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Abstract— Fast detection of objects in a home or office
environment is relevant for robotic service and assistance appli-
cations. In this work we present the automatic localization of a
wide variety of differently shaped objects scanned with a laser
range sensor from one view in a cluttered setting. The daily-life
objects are modeled using approximated Superquadrics, which
can be obtained from showing the object or another modeling
process. Detection is based on a hierarchical RANSAC search to
obtain fast detection results and the voting of sorted quality-of-
fit criteria. The probabilistic search starts from low resolution
and refines hypotheses at increasingly higher resolution levels.
Criteria for object shape and the relationship of object parts
together with a ranking procedure and a ranked voting process
result in a combined ranking of hypothesis using a minimum
number of parameters. Experiments from cluttered table top
scenes demonstrate the effectiveness and robustness of the
approach, feasible for real world object localization and robot
grasp planning.

I. INTRODUCTION

Detecting and localizing objects is a fundamental task of
robotic systems. The task is of great importance in industrial
applications for the automation of part production and the ul-
timate goal to achieve a lot size of one or pure customization.
In this work, we present the automatic localization of a wide
variety of differently shaped objects scanned from one view
in a cluttered setting. The resulting object pose determination
enables a grasp planning of a desired robot arm.

The classical approach is to use intensity or color cameras
to exploit the appearance of objects for the detection task.
Because shape is not directly encoded, this problem is in
general difficult or ill-posed [3]. However recent progress in
invariant feature extraction is the basis to obtain first good
results in realistic settings [6], [12], [16]. Although these
approaches are rather fast, they do not work satisfactorily in
cluttered scenes and “inherit the major problem of intensity-
based systems, that is, dependency on lighting conditions”
[11].

To overcome these problems with intensity images the 3D
shape of the objects has to be directly recovered from range
images. Multiple parametric models have been introduced
for 3D object recovery, but the Superquadrics are perhaps
the most popular for several reasons. The compact shape
can be described with a small set of parameters ending up
in a large variety of different basic shapes. The recovery of
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Superquadrics has been well investigated and even global
deformations can be easily adopted [21]. They can be used
as volumetric part-based models desirable for robotic grasp-
ing operations. These advantages cannot be found in other
geometric entities which predestines the Superquadric model
for our application.

A. Related Work

Solina et al. pioneered work in recovering single Su-
perquadrics with global deformations in a single-view point
cloud [21] and demonstrated that recovering a Superquadric
from range data is sensitive to noise and outliers, which
renders a stable object recognition difficult. To overcome this
problem many approaches assume that full 3D data of the
objects is available to estimate the complete set of model
parameters [5], [7], [14]. On the other hand, full 360◦ views
are difficult to obtain in practice and for object grasping
it is sufficient to estimate pose parameters while the task
constraint specifies shape and size parameters [20], [24].

Much progress has been made in the last decade in
tackling the recognition problem by acquiring a single-view
range image and interpreting the scene using Superquadrics.
Leonardis et al. introduced the recover and select paradigm
for segmenting a scene with simple geometric objects with-
out occlusions [15]. This method aims at a full search with
an open processing time incompatible to robotic applications.
Subsequent work has improved this segmentation, e.g. Krivic
et al. demonstrated the recovery of a known complex object
in a scene using the connectivity information of the Su-
perquadrics [13] handling sparse scene occlusions by using
the redundancy information of the part connections. Tao et
al. also has presented an improvement of Leonardis’ segmen-
tation [22] using random samples with the focus on speeding
up the Superquadric fit in noisy range data. This approach
comes close to filling the needs og robotic applications but
only using undeformed Superquadrics and concentrating his
work on detecting pipes in sonar range images. Taylor et
al. first segments the image for describing the scene [23]
but saves processing time with the limitation of detecting
single geometric primitives disclaiming the flexibility of
Superquadrics to describe objects.

Katsoulas proposes a novel object detection approach
searching for box-like objects using parabolically deformable
Superquadrics [11]. He weakens the bottleneck of the scene
segmentation using a 3D edge detector and achieved some
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improvement in processing time, but this method cannot
handle non box-like objects and scene occlusions.

