jitter, and loss, then the problem can be re-
duced to a standard shortest path problem by representing all the constraints
in terms of bandwidth. However, although queueing delay can be formulated as
a function of bandwidth, this is not the case for the propagation delay, which
cannot be ignored in high-speed networks.

3 Performance Analysis of MCP Algorithms

3.1 Comparison of MCP Algorithms

In this section, we present and discuss our simulations results for the MCP
problem. The previously presented algorithms were ran several times on dif-
ferent realizations of the Waxman topology [97, 88]. Waxman graphs have the
attractiveness of being easy to generate, allowing us to evaluate the underlying
algorithms on many such graphs. This is crucial in an algorithmic study where
it is necessary to evaluate many scenarios in order to be able to draw reliable
conclusions. As shown in [88], the conclusions reached for the Waxman graphs
are also valid for the class of random graphs Gp(N). All simulations consisted of
generating 104 topologies. The values of the m link weights were sampled from
independent uniform distributions in the range (0,1).
The choice of the constraints is important because it determines how many

(if any) feasible paths exist. We adopt two sets of constraints, referred to as L1
and L2:



— L1 : First SAMCRA was used with all Li = N for 1 ≤ i ≤ m. From
that resulting shortest path P according to (3) the constraints were set as
Li = wi(P ) for 1 ≤ i ≤ m.

— L2 : Li = maxj=1,...,m(wi(SPj)), i = 1, ...,m, where SPj is the shortest
path based on the j-th measure.

The first set of constraints obtained with the exact algorithm SAMCRA is
very strict; there is only one feasible path present in the graph. The second
set of constraints (L2) is based on the weights of the shortest paths for each
QoS measure. We use Dijkstra to compute these shortest paths and for each
of these m paths we store their path weight vectors. We then choose for each
measure i the maximum ith component of these m path weight vectors. With
these constraints, the MCP problem can be shown to be polynomial [52]. (Iwata’s
algorithm can always find a feasible path with this set of constraints)
From the simulation runs, we obtain the success rate and the normalized

execution time. The success rate of an algorithm is defined as the number of
feasible paths found divided by the number of examined graphs. The normalized
execution time of an algorithm is defined as the average execution time of the
algorithm (over all examined graphs) divided by the execution time of Dijkstra’s
algorithm.
Our simulations revealed that the Bellman-Ford-like algorithms (Chen’s al-

gorithm and the Limited Path Heuristic) consume significantly more execution
time than their Dijkstra-like counterparts. We therefore omitted them from the
results presented in this chapter.
Figure 4 gives the success rate for four different topology sizes (N = 50,

100, 200 and 400) with m = 2. The exact algorithms SAMCRA and A*Prune
always give the highest success rate possible. The difference in the success rate
of the heuristics is especially noticeable when the constraints are strict. In this
case, Jaffe’s and Iwata’s algorithms perform significantly worse than the others.
The only heuristic that is not affected much by strict constraints is the random-
ized algorithm. However, its execution time is comparable to that of the exact
algorithms.

Figure 5 displays the normalized execution time. It is interesting to observe
that the execution time of the exact algorithm SAMCRA does not deviate much
from the polynomial time heuristics. This difference increases with the num-
ber of nodes, but an exponentially growing difference is not noticeable! A first
step towards understanding this phenomenon was provided by Kuipers and Van
Mieghem in [50] and [52]. Furthermore, when the constraints are less stringent,
the execution time increases. This applies to the algorithms that try to mini-
mize some length function in addition to satisfying the constraints (i.e., MCOP
algorithms). When the constraints are loose, there are more feasible paths in
the network, from which the shortest one is to be found. Searching through this
larger set results in an increased execution time. If optimization is not strived
for (MCP), then it is easier to find a feasible path under loose than under strict
constraints.
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Fig. 4. Success rate versus number of nodes for m = 2. The results for the set of
constraints L1 is depicted on the left and for L2 on the right.
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Fig. 5. Normalized execution time versus N for m = 2. The results for the set of
constraints L1 are plotted on the left and for L2 on the right.

We have also simulated the performance of the algorithms as a function of m
(m = 2, 4, 8 and 16). The results are plotted in Figures 6 and 7. The algorithms
display a similar ranking in the success rate as in Figure 4. All link weights
are independent uniformly distributed random variables. When the link weights
are independent, a larger m implies a larger number of non-dominated paths to
evaluate. However, at a certain value of m∗, the constraint values will dominate,
leading to an increasing number of paths that violate the constraints. Hence
less paths need to be evaluated. This property is explained in [87], where the
following theorem was proved: If the m components of the link weight vector
are independent random variables and the constraints Lj are such that 0 ≤
wj/Lj ≤ 1, any path with K hops has precisely a length (as defined in (3))
equal to K in the limit m → ∞. This theorem means that, for m → ∞ and
independent link weight components, the m-dimensional problem reduces to a
single metric problem where the path that minimizes the hopcount is also the



shortest path. The impact of the constraint values also follows by comparing the
execution times in Figures 6 and 7. If the constraints are loose, then there is a
significant difference in execution time between the exact algorithms SAMCRA
and A*Prune. This can be attributed to the look-ahead property of A*Prune,
which can foresee whether sub-paths can lead to feasible end-to-end paths. Again,
note that the execution times do not exhibit any NP-complete behavior.
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Fig. 6. Success rate and normalized execution time versus m in a 100-node network
with the set of constraints L1.
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Fig. 7. Success rate and normalized execution time versus m in a 100-node network
with the set of constraints L2.

Based on these results we can rank the heuristics according to their suc-
cess rate and execution time as follows: TAMCRA, H_MCOP, Randomized



algorithm, Jaffe’s algorithm, and finally Iwata’s algorithm. The simulation re-
sults presented in [49] displayed a higher success rate for H_MCOP than for
TAMCRA. This was due to a programming error, where the forward search of
H_MCOP was revisiting the previously explored nodes (which is similar to us-
ing k > 1 in the k-shortest-paths-based algorithms). This implementation bug
has now been fixed, which resulted in a better success rate for TAMCRA.

