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Abstract— In this paper we present our work on human
action recognition in intelligent environments. We classify
actions by looking at a time-sequence of silhouettes extracted
from various camera images. By treating time as the third
spatial dimension we generate so-called space-time shapes that
contain rich information about the actions. We propose a
novel approach for recognizing actions, by representing the
shapes as 3D point clouds and estimating feature histograms
for them. Preliminary results show that our method robustly
derives different classes of actions, even in the presence of
large variability in the data, coming from different persons
at different time intervals.

I. INTRODUCTION

As robots and humans are to share the same workspaces

and cooperate with each others, the robots must be capable

of recognizing and interpreting the actions and movements

of the humans. This requires in many cases the recognition

of full body motions and actions. Robots must hand over

objects to humans and receive objects from them, and they

must approach people differently depending on what they are

currently doing. Recognizing an action is not only necessary

to understand the current behavior of a human but it is also

a pointer to its future intentions (e.g. recognize the situations

where he might need help).

In this paper, we propose to apply methods originally

developed for the acquisition of 3D environment models

from laser scans to improve the performance of vision based

action recognition methods. A number of approaches to

action recognition propose the interpretation of space-time

shapes as depicted in Figure 1. The problem of action

recognition then becomes the problem of classifying a given

space-time shape with respect to a set of a priori learned

classes of actions.

By treating the space-time shapes representing actions as

3D objects, we require techniques for solving the problem

in a different domain: that of 3D object recognition. Thus,

we propose to apply methods for robustly identifying sets

of informative features, which can solve the recognition

problem.

The main contribution of this paper is the application of

our robust feature histograms[1] to the problem of action

recognition. We assume that the feature histogram repre-

sentation of space-time shapes of the same actions are

sufficiently similar and those of different actions sufficiently

different that we can classify the actions reliably based on

them. We describe how this method can be implemented

and applied to the visual data and empirically evaluate the

recognition results.

In particular, we propose a system for action recognition

from cameras placed in the environment. Given only silhou-

ette data that is relatively easy to obtain from static camera

images, we detect actions by comparing features extracted

from a time-sequence of silhouettes to exemplars stored in

a training database. Treating the silhouette-sequences as 3D

point cloud data, we propose the use of robust point-based

geometry techniques which have proven to be reliable for

solving numerous problems[1]. We show that such features

can be successfully applied also to the action recognition

domain.

The remainder of this paper is organized as follows. The

next section gives a brief overview on related work followed

by a description of the acquisition of silhouette data in

section III. The creation of the 3D space-time shapes (action

shapes) is presented in section IV. Section V describes

our implementation for computing robust feature histograms

for the action shapes. We discuss experimental results in

section VI and conclude in section VII.

II. RELATED WORK

Several approaches for human action recognition have

been proposed. Some of them aim at extracting human pose

data such as articulated joint angles [2], motion trajectories or

motion descriptors based on optical flow [3] for each frame.

Action classification is then done by inferring the most likely

action given the pose data for a sequence of frames. These

approaches require highly sophisticated methods to succeed

in the feature extraction step, and are prone to noisy input

data or cluttered environments.

Other approaches use silhouettes respectively contours as

features. These are usually easy to obtain by means of

background subtraction when using static cameras (e.g. [4]).

While some approaches discard temporal information by

trying to identify individual keyframes using the eigenshapes

of the silhouettes for example, we believe that (tempo-

ral) motion information is important for successfull action

recognition. Bobick et al. [5] have introduced temporal

templates for action recognition, where extracted silhouettes

are overlayed on a single image with fading gray values

according to the distance in time. Such 2.5D approaches

work well for some actions, but are unable to capture all

relevant details of the motions as more recent silhouettes

partly overwrite older motion information. Another approach



is to consider the temporal domain as a third spatial di-

mension and to create 3D shapes of actions to make them

better distinguishable (Figure 1). This has been proposed

independently by Gorelick et al. [6] as space-time shapes

and by Yilmaz and Shah [7] as spatiotemporal volumes. We

have adopted this approach in our work. It should be noticed

that there is a view dependency when using silhouettes from

a single camera, which is not a problem in our scenario.

Weinland et al. [8] proposed motion history volumes as view

independent 4D approach to action recognition, but they

require multiple calibrated cameras (at least 5) to capture

3D shapes of humans for each timestep using space carving

techniques.

Given a 3D shape representation of an action, robust

features need to be extracted for good classification results.

The 3D object recognition community has developed dif-

ferent methods for computing multi-value features which

describe complete models for classification: curvature based

histograms [9], spin image signatures [10], or surflet-pair-

relation histograms [11]. All of them are based on the local

estimation of surface normals and curvatures and describe the

relationships between them by binning similar values into a

global histogram. A high number of histograms per object

is required by [9], but the method can cope with up to 20%
occlusions. The 4D geometrical features used in [11] and

the spin image signatures in [10] need a single histogram

and achieve recognition rates over 90% with synthetic and

CAD model datasets, and over 80% with added uniformly

distributed noise levels below 1% [11]. All of the above

show promissing results, but since they have only been tested

against synthetic range images, it’s still unclear how they will

perform when used on noisier real-world datasets.