All these approaches use segmentation to analyse the
scene. It is however argued that a bottom up segmentation is
in conflict with purposeful object detection. The detection of
a known object does not require segmentation. Moreover,
segmentation wastes valuable processing time as shown
in the experimental comparison of different range image
segmentation algorithms [10]. One of the main contributions
of our work achieving fast object detection is the lack of
necessity for any segmentation step.

B. Problem Description and Method of Resolution

The approach we propose exploits a robot mounted laser
range sensor, which scans the scene of interest. The acquired
range data is sparse due to the single-view scan, exhibiting
the typical laser and camera shadows, and the objects are
only partly visible in cluttered scenes typically encountered
in realistic scenarios. Detecting an object in this range data is
difficult and the task given to the robot is to find and locate an
object specified by the user within a few seconds. The benefit
of our approach is that we are able to handle these problems
with the object’s occlusions and intersections, because of the
purposeful approach to search for a given predefined object
model.

The second problem to deal with is the single-view range
image. The information of the objects’ rear is not available.
What can be exploited is the symmetry of the real-world
objects. Furthermore, keeping the set of model parameters
low, it is not possible to model complex shaped object with
a single Superquadric or a set of Superquadrics with global
deformations. Therefore, the model describes the approxi-
mated overall shape of the object where the details in shape
are not present in the sparse range data. Example objects,
which are commonly used in a human-robot interaction and
which can all be handled with the proposed approach, are
e.g. pen, cup, bowl, book, ball, computer mouse, or tools.

The contribution is a rapid and reliable detection and pose
determination of known objects. It is shown that a hierarchi-
cal search in the sense of a coarse to a fine processing (sub-
scaling the range data) increases computational efficiency
and saves valuable processing time [4]. Clever generation and
verification of pose hypotheses is the key for efficient object
detection [25]. Hence, the proposed approach, achieving fast
results, is embedded in a hierarchical structure starting with
a RANSAC-based object search to find pose hypotheses
followed by a pose refinement. In the second step these
hypotheses are verified executing a ranked voting process
[18] over the sorted quality-of-fit criteria (the measure of
fit, the number of interior points and the number of points
on the Superquadrics surface) to robustly select the final
object pose. Moreover, we shown that searching for a tapered
Superquadric with fixed size and shape makes the Levenberg-
Marquardt minimization process [17] less complex, less time
consuming and more stable. Using a model description with
several Superquadrics extends the ranked voting process
with two additional parameters describing the relationship

between the Superquadrics, the main axis steradian and the
center distance.

The paper is structured by starting with a short introduc-
tion to Superquadrics in Section II. Section III presents the
approach in detail and Section IV give experimental results
to evaluate the proposed method. Section V gives the final
conclusion.

II. THE SUPERQUADRICS MODEL

Superquadrics are a family of parametric shapes which
were first introduced in computer graphics by Barr [1] in
1981. Superquadrics can be classified into Superellipsoid,
Supertoroid and Superhyperboloid with one and two parts.
In this work we focus on the Superellipsoid which is useful
for a volumetric part-based object description, because they
are compact in shape and have a closed surface.

The implicit form to describe a Superquadric is given by

F (x) =

((
x

a1

) 2
ε2

+
(
y

a2

) 2
ε2

) ε2
ε1

+
(
z

a3

) 2
ε1

, (1)

where ε1 and ε2 are the shape parameters, ranging from
0.1 to 1, and a1, a2 and a3 are the scale parameters
along the x, y and z-axis of the Superquadric. We refer
to equation (1) as inside-outside function F of a given
point x. If F (x) = 1 the point is on the Superquadric
surface. If F (x) < 1 the point is inside the Superquadric
and visa versa. To cover most of the object part shapes
global deformations of the Superquadrics are required which
were also introduced by Barr [2]. We use global tapering
along the Superquadric’s z-axis. The taper transformation
and its coefficients kx and ky are defined in [21] with a
range of −1 < kx, ky < 1. A tapered Superquadric in
general position (px, py , pz) and orientation (φ, θ, ψ) has
the ability to represent shapes of a sphere, cuboid, cylinder,
pyramid, cone, wedge and all shapes in between with the
parameter set Λ{a1, a2, a3, ε1, ε2, φ, θ, ψ, px, py, pz, kx, ky}.
Given a set of points xk the parameter set Λ is recovered
applying the Levenberg-Marquardt algorithm [17] in a least-
squares minimization. Extending the inside-outside function
to the parameter set Λ the following expression must be
minimized

min
n∑

k=0

(F ε1(xk; Λ) − 1)2. (2)