3.2 Summary of the Performance of MCP Algorithms

Based on the simulation results of the previous section, the strengths of these
algorithms are summarized. The conclusions are only valid for the considered
class of graphs, namely the Waxman graphs (also random graphs [88]) with
independent uniformly distributed link weights, but might also hold for other
classes of graphs.
For the MCP problem, we observe that TAMCRA-like algorithms have a

higher success rate than linear approximations and Bellman-Ford based algo-
rithms. This higher success rate is attributed to the following concepts:

1. Using a Dijkstra-like search along with a nonlinear length function.
A nonlinear length function is a prerequisite for exactness. When the link
weights are positively correlated, a linear approach may give a high success
rate in finding feasible paths, but under different circumstances the returned
path may violate the constraints by 100%.
A Bellman-Ford-like search usually runs faster on sparse graphs than on
dense ones. However, our simulations indicate that even on sparse graphs, a
Dijkstra-like heap-optimized search runs significantly faster.

2. Tunable accuracy through a k-shortest path functionality.
Routing with multiple constraints may require that multiple paths be stored
at a node, necessitating a k-shortest path approach.

3. Reducing the search space through the concept of non-dominance.
Reducing the search space is always desirable as it reduces the execution time
of an algorithm. The non-dominance principle is a strong search-space reduc-
ing technique, especially when the number of constraints is small. Note that
the constraints themselves, if strict, also provide a search-space reduction,
since many sub-paths will violate those constraints.

4. Predicting the feasibility of paths (look-ahead property).
First calculating a path in polynomial time between the source and desti-
nation and then using this information to find a feasible path between the
same source and destination is especially useful when graphs become “hard
to solve”, i.e. N,E and m are large. This look-ahead property allows us
to compute lower bounds on end-to-end paths, which can be used to check
the feasibility of paths. Moreover, better preference rules can be adopted to
extract nodes from the queue.

The exactness of TAMCRA-like algorithms depends on the flexibility in
choosing k. If k is not restricted, then both MCP and MCOP problems can be



solved exactly, as done by SAMCRA. Although k is not restricted in SAMCRA,
simulations on Waxman graphs with independent uniformly distributed random
link weights show that the execution time of this exact algorithm increases lin-
early with the number of nodes, providing a scalable solution to the MC(O)P
problem. If a slightly larger execution time is permitted, then such exact algo-
rithms are a good option. Furthermore, simulations show that TAMCRA-like
algorithms with small values of k render near-exact solutions with a Dijkstra-
like complexity. For example, TAMCRA with k = 2 has almost the same success
rate as the exact algorithms.

4 Influence of Network Dynamics on QoS Routing

The QoS path selection problem has been addressed in previous sections as-
suming that the exact state of the network is known. Such an assumption is
often imposed to isolate the impact of network dynamics from the path selection
problem. In practice, however, network dynamics can greatly affect the accuracy
of the captured and disseminated state information, resulting in some degree of
uncertainty in state information.
In current networks, routing protocols are dynamic and distributed. Their dy-

namic behavior means that important topology changes are flooded to all nodes
in the network, while their distributed nature implies that all nodes in the net-
work are equally contributing to the topology information distribution process.
Since QoS is associated with resources in the nodes of the network, the QoS
link weights are, in general, coupled to these available resources. As illustrated
in Figure 8, we distinguish between topology changes that occur infrequently
and those that change rapidly. The first kind reflects topology changes due to
failures or/and the joining/leaving of nodes. In the current Internet, only this
kind of topology changes is considered. Its dynamic is relatively well understood.
The key point is that the time between two ‘first kind’ topology changes is long
compared to the time needed to flood this information over the whole network.
Thus, the topology databases on which routing relies, converge rapidly with re-
spect to the frequency of updates to the new situation and the transient period
where the databases are not synchronized (which may cause routing loops), is
generally small.
The second type of rapidly varying changes are typically those related to

the consumption of resources or to the traffic flowing through the network. The
coupling of the QoS measures to state information seriously complicates the
dynamics of flooding because the flooding convergence time T can be longer
than the change rate ∆ of some metric (such as available bandwidth). Figure 8
illustrates how the bandwidth BW on a link may change as a function of time.
In contrast to the first kind changes where T << ∆, in the second kind changes,
T can be of the same order as ∆. Apart from this, the second type changes
necessitates the definition of a significant change that will trigger the process
of flooding. In the first kind, every change was significant enough to start the
flooding. The second kind significant change may be influenced by the flooding
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convergence time T and is, generally, strongly related to the traffic load in (a
part of) the network. An optimal update strategy for the second type changes
is highly desirable. So far, unfortunately, no optimal topology update rule for
the second type changes has been published, although some partial results have
appeared as outlined in Section 5.

To reduce the overhead of flooding, tree-based broadcasting mechanisms [34]
are proposed where a given link state advertisement is delivered only once to
every node. Tree-based broadcasting eliminates the unnecessary advertisement
overhead, but it introduces a challenging problem, namely how to determine and
maintain consistent broadcast trees throughout the network. Various tree-based
broadcasting mechanisms were proposed for this purpose (e.g., [8, 34, 9, 19]), but
they all involve complex algorithms and protocols that cannot be supported
with the existing TCP/IP protocol suite. Korkmaz and Krunz [46] proposed
a hybrid approach that combines the best features of flooding and tree-based
broadcasting.

Besides the update rule (also called triggering policies [56]), a second source
of inaccuracy is attributed to state aggregation. Most link-state routing protocols
are hierarchical, whereby the state of a group of nodes (an OSPF area or a PNNI
peer group) is summarized (aggregated) before being disseminated to other nodes
[45, 91, 89]. While state aggregation is essential to ensuring the scalability of any
QoS-aware routing protocol, this information condensation comes at the expense
of perturbing the true state of the network.



