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ABSTRACT
The problem of spreading information in social networks is
a topic of considerable recent interest, but the conventional
influence maximisation problem which selects a set of any ar-
bitrary k nodes in a network as the initially activated nodes
might be inadequate in a real-world social network – cyber-
stalkers try to initially spread a rumour through their neigh-
bours only rather than arbitrary users selected from the en-
tire network. To consider this more practical scenario, Kim
and Eiko [16] introduced the optimisation problem to find in-
fluential neighbours to maximise information diffusion. We
extend this model by introducing several important parame-
ters such as user propagation rate on his (or her) neighbours
to provide a more general and practical information diffu-
sion model. We performed intensive simulations on several
real-world network topologies (emails, blogs, Twitter and
Facebook) to develop more effective information spreading
schemes under this model. Unlike the results of previous re-
search, our experimental results shows that information can
be efficiently propagated in social networks using the propa-
gation rate alone, even without consideration of the“number
of friends” information. Moreover, we found that the naive
random spreading would be used to efficiently spread infor-
mation if k increases sufficiently (e.g. k = 4).

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services; J.4 [Computer Applications]: Social
and Behavioral Sciences
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1. INTRODUCTION
In the field of social network analysis, a fundamental prob-
lem is to develop an epidemiological model and then to find
an efficient way to spread (or prevent) information and ideas
through the model. It seems natural that many people are
often influenced by opinions of their friends. This is called
the “word of mouth” effect and has for long been recognised
as a powerful force affecting product recommendation. Re-
cent advances in the theory of networks have provided us
with the mathematical and computational tools to under-
stand them better. For example, in the Independent Cascade
(IC) model proposed by Goldenberg et al. [8], (1) some non-
empty set of nodes are initially activated (or influenced); (2)
at each successive step, the influence is propagated by ac-
tivated nodes independently activating their inactive neigh-
bours based on the propagation probabilities of the adjacent
edges. Here, activated nodes mean the nodes which have
adopted the information or have been infected. This mod-
els how a piece of information will likely spread through a
network over time. It enables us to investigate what sort
of information spreading strategies might be effective under
certain conditions.

This model is also highly relevant to security. For example,
cyberstalkers might be interested in spreading malicious ru-
mours, gossip, news or pictures through social networks to
damage the reputation of their victims (e.g. celebrity, polit-
ical party, company or country). The same model works in
social media campaign where spammers and propagandists
want to share their advertisements on online social networks;
fake accounts are often created and they can be used to am-
plify advertising campaigns using social media [20].

Thus far, however, the models and analytic tools used to
analyse epidemics have been somewhat limited. Most pre-
vious studies aimed to analyse the process of information
diffusion by choosing a set of any arbitrary k nodes in a net-
work as the initially activated nodes from a bird’s eye per-
spective based on the full control of nodes in the network
and/or complete knowledge of the network topology, which
may indeed be unacceptable in many real life networks since
there is no such central entity (except the service provider
itself).

From the point of view of an individual user who wants
to efficiently spread a piece of information (or a rumour)
through a network, a more reasonable model would not as-
sume the knowledge about the entire network topology. Kim



and Yoneki [16] recently introduced the problem called Influ-
ential neighbour selection (INS) where a spreader s spreads
a piece of information (e.g. rumour) through the carefully
chosen k of his (or her) neighbours instead of a set of any
arbitrary k nodes in a network. Under this model, each user
can only communicate with the user’s immediate neighbours
and has no knowledge about the global network topology ex-
cept for his (or her) own connections. However, their work
has two limitations: (1) it does not model users with varying
levels of propagation rate on their neighbours, as informa-
tion can always be propagated to neighbouring nodes with
the same constant probability. Naturally, in real-world on-
line social network services such as Twitter1 or Facebook2,
each user has a different propagation rate for his (or her)
neighbours on spreading information in a network accord-
ing to the user’s role such as opinion formers, leaders or
followers [3]; (2) their experimental results were limited to
undirected graphs with synthetic, rather than real, parame-
ter values which were chosen in a somewhat ad-hoc manner.