The exponent ε1 in equation (2) is necessary for optimal
minimization to have a correct distance measure independent
to the shape parameter. Note the missing factor

√
a1 · a2 · a3

for a volume minimizing recovery as described in [21]. In
our object detection approach the shape, scale and taper
parameters are given by the target object and the pose
(position and orientation) parameters are estimated.

III. OBJECT DETECTION

Any task-based system needs to first learn about the
relevant object. This is achieved by specifying a simplified
Superquadric model of the wanted object or a unique part of
it. The size, shape and taper parameter of the parameter set Λ
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and potentially the Superquadric relations are set according
to the best object description. A standard method to describe
this model is to view the target object alone and fit the object
to the data.

We assume for our approach that the object to be detected
is in the scanned area. Otherwise the object, which is most
similar to the searched object will be selected. Fig. 1 outlines
the detection approach.

Fig. 1. Flow chart of the proposed object detection approach.

The system receives the object model and the scene
represented by an unstructured point cloud scanned from
one-view. The preprocessing removes the dominant plane
from the range image which is in most cases the table or the
ground plane. This information is not necessary for detection.

In order to achieve fast detection results a probabilistic
approach is used to generate pose hypotheses. For keeping
the computational effort low the search process is structured
in a two-level hierarchy.

First the low-level search (Probabilistic Pose Estimation)
is RANSAC-based [8] with n samples on sub-scaled raw data
to speed up the Superquadric recovery using the Levenberg-
Marquardt [17] minimization. The best fit of the low-level
search is iteratively refined. To ensure a true positive detec-
tion result m hypotheses are computed, which indicates how
often the object could appear in the view of the given scene.

Secondly, a high-level selection (Pose Verification) uses
the full resolution image to verify the object existence. To
achieve this a voting [18] for the pose hypotheses is proposed
considering three constraints: the measurement of fit, the
number of points on the Superquadric surface and the number
of the Superquadric’s interior points.

If the model describes a composite object (k > 1) the
pose verification has to be extended to the compound model
pose (Connectivity Verification). An additional voting of the
Superquadrics relationships, the main axis steradian and the
center distances, is used. Detailed information about the
processing steps is given in the following sections.

A. Preprocessing: Dominant Plane Removal

Most of the range images of a table scene consist of the
table plane. However, this plane is not needed for the object
detection and, so much the worse, it slows down the object
detection process and raises the likelihood of false detections.
Hence, the first step is to detect and remove the raw data
points associated with the ground plane. Furthermore, the
plane can be used as reference for the robot. We define
the ground plane as the dominant plane in the range image
associating more raw data points than in the rest of the area.

Finding the dominant plane is achieved by fitting local
plane patches and extending them to verify a global plane.
We radically decrease the resolution of the range image to
100 seed points equally distributed over the area. Each point
is now a seed for fitting the plane patch to the points in
the close neighborhood. The normal vector of the surface
patch corresponds to the vector n which is determined by
the eigenvalue problem Cn = λminn, where λmin is the
smallest eigenvalue and C is the covariance matrix of the
surface patch point set. The plane point is the mean of
the surface patch point set. Each plane hypothesis is now
verified against the other 99 points by calculating the normal
distances to the plane. A point belongs to the plane if the
distance is smaller than the median of all normal distances.
The plane hypothesis with the most supporting points is the
dominant plane. If it contains more raw data points than in
the rest of the area the raw data points of this plane are
removed, otherwise no ground plane is detected.