5 Overview of Dynamic QoSR Proposals.

A large amount of proposals to deal with the network dynamics are discussed
in this section. The multitude of the proposals and the lack of optimal solutions
illustrate the challenging difficulty. Moreover, it points to a currently missing
functionality in end-to-end quality assured networking.

5.1 Path Selection under Inaccurate Information

As explained in Section 4, some level of uncertainty in state information is un-
avoidable. To account for such uncertainty, path selection algorithms may follow
a probabilistic approach in which link state parameters (e.g., delay, available
bandwidth) are modelled as random variables (rvs) [28]. Since QoS routing has
not yet been implemented in real networks, one of the difficulties lies in what dis-
tributions are appropriate for these rvs. In a number of simulation-based studies
(e.g., [6, 37, 38]), a uniformly distributed link bandwidth was assumed while for
the link delay, various distributions such as exponential, normal, and gamma
were suggested. The exact shape of the distribution may not be a critical issue,
as robust path selection algorithms require only knowledge of the statistical mo-
ments of the distribution (e.g., mean and variance). These statistical moments
can be computed simply as follows. Each node maintains a moving average and
corresponding variance for a given link state parameter. For example, the mo-
ments for the bandwidth can be updated whenever there is a change in the
available bandwidth (e.g., flow is added or terminated), while the ones for the
delay can be updated whenever a packet leaves the router. In case of a high
packet transmission rate, sampling can be used to update the delay parameters.
Once the mean and variance are computed for each QoS metric, they can be dis-
seminated using QoS-enhanced versions [5] of OSPF9. A crucial question here
is when and how to advertise the mean and variance values. A triggered-based
approach similar to the one in [3] or [56] can be used for this purpose.
In the case of probabilistically modelled network-state information, the ob-

jective of the path selection algorithm is to identify the most probable feasible
path. This problem has mainly been investigated under bandwidth and/or delay
constraints. The general problem at hand can be formulated as follows:

Definition:Most-Probable Bandwidth-Delay Constrained Path (MP-BDCP) Prob-
lem: Consider a network G(N,E), where N is the set of nodes and E is the set of
links. Each link (i, j) ∈ E is associated with an available bandwidth parameter
b(i, j) and a delay parameter d(i, j). It is assumed that the b(i, j)’s and d(i, j)’s
are independent rvs. For any path P from the source node s to the destination
node t, let b(P ) d e f

= min{b(i, j) | (i, j) ∈ P} and d(P )
d e f
=
P

(i,j)∈P d(i, j). Given a

9 The current version of OSPF considers only a single, relatively static cost metric.
Apostolopoulos et al. [5] described a modification to OSPF that allows for dissem-
inating multiple link parameters by exploiting the type-of-service (TOS) field in
link-state advertisement (LSA) packets.



bandwidth constraint B and a delay constraint D, the problem is to find a path
that is most likely to satisfy both constraints. Specifically, the problem is to find
a path P ∗ such that for any other path P from s to t,

πB(P
∗) ≥ πB(P ), and (4)

πD(P
∗) ≥ πD(P ), (5)

where πB(P )
d e f
= Pr[b(P ) ≥ B] and πD(P )

d e f
= Pr[d(P ) ≤ D].

If the b(i, j)’s and d(i, j)’s are constants, the MP-BDCP problem reduces to
the familiar bandwidth-delay constrained path problem, which can be easily
solved in two steps [95]: (i) prune every link (i, j) for which b(i, j) < B, and (ii)
find the shortest path w.r.t. the delay parameter in the pruned graph. However,
MP-BDCP is, in general, a hard problem. In fact, the objectives (4) and (5) of
the MP-BDCP problem give rise to two separate problems: the most-probable
bandwidth constrained path (MP-BCP) problem and themost-probable delay con-
strained path (MP-DCP) problem. We first review the studies focusing on these
problems separately. We then continue our review by considering both parts of
the combined MP-BDCP problem simultaneously.

MP-BCP Problem MP-BCP is a rather simple problem, and can be exactly
solved by using a standard version of the Most Reliable Path (MRP) algo-
rithm [54, 28], which associates a probability measure ρ(i, j) d e f

= Pr[b(i, j) ≥ B]
with every link (i, j). So, πB(P ) =

Q
(i,j)∈P ρ(i, j). To find a path that max-

imizes πB , one can assign the weight − log ρ(i, j) to each link (i, j) and then
run the Dijkstra’s shortest path algorithm. In [47] the authors slightly modified
the Dijkstra’s algorithm for solving the same problem without using logarithms.
While the MP-BCP can be efficiently addressed using such exact solutions, the
MP-DCP problem is, in general, shown to be NP-hard [25]. Accordingly, most
research has focused on the MP-DCP problem.

MP-DCP Problem The MP-DCP problem can be considered under two dif-
ferent models, namely rate-based and delay-based [28]. The “rate-based” model
achieves the delay bound by ensuring a minimum service rate to the traffic flow.
The main advantage of this model is that the end-to-end delay bound can be
mathematically represented depending on the available bandwidth on each link.
It seems one can address the MP-DCP problem by using an approach similar
to the above MP-BCP problem. In spite of some similarities, however, these
problems are not exactly the same due to the fact that the accumulative effect
associated with the delay is not produced in the case of bandwidth. In [28] Guerin
and Orda showed that the problem is, in general, intractable. Accordingly, they
first considered the special cases of the problem and provided tractable solutions
for these cases. They then introduced a near-optimal algorithm, named QP, for
the MP-DCP problem under rate-based model. Although the rate-based model
leads to some attractive solutions, it requires to add new networking mechanisms,



mostly regarding using schedulers that allow rate to be strictly guaranteed along
the path.