In this paper, we extend the epidemiological model by intro-
ducing several parameters (user propagation weight, decay
factor and content interestingness – see their formal defini-
tions in Section 2) to provide a more general and practical
information diffusion model. This gives much finer granular-
ity than the previous model [16]. Under this realistic model,
we empirically evaluated the performance of four reasonable
spreading schemes from the simple random neighbour se-
lection to a sophisticated neighbour selection scheme using
both the “number of friends” and “user propagation weight”
each neighbour has. To measure the performance of these
schemes, we use the conventional Independent Cascade (IC)
model [8], which is widely used for the analysis of informa-
tion diffusion [8, 15, 10]. Our experimental results show
that the scheme to select neighbours with a high propa-
gation rate produced the best overall results, even without
consideration of the “number of friends”. We also found that
even the naive random neighbour selection would be used to
efficiently spread information if k increases sufficiently (e.g.
k = 4). These results show that it is very difficult to prevent
the spread of negative information (e.g. rumour) in social
networks. For example, it might not be helpful to simply
hide the “number of friends” each user has.

The rest of this paper is organised as follows. In Section 2
we formally define the Influential Neighbour Selection (INS)
problem and notations. Then, we present the four reason-
able neighbour selection schemes in Section 3. In Section
4, we evaluate the performance of the proposed schemes us-
ing real-world network topologies, and recommend how they
should be used depending on the conditions. Some related
work is discussed in Section 5. Finally, we conclude in Sec-
tion 6.

2. INFLUENTIAL NEIGHBOUR SELECTION
PROBLEM

In this section, we begin with the definition of the Indepen-
dent Cascade (IC) model [8], and then introduce the Influ-
ential Neighbour Selection (INS) problem, which will be used
in the rest of the paper.

1http://www.twitter.com/
2http://www.facebook.com

We model an influence network as a directed graph G =
(V,E) consisting of a set of nodes V and a set of ordered
pairs of nodes E called the edge set representing the com-
munication links between node pairs. A directed edge (u, v)
from node u to node v of the graph G is associated with a
propagation probability λ which is the probability that v is
activated by u through the edge in the next time step if u
is activated. Here, v is said to be a neighbour (or successor)
of node u. For node u ∈ V , we use N(u) to denote the set
of u’s neighbours. The out-degree of node u is denoted as
d(u) = |N(u)|. This metric could be used simply in estimat-
ing the node u’s influence on information propagation.

In IC model [8], we assume that the time during which a
network is observed is finite, from 1 until t; without loss of
generality, the time period is divided into fixed discrete steps
{1, . . . , t}. Let Si ⊆ V be the set of nodes that are activated
at the time step i. We consider the dynamic process of
information diffusion starting from the set of nodes S0 ⊆ V
that are initially activated until the time step t as follows:
At each time step i where 1 ≤ i ≤ t, every node u ∈ Si−1

may activate its inactivated neighbours v ∈ V \ Si−1 with
an independent probability of λ. The process ends after the
time step t with St. A conventional Influential Maximisation
(IM) problem is to find a set S0 of k nodes with the maximum
number of activated nodes after the time step t for a budget
constraint k.

The Influential Neighbour Selection (INS) problem [16] is a
variant of the IM problem; given a spreader s ∈ V and a
budget constraint k, we aim to maximise the number of ac-
tivated nodes in a network after the time step t by selecting
s’s min(k, d(s)) neighbours only (rather than any subset of
k nodes) as the set of nodes S0 ⊆ V that are initially acti-
vated. There are three limitations unlike the conventional
IC mode: (1) each node only communicates with its imme-
diate neighbours; (2) each node has no knowledge about the
global network topology except for its own connections and
(3) each message size is bounded to O(log |V |) bits.

Here we additionally introduce the three important parame-
ters (user propagation weight ω, decay factor γ and content
interestingness φ) to establish a more general and practical
information propagation model.