B. Hierarchical Search

The computational bottle neck of processing is the iterative
Levenberg-Marquardt algorithm minimizing six variables si-
multaneously (position and orientation of the Superquadric).
This time consuming algorithm is executed as often samples
are computed. Its processing time depends on the number of
points to be fitted and on the number of iterations to converge
the optimization.

The classical RANSAC algorithm is a robust and reliable
method to detect an object. Using the hierarchical structure
we show that we achieve more detection robustness in less
time than n · m RANSAC samples. The reason being is
that our method works on different scaling levels applying
different evaluation criteria. Detailed information about the
hierarchical processing – finding the hypotheses and selec-
tion – is given in the following sections.

An important minor detail for every Superquadric fit
minimization should be mentioned. While recovering a set of
points the initial z-axis orientation of the Superquadric must
be assigned to a local coordinate system build with extracted
from the central moments of the point cloud to be fitted.
The solution proposed here is to execute three estimations
(sub-sampled Superquadric fits with less iterations) where the
z-axis is aligned with the three central moment directions
and to then choose the best fit. This eliminates the shape
ambiguities in a robust way.
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1) Hypotheses: Probabilistic Pose Estimation: For find-
ing first hypotheses in the low-level search the RANSAC
algorithm is exploited. The number of hypotheses m that
will be sampled depends on the ratio of the Superquadric
size and the range image dimensions to allow for cover the
whole scene. Each sample calculation is started by picking a
random point in the raw data set and using a set of random
points (30 points) in the seed point’s neighborhood within
a radius r = min(a1, a2, a3), the smallest parameter for the
Superquadric size. Using this point set, a Superquadric is
recovered, where the algebraic distance M is the measure
of fit [9]. M is the mean of the algebraic distance calculated
with the inside-outside function of equation (1), that is,

M =

√√√√ 1

n
·

n∑
k=0

(F ε1 (xk; Λ) − 1)2. (3)

The pose estimation with the smallest value of M is then
used for a refinement step. This is necessary because the
pose hypotheses found by the RANSAC algorithm are not
well aligned with the raw data points. The refinement is
an iterative process on the local full resolution data points
to achieve a better adjustment of the Superquadric and the
iteration is stopped if no more improvement of the measure
of fit M can be achieved. The result of the probable pose
estimation step are m object pose hypotheses.

2) Selection: Pose Verification: The found and refined
pose hypotheses from the low-level search are now verified
using voting with additional criteria exploiting full resolution
data. The measure of fit M is not a sufficient criteria for a
correct object detection. Shape and size ambiguities in the
scene may lead to false detections because it is a fit to a local
surface patch. Additional information is needed to verify the
pose hypotheses. Exploiting the fact that the Superquadric
object model represents the surface of the entire object no
raw data points of the single- view range image should be
located inside the recovered Superquadric. And secondly,
the probability that a recovered Superquadric represents the
object searched increases with the number of raw data points
located on the Superquadric’s surface.

Let Xn be a set of raw data points in the neighborhood of
the recovered Superquadric, that are points within the radius
r = 1.2 · max(a1, a2, a3) of the Superquadrics’ center. We
can define the evaluation criteria I for the number of the
Superquadric’s interior points and S for the Superquadric’s
surface points by

I =

{
n∑

k=0

xk ∈ Xn | F ε1 (xk; Λ) < 1 − γ

}
, (4)

S =

{
n∑

k=0

xk ∈ Xn | 1 − γ ≤ F ε1 (xk; Λ) < 1 + γ

}
, (5)

where γ can be selected depending on the application spec-
ification required in all expressions. It can be seen as model
approximation tolerance, where for all experiments presented
below γ is set to 0.2 allowing a 20% deviation.

Fig. 2. The main axis steradian αk and the distance dk between the
Superquadric centers describe the connectivity of a composite object.

A ranked voting using these three criteria M, I and S
is the key to achieving a robust hypothesis selection. The
voting process is performed using the sorted ranks of M, S
and I. The hypothesis with the lowest sum of all ranks is
selected. This procedure does not need any parameters but
uses the natural sorting, and combines three criteria, which
individually describe only specific object characteristics but
which together give a total constraint to select the best
hypothesis.

