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Jiráskova 1389, 516 01 Rychnov nad Kněžnou
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Abstract—Segmentation, feature extraction and classification
of signal components belong to very common problems in various
engineering, economical and biomedical applications. The paper
is devoted to the use of discrete wavelet transform (DWT) both
for signal preprocessing and signal segments feature extraction as
an alternative to the commonly used discrete Fourier transform
(DFT). Feature vectors belonging to separate signal segments
are then classified by a competitive neural network as one of
methods of cluster analysis and processing. The paper provides
a comparison of classification results using different methods of
feature extraction most appropriate for EEG signal components
detection. Problems of multichannel segmentation are mentioned
in this connection as well.

Index Terms—Segmentation, change-point detection, feature
extraction, classification, multichannel signal processing, discrete
wavelet transform, neural networks

I. INTRODUCTION

The preliminary stage of multichannel signal classification
includes its segmentation using principal component analysis
and signal de-noising [1] in many cases followed by different
methods of change-points detection [2], [3]. This stage is fun-
damental for further data processing both for one-dimensional
and multi-dimensional signals.

Signal segments feature extraction forms the next step of
signal segmentation allowing combination of time-domain and
frequency-domain signal features. Commonly used spectral
representation of a signal based upon its all-pole model or
its discrete Fourier transform provides the same frequency
resolution over the whole window function. To allow different
resolution the wavelet transform [4], [5], [6] is often used pro-
viding its very efficient alternative allowing different levels of
decomposition. The basic principle and application of wavelet
transform is described in the first part of the contribution
resulting in the given signal wavelet feature extraction and
feature vector definition.

The task of signal segments classification forms another
problem that can be solved by neural networks [7], [8] in many
cases. The paper presents wavelet signal features classification
by self-organizing neural networks and it mentions a possible
compression of signal features as well. The method presented
in the paper is applied for an EEG signal analysis and its
segments classification into the proposed number of classes.

II. EEG SIGNAL PREPROCESSING AND
SEGMENTATION

Information content of EEG signals is essential for detec-
tion of many problems of the brain and in connection with
analysis of magnetic resonance images it forms one of the
most complex diagnostic tools. To extract the most important
properties of EEG observations it is necessary to use efficient
mathematical tools [9], [10] to enable reliable and fast enough
processing of very extensive data sets in most cases.

Digital filters can be used in the initial stage of EEG data
processing to remove power frequency from the observed
signal and to reduce its undesirable frequency components.
Fig. 1 presents a sample of a selected EEG channel comparing
results of its segmentation by an expert and by a selected
Bayesian method [2] detecting changes of its mean value
and variation. This approach has been used in this case for
a selected channel only even though further channels must be
taken into account in the real case as well.

III. WAVELET ANALYSIS AND SIGNAL FEATURE
EXTRACTION

Wavelet transform forms a general mathematical tool for
signal processing with many applications in EEG data analysis
[11], [12], [13], [14], [15] as well. Its basic use includes
time-scale signal analysis, signal decomposition and signal
compression.
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Fig. 1. Results of EEG signal segmentation presenting (a) signal segmenta-
tion by an expert (red) and by a Bayesian method of change-point detection
(blue) and (b) a probability function to detect change-points



The set of wavelet functions is usually derived from the
initial (mother) wavelet h(t) which is dilated by value a = 2m,
translated by constant b = k 2m and normalized so that

hm,k(t) =
1√
a

h(
t − b

a
) =

1√
2m

h(2−m t − k) (1)

for integer values of m, k and the initial wavelet defined either
by the solution of a dilation equation or by an analytical
expression [4], [5]. Both continuous or discrete signals can
be then approximated in the way similar to Fourier series and
discrete Fourier transform. In case of a sequence {x(n)}N−1

n=0

having N = 2s values it is possible to evaluate its expansion

x(n) = a0 +
s−1∑
m=0

2s−m−1−1∑
k=0

a2s−m−1+k h(2−m n − k)

Wavelet transform coefficients can be organized in a matrix T
with its nonzero elements forming a triangle structure⎡

⎢⎣
a2s−1 a2s−1+1 · · · a2s−1a2s−2 · · · a2s−1−1· · ·

a4 a5 a6 a7a2 a3a1a0

⎤
⎥⎦

with each its row corresponding to a separate dilation co-
efficient m. The set of N = 2s decomposition coefficients
{a(j)}N−1

j=0 of the wavelet transform is defined in the way
formally close to the Fourier transform but owing to the
general definition of wavelet functions they can carry different
information. Using the orthogonal set of wavelet functions they
are moreover closely related to the signal energy [5].