The user propagation weight ω represents each user’s aver-
age propagation rate to his (or her) neighbours. Given a
user u, ω(u) is defined as τ(u)/(ρ(u)/d(u)) where τ(u) and
ρ(u) are the number of u’s posts shared by u’s neighbours
and the number of u’s all posts, respectively. For example,
if a user u with 1,000 neighbours wrote 10 posts and gets
100 shares, ω(u) is 100/(10 · 1000) = 0.01.

Also, previous studies [27, 12] showed that propagation prob-
ability λ can be greatly changed with the content of informa-
tion (content interestingness φ). Naturally, higher content
interestingness φ of a piece of information may facilitate
higher propagation for the information through a network.
Therefore we need to consider this too.

Finally, we define the decay factor γ at hop N as the ra-
tio between the propagation probability at hop N and the
propagation probability at hop N−1. In practice, the propa-



gation probability might decay exponentially as the cascades
spreads away from the information source and one possible
explanation would be that the freshness of the information
would drop as the time goes on.

Therefore, given an edge (u, v) ∈ E, a spreader s ∈ V and
a piece of information r, λ(u, v, s, r) is finally defined as fol-
lows:

λ(u, v, s, r) = min{ω(u) · φ(r) · γδ(u,s,r)−1, 1} (1)

where δ(u, s, r) is the number of times the information r is
to be relayed from s to u.

For example, when φ(r) = 0.0136, δ(u, s, r) = 3 and γ = 0.2,
a user u with ω(u) = 1 would activate his (or her) neighbour
v with the probability of about 0.0005 (≈ 1 · 0.0136 · (0.2)2).

3. NEIGHBOUR SELECTION SCHEMES
For the INS problem described in Section 2, we basically use
a greedy strategy to select the influential neighbours.

Assume that a spreader s ∈ V wants to spread a piece of
information r through the network G = (V,E) by sharing r
with its min(k, d(s)) neighbours only. Node s first tries to
assess the influence of information diffusion for each neigh-
bour v ∈ N(s), respectively, by collecting the information
about v. We note that neighbours’ influence should be esti-
mated based on s’s local information only, rather than the
whole network. As online social networks such as Facebook
typically provide APIs to get the neighbourhood informa-
tion about user, s might automatically collect the informa-
tion about its own neighbours. After estimating the neigh-
bours’ influences, s selects the top min(k, d(s)) nodes with
the highest estimated values from N(s) as the most influ-
ential neighbours for information diffusion; that is, for the
IC model in Section 2, they are chosen as the set of initially
activated nodes S0 ⊆ V .

For the purpose of influence estimation, we test the following
four selection schemes based on the “number of friends” and
“user propagation weight” each user has.

• Random selection: Pick min(k, d(s)) nodes randomly
from N(s). This scheme is very simple and efficient
– the spreader s does not need any knowledge of the
network topology.

• Degree selection: Pick the min(k, d(s)) highest-degree
nodes from N(s). This scheme requires the degree
knowledge of neighbours.

• Propagation-weight selection: Pick the min(k, d(s))
highest user propagation weight nodes fromN(s). This
scheme requires the user propagation weight knowl-
edge of the nodes. To calculate ω(v) for s’s neighbour
v ∈ N(s), the information about τ(v), ρ(v) and d(v)
is required where τ(v) and ρ(v) are the number of v’s
posts shared by v’s neighbours and the number of v’s
all posts, respectively.

• Hybrid selection: Pick the min(k, d(s)) nodes v ∈ V
with the highest weighted node degree ωd(v) which is
defined as ωd(v) = ω(v) ·d(v). At the first glance, this

scheme requires the knowledge about both the degree
and the user propagation weight of neighbours. In fact,
however, this scheme can be simply implemented with-
out the knowledge about node degree since ω(v) · d(v)
is calculated as τ(v)/ρ(v) – d(v) is removed in the cal-
culation.

The expected communication costs of all these schemes are
O(κ) where κ is the average out-degree in the graph.

Here we do not consider the other metrics (e.g. [26]) to es-
timate node centrality based on localized information alone
since previous work [16] already showed that these metrics
are not significantly effective for the INS problem compared
with node degree.

