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Control of Networked Switched Systems
using Passivity and Dissipativity

Michael J. McCourt, University of Florida,

Panos J. Antsaklis, University of Notre Dame

Passivität und Dissipativität sind wichtige bei der Untersuchung von Cyber-physischen
Systemen (CPS), die typischerweise aus zeit- und ereignisgesteuerter Dynamik bestehen.
Dieser Beitrag stellt Bedingungen die die Stabilität vernetzter schaltender Systeme
garantieren, die zur Modellierung von CPS verwendet werden können. Es werden
Ergebnisse präsentiert, um Stabilität sicherzustellen, wenn Systeme über eine
Rückführung miteinander verbunden werden. Außerdem Methoden zur Sicherstellung der
Stabilität von geschalteten Systemen, die über ein Netzwerk mit Totzeiten verbunden
sind, behandelt.

Passivity and dissipativity are important in the study of Cyber Physical Systems (CPS)
where systems with time and event-driven dynamics are connected. This paper provides
conditions which guarantee stability of interconnected switched systems which may be
used to model CPS. Results are presented for maintaining stability when switched
systems are connected in feedback. Then methods for maintaining stability of passive
switched systems that are connected over a network with delays are presented.

Schlagwörter:

Keywords: Switched systems, dissipative systems, networked control systems

1 Introduction

As computing and communication devices become ever-
smaller and ever-cheaper, they are increasingly embed-
ded in objects and structures that interact directly with
the physical environment and extend human capabili-
ties. Multiple sensing and actuation units that gather,
process, exchange, and use information as a team are
the cyber-world of computing and communications with
the physical world are called Cyber-Physical Systems
(CPS), see e.g. [1, 2]. CPS span engineered, physical,
and biological systems and create new applications with
enormous societal impact and economic benefit.

CPS arise when physical systems interact closely with
cyber systems. Physical systems have dynamics that fol-
low physical laws that arise in a variety of application
areas including kinematics, fluid dynamics, and electri-
cal circuits. These dynamics are modeled using differen-
tial/difference equations and algebraic equations that
depend strongly on time. The cyber systems evolve ba-

sed on the occurrence of events, both physical and in
software, and typically have little or no dependence
on time. These include computational systems, com-
munication systems, or any discrete-state based system.
Combining these vastly different components results in
system models that are governed by hybrid dynamics.
Often in CPS, these hybrid systems may be interconnec-
ted over a network.

This paper provides an overview of some promising ap-
proaches for analysis and synthesis of CPS. While some
of the results in this paper have appeared previously (ci-
tations included), additional details on the approaches
are provided with an original example. The remainder
of this introduction summarizes the major components
of this analysis approach.

Switched Systems
An important class of hybrid systems is switched sy-
stems. These systems are modeled by a finite set of dy-
namics with a rule that determines switching among the
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individual subsystems. At each time, a single subsystem
is active and the system evolves according to the dyna-
mics of this subsystem. In this paper, we consider sub-
systems that are nonlinear and time-invariant. We also
assume the switching rule is allowed to be arbitrary.
Although results that assume arbitrary switching have
the most restrictive stability conditions, this assump-
tion allows for stability that is robust to variations in
switching. This is an important consideration when sy-
stems are interconnected; while the switching signal may
be fixed when a system operates in isolation, switching
is often unknown when systems are interconnected. For
more on switched systems, refer to the following surveys
and the references therein [3–5].

Passivity and Dissipativity Approach
Another facet of CPS is that these systems are often
complex and made up of several interacting, often hete-
rogeneous, components. Traditional approaches for ana-
lyzing large scale systems have focused on energy-based
concepts [6]. While the main approach for stability of a
single system has been Lyapunov theory, for large scale
systems passivity and dissipativity theory offer signifi-
cant advantages [7,8]. For example, stability of the feed-
back interconnection of two passive systems is guaran-
teed, and the stability for dissipative systems in feed-
back can be verified by checking a simple condition.
When considering a quadratic supply rate, as in QSR-
dissipativity, a general test may be applied to determine
whether a feedback interconnection is stable [9,10]. This
result is a generalization of both the passivity theorem
and the small gain theorem and may be applied to a
large class of interconnected systems, for example, feed-
back interconnections that contain an unstable system.

Dissipativity theory for switched systems is a relative-
ly new topic. Dissipativity theory has been considered
for continuous time switched systems [11–13] and dis-
crete time switched systems [14–16]. Most of these pa-
pers focus on a notion of decomposable dissipativity that
breaks the energy supply rate for each subsystem into
an active rate and an inactive rate. The special case of
passivity indices for switched systems was addressed in
[13].