The initial wavelet can be considered as a pass-band filter
and in most cases half-band filter covering the normalized
frequency band 〈0.25, 0.5). A wavelet dilation by the factor
a = 2m corresponds to a pass-band compression. This general
property can be demonstrated for the harmonic wavelet func-
tion [5] and the corresponding scaling function by expressions

h(t) =
1

jπ/2 t
(ejπ t − ejπ/2 t) (2)

l(t) =
1

π/2 t
(ejπ/2 t − 1) (3)

As both these functions are modified by the scaling index
m = 0, 1, · · · according to Eq. (1), the wavelet is dilated
and its spectrum compressed resulting in time and frequency
domain representation presented in Fig. 2. Similar approach
can be also applied for other wavelet functions defined in either
analytical or recurrent form.

The set of wavelets define a special filter bank which can
be used for signal component analysis and resulting wavelet
transform coefficients can be further applied as signal features
for its classification. Signal decomposition performed by a
pyramidal algorithm is interpreting wavelets as pass-band
filters. Another approach [5] is based upon a very efficient
parallel algorithm using the fast Fourier transform.

The basic decomposition of a given column vector
{x(n)}N−1

n=0 presented in Fig. 3 assumes a half-band low-pass
scaling sequence

{l(n)}L−1
n=0 = [l(0), l(1), l(2), · · · , l(L − 1)]

and the complementary orthogonal wavelet sequence
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Fig. 2. The real part of the complex wavelet h(t)=(ejπ t−ejπ/2 t)/(jπ/2 t)
and the effect of its dilation to the corresponding spectrum compression

{h(n)}L−1
n=0 = [l(L − 1),−l(L − 2), l(L − 3), · · · ,−l(0)]

Corresponding sequences convolution and subsampling by two
provides values

p(n) =
L−1∑
k=0

l(k) x(n − k) =
n−L+1∑

j=n,n−1,...

x(j) l(n − j)

q(n) =
L−1∑
k=0

h(k) x(n − k) =
n−L+1∑

j=n,n−1,...

x(j) h(n − j)

for n = L − 1, L + 1, ..., N − 1. Subsequent application of
the same method provides signal analysis for different scales.
Introducing decomposition matrices

LN/2,N =

⎡
⎢⎢⎣

l(1) l(0) 0 0 · · ·
l(3) l(2) l(1) l(0) · · ·
· · · · · · · · · · · · · · ·
0 · · · l(L − 1) · · · l(0)

⎤
⎥⎥⎦

HN/2,N =

⎡
⎢⎢⎣

h(1) h(0) 0 0 · · ·
h(3) h(2) h(1) h(0) · · ·
· · · · · · · · · · · · · · ·
0 · · · h(L − 1) · · · h(0)

⎤
⎥⎥⎦

it is possible to decompose the initial signal x into two
sequences p = L x and q = H x standing for subsampled
low-pass and high-pass signal components. The elements of
vector q represent wavelet transform coefficients of the initial
level. Further wavelet coefficients can be obtained after the
application of this process to signal p according to Fig. 3.
Resulting wavelet coefficients {a(n)}N−1

n=0 related to chosen
scales can then be used as signal features for its classification.
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Fig. 3. A pyramidal filter bank structure used to evaluate wavelet transform
coefficients for a sequence {x(n)}N−1

n=0 and for values s=4 and N =2s =16
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Fig. 4. Presentation of (a) a part of a one channel EEG signal plot and the
result of its analysis (b) by the wavelet transform based on harmonic wavelet
functions and (c) by the short-time Fourier transform

Fig. 4 presents the scalogram and spectrogram of the
selected part of the EEG signal comparing results achieved by
the DWT and DFT. It is obvious that owing to the principle
of the wavelet transform short time signal components can
be better detected and more precisely localized by the DWT
comparing to results obtained by the DFT.

IV. SIGNAL SEGMENTS CLASSIFICATION

Classification of signal segments into a given number of
classes using segments features can be achieved by various
statistical methods. Another approach presented further is
based upon the application of self-organizing neural networks.