We extend the work presented in [11] by computing

robust feature histograms for a sequence of 3D silhouettes.

Our implementation reduces the theoretical computational

complexity of the algorithm by a factor of 2, and is shown

to be robust in the presence of noisy data.

III. ACTION SHAPES FROM SILHOUETTES

Two-dimensional silhouette data provides a rich source

of information regarding the pose of a human. People are

capable to correctly guess a human pose simply by looking

at the silhouette shapes. However, actions can only be

recognized by looking at motion information, as the temporal

alignment of poses becomes important. We therefore classify

actions by comparing their visible space-time shapes [6] with

learned training data.

Space-time shapes are generated from a sequence of 2D

silhouette contours by shifting silhouettes in the third spatial

dimension according to their position on the timeline. Figure

1 (center) shows a space-time shape where the shape surface

was generated using a marching cubes algorithm for visual-

ization purposes. For obtaining a good classification accuracy

as well as for scale invariance, the sizes of the silhouettes

are normalized with the maximum distance between points

along the vertical direction (i.e. the shape’s height). Before

stacking the silhouettes in the third dimension, they are

Fig. 1. Silhouette extracted from a camera image using background

subtraction (left); Space-time shape generated from a sequence of silhouettes

(center); Silhouette extracted from a thermal camera using thresholding

(right).

aligned by their centers of gravity. We also remove frames

with no significant change in the silhouette appearance from

the shape, so that we achieve an invariance regarding to the

speed at which an action is carried out, as show in section IV.

One advantage of space-time shapes is that they are simple

and fast to generate. Extraction of silhouettes in the case

of static cameras can be done using background subtraction

techniques. There, a model of the background is learned in

advance for each pixel, so that for each image a binary per-

pixel classification is performed to separate the foreground

from the background. We use the method proposed by

Kim et al. [4], which is basically a fast approximation to

a mixture of gaussians model of the background. Robust

methods that are capable to extract silhouettes from moving

cameras have also been proposed recently [12], and could

easily be incorporated. After segmenting the foreground,

noise can be reduced by applying morphological opening

and closing operations. The silhouette contours are extracted

after selecting the biggest connected component and filling

all holes in the component.

In our setup we use up to five static cameras plus a thermal

infrared camera that can be used for silhouette extraction.

Silhouette extraction from thermal cameras is performed by

applying a simple thresholding operation (Figure 1 right

side). Data from each camera is treated separately, but

the extracted features from the space-time shapes can be

combined for classification to achieve better view invariance.

In the next chapter we will discuss how to delete unimpor-

tant frames in order to neglect the effect of different speeds

in the execution of a movement.

IV. ACTION SHAPE MINIMIZATION

We assume that the silhouette of a human person can

be successfully segmented during a motion as shown in

Figure 2, and converted to a 2D 〈x, y〉 point cloud. Our goal

is to acquire a sequence of silhouettes for every action, build

a 3D point cloud with z as the time axis, and then exploit

the data in that point cloud using 3D point-based geometry

methods.

Even though the movement from one frame to the other is

constrained, the resulting silhouettes do not always overlap

by aligning them using their gravity centers, because the

body position changes. This results in minor displacements

of the 2D point clouds from each other.



Fig. 2. Segmented silhouettes of human motions

We solve the displacement problem by registering each

frame to the next one in the sequence using an ICP-based

algorithm[1]. Figure 3 shows the resulting 3D point clouds

created by stacking the registered silhouettes representing

different actions, time-wise, on top of each other.

Fig. 3. Left and center: 3D point clouds representing actions of human

motions with z as time, right: resulted point cloud after pruning the duplicate

frames from the dataset in the center of the image.

Because of the stacking process however, double frames

can appear, mostly because the subject did not move between

two consecutive frames. These double frames are irrelevant

with respect to our problem and might create an additional

computational burden. Therefore, we proceed to remove

them as follows, for each two consecutive frames:

1) for each point pj , with j = 1, N in frame fi we

search for the closest corresponding point qk, with

k = 1,M in frame fi+1 and compute an Euclidean

distance metric between them;

2) we compute the Frobenious norm in distance space of

fi and fi+1 as: ‖fi+1 − fi‖F =
√∑N

1 |qpi− pi|
2

3) we select fi+1 as being different (i.e. unique) than fi
if ‖fi+1 − fi‖F ≤ dthresh

For finding the closest correspondence of a given point p,

a fast k-d tree structure in two dimensions was employed.