Control Over Networks
There are many applications where systems are control-
led over a network. The use of existing wired or wireless
networks typically reduces costs and allows for the net-
work to be reconfigured. However, the use of existing
networks often adds delay to the communication chan-
nel and, at times, data may be dropped entirely. One so-
lution to the delay problem, introduced in [17] and [18],
is to use passivity theory and the wave variable transfor-
mation [19]. The wave variable transformation is used to
map the generalized power variables, the ones used to
show passivity, to wave variables. After being transfor-
med to wave variables, the energy exchanged with the
network is decoupled between waves going out over the
network and waves coming in from the network. The de-

coupling makes the delayed channel lossless so no energy
is added or removed by the network. This approach was
extended by several recent papers including [20–24]. A
more generalized approach was considered in [25] where
switched systems were considered in this framework.

Structure of Paper
The remainder of this paper is organized as follows.
Section 2 provides background material for the paper.
First, the classical results of dissipativity and passivity
are reviewed. Then notions of dissipativity and passivity
for switched systems are covered. The problem of net-
working passive systems over delayed networks is also
discussed. The main results of the paper are presented
in Sections 3 and 4. Section 3 covers results on inter-
connected dissipative switched systems without delay.
An example of this method is included. The problem of
connecting passive switched systems in feedback over a
network with delay is considered in Section 4. Finally,
concluding remarks are given in Section 5.

2 Background Material

2.1 Mathematical Preliminaries

A real valued vector x of dimension n will be denoted
x ∈ R

n. In this paper, nonlinear non-switched systems
of interest are of the form ,

ẋ = f(x, u)
y = h(x, u),

(1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
p. It is assumed that

the vector field f is Lipschitz with respect to x. It can
be assumed without a loss of generality that f(0, 0) = 0
and h(0, 0) = 0.

The notion of input-output stability used in this paper
is L2 stability [27]. This definition requires notation for
signal truncation. Truncating the signal x(t) at time T ,
denoted xT (t), is given by

xT (t) =

{

x(t), for t ≤ T

0, for t > T
. (2)

The L2 norm of a signal x(t) is given by

||x(t)||2 !

√

∫

∞

0

xT (τ)x(τ)dτ . (3)

Definition 1. [27] A nonlinear system (1) is finite-gain
L2 stable if there exist constants γ and β to satisfy,

||yT (t)||2 ≤ γ ||uT (t)||2 + β. (4)

Additionally, the smallest γ such that there exists a β to
satisfy the inequality is referred to as the L2 gain of the
system.

In addition to L2 stability, Lyapunov stability will be
used in this paper. The definition is omitted but may be
found in [27].
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2.2 Dissipativity Theory

Dissipativity is a characterization of system behavior
based on a generalized notion of energy [7]. The proper-
ty captures the behavior of a system that only stores
and dissipates energy without generating its own. The
property defines externally supplied energy in order to
bound internally stored energy.

Dissipativity for state space systems is typically shown
by finding a storage function V : Rn → R

+, where R
+

denotes the positive real line. As a notion of internally
stored energy, V is non-negative and assumed to be zero
at the equilibrium, V (0) = 0. Dissipativity is shown with
respect to an energy supply rate ω : Rm × R

p → R.

Definition 2. [7] A nonlinear system (1) is dissipati-
ve with respect to an energy supply rate ω(u, y) if there
exists a non-negative storage function V (x) such that

∫ t2

t1

ω(u, y)dt ≥ V (x(t2))− V (x(t1)). (5)

While this definition allows the supply rate to be any
function of input and output, it may be difficult to find
an appropriate energy supply rate in practice. A mo-
re tractable form of dissipativity is the quadratic form
known as QSR dissipativity [9, 10].

Definition 3. [9] A nonlinear system (1) is QSR dis-
sipative if it is dissipative with respect to the supply rate

ω(u, y)!

[

y
u

]T[
Q S

ST R

][

y
u

]

=yTQy+2yTSu+uTRu. (6)

Systems that are QSR dissipative are L2 stable when
Q < 0. QSR dissipativity provides stability results for
the feedback interconnection (Fig. 1) of two systems.
Specifically, the feedback of two QSR dissipative systems
forms a new system that is QSR dissipative [10]. Stabi-
lity may be assessed by the new Q in the QSR para-
meters of the interconnection. Using the signals r(t) =

Bild 1: The feedback interconnection of two systems G1 and
G2.