4. EXPERIMENTAL RESULTS
In this section, we analyse the performance of the selection
schemes presented in Section 3 on several real-world net-
works.

We summarise the properties of the networks used in experi-
ments in Table 1. For Facebook, we used a dataset crawled
in early 2008 of 26,701 nodes and 251,249 edges represent-
ing a regional sub-network of Facebook. For Twitter, we
used a graph3 consisting of mentions and retweets of some
part of the Twitter network. The three notations κ, D, and
C represent the “average degree”, “network diameter”, and
“number of connected components” (or “number of weakly
connected components” for Twitter), respectively. The di-
ameter of a network (D) is the maximum distance between
nodes in the network [21]; the diameter of a disconnected
network is taken as infinite (inf).

Table 1: Summary of datasets used.
Network Type |V | |E| κ C D

Email [11] Undirected 1,134 5,453 9.62 1 8
Blog [1] Undirected 1,224 16,718 27.32 2 inf
Twitter Directed 3,656 188,712 51.62 171 inf

Facebook Undirected 26,701 251,249 18.82 1 15

In this paper, our research interest is finding the best neigh-
bour selection scheme to maximise information diffusion.
We use the IC model in Section 2 to evaluate the perfor-
mance of the schemes presented in Section 3 with varying
the number of initially activated neighbours k. The propa-
gation probability λ(u, v, s, r) on an edge (u, v) ∈ E is de-
fined with the spreader s ∈ V and a piece of information r
described in Section 2.

For more realistic simulations of information propagation,
given a user u, ω(u) is randomly drawn as a positive num-
ber from a normal distribution with mean 1 so that the
Spearman’s rank correlation coefficient between the “user
propagation weights” and “numbers of neighbours” for all
users is about 0.549. Note that we obtained this from real
data – the Spearman’s rank correlation coefficient between
the “ranking by followers” and “ranking by retweets” for all
users in Twitter is 0.549 [3]. In practice, ω(u) is usually

3http://wiki.gephi.org/index.php/Datasets



Table 2: The two-sample Kolmogorov-Smirnov test results (α = 0.05) for the comparison of performance of
the neighbour selection schemes.

Network
Random vs Degree Degree vs Propag. Propag. vs Hybrid

Test result p-value Test result p-value Test result p-value
Email Different 0.0034 Same 0.8567 Same 0.9762
Blog Different 0.0000 Different 0.0000 Same 0.8110

Twitter Same 0.1907 Different 0.0013 Same 1.0000
Facebook Different 0.0152 Same 0.9885 Same 0.9954
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Figure 1: Changes in the ratio of the average number of activated nodes to the total number of nodes in the
network over time t.

much less than 1 but the mean of 1 might be fine to eval-
uate the performance of neighbour selection schemes since
we also consider the content interestingness φ which is also
much less than 1; given a piece of information r, φ(r) is ran-
domly drawn from a normal distribution with mean 0.0136
and standard deviation 0.0501 according to real data [27].
We also set γ = 0.2 according to the mean of decay factors
observed in [27].

In each simulation run, we randomly pick a spreader s for
each of the networks in Table 1 and then select its k neigh-
bours according to a selection criterion presented in Sec-
tion 3. With fixed k, we repeated this 500 times to minimise
the bias of the test samples (randomly selected spreaders);
we measure the ratio of the average number of activated
nodes per test sample to the total number of nodes in the
network. For example, with k = 1, Figure 1 shows how these
values are changed over time t under the IC model. Here,
we use the different ranges of the time duration on the x-
axis since the sizes of networks are totally different (see the
number of nodes in each of the networks in Table 1). We
performed the simulations in Email, Blog, Twitter and
Facebook, respectively, after the 40th, 6th, 40th and 70th
time steps to cover about a third size of of each network.