On the other hand, the “delay-based” model provides a general approach for
achieving the delay bound by concatenating the local delays associated with each
link along the selected path. Note that the above definition formulates the MP-
DCP problem based on this general model. The MP-DCP problem is essentially
an instance of the stochastic shortest path problem, which has been extensively
investigated in the literature (e.g., [58, 33]). One key issue in stochastic shortest
path problems, in general, is how to define the optimality of a path. Some for-
mulations (e.g., [66, 84, 40, 77]) aimed at finding the most likely shortest path.
Others considered the least-expected-delay paths under interdependent or time-
varying probabilistic link delays [85, 65, 82]. Cheung [15] investigated dynamic
stochastic shortest path problems in which the probabilistic link weight is “re-
alized” (i.e., becomes exactly known) once the node is visited. Several studies
defined path optimality in terms of maximizing a user-specified objective func-
tion (e.g., [58, 23, 67, 69, 70]). Our formulation of the MP-DCP problem in the
above definition belongs to this category, where the objective is to find a path
that is most likely to satisfy the given delay constraint.

Guerin and Orda [28] also considered the MP-DCP problem under the delay-
based model and provided tractable solutions for some of its special cases. These
cases are relatively limited, so it is desirable to find general tractable solutions
which can cope with most network conditions. In [47], Korkmaz and Krunz pro-
vided two complementary (approximate) solutions for the MP-DCP problem
by employing the central limit theorem approximation and Lagrange relaxation
techniques. These solutions were found to be efficient, requiring, on average, a
few iterations of Dijkstra’s shortest path algorithm. In [28] Guerin and Orda
considered a modification of the problem, in which the goal is to partition the
given end-to-end delay constraint into local link constraints. The optimal path
for the new problem is, in general, different from the one for the MP-DCP prob-
lem [59]. Moreover, the solutions provided for the partitioning problem in [59]
are computationally more expensive than the solutions in [47] which directly
addressed the MP-DCP problem. To reduce the complexity, the authors in [28]
have also considered the hierarchical structure of the underlying networks.

Lorenz and Orda have further studied the modified partitioning problem [59].
They first considered the OP (Optimal Partition) Problem and provided an exact
solution to it under a particular family of probability distributions (including
normal and exponential distributions), where the family selection criterion is
based on having a certain convexity property. They then analyzed the OP-MP
(Optimally Partitioned Most Probable Path) Problem and provided a pseudo-
polynomial solution using dynamic programming methods. In fact, the solution
uses a modification of the Dynamic-Restricted Shortest Path Problem (D-RSP).
The RSP problem is a well-known problem which aims to find the optimal path
that minimizes the cost parameter among all the paths that satisfy the end-to-
end delay constraint. Since the RSP Problem is NP-hard, the authors provided
a pseudo-polynomial solution from which a new algorithm named Dynamic-OP-



MP algorithm is inferred. The main difference between the Dynamic-OP-MP
algorithm and the D-RSP algorithm is the cost computation method. As in the
OP Problem, the MP-OP Problem is analyzed in detail, particularly when a
uniform distribution exists, generating a Uniform-OP-MP algorithm. Finally,
they proposed a new approach to obtain a fully polynomial solution to deal with
the OP-MP Problem. As in the last case, this approach is based on making some
modifications to the D-RSP algorithm, resulting in a non-optimal approximation
(named discrete solution). This solution introduces a bounded difference in terms
of cost and success probability regarding the optimal solution by interchanging
the cost and delay roles in the D-RSP algorithm.

MP-BDCP problem MP-BDCP belongs to the class of multi-objective opti-
mization problems, for which a solution may not even exist (i.e., the optimal path
w.r.t. πB is not optimal w.r.t. πD, or vice versa). To eliminate the potential con-
flict between the two optimization objectives, one can specify a utility function
that relates πB and πD, and use this function as a basis for optimization. For
example, one could maximize min{πB(P ), πD(P )} or the product πB(P )πD(P ).
Rather than optimizing a specific utility function, Korkmaz and Krunz [47] pro-
posed a heuristic algorithm to compute a subset of nearly nondominated paths
for the given bandwidth and delay constraints. Given this set of paths, a decision
maker can select one of these paths according to his/her specific utility function.

5.2 Safety Based Routing

The Safety-Based Routing (SBR) was proposed by Apostolopoulos et al. [6].
SBR assumes explicit routing with bandwidth constraints and on-demand path
computation. The idea of SBR is to compute the probability that a path can
support an incoming bandwidth request. Therefore, SBR computes the Safety
(S) parameter defined as the probability that the total required bandwidth is
available on the sequence of links that constitute the path. This probability can
be used to classify every link, and to find the safest path, i.e. the path having the
best chance for supporting total required bandwidth. Since the safety of each
link is considered as independent from that of the other links in a path, the
safety S of a path is the product of the safeties of every link in that path. Once
S has been computed it is included in the path selection process as a new link
weight.
SBR uses two different routing algorithms based on combining S with the

number of hops, the safest-shortest path and the shortest-safest path. The safest-
shortest path algorithm selects that path with the larger safety S among the
shortest paths. The shortest-safest path algorithm on the other hand, selects
paths with larger safety and if more than one exists the shortest one is chosen.
In addition, the SBR mechanism uses triggering policies10 in order to reduce the
signaling overhead while keeping a good routing performance.

10 The most important update policies were discussed and evaluated by Lekovic and
Van Mieghem [56]. Similar conclusions were given by Ma, Zhang and Kantola [62].



A performance evaluation of the blocking probability in [6] showed that the
shortest-safest path algorithm is the most effective one for any of the triggering
policies that were evaluated.