[rT1 (t) r
T
2 (t)]

T and y(t) = [yT1 (t) y
T
2 (t)]

T , the feedback
interconnection (r → y) is L2 stable when there exists a
constant α such that following matrix is negative defi-
nite,

Q̂ =

[

Q1 + αR2 −S1 + αS
T
2

−ST
1 + αS2 R1 + αQ2

]

< 0.

While the restriction to QSR dissipative systems reduces
the number of dissipative systems that can be conside-
red, the class of dissipative systems captured by QSR
dissipativity includes all passive and L2 stable systems
as well as many unstable and non-minimum phase sy-
stems.

Passive systems form a special class of dissipative sy-
stems. Passivity theory has its origins in electrical cir-
cuit theory where feedback interconnections of passive
circuit components formed stable interconnections be-
cause the components only dissipated energy without
generating their own energy.

Definition 4. A nonlinear system (1) is passive if it
is dissipative with respect to the supply rate ω(u, y) =
uT y − εyT y for ε ≥ 0. Furthermore, if ε > 0 the system
is said to be output strictly passive (OSP).

This definition uses the system input u and output y. In
this paper, these will be referred to as power variables
even when their product is not a traditional notion of
power.

Passive systems are Lyapunov stable when they are de-
tectable. In addition, when two passive systems are in-
terconnected in negative feedback (Fig. 1) the resulting
system is passive. This provides a guarantee that any
two passive systems can be combined in feedback to form
a stable feedback interconnection. There is no such gua-
rantee for combining two stable systems in feedback.
This property of passivity, feedback invariance, makes
it a strong tool for the analysis and synthesis of in-
terconnected systems. Both passivity and dissipativity
provide results for feedback stability and feedback in-
variance. These properties can be used for the analysis
and synthesis of large scale systems [6]. Passivity has
the added property that it is preserved when systems
are combined in parallel as in Fig. 2. For more detail on
passivity, refer to [27] and [28].

Bild 2: The parallel interconnection of two systems.

The subset of passive systems that are OSP is import-
ant because these systems are L2 stable. They also form
feedback interconnections that are L2 stable. These re-
sults can be extended to internal stability with an appro-
priate detectability assumption for nonlinear systems.
Systems that are L2 stable can be shown to be asym-
ptotically stable if they are also zero-state detectable.
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Definition 5. [29] An autonomous (u(t) = 0) nonlinear
system,

ẋ = f(x, 0)
y = h(x, 0),

(7)

is zero-state detectable (ZSD) if y(t) = h(x(t), 0) = 0
∀t ≥ t0 implies lim

t→∞

x(t) = 0.

This definition is a weaker condition than zero-state
observability where y(t) = h(x(t), 0) = 0 ∀t ≥ t0 implies
x(t) = 0 ∀t ≥ t0.

2.3 Dissipative Switched Systems

The concept of dissipativity has been extended to swit-
ched systems using multiple storage functions. The defi-
nition given in [11] focuses on two main conditions. The
primary condition is that each subsystem is dissipative
when it is active. The energy supply rate may be diffe-
rent for every subsystem. The second condition is that
each subsystem is dissipative, with respect to a different
rate, when it is inactive. The notion of cross supply ra-
te is used to capture energy transfer from each active
subsystem to each inactive subsystem. The cross supply
rates can be different for each subsystem and each active
system. For a switched system with M modes, the sy-
stem may have M different energy storage functions, M
energy supply rates, and M(M − 1) cross supply rates.

In the present paper, dissipativity is applied to switched
systems of the form,

ẋ = fσ(x, u)
y = hσ(x, u),

(8)

where the switching signal σ(t) indicates the current
active subsystem out of the set Σ = {1, ...,M}, i.e.
σ : R+ → Σ. It is assumed that for each subsystem
i ∈ Σ, fi is Lipschitz with respect to x, fi(0, 0) = 0, and
hi(0, 0) = 0. A single switching instant is denoted by tik ,
which is the kth time that the ith subsystem becomes ac-
tive. This system becomes inactive at time t(ik+1) and
becomes active again at time ti(k+1)

. The values of i are
a subset of Z+ (the positive integers) from 1 to M , and
k take on values in Z

+ that is allowed to be infinite. To
avoid Zeno behavior, it is assumed that on any finite ti-
me interval, t0 to arbitrary time T , the system switches
a finite number of times K, where K may depend on the
time T chosen. To avoid trivial asymptotic analysis, it
is assumed that the system switches an infinite number
of times on the infinite time horizon.

The following definition uses the notion of class-K func-
tions. A function α(x) is class-K if it is defined for
x ∈ [0,∞), α(0) = 0, and it is strictly increasing [27].