From this figure, we can see that Hybrid and Propagation-
weight selection schemes outperformed other schemes in any
network topology: When we use these schemes in Blog
and Twitter, the ratios of the average number of activated
nodes to the total number of nodes are over 0.3 while Ran-

dom and Degree selection schemes are not (those are not
particularly effective in spreading a piece of information for
Blog). The two-sample Kolmogorov-Smirnov test [19] with
α = 0.05 was used to compare the performance of neighbour
selection schemes in a statistically significant manner. We
tested whether the distributions of the numbers of the ac-

tivated nodes after the final time step between schemes at
each network are statistically different. Table 2 shows the
results of testing on each network topology in Table 1.

From Table 2, we can see that there is a significant gap be-
tween Random selection scheme and the other schemes. Also,
Propagation-weight selection scheme significantly increases
the number of activated nodes on average compared with
Degree selection scheme in Blog and Twitter. We surmise
that the differences of underlying network topologies may
explain this. The average node degrees of Blog and Twit-
ter are relatively large (27.32 and 51.62, respectively) while
those of Email and Facebook are quite small (9.62 and
18.82, respectively). This shows that we would not recom-
mend using Degree selection scheme when the average node
degree is large. Interestingly, the number of activated nodes
of Hybrid and Propagation-weight selection schemes were
not significantly different for all network topologies although
the Hybrid scheme is slightly greater than the Propagation-
weight selection scheme in the average number of activated
nodes. This implies that we can effectively spread informa-
tion using the Hybrid scheme, even without consideration of
the “number of friends” information.

We now discuss how the performance of the different neigh-
bour selection schemes may change with the number of ini-
tially activated nodes k. To accelerate the speed of informa-
tion diffusion, a possible straightforward approach is to in-
crease the number of initially activated neighbours k. Prob-
ably, we can imagine that even the naive Random selection
scheme can also be used to efficiently disseminate a piece of
information if k increases sufficiently. In this context, our
goal should be interpreted to find the minimum k for each
scheme to converge to an optimal solution for information
diffusion over time.



Table 3: The two-sample Kolmogorov-Smirnov test results (α = 0.05) to analyse the performance of neighbour
selection schemes by varying the size of the number of initially activated neighbours k.

Network
Random Degree Propagation Hybrid

min k p-value min k p-value min k p-value min k p-value
Email 3 0.4493 2 0.0555 2 0.2184 2 0.1658
Blog 4 0.2829 2 0.0909 2 0.9307 2 0.8970

Twitter 2 0.1436 2 0.1907 1 0.2491 1 0.4031
Facebook 3 0.6019 1 0.1907 1 0.4031 1 0.4493
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Figure 2: Changes in the ratio of the average number of activated nodes to the total number of nodes in the
network with the number of initially activated neighbours k.

To demonstrate the effects of the number of initially acti-
vated neighbours k, we first analyse the ratio of the average
number of activated nodes with k ranging from 1 to 7 in
Email, Blog, Twitter and Facebook, respectively, after
the 40th, 6th, 40th and 70th time steps. The experimental
results are shown in Figure 2.

From this figure, we can see that the effects of k may not
be linear: the average number of activated nodes in all net-
works are still below 0.4 even for k = 7. When we use
Hybrid and Propagation-weight selection schemes, k might
not be an important factor for the information diffusion.
However, Random and Degree selection schemes are rather
affected by k although the effects of k are still inherently
limited. The ratios of activated nodes in all networks ex-
cept for Blog show almost the same pattern — the curves
commonly have gentle slope from k = 3. As a selective
strategy is at least as effective as random selection, we can
always expect that it is enough to have three neighbours
who can share the information regardless of the selection
method used. The same conclusion was reached by using
the two sample Kolmogorov-Smirnov test to analyse the av-
erage number of activated nodes in samples with a different
k (see the results in Table 3).

In summary, our suggestion is to use Hybrid and Propa-

gation-weight selection schemes with a small k. However,
if we increase k sufficiently (e.g. k = 4), Random selection
scheme would also perform well in spreading information.

5. RELATED WORK
Influential Maximisation (IM) problem has received increas-
ing attention given the increasing popularity of online social
networks, such as Facebook and Twitter, which have pro-
vided great opportunities for the diffusion of information,
opinions and adoption of new products.