5.3 Ticket-based Distributed QoS Routing

The Ticket-based Distributed QoS Routing mechanism was proposed by Chen
and Nahrstedt [13]. They focus on the NP-complete delay-constrained least-cost
routing (different from the one explained in Section 2.4). They propose a routing
algorithm which targets to find the low-cost path, in terms of satisfying the delay
constraint, by using only the available inaccurate or imprecise routing informa-
tion. To achieve its purpose, initially, Chen and Nahrstedt suggest a simple im-
precise state model that defines which information must be stored in every node:
connectivity information, delay information, cost information and an additional
state variable named delay variation which stands for the estimated maximum
change of the delay information before receiving the next updating message. For
simplicity reasons, the imprecise model is not applied to the connectivity and
cost information. They justify this assumption by saying that the global routing
performance is not significantly degraded. Then, a multipath distributed routing
scheme, named ticket based probing is proposed. The ticket based probing sends
routing messages, named probes, from a source s to a destination d. Based on
the (imprecise) network state information available at the intermediate nodes,
these probes are routed on a low-cost path that fulfils the delay requirements of
the LSP request. Each probe carries at least one ticket in such a way that by
limiting the number of tickets, the number of probes is limited as well. Moreover,
since each probe searches a path, the number of searched paths is also limited by
the number of tickets. In this way, the trade-off between the signalling overhead
and the global routing performance may be controlled. Finally, based on this
ticket based probing scheme, Chen and Nahrstedt suggest a routing algorithm
to address the NP-complete delay-constrained least-cost routing problem, called
Ticket Based Probing algorithm (TBP).
Three algorithms were simulated in [13]: the flooding algorithm, the TBP

algorithm and the shortest-path algorithm. Simulations are presented using three
parameters, the success ratio, the average messages overhead and the average
path cost. The results show that the TBP algorithm exhibits a high success ratio
and a low-cost path satisfying the delay constraint with minor overhead while
tolerating a high degree of inaccuracy in the network state information.

5.4 BYPASS based Routing

BYPASS based routing (BBR) [63] presented a different idea to solve the band-
width blocking due to inaccurate routing information produced by a triggering
policy based on either threshold based triggers or class based triggers. BBR is

In addition, they have investigated the performance of update policies under varying
network sizes.



an explicit routing mechanism that instructs the source nodes to compute both
the working route and as many paths to bypass the links (named bypass-paths)
that potentially cannot cope with the incoming traffic requirements. The idea of
the BBR mechanism is derived from protection switching for fast rerouting dis-
cussed in [14]. However, unlike the use of protection switching for fast rerouting,
in BBR both the working and the alternative paths (bypass-paths) are computed
simultaneously but not set up; they are only set up when required.
In order to decide those links that might be bypassed (named obstruct-

sensitive links, OSLs), a new policy is added. This policy defines a link as OSL
whenever a path setup message sent along the explicit route reaches a link with
insufficient residual bandwidth. BBR can be implemented using different routing
algorithms. Combining the BBR mechanism and Dijkstra’s algorithm, two rout-
ing algorithms were proposed [63]: the Shortest-Obstruct-Sensitive Path (SOSP),
which computes the shortest path among all the paths with the minimum num-
ber of obstruct-sensitive links, and the Obstruct-Sensitive-Shortest Path (OSSP),
which computes the path that minimizes the number of obstruct-sensitive links
among all the shortest paths. In succeeding paper [64], two different routing
algorithms were proposed where the residual bandwidth was included in the
path selection process: the Widest-Shortest-Obstruct-Sensitive Path (WSOSP)
computes the widest path after applying the SOSP algorithm (if more than one
feasible path exists) and the Balanced Obstruct-Sensitive Path (BOSP) selects
the path that balances network load and network occupancy by modifying the
path cost value.
Once the working path is selected, BBR computes the bypass-paths that by-

pass those links in the working path defined as OSL. When the working path
and the bypass-paths are computed, the working path setup process starts. A
signaling message is sent along the explicit path included in the setup message.
When a node detects that a link in the explicit path has not enough available
bandwidth to support the required bandwidth, it sends the setup signaling mes-
sage over the bypass-path of this link. The bypass-paths nodes are included in
the setup signaling message as well, i.e. bypass-paths are also explicitly routed.
The BBR performance is evaluated by simulation in [64]. The obtained results

shown in Figure 9 exhibit the reduction obtained in the bandwidth blocking ratio
of the BBR (with both SOSP, OSSP, WSOSP and BOSP) compared to the
Widest-Shortest Path (WSP) and the Safety Based Routing (Shortest-Safest-
Path, SSP). These algorithms are simulated with both the Threshold and the
Exponential class triggering policies. Figure 9 indicates that the BOSP algorithm
is, in terms of blocking probability, the most effective.

5.5 Path Selection Algorithm based on Available Bandwidth
Estimation

Anjali et al. [2] proposed an algorithm for path selection in MPLS networks.
They note that most recent QoS routing algorithms utilize the nominal avail-
able bandwidth information of the links to optimally select the path. Assuming
that most of the traffic flows do not strictly use the requested bandwidth, the
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Fig. 9. Bandwidth Blocking Ratio for the threshold and the exponential class triggering
policies

nominal link utilization overestimate the actual link consumption, which leads
to non-efficient network resource utilization. Therefore, the network performance
can be improved by a path selection process based on an accurate measurement
of the actual available link bandwidth instead of the nominal value. For scala-
bility reasons, this measurement cannot be reached by any updating link state
database process. Moreover, the authors [2] argued that due to the available
bandwidth variability, a single sample cannot accurately represent the actual
bandwidth availability. As a consequence routing decisions based on single sam-
ples are likely to be wrong. Since perfectly updated network state information
is in general not possible, Anjali et al. [2] presented an Available Bandwidth
Estimation Algorithm that estimates the actual available bandwidth on each
link. A path is computed with a shortest widest path routing algorithm (Section
2.9) that uses these available bandwidth estimations as link weight. Finally, in
order to limit the network congestion, a threshold parameter is added. Once the
path has been computed, the available bandwidth on the bottleneck link of the
path is computed. The threshold parameter is applied to this bottleneck value
to compute a benchmark for path selection in such a way that if the bandwidth
requested is larger than a certain fraction of the bottleneck link bandwidth, the
incoming request is rejected.
The proposed path selection algorithm is shown [2] to perform better than

the shortest path routing algorithm in terms of rejection probability, because
the proposed routing algorithm based on the available bandwidth estimation
algorithm has more accurate information about the actual link load and therefore
can take more precise decisions.