Definition 6. [11] A switched system (8) is dissipative
if there exist storage functions Vi(x) bounded by class-K
functions

αi(||x||) ≤ Vi(x) ≤ αi(||x||), (9)

energy supply rates ωi(u, y), and cross supply rates
ωi
j(u, y, x, t) such that the following conditions hold.

1. Each subsystem i is dissipative with respect to ωi(u, y)
while active, i.e. for tik ≤ t1 ≤ t2 ≤ tik+1 and ∀i, k,

∫ t2

t1

ωi(u, y)dt ≥ Vi(x(t2))− Vi(x(t1)). (10)

2. Each subsystem j is dissipative with respect to
ωi
j(u, y, x, t) when it is inactive, i.e. for each active

subsystem i, ∀j )= i, and for tik ≤ t1 ≤ t2 ≤ tik+1,
∫ t2

t1

ωi
j(u, y, x, t)dt ≥ Vj(x(t2))− Vj(x(t1)). (11)

3. For all i and j there exist absolutely integrable func-
tions φij(t) and some input u∗(t) such that ∀t ≥ t0
fi(0, u

∗) = 0, ωi(u
∗, y) ≤ 0, and

ωi
j(u

∗, y, x, t) ≤ φij(t), ∀j )= i. (12)

Along with the definition of dissipativity for switched
systems, [11] also covered stability conditions for a dis-
sipative switched system. The special case of passivity
was also considered.

Definition 7. A switched system (8) is passive if it
is dissipative with respect to the energy supply rates
ωi(u, y) = uT y − εiyT y where εi ≥ 0, ∀i.

A switched system is considered output strictly passive
(OSP) if it is passive with εi > 0 for all i. Passive swit-
ched systems are Lyapunov stable when all subsystems
are ZSD. Asymptotic stability can be shown when ne-
gative output feedback is applied or when the system is
OSP.

Theorem 1. Consider a switched system that is out-
put strictly passive. If all subsystems are ZSD, then the
switched system is asymptotically stable.

By itself, this result is only an indirect method of sho-
wing asymptotic stability. There are more direct me-
thods of showing asymptotic stability in the literature
(for example, see [3–5] and the references therein). Ho-
wever, when using Theorem 1 in conjunction with Theo-
rem 2, open-loop conditions for asymptotic stability of
the feedback interconnection of two switched systems
are derived.

Theorem 2. The negative feedback interconnection of
two output strictly passive switched systems is again an
output strictly passive switched system.

The proof of this result can be found in [30]. These two
results can be applied to the feedback interconnection
of two switched systems. The switched systems must be
OSP and have all subsystems be asymptotically zero-
state detectable. When each of these switched systems
meets the two open-loop conditions, the resulting in-
terconnected system is OSP and asymptotically stable.
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These open-loop conditions for closed loop stability will
be applied to networked control systems later in this
paper.

2.4 Network Structure

The network control structure used in this paper is given
in Fig. 3. Switched system G1 is the mapping e1 → y1
and switched system G2 is the mapping e2 → y2. Typi-
cally one of these systems is a given plant and the other
is the designed passive controller. The delays in the net-
work are assumed to be constant, but the two delays T1

and T2 may be different and potentially unknown. The

Bild 3: The network control structure for passive plants makes
use of the wave variable transformation (WVT blocks) on either
side of the network. The blocks T1 and T2 are the time delays
in the network.

signal relationships are given as,

e1 = r1 − y2d (13)

e2 = r2 + y1d. (14)

The network is modeled as a constant delay in each di-
rection,

u2(t) = u1(t− T1) (15)

v1(t) = v2(t− T2). (16)

The wave variable transformation (WVT) is defined as
in [19]. The linear transformation to wave variables is

[

u1

v1

]

=
1√
2b

[

bI I
bI −I

] [

y1
y2d

]

(17)

[

u2

v2

]

=
1√
2b

[

bI I
bI −I

] [

y1d
y2

]

, (18)

where b is the impedance of the channel and can be
chosen in the synthesis of a controller. The energy stored
in the network is the sum of the energy going into the
network minus the energy coming out of the network.

VN =
1

2

∫ t

t0

(uT
1 u1 + vT2 v2 − uT

2 u2 − vT1 v1)dτ. (19)

When the system delays are constant, this expression
can be simplified to show that the energy in the network
is positive.

VN =
1

2

∫ t

t−T1

uT
1 u1dτ +

1

2

∫ t

t−T2

vT2 v2dτ ≥ 0 (20)

The quantity VN is always nonnegative. By the definiti-
on of energy stored in the network (19), it can be seen
that the energy on the G1 side of the network bounds
the energy on the G2 side.