A. Principle

Two typical principles of signal classification are presented
in Fig. 5. In the first case general self-organizing maps employ
directly signal features as patterns for an input layer. The
number of output layer elements is equal to signal classes and
must be either defined in advance or it can be automatically
increased to create new classes [8]. During the learning process
neural network weights are changed to minimize distances
between each input vector and corresponding weights of a
winning neuron characterized by its coefficients closest to the
current pattern. In case that the learning process is success-
fully completed network weights belonging to separate output
elements represent typical class individuals.

a) b)

Feature
Extraction

Self−Organizing Map

Fig. 5. Principles of signal classification using (a) signal features obtained
separately and (b) signal features defined by a compression method

Another approach to signal classification is based on signal
features compression at first to decrease number of patterns
for self-organizing maps. The disadvantage of this algorithm
in larger time consumption resulting from the application of
two different subsequent methods can be minimized by a very
fast Levenberg-Marqardt network optimization used to reduce
the number of signal features to the number given by the size
of the hidden layer. Further improvement can be achieved by a
proper choice of signal segments for signal features evaluation.

B. Results

The algorithm presented above has been applied for clas-
sification of a real EEG signal. Fig. 6 presents EEG signal
segments and their analysis by a harmonic wavelet transform
resulting in features standing for scales 1, 2 and 3 respectively
covering three frequency bands with different time-scale res-
olution. Results of signal classification into four classes by a
self-organizing neural network are given in Fig. 7 and 8 for
two selected signal features allowing a simple visualization
of segmentation results. Class boundaries were evaluated and
presented in this case as well. Both features clustering and time
domain signal segments values show that signals of similar
structure belong to the same class.

Results of signal classification into four classes for different
features are compared in Tab. I. Each class i = 1, 2, · · · , C
can be characterized by the mean distance of the column
feature vector pj,i belonging to its separate segments j for
j = 1, 2, · · · , Ni from the centre ci of individual classes using
relation

crit =
1
C

C∑
i=1

1
Ni

Ni∑
j=1

dist(pj,i, ci) (4)

where C stands for the number of classes, Ni represents the
number of segments belonging to class i and function dist
is used for evaluation of the Euclidean distance between two
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Fig. 6. Results of feature extraction presenting (a) EEG signal segments and
(b) their wavelet features resulting from a harmonic DWT on scales 1, 2, 3
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Fig. 7. Results of signal classification into four classes presenting (a) given
signal, (b) the topology of signal segment features with class boundaries,
and (c) signal segments divided into four classes and typical signal segments
closest to the final neuron values at the bottom of each class
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Fig. 8. The topography of the two EEG signal segments features for their
classification into four classes with typical segment features at the bottom

vectors. It is obvious that classification parameters achieved
both by the DFT and DWT provide similar results but features
of the dominant cluster are closer together in the case of the
DWT use in most cases.

V. CONCLUSION

The contribution presents the use of wavelet transform
for a given signal classification. Mathematical basis of the
DWT and the following numerical experiments proved that
signal analysis based on DWT coefficients can be used very
efficiently for the estimation of signal segments features. The
paper presents results of a classification for signal segments
detected by the the Bayesian approach [2] for a selected
EEG channel. The following signal classification assumed the
knowledge of the range of the number of classes to apply
a self-creating classification method [8] to find their optimal
value and to exclude the possibility of dead neurons. Results
of signal classification can be further improved by various
methods but one the most important problems is in the right
definition of signal segment features using both its frequency-
domain and time-domain properties and it seems that the DWT
can be used in this area very efficiently. Further studies will be
also devoted to the use of principal component analysis to find
fundamental signal components from all observed channels for
the following global segmentation.

TABLE I
COMPARISON OF SIGNAL SEGMENTS CLASSIFICATION INTO FOUR

CLASSES USING TWO FEATURES RESULTING FROM A CHOSEN SIGNAL

SEGMENTS ANALYSIS

Feature Source
The Mean (Lowest) Square Error (4 classes)

Set 1 Set 2 Set 3
(15 segments) (144 segments) (234 segments)

DFT 0.009 (0.006) 0.026 (0.011) 0.030 (0.005)

Harmonic DWT 0.026 (0.008) 0.044 (0.005) 0.039 (0.003)
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