5.6 Centralized Server based QoS Routing

Unlike the previous proposals, Kim and Lee [43] did not attempt to enhance
the routing process under inaccurate network state information but rather to
eliminate the inaccuracy. Kim and Lee proposed a centralized server based QoS



routing scheme, which both eliminates the overhead due to the exchange of
network state update messages and achieves higher routing performance by uti-
lizing accurate network state information in the path selection process. Routers
are clients of the route server and send routing queries for each one of the in-
coming requests. The route server stores and maintains two data structures, the
Network Topology Data Base (NTDB), which keeps the link state information
for each link in the network, and the Routing Table Cache (RTC) that stores
the computed path information.
Although the main idea is derived from that suggested in [4], these new

schemes differ in how the network state information is collected. Instead of col-
lecting the link state information from the other routers, in this new approach
the proposed router server updates and maintains a link state database as the
paths are assigned to or return back from a certain flow. The main issues in this
centralized scheme are: (1) the processing load and storage overhead required
at the server, (2) the protocol overhead to exchange the router queries and the
replies between the server and the remote routers that act as clients and (3) the
effects produced when the server becomes either a bottleneck point or a single
point of failure. Kim and Lee [43] suggested various alternatives to reduce the
loads and overhead.
Two routing algorithms are used: a modification of the Dijkstra’s algorithm

and the Bellman-Ford algorithm with QoS extensions. Assuming the existence
of a certain locality in the communication pattern, a large number of source-
destination pairs are expected to be unused. Hence, a path caching approach is
used to reduce the path computation overhead. The size of the RTC is controlled
by two parameters: the maximum number K of entries (source-destination pairs)
in the RTC and the maximum number n of paths for each source-destination
pair.
The server based QoS routing scheme was evaluated by simulation [43]. On

one hand, the simulations show that a simple path caching scheme substantially
reduces the path computation overhead when considering locality in the commu-
nication pattern. On the other hand, the simulations indicate that the proposed
schemes perform better than the distributed QoS routing schemes with similar
protocol overhead.

5.7 A Localized QoS Routing Approach

The main advantage of a localized approach for QoS routing as proposed by
Nelakuditi et al. [72], is that no global network state information exchange among
network nodes is needed, hence reducing the signaling overhead. The path se-
lection is performed in the source nodes based on their local view of the global
network state. The main difficulty in implementing any localized QoS routing
scheme is how the path is selected only based on the local network state informa-
tion collected in the source nodes. In order to address this problem Nelakuditi
et al. present a new adaptive proportional routing approach for localized QoS
routing schemes. They propose an idealized proportional routing model, where
all paths between a source-destination pair are disjoint and their bottleneck link



capacities are known. In addition to this ideal model, the concept of virtual ca-
pacity of a path is introduced which provides a mathematically sound way to
deal with a shared link among multiple paths. The combinations of these ideas
is called Virtual Capacity based routing (VCR). Their simulations [72] showed
how the VCR scheme adapts to traffic load changes by adjusting traffic flows
to the set of predefined alternative paths. However, Nelakuditi et al. described
two significant difficulties related to the VCR implementation that lead them to
propose an easily realizable implementation of the VCR scheme, named Propor-
tional Sticky routing (PSR).
The PSR scheme operates in two stages: proportional flow routing and com-

putation of flow proportions. PSR proceeds in cycles of variable lengths. During
each cycle, any incoming request can be routed along a certain path selected
among a set of eligible paths, which initially may include all the candidate
paths. A candidate path is ineligible depending on the maximum permissible
flow blocking parameter, which determines how many times this candidate path
can block a request before being ineligible. When all candidate paths become
ineligible a cycle terminates and all the parameters are reset to start the next
cycle. An eligible path is finally selected depending on its flow proportion: the
larger the flow proportion, the larger the chances for being selected.
Simulation results show that the PSR scheme is simple, stable and adaptive,

and the authors [72] concluded that it is a good alternative to global QoS routing
schemes.

5.8 Crankback and Fast Re-routing

Crankback and fast re-routing were included in the ATMF PNNI [7] to address
the routing inaccuracy due to fast changes in the resources [90] and due to the
information condensation [89] of the hierarchical network structure.
The establishment of a connection between two nodes A and K as shown in

Figure 10, takes place in two phases. Based on the network topology reflecting
a snap shot at time t1 and flooded to the last node at t1 + T , the routing
algorithm (e.g. SAMCRA) computes the path from A to K subject to some QoS
requirements. Subsequently, in the second phase, the needed resources along that
path are installed in all nodes constituting that path. This phase is known as the
‘connection prerequisite’ and the network functionality that reserves resources is
called signaling. The signaling operates in a hop by hop mode: it starts with the
first node and proceeds further to the next node if the ‘installation’ is successful.
Due to the rapidly changing nature of the traffic in the network, at time t2 > t1
and at a certain node I (as exemplified in Figure 10), the connection set-up
process may fail because the topology situation at time t1 may significantly
differ from that at time t2 (Figure 8). Rather than immediately blocking the
path request from A toK, PNNI invokes an emergency process, called crankback.
The idea is similar to back tracking. The failure in node I returns the previous
node D with the responsibility to compute immediately an alternative path from
itself towards K, in the hope that along that new path the set-up will succeed.



The crankback process consumes both much CPU-time in the nodes as con-
trol data and yet, does not guarantee a successful connection set-up. When the
crankback process returns back to the source node A and this node also fails
to find a path to K, the connection request is blocked or rejected and much
computational effort of cranking back was in vain.

A
B C D

E
F G

H
 I

J
K

t1

t2

CRANKBACK

FAST  RE-ROUTING

Fig. 10. Illustration of crankback and fast-rerouting.