1

2

∫ T

t0

(uT
1 u1 − vT1 v1)dτ ≥

1

2

∫ T

t0

(vT2 v2 − uT
2 u2)dτ (21)

=⇒
∫ T

t0

yT1 y2ddτ ≥
∫ T

t0

yT2 y1ddτ (22)

This fact can be used to show stability of the overall
system [17].

Theorem 3. Consider two nonlinear (1) passive sy-
stems that are interconnected over a delayed network
using the wave variable transformation (Fig. 3). If the
delays in the network are constant, the interconnected
system is L2 stable.

This result gives stability of the networked control sy-
stem. Additionally, if the two systems are zero-state de-
tectable, the overall system is asymptotically stable for
r(t) = 0. More details on this result may be found in
[20–24].

This result assumes that the delays are constant. Howe-
ver, the extension to communication channels with time
varying delays is straightforward, see e.g. [23]. The re-
mainder of this paper assumes the delays are constant,
but the time varying approach can be applied without
difficulty.

3 Interconnecting Dissipative Switched

Systems

This section focuses on the problem of interconnecting
dissipative switched systems. The first part covers a de-
finition of QSR dissipative switched systems. Results
are given that guarantee stability for dissipative systems
and for the feedback interconnection of two dissipative
switched systems. The second part provides an exam-
ple demonstrating how this method can be applied to
synthesize a controller.

3.1 Main Results on Stability of
Interconnections

Dissipativity theory can be used to show stability of sy-
stems in feedback. Consider the feedback interconnec-
tion of two switched systems G1 and G2 (Fig. 1). This
interconnection forms a new switched system G which
is a mapping from r → y. The subsystems of the new
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system depend on the subsystems of both G1 and G2.
This causes the number of subsystems of the combined
system to grow to as many as M = M1M2 where G1

and G2 consist of M1 and M2 subsystems, respectively.
Whenever either system G1 or G2 switches, the overall
system G switches. This means that the set of switching
instants of the new system G is the union of the sets of
switching instants of the two individual systems.

Stability of the feedback interconnection is considered
here for QSR dissipative switched systems. This is a
special case of dissipativity (Def. 6) where the active
energy supply rates have a quadratic form.

Definition 8. A dissipative switched system (8) is QSR
dissipative if for each subsystem i the subsystem is dis-
sipative with respect to the energy supply rate

ωi(u, y) !

[

y
u

]T [

Qi Si

ST
i Ri

] [

y
u

]

(23)

for i ∈ {1, ...,M}.

The following theorem considers stability of the feed-
back interconnection of two dissipative switched sy-
stems. System G1 has supply rates ω(1)

i parametri-
zed by {Qi, Si, Ri} and G2 has supply rates ω(2)

î
with

{Qî, Sî, Rî}. The result considers the active supply ra-
tes and inactive supply rates to establish a bound on the
storage functions. Finally, a bound on the system state
is inferred from the bound on the storage functions.

Theorem 4. Consider the feedback interconnection of
two QSR dissipative switched systems G1 and G2. If the-
re exists a constant α to satisfy

Q̂îi =

[

Qi + αRî −Si + αS
T
î

−ST
i + αSî Ri + αQî

]

≤ 0, (24)

∀i ∈ {1, 2, ...,M1}, ∀î = {1, 2, ...,M2}, (25)

and each subsystem is ZSD (Def. 5) the autonomous
(r(t) = 0) feedback interconnection G is Lyapunov sta-
ble.

Proof. Since both systems are QSR dissipative, there
exists V (1)

i for G1 and V
(2)

î
for G2. The following sum-

med storage functions can be defined

V (1) =
M1
∑

i=1

V
(1)
i and V (2) =

M2
∑

î=1

V
(1)

î
.

Define V (x(t)) = V (1)(x1(t)) + V (2)(x2(t)) where x =
[xT

1 xT
2 ]

T . By (9) there exists a function ρ : R+ → R
+

such that V (x(t)) ≤ ρ(||x||). Using conditions (11-12),
∀ε there exists a time T such that, ∀t ≥ T ,

V (x(t))− V (x(T )) ≤
1

2
ρ(ε). (26)

This inequality follows directly from the definition of
dissipativity. The details have been omitted because the

derivation follows similarly to the development in Sec-
tion 4 that sets up Theorem 8. Using the dissipative
relationships we can find a bound on V (x(T )) based on
previous switching instants,

V(x(T ))≤V(x(tK))+

T
∫

tK

[

ω
(1)
i (u, y)+ω(2)

î
(u, y)

]

dt+
1

2
(ρ(ε)).