To summarize, this hierarchical two-level search achieves
a fast and robust detection result especially in cluttered
scenes. Because of fitting the object model to local surface
patches and verify them globally within the verification step,
disconnected surface patches can be associated to one part.
This enables the robust detection of partly occluded objects.

C. Compound Model: Connectivity Verification

A composite object using a model description with two or
three Superquadrics needs an extension in the voting process
to include the relationship between the Superquadrics. Krivic
et al. uses two vectors for the joint positions and a ZY Z
rotation [13] to describe the linked Superquadrics. For our
purpose we show that it is sufficient to use a more efficient
connectivity description despite the fact that the description
is not unique. We found that the steradian between the
two neighboring Superquadric’s z-axes (A) and the distance
between the Superquadric’s centers (D) is sufficient. This
reduces the connection parameters from 6 to 2. These two
evaluation criteria are exploited to increase the detection
robustness using again voting [18]. Defining the vector a as
Superquadric z-axis and the point xc as Superquadric center
brings us to the following criteria,

A =

∣∣∣∣αk − arccos

(
ai · aj

|ai| · |aj |

)∣∣∣∣ , (6)

D =

∣∣∣dk −
√

(xci − xcj )2 + (yci − ycj )2 + (zci − zcj )2
∣∣∣ . (7)

The evaluation criteria A and D are the absolute differ-
ences between the permutations of all m low level fits and
the nominal angle αk and the distance dk specified in the
model (see Fig. 2). Again the sorted ranks A and D for the
final voting are calculated and stored in a list. The lowest
sum of the ranks of each evaluation criteria A and D with
their associated result M, I and S represents the parameter
set Λk of the object detected.
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(a) (b) (c)

Fig. 3. (a) Intensity image of a typical scene consisting of a ceramic and a wooden bowl, a cup, a screwdriver and a rubber-mallet. Detection results are
shown of the ceramic bowl (b) and the cup (c) modeled with two Superquadrics.

IV. EXPERIMENTAL EVALUATION

The experimental set-up consists of a triangulation laser
range sensor from IVP mounted on a pan-tilt unit from
AMTEC. The range image is acquired by sweeping the laser
plane over the scene (compare Fig. 3). The resolution of
the sensor is about 2mm at a distance of 1m. To obtain
reasonable image quality (see Fig. 3(a)), about 150 scan lines
are required for such a scene. For the experiments we used
a Pentium IV 2.0 GHz PC. The algorithm is implemented
in C++ and for displaying the results the Visualization Tool
Kit (VTK)1 is used. All experiments are carried out using
n = 10 initial RANSAC trials and 20 minimization iterations
for each Superquadrics fit.

Fig. 3 shows a typical occluded arrangement of objects.
The scanned range image consist 37708 points and the first
experiment investigates the detection behavior in case of
similar objects present in one scene. Fig. 3(b) shows the
correctly detected wooden bowl with a similar white ceramic
bowl to the right of it. The detection took 2.4 seconds
and note the heavily occluded bowl and the broken surface
patches. The second experiment demonstrates the accuracy
of detecting a cup in the same scene modeled with two
Superquadrics (the relations are defined in Tab. I). The cup
is also partly occluded but the detection needed 27.3 seconds
because of finding (m = 100!) the small handle in the
scene. However note, the sparse data available from the
cup (especially of the handle) and the robust detection of
it in 6 degrees of freedom suitable for robotic grasping
tasks. Beside that, Salganicoff et al. showed that for a
grasp point planning the Superquadrics’ size, shape and pose
parameter are sufficient. Detecting the cup in 5 degrees of
freedom (only the cup-body) speeds up the procesing time
significantly (3.1 seconds). Tab. I summarizes the model and
algorithm parameter of the bowl and the cup. Summarizing
the first two experiments, the results show that due to the
hierarchical RANSAC approach the processing time is nearly
independent of the range image size (number of points), even
on noisy data, but it depends on the number of Superquadrics
and the model size related to the scene dimensions.