Although the crankback process seems an interesting emergency solution to
prevent blocking, the efficiency certainly needs further study. For, in emergency
cases due to heavy traffic, the crankback processes generate additional control
traffic possibly causing a triggering of topology flooding, and hence even more
control data is created, eventually initiating a positive feedback loop with severe
consequences. These arguments suggest to prevent invoking crankback as much
as possible by developing a good topology update strategy.

6 Stability Aspects in QoS Routing

If the topology changes as explained in Section 4 are inappropriately fast flooded
(and trigger new path computations), route flapping may occur degrading the
traffic performance significantly. This section outlines approaches to avoid rout-
ing instability.
Routing instabilities were already observed in the ARPANET [42]. The rea-

sons for this routing instability were attributed to the type of link weight sam-
pling used and the path selection algorithm. The use of instantaneous values of
the link delay led to frequent changes in the metric, and the shortest paths com-
puted were rapidly out-dated. The application of the Bellman-Ford algorithm
with a dynamically varying metric instead of a static metric led to routing loops.
These problems were partially overcome by using averaged values of link delay
over a ten-second period and by the introduction of a link-state routing protocol
as e.g. OSPF. With the constant growth of the Internet, the problem has become
recurrent and other solutions had to be found.



6.1 Quantization of QoS Measures and Smoothing

A common approach to avoid routing instability is the advertisement of the link
weights that are quantified or smoothed in some manner rather than advertising
instantaneous values. This approach has two main consequences, one directly
related to routing stability and the other related to routing overhead. The quan-
tization/smoothing limits overshoots in the dynamic metric which reduces the
occurrence and the amplitude of routing oscillation. Simultaneously, the distrib-
ution of an excessive amount of routing updates is avoided reducing the flooding
overhead. While improving the routing stability, the quantization/smoothing of
link weights damps the dynamic coupling to actual resource variations and may
lower the adaptation capabilities of the routing protocol. The update strategy
consists of a trade-off between routing stability and routing adaptation.
Besides quantization/smoothing of resource coupled link weights, the link

weight can be evaluated on different time-scales as proposed by Vutukury and
Garcia-Luna-Aceves [92]. A longer time-scale that leads to path computation
and a shorter time-scale that allows for the adaptation to traffic bursts.
The techniques of metric quantization/smoothing proposed by Khanna and

Zinky [42] reduce routing oscillations, but are not sufficient under adverse cir-
cumstances (high loads or bursty traffic) in packet switched networks. When the
link weights are distributed, the information may already be out-dated, leading
to the typical problem of QoS routing under inaccurate information as discussed
in Section 4.

6.2 Algorithms for Load Balancing

Load-balancing provides ways of utilizing multiple-paths between a source and a
destination, which may avoid routing oscillations. There are approaches for load
balancing in best-effort networks and in QoS-aware networks. Load balancing
including QoS can be done per class, per flow or per traffic aggregate (best-
effort and QoS flows).

Load Balancing in Best Effort Networks A simple approach of load bal-
ancing in best-effort networks is to use alternate paths when congestion rises
as in the algorithm Shortest Path First with Emergency Exits (SPF-EE) [94].
This strategy prevents the excessive congestion of the current path because it
deviates traffic to an alternate path when congestion starts to rise, and thus
avoids routing oscillations. First, the next-hops on the shortest path to all the
destinations in the network are determined. Subsequently, the next-hop on the
alternate path, called the emergency exit, is added to the routing table. The
emergency exit is the first neighbor in the link-state database that is not the
next-hop of the shortest path tree nor the final destination. The emergency exit
is only used when the queue length exceeds a configured threshold. With this
approach two objectives are achieved: the pre-computation of alternate paths
allows for traffic distribution over those paths when congestion occurs and the
routing update period is increased due to the limitation of traffic fluctuations.



As an alternative to single shortest path algorithms such as SPF-EE, Vu-
tukury and Garcia-Luna-Aceves [92] introduced multiple paths of unequal cost
to the same destination. The algorithm proposed by these authors finds near-
optimal multiple paths for the same destination based on a delay metric. The
algorithm is twofold: it uses information about end-to-end delay to compute mul-
tiple paths between each source-destination pair, and local delay information to
adjust routing parameters on the previously defined alternate paths. This short
scale metric determines the next hop from the list of multiple next-hops that
were computed based on the larger scale metric.
Even though the proposals described above permit load balancing and avoid

routing oscillations, they do not consider the requirements of the different types
of traffic. This problem has been addressed by some proposals within a connection-
oriented context.

Load Balancing supporting QoS Nahrstedt and Chen [71] conceived a com-
bination of routing and scheduling algorithms to address the coexistence of QoS
and best-effort traffic flows. In their approach, traffic with QoS guarantees is
deviated from paths congested with best-effort traffic in order to guarantee
the QoS requirements of QoS flows and to avoid resource starvation of best-
effort flows. The paths for QoS flows are computed by a bandwidth-constrained
source-routing algorithm and the paths for best-effort flows are computed using
max-min fair routing. The authors [71] also addressed the problem of inaccurate
information that arises with the use of stale routing information due to the in-
sufficient frequency of routing updates or to dimension of the network. As stated
above, inaccurate information is a major contributor to routing instability. To
cope with inaccurate information, besides keeping the values of available residual
bandwidth (RB) on the link, the estimation on the variation of RB is also kept
(ERBV). These two values define the interval (RB-ERBV, RB+ERBV) of the
residual bandwidth in the next period. The routing algorithm of QoS flows will
find a path between a source and a destination that maximizes the probability
of having enough available bandwidth to accommodate the new flow.
Ma and Steenkiste [61] proposed another routing strategy that addresses

inter-class resource sharing. The objective of their proposal is also to avoid star-
vation of best-effort traffic on the presence of QoS flows. The strategy comprises
two algorithms: one to route best-effort traffic and the other to route QoS traffic.
The routing decisions are based on a metric that enables dynamic bandwidth
sharing between traffic classes, particularly, sending QoS traffic through links
that are less-congested with best-effort traffic. The metric used for path compu-
tation is called virtual residual bandwidth (VRB). The value of the VRB can be
above or below the actual residual bandwidth depending on the level of conges-
tion on the link due to best-effort traffic. The algorithm uses the Max-Min Fair
Share Rate to evaluate the degree of congestion [41]. If the link is more (less)
congested with best-effort traffic than the other links on the network, VRB is
smaller (higher) than the actual residual bandwidth. When the link has a small
amount of best-effort flows, VRB will be high and the link will be interesting for