The term inside the integral, ω(1)
i (u, y) +ω(2)

î
(u, y), can

be written out
[

y1
u1

]T [

Qi Si

ST
i Ri

] [

y1
u1

]

+

[

y2
u2

]T [

Qî Sî

ST
î
Rî

] [

y2
u2

]

.

The signal relationships can be substituted and the re-
sulting expression simplified to arrive at

yT Q̂îiy + 2yT Ŝîir + rT R̂îir

where

Q̂îi =

[

Qi + αRî −Si + αS
T
î

−ST
i + αSî Ri + αQî

]

,

Ŝîi =

[

Si αRî

−Ri αSî

]

and R̂îi =

[

Ri 0
0 αRî

]

.

By assumption, Q̂îi ≤ 0, ∀i and ∀î. This implies that the
autonomous system (r(t) = 0) satisfies Vi(T ) ≤ Vi(tK)
for all i.

Eqn. (11) implies that a δK−1 can be chosen such that

V (tK−1) ≤ ρ(δK−1) implies that V (tK) ≤
1

2
ρ(ε). This

process can be repeated to define a sequence δ0, δ1, ...
, δK so that V can be bounded at all switching times
t1 to tK . The result is that, for any ε > 0, there exists
a δ > 0 such that when ||x(t0)|| ≤ δ then V (t0) ≤ ρ(δ)
and at time tK , V (tK) ≤

1

2
ρ(ε). The bound on ||x(t0)||

ultimately implies V (T ) ≤
1

2
ρ(ε). This statement along

with (26) shows that V (t) ≤ ρ(ε), ∀t which implies that
||x(t)|| ≤ ε, ∀t whenever ||x(t0)|| ≤ δ. Since there always
exists such a δ for each ε, the feedback interconnection
is Lyapunov stable.

This result gives stability conditions for the feedback of
two dissipative systems with no input. However, we are
often interested in analyzing systems that have additio-
nal systems interconnected as is the case in the study
of large scale systems. Alternatively, we might be in-
terested in the input-output properties of a single feed-
back interconnection. These problems may be addressed
by considering the dissipative properties of the feedback
system.

Corollary 1. The feedback interconnection of two QSR
dissipative switched systems is QSR dissipative with re-
spect to the supply rate parametrized by any real-valued
α,

ωi(u, y) = yT Q̂îiy + 2yT Ŝîir + rT R̂îir
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where

Q̂îi =

[

Qi + αRî −Si + αS
T
î

−ST
i + αSî Ri + αQî

]

,

Ŝîi =

[

Si αRî

−Ri αSî

]

and R̂îi =

[

Ri 0
0 αRî

]

for i = {1, ...,M1} and î ∈ {1, ...,M2}.

This result was derived as part of the proof of the pre-
vious theorem so it will not be repeated. Beyond simply
assessing stability, this result allows us to assess the dis-
sipative rate of the feedback interconnection. This as-
sessment can be used as additional systems are added
in feedback. As long as the dissipative rate of each loop
is considered, stability of the overall interconnection can
be given if the final connection satisfies the conditions
of Theorem 4.

Some results will now be stated for the special case of
passivity for switched systems.

Theorem 5. A passive switched system with all subsy-
stems ZSD is stable for zero input (u(t) = 0).

The passivity property can be used when considering
interconnections of systems. The following results shows
stability of the feedback and parallel interconnections of
two passive systems.

Theorem 6. The feedback interconnection (Fig. 1) of
two passive switched systems G1 and G2 forms a passive
switched system.

Theorem 7. The parallel interconnection (Fig. 2) of
two passive switched systems G1 and G2 forms a passive
switched system.

These results provide the expected generalizations of
passivity theory from nonlinear systems to nonlinear
switched systems. More details on these results with
proofs can be found in [30]. An example of this is pro-
vided in Section 3.2.

3.2 Example

The following example demonstrates the analysis ap-
proach for the feedback of two QSR dissipative switched
systems. Specifically, this example will illustrate how the
analysis methods can be used to synthesize a stabilizing
controller for a given switched plant. The example was
chosen to be linear to be easy to follow, but the results
in this paper apply to nonlinear switched systems.

The switched plant to be controlled has two subsystems
given by linear dynamics,

ẋ = Aix+Biu
y = Cix.

The dynamics are defined for subsystem 1 by

A1 =

[

−0.5 1
0 −1.3

]

, B1 =

[

1
1

]

, C1 =
[

1 0.5
]

and for subsystem 2 by

A2 =

[

−0.2 0.1
1.5 −0.7

]

, B2 =

[

1
1

]

, C2 =
[

1.5 1
]

.