1Freely available open source software. (http://public.kitware.com/vtk)

The last experiment investigates the object detection in
a cluttered scene in terms of detection probability using a
composite object model exploiting the Superquadric relation-
ships. Fig. 4 illustrates the correctly detected rubber-mallet
in a cluttered tool scene (range image size: 31101 points).
Trying to detect the rubber-mallet with one Superquadric in
this scene with many shape ambiguities does not end in a
robust result. To evaluate the performance we examined 100
experiments on the same scene describing the rubber-mallet
first with the head model only, second with the shaft only
and finally with both Superquadric models exploiting their
relationship. The results are summarized in Tab. II. Note, that
trying to detect the mallet with a single Superquadric causes
a false detection in every second trial. Only when exploiting
the geometric relationship the true positive detections of
the rubber-mallet raise to 76%. The remainder are false
detections due to the similarity of objects. In the scene in
Fig. 3 without similar shaped object parts (like the shaft of
the metal hammer and the spray tin in Fig. 4) the detection
rate of the rubber-mallet is 90%. The reason for not obtaining
100% is that the number of hypotheses m is bounded from
10 to 100 due to computational efficiency. It still remains a
random process and if m is increased the detection results
converge towards 100%.

Fig. 4. Detection result of a rubber-mallet in a cluttered tool scene of
similar objects exploiting the relation of the two modeled Superquadrics.

A comparison to previous detection methods showed that
our algorithm achieves good results, even if the Superquadric
model is far apart from the objects shape. The method from
Krivic et al. [13] is the one with the most similar object
detection performance and modeling approach. As in the
introduction stated, the segmentation wastes much time, and
in this case more than 10 minutes, while the object detection
on the pre-segmented data sets needs approximately the same
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TABLE I

SUMMARY OF THE ALGORITHM AND SUPERQUADRIC PARAMETER OF THE OBJECT DETECTION RESULTS IN FIG. 3.

part a1 a2 a3 ε1 ε2 kx ky m k αk dk

Bowl 60mm 60mm 20mm 0.4 1.0 0.3 0.3 10 - - -
Cup-Body 38mm 38mm 48mm 0.1 1.0 0.0 0.0 12 - - -

Cup-Handle 30mm 23mm 8mm 0.5 1.0 0.0 0.0 100 - - -
Cup - - - - - - - - 2 90◦ 50mm

TABLE II

PERFORMANCE EVALUATION OF THE OBJECT DETECTION IN FIG. 4 AND SUMMARY OF THE ALGORITHM AND SUPERQUADRIC PARAMETER.

part a1 a2 a3 ε1 ε2 kx ky m k detect αk dk time
Head 30mm 30mm 56mm 0.1 1.0 0.0 0.0 10 1 48% - - 2.3s
Shaft 12mm 10mm 120mm 0.1 1.0 0.0 0.0 26 1 55% - - 7.1s
Mallet - - - - - - - 36 2 76% 90◦ 170mm 10.2s

amount of time as our detection approach without a previous
segmentation procedure.

V. CONCLUSION AND FURTHER STEPS

To sum up, we introduced a 3D object detection approach
with a geometric model description using approximated
Superquadrics. Fast and robust object detections are achieved
combining the RANSAC algorithm with a hierarchical sub-
scale search. A key for robust detection is the introduction of
two new criteria of fit and a ranked voting in the hypothesis
selection step. For compound objects two more criteria
have been proposed and evaluated using the same voting
procedure. Experiments confirmed the rapid and reliable
detection of every day objects.

Future work will deal with learning the model parameters
in a more natural way applied to convex shaped objects.
Showing a cognitive system the object which it should
detect, the system should be able to extract the relevant
Superquadric parameters. This will enable the system to
learn new tasks and to improve the human robot interface.
First steps are being taken to achieve this goal to realize
an autonomous robot system. Acquiring a color range image
of the object enables a geometric decomposition [19] and
a final Superquadric fit to describe the object. First tests
were successfull but more work is needed to achieve robust
extraction of the model parameters.
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