QoS flows. The paths for best-effort traffic are computed based on the Max-Min
Fair Rate for a new connection.
Shaikh et al. [80] presented a hybrid approach to QoS routing that takes

the characteristics of flows into account to avoid instability. The resources in
the network are dynamically shared between short-lived (mice) and long-lived
(elephants) flows. The paths for long-lived flows are dynamically chosen, based
on the load level in the network, while the paths for short flows are statically
pre-computed. Since dynamic routing is only used for long-lived flows, the pro-
tocol overhead is limited. At the same time, the duration of these flows avoids
successive path computations which is beneficial for stability. The path selection
algorithm computes widest-shortest paths that can accommodate the needs of
the flow in terms of bandwidth. This approach is similar to the one used by
Vutukury et al. described above.
While the above strategies are aimed at connection-oriented networks, the

algorithm Enhanced Bandwidth-inversion Shortest-Path [96] was proposed for
hop-by-hop QoS routing in Differentiated Services networks. This proposal is
based on aWidest-Shortest Path algorithm that takes into account the hopcount.
The hopcount is included in the cost function in order to avoid oscillations due
to the increased number of flows sent over the widest-path. This approach is
similar to the one presented by Shaikh et al. [80], but instead of making traffic
differentiation per flow, it uses class-based differentiation.
A hop-by-hop QoS routing strategy (UC-QoSR) was developed in [73] for

networks where traffic differentiation is class-based. This strategy extends the
OSPF routing protocol to dynamically select paths adequate for each traffic
class according to a QoS metric that evaluates the impact of the degradation
of delay and loss at each router on application performance. The UC-QoSR
strategy comprises a set of mechanisms in order to avoid routing instability. Load
balancing is embedded in the strategy, since the traffic of all classes is spread
over available paths. The link weights are smoothed by using a moving average
of its instantaneous values. The prioritizing of routing messages is used to avoid
instability due to stale routing information. Combined with these procedures,
the UC-QoSR strategy uses a mechanism named class-pinning, that controls the
path shifting frequency of all traffic classes. With this mechanism, a new path
is used only if significantly better than the path that is currently used by that
class [16].

7 Summary and Discussion

Once a suitable QoS routing protocol is available and each node in the network
has an up to date view of the network, the challenging task in QoS routing is
to find a path subject to multiple constraints. The algorithms proposed for the
multi-constrained (optimal) path problem are discussed and their performance
via simulations in the class of Waxman graphs with independent uniformly dis-
tributed link weights is evaluated. Table 1 displays the worst-case complexities
of the algorithms discussed in Section 2.



Algorithm Worst-case complexity
Jaffe’s algorithm O(N logN +mE)

Iwata’s algorithm O(mN logN +mE)

SAMCRA, TAMCRA O(kN log(kN) + k2mE)

EDSP, EBF O(x22 · · · x2mN2), O(x2 · · · xmNE)

Randomized algorithm O(mN logN +mE)

H_MCOP O(N logN +mE)

LPH O(k2NE)

A*Prune O(QN(m+N + log h))

Table 1. Worst-case complexities of QoS routing algorithms.

The simulation results show that the worst-case complexities of Table 1
should be interpreted with care. For instance, the actual execution time of
H_MCOP will always be longer than that of Jaffe’s algorithm under the same
conditions. In general, the simulation results indicate that TAMCRA-like algo-
rithms that use a k-shortest path algorithm and a nonlinear length function while
eliminating dominated paths and possibly applying other search-space reducing
techniques such as look-ahead perform best. The performance and complexity of
TAMCRA-like algorithms is easily adjusted by controlling the value of k. When
k is not restricted, TAMCRA-like algorithms as SAMCRA lead to exact solu-
tions. In the class of Waxman or random graphs with uniformly distributed link
weights, simulations suggest that the execution times of such exact algorithms
increase almost linearly with the number of nodes in G(N,E), contrary to the
expected exponential (NP) increase.
The study reveals that the exact algorithm SAMCRA (and likewise TAM-

CRA) can be extended with the look-ahead property. The combination of the
four powerful concepts (non-linear definition of length, k-shortest paths, domi-
nance and look-ahead) into one algorithm makes SAMCRAv2 the current most
efficient exact QoS routing algorithm.
The second part of this chapter has discussed the dynamics of QoS routing.

Mainly QoS routing without complete topology information and the stability of
QoS routing are addressed. A probabilistic approach to incorporate the complex
dynamic network processes is reviewed. While the study of QoS routing algo-
rithms has received due attention, the routing dynamics and the behavior of the
QoS routing protocol deserve increased efforts because these complex processes
are insufficiently understood. Several proposals are outlined in Section 5, but the
performance of these proposal has not been compared yet. As a result, a com-
monly accepted QoS routing protocol is a still missing functionality in today’s
communication networks.

List of Open Issues

At the time of writing, we believe that the following open problems deserve to
be placed on the agenda for future research:



— Determining for which graphs and link weight structures the MC(O)P is not
NP-complete.

— A detailed and fair comparison of the proposed dynamic aspects of QoS rout-
ing proposals. Usually, authors propose an idea and choose a few simulations
to show the superiority of their approach compared to other proposals.

— Designing efficient QoS routing protocols.
— Aiming for an optimized QoS routing protocol.
— The deployment of QoS routing for Diffserv.
— Combined approaches of QoS routing and QoS signaling.
— QoS multicast routing.
— QoS routing implications on layer 2 technologies.
— QoS routing in Adhoc networks and peer-to-peer networks
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