Subsystem 1 is stable and passive while subsystem 2 is
unstable. The system is QSR dissipative with respect
to Q11 = −0.05, S11 = 0.5, and R11 = 0 for subsystem
1 and Q12 = 0.11, S12 = 0.5, and R12 = 0 for subsystem
2. This can be shown by storage functions

V1(x) = 0.466x2
1 + 0.068x1x2 + 0.216x2

2

V1(x) = 0.998x2
1 − 0.496x1x2 + 0.748x2

2.

Cross supply rates can be found to show dissipativity
for this switched system. One such set is given by

ω1
2(u, y, x, t) = uT y − uTu

ω2
1(u, y, x, t) = uT y + 0.22yT y + 0.25uTu.

A controller can be designed to stabilize this plant. In
general, the controller can have an arbitrary number of
subsystems. For this example, there exists stabilizing
controllers with only one mode. One set of conditions
for such a stabilizing controller is that it has QSR para-
meters Q2 < 0, S2 = 0.5, and R2 < −0.11. An example
of a controller that satisfies this condition is given by

ẋ = −0.1x+ u
y = x+ 0.2u

that has parameters Q2 = −0.05, S2 = 0.5, and R2 =
−0.15. It can be verified that this controller satisfies
the conditions of the stability theorem (25). When this
controller is placed in feedback with the switched plant,
stability is maintained for arbitrary switching.

4 Networking Passive Switched Systems

This section focuses on networking passive switched sy-
stems. Consider two switched systems (8) that are both
output strictly passive. They are networked in the struc-
ture defined in Fig. 3. This interconnection forms a lar-
ger switched system from input r to output y. This sec-
tion incrementally shows that this networked system is
asymptotically stable. First it is shown that the output
strictly passive property of the subsystems of G1 and G2

is preserved when the two systems are connected using
the wave variable transformation. Next it is shown that
the energy added due to switching is bounded. Putting
these two together implies that, for the mapping r → y,
zero input implies that y(t) converges to zero asympto-
tically. With the addition of the condition that the sy-
stems are zero-state observable, asymptotic stability is
shown.

The first result to be shown is how the wave variable
transform and the network interconnections preserve the
output strictly passive nature of the active subsystems.
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Each subsystem has storage functions V
(1)
i for G1 and

V
(2)

î
for G2. Note that the loop signals can be stacked

to generate the vectors e = [eT1 eT2 ]
T , r = [rT1 rT2 ]

T , and
y = [yT1 yT2 ]

T .

Consider the architecture in Fig. 3 with constant ti-
me delays and the wave variable transformation (17-18).
Each system G1 and G2 being an OSP switched system
implies V (1)

i and V
(2)

î
exist for G1 and G2, respectively,

that satisfy

∫ t2

t1

eT1 y1 − ε
(1)
i yT1 y1dt≥V

(1)
i (x1(t2))−V

(1)
i (x1(t1))

(27)
∫ t2

t1

eT2 y2 − ε
(2)

î
yT2 y2dt≥V

(2)

î
(x2(t2))−V

(2)

î
(x2(t1)),

(28)

for tik ≤ t1 ≤ t2 ≤ tik+1, ∀i, k and all ε(1)i , ε
(2)

î
> 0.

Using the wave variable transformation (17-18) and the
signal relations in the loop (13-14), the following deri-
vation holds.

∫ T

t0

yT1 y2ddt ≥
∫ T

t0

yT2 y1ddt

∫ T

t0

yT1 (r1 − e1)dt ≥
∫ T

t0

yT2 (e2 − r2)dt

∫ T

t0

(yT1 r1 + yT2 r2)dt ≥
∫ T

t0

(yT1 e1 + yT2 e2)dt.

Define a new energy storage function Vîi(x) =

V
(1)
i (x1)+V

(2)

î
(x2). Applying (27) and (28) to the above

inequality gives the following result.

∫ T

t0

yT rdt ≥
∫ T

t0

yT edt

≥εîi

∫ T

t0

yT ydt+ Vîi(x(T ))− Vîi(x(t0)).

where εîi = min{ε(1)i , ε
(2)

î
}. This shows that each pair

of active subsystems (i, î) of the mapping r → y is
OSP with storage function Vîi. As mentioned in Sec-
tion 3.1, the feedback of two switched systems forms a
new switched system that with as many subsystems as
M = M1M2. In order to simplify the notation, instead
of tracking both subsystems (i, î) of the interconnection,
only a single index i is used to track the subsystems of
the interconnection.