Selecting dthresh = 0.2 empirically in our experiments gave

good results. The results after pruning the duplicate frames

are shown in Figure 3, where relevant frames from the middle

sequence are colored in green (and shown again as the

resulted sequence in the rightmost part of the image), while

the frames which will be pruned in red. The computational

time decrease obtained by removing irrelevant frames is

highly dependant on the input sequence and can vary greatly.

In our experiments, we achieved reduction rates from 24.15%
up to 91.47%.

The informative feature extraction from the generated

action shapes is the topic of the next chapter.

V. FEATURE HISTOGRAMS

In order to efficiently obtain informative features, we pro-

pose the computation and usage of a histogram of values[1]

which encodes the neighborhood’s geometrical properties

much better, and provides an overall scale and pose invariant

multi-value feature. The feature histogram has already given

good values for the problem of 3D objects classification

obtained from laser data in indoor environments[1].

The input data consists of 3D 〈x, y, z〉 point coordinates.

For a given radius r, the algorithm will first estimate the

surface normals (see Figure 4) at each point p by performing

Principal Component Analysis (PCA) on the data points

contained in the sphere with radius r and p as its center.

The eigenvector corresponding to the smallest eigenvalue

approximates the surface normal at point p. Once the normals

are obtained and consistently re-oriented1, the histogram

for the 3D action shape will be computed using the four

geometric features as proposed in [11].

Fig. 4. Action shape (left), estimated surface curvatures (center), and

distribution of estimated surface normals on the Extended Gaussian Image.

For every pair of points pi and pj (i 6= j, j < i) in

the shape and their estimated normals ni and nj , we select

a source ps and target pt point, the source being the one

having the smaller angle between the associated normal and

the line connecting the points:

if 〈ni, pj − pi〉 ≤ 〈nj , pi − pj〉
then ps = pi, pt = pj
else ps = pj , pt = pi

and then define the Darboux frame with the origin in the

source point as (see Figure5):

u = ns, v = (pt − ps)× u, w = u× v.

We then proceed by computing four feature values for

each pair of points, and categorize the resulted values into a

global histogram, where each bin of the histogram at index

idx contains the percentage of the source points in the shape

which have their features in the interval defined by idx:

f1 = v · nt
f2 = ||pt − ps||
f3 = u · (pt − ps)/f2
f4 = atan(w · nt, u · nt)

⇒ idx =
i≤4∑
i=1

cat(fi) · divi−1

1see [13] for a general algorithm for consistent normal orientation

propagation



Fig. 5. The computed Darboux frame (vectors u, v and w) placed at the

source point.

where div is the number of subdivisions of the features’

value range and cat(f) returns the number of the category

in which the feature f falls. This number is defined as the

smallest number for which:

cat(fi) ·
max(fi)−min(fi)

div
≤ fi

and thus, a number in the [0, div] interval. The number of

histogram bins that are formed using these four geometric

features is div4
.

To find out the minimum and maximum values of each

feature, we have to consider that they are a measure of the

angles between the points’ normals and the distance vector

between them. Because f1 and f3 are dot products between

normalized vectors, they are in fact the cosine of the angles

between the 3D vectors, thus their value is between ±1, and

0 if they are perpendicular. Similarly, f4 is the arctangent

of the angle that nt forms with w if projected on the plane

defined by u = nt and w, so its value is between ±π/2,

and 0 if they are parallel. f2 is the length of the segment

between the two points, which is always positive and for

which a maximal value can be set as the diameter of the

shape’s bounding box.

Because the number of bins is increasing exponentially

with the number div of feature categories, we have to select

a high enough number for capturing detail, but low enough

to reduce the algorithm’s computational complexity. Our

experiments confirmed the suggestion in [11] to set div = 5,

as classification of action shapes was performed successfully

using the resulted 625 bin histograms.

Figure 6 presents the resulted feature histogram for a given

3D action shape.

The effects of different movements in the feature his-

togram space for two action shapes is shown in Figure 7.

VI. DISCUSSIONS AND EXPERIMENTAL RESULTS

To evaluate the performance and robustness of our pro-

posed approach, we have performed several experiments in a

distributed-sensing kitchen environment[14]. To allow more
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Fig. 6. Example of a resulted histogram for a 3D action shape.
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Fig. 7. Two different action shapes and their estimated feature histograms.

variation in the data, our subjects were asked to perform

several actions in the kitchen, without giving them explicit

instructions on how to do them. The list of actions included:

(i) opening and closing a cupboard; (ii) opening and closing a

drawer; (iii) opening and closing a vertical-door top cabinet;

(iv) picking up one object from a table and moving it

to another; (v) opening and closing the oven door; and

(vi) unscrewing a bottle and drinking from it. Each action

had to be performed several times by a subject, while all the

other human personnel was asked to step outside the kitchen

and they were not allowed to observe the actions of their

colleague. After recording several experiments and looking

at the data, we noticed a high degree of variability between

the way the movements were performed, from subject to

subject, but also between the same actions of a subject.

Figure 8 depicts the processed histograms for one action

shape representing the opening of a cupboard. Three persons

were asked to repeat the same action 3 times, at different

time intervals, and a fourth person once. Notice that the

histograms are matched almost perfectly, even though the

subjects participating in the experiment performed the action

differently.
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Fig. 8. Feature histograms for the action shape representing the opening

of a cupboard. The experiment involved 3 subjects, out of which 3 were

asked to repeat the action 3 times.

To evaluate the histograms of different actions, we com-

puted several distance metrics and compared the resulted

values. As indicated by [9], the metrics which gave the

best (and similar) results were the Chi-Square (χ2) diver-

gence and the Kullback-Leibler (KL) divergence. The curve

presented in the upper part of Figure 9 shows the values

obtained by computing the KL divergence between a set of

histograms representing different action-shapes and the mean

µ-histogram for one action (opening cupboard). Each of the

values shown on the x-axis of the plot is encoded as Ntact,
where N is the first initial of the person performing the

action, t represents the trial number (i.e. the number of the

experiment), and act is an acronym describing the action

name. The 3 evaluated actions are: a) OC for opening the

cupboard; b) O for opening the oven door; and c) MB for

moving a bottle from a table to the another table. The first

10 values on the x-axis are the KL distance values for the

histograms in Figure 8, from which the mean µ-histogram

was computed. The following three values are obtained by

computing the divergence between three histograms repre-

senting the action of opening the oven, and the last three

values for the action of moving the bottle. Note how the

distances appear to be in the same clusters, in the sense that

their values are very close to each other, thus demonstrating

the robustness of our method to categorize actions efficiently.

The second part of Figure 9 presents 2 histograms obtained

by: subtracting a histogram for a different action (opening

the oven door) from the µ-histogram of the action opening

the cupboard (top plot), and subtracting a histogram for the

same action but performed by a different person from the

same µ-histogram (bottom plot).

The acquisition process of an action shape is clearly

dependent on the position of the camera in the environment

with respect to the action performed. It is therefore obvious

that certain gestures or movements will not be captured in

the most relevant way by all cameras, thus their resulted his-

tograms might contain a high degree of ambiguity between

Fig. 9. Comparing different actions using the Kullback-Leibler divergence

(top). Differences between the mean µ-histogram of an action and a) the

histogram of another action (middle); b) a histogram of the same action

performed by another subject (bottom).

classes of actions. Since our environment is instrumented

with several cameras, we performed one experiment to see

the differences in the resulted histograms for a gesture using

two different cameras, one located behind the subject at a

≈ 55◦ angle, and one in front at ≈ 80◦ angle.

Figure 10 show the results of our test, which indicate

that the differences between the actions of two subjects (Z1

and J2) captured using camera cam1 are much smaller than

the ones capture by cam0. This demonstrates our above

analysis, and suggest that using a single camera in such an

environment is inadequate for capturing all the aspects of a

given action accurately. We plan to extend our processing

pipeline to deal with data coming from all cameras in our

future work.

To better illustrate the invariance of our method to sam-

pling density and scale, three sequences of similar silhou-

ettes representing 10 frames, 50 frames and 100 frames

respectively were taken, and their histograms compared (see

Figures 11 and 12). The results validate our method of

removing irrelevant frames presented in Section IV, as the

feature histograms of the different sequence frames are very

similar – almost coinciding. Pruning the frames at an earlier

step however, decreases the computation time a lot.

For a comprehensive classification of the recorded 3D ac-

tion shapes, we have gathered several data sets from multiple

subjects, extracted their histograms and used them to train

a SVM (Support Vector Machines) classifier. Preliminary

results yielded very good result, above 96% in most of the

cases.



Fig. 10. Comparing the same action using different cameras for two

subjects. Notice the differences in the histogram plots for the data captured

using one camera (cam0) against the ones from another camera (cam1).

Fig. 11. Silhouettes for still poses of different lengths.

VII. SUMMARY AND FUTURE WORK

In this article, we have presented a novel way of reasoning

about action recognition, by transforming the problem into

a different space, that of 3D point cloud based geometry.

The input data is acquired using standard video cameras and

3D action shapes represented by points are generated from it.

By minimizing the number of relevant frames and computing

informative feature histogram descriptors, classes of actions

can be robustly identified and categorized. The proposed

approach can deal with large variations in the data, such as

actions performed by different persons. We have presented

an in-depth discussion and experimental results which look

promissing for applications such as ours.

Future work will include fusing the data from multiple

cameras at the action shape level, as well as testing the

method on larger datasets using more variate actions.
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