The next step to show is that the energy added to the
system, due to switching, is bounded. This can be done
by studying the energy added at switching instants tik
from initial time t0 to arbitrary time T for a particular
subsystem i. It can be assumed that K switches occur
on this interval where K may depend on T . Denote the
number of times that subsystem i is active on this in-

terval by Ki.

K−1
∑

ik=1

[Vik(x(tik))− Vik−1(x(tik))]

=
m
∑

i=1

Ki
∑

k=1

[

Vik+1(x(tik+1))− Vik(x(tik+1))
]

+

m
∑

i=1

[

Vi1(x(ti1))− ViKi
(x(tiKi

))
]

≤
m
∑

i=1

Ki
∑

k=1

[

Vik+1(x(tik+1))−Vik(x(tik+1))
]

+
m
∑

i=1

Vi1(x(ti1))

By the definition of passivity, there exist absolutely in-
tegrable functions φij to bound the energy accumulated
by the j subsystem while the i subsystem is active. For
a particular switching sequence, a set of piecewise conti-
nuous functions can be defined to indicate the function
φij that is valid at each time for the jth inactive subsy-
stem,

φj(t) =

{

φij(t) ∀i )= j
0 i = j

(29)

Since each φij is absolutely integrable, then each φj is
also absolutely integrable. The energy accumulated by
each subsystem i can be bounded.

Ki
∑

k=1

[

Vik+1(x(tik+1))−Vik(x(tik+1))
]

≤
Ki
∑

k=1

∫ tik+1

tik+1

φi(t)dt

This leads to a bound on the energy added due to swit-
ching.

K−1
∑

ik=1

[Vik(x(tik))− Vik−1(x(tik))]

≤
m
∑

i=1

[
∫

∞

t0

φi(t)dt+ Vi1(x(ti1))

]

< ∞

Each of the terms in this finite sum is a finite quantity so
the energy is bounded. This upper bound is independent
of the choice of T . Taking the limit as T → ∞ shows that
the energy is bounded for all time.

This result can be used to show that the squared output
is bounded by the following bound.

∫ T

t0

yT ydt =
K
∑

ik=1

∫ tik

tik−1

yT ydt+

∫ T

tK

yT ydt

≤
1

ε

K−1
∑

ik=0

[Vik+1(x(tik+1))− Vik(x(tik+1))] +

1

ε

m
∑

i=1

Vi1(x(ti1))

In the equation above, there are two summations. The
second summation is the sum of the initially stored ener-
gy across all subsystems. Since initially stored energy
is finite, this sum is finite. The first summation is the
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energy added due to switching. Again, this bound is in-
dependent of the time T chosen earlier. As we take the
limit as T → ∞, the bound still holds. This shows that
the L2 norm of the output is finite and bounded above
by the sum of the initially stored energy and the energy
added due to the switching sequence.

The development in this section leads to the following
result. It assumes that each system in feedback is an out-
put strictly passive switched system. It employs the wa-
ve variable transformation to guarantee stability despite
time delays. The proof is based on the details presented
in this section up to this point so will be omitted.

Theorem 8. Consider two systems, G1 and G2, each
an OSP switched system with all subsystems zero-state
detectable. These two systems are interconnected over a
network with time delays using the modified wave va-
riable transformation as in Fig. 3. Then this system is
asymptotically stable.

More details on this result can be found in [25]. The
theorem shows how the proposed architecture (Fig. 3)
can be used to guarantee stability for an interconnection
of two output strictly passive switched systems.

This theorem is applicable as a synthesis tool. This ap-
proach assumes that a given plant is an output strictly
passive (switched or non-switched) system. The control-
ler must be designed to be an output strictly passive
system with asymptotically zero-state detectable sub-
systems. It is allowed to be switched or non-switched
as long as it meets the definition of an output strictly
passive switched system given in this paper. The resul-
ting interconnection is an asymptotically stable system
despite time delays in the network.

5 Conclusions

This paper focused on the problem of maintaining stabi-
lity when interconnecting switched systems. Background
material was presented on dissipativity and passivity
for nonlinear systems as well as for switched systems.
The wave variable transformation was introduced as a
method of compensating for delays in networked swit-
ched systems. While this approach is well established
for nonlinear systems, it is a new approach for switched
systems. The main results of this paper included provi-
ding conditions under which the feedback interconnec-
tion of two QSR dissipative switched systems is stable.
The special case of passivity for switched systems was
also covered. As expected, the property implies stability
and is preserved when passive systems are combined in
feedback or in parallel. The other main result of this pa-
per provided stability conditions on networked passive
switched systems where the wave variable transformati-
on can be used to compensate for delays. Any two out-
put strictly passive switched systems can be connected
over a network and stability can be maintained.
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