The IM problem was originally introduced for marketing pur-
poses by Domingos and Richardson [7]: The goal is to find a
set of k initially activated nodes with the maximum number
of activated nodes after the time step t. Kempe et al. [15]
formulated this problem under two basic stochastic influence
cascade models: the Independent Cascade (IC) model [8] and
the Linear Threshold (LT) model [15]. In the IC model each
edge has a propagation probability and influence is prop-
agated by activated nodes independently activating their
inactive neighbours based on the edge propagation proba-
bilities. In the LT model, each edge has a weight, each node
has a threshold chosen uniformly at random, and a node be-
comes activated if the weighted sum of its active neighbours
exceeds its threshold. Kempe et al. [15] showed that the
optimisation problem of selecting the most influential nodes
is NP-hard for both models and also proposed a greedy al-
gorithm that provides a good approximation ratio of 63% of
the optimal solution. However, their greedy algorithm relies
on the Monte-Carlo simulations on influence cascade to esti-
mate the influence spread, which makes the algorithm slow
and not scalable.

A number of papers in recent years have tried to overcome
the inefficiency of this greedy algorithm by improving the
original greedy algorithm [18, 5] or proposing new algo-
rithms [17, 5, 4]. For example, Leskovec et al. [18] proposed
the Cost-Effective Lazy Forward (CELF) scheme in selecting
new seeds to significantly reduce the number of influence
spread evaluations, but it is still slow and not scalable to
large graphs, as demonstrated in [4]. Kimura and Saito [17]
proposed shortest-path based heuristic algorithms to evalu-
ate the influence spread. Chen et al. [5] proposed two faster
greedy algorithm called MixedGreedy and DegreeDiscount
algorithms for the IC model where the propagation proba-
bilities on all edges are the same; MixedGreedy is to remove
the edges that have no contribution to propagate influence,



which can reduce the computation on the unnecessary edges;
DegreeDiscount assumes that the influence spread increases
with node degree. Chen et al. [4] proposed the Maximum
Influence Arborescence (MIA) heuristic based on local tree
structures to reduce computation costs. Wang et al. [25] pro-
posed a community-based greedy algorithm for identifying
most influential nodes. The main idea is to divide a social
network into communities, and estimate the influence spread
in each community instead of the whole network topology.
Several studies design machine learning algorithms to gen-
erate reasonable influence graphs by studying practical in-
fluence cascade model parameters from real datasets [2, 24,
23, 9].

More recently, as a variant of the conventional IM problem,
Kim and Yoneki [16] introduced the problem called Influ-
ential neighbour selection (INS) to select the most influen-
tial neighbours of a node rather than the most influential
arbitrary nodes in a network. They used the IC model for
performance evaluation. In this paper, we extend this model
by introducing several parameters (user propagation weight,
decay factor and content interestingness) to provide a more
general and practical information diffusion model.

Many studies mentioned that the levels of information shar-
ing activity varied greatly between users in social networks.
Romero et al. [22] argued that a majority of Twitter users
might be passive, not engaging in creating and sharing in-
formation. Cha et al. [3] found that users with many fol-
lowers do not necessarily influential in terms of spawning
retweets or mentions – the Spearman’s rank correlation co-
efficient between the “ranking by followers” and “ranking by
retweets” for all users is 0.549. Zhou et al. [27] showed that
in Twitter, the content of a tweet might be an important
factor in determining the “retweet rate” – the mean retweet
rate is 0.0136 but standard deviation is as high as 0.0501.
Also, they observed that cascades tend to be wide not too
deep indicates the retweet rate may decay as the cascades
spreads away from the source – the mean of decay factors
are all about 0.2. In this paper, we used those observed in
real datasets as the parameter values for the simulations.

The INS problem might be applied to a wide range of social-
based forwarding schemes [13, 6, 14]. It has mainly been
proposed for Delay Tolerant Networks (DTNs), where the
connection between nodes in the network frequently changes
over time: the basic idea is to use node centrality for relay se-
lections, and the forwarding strategy is to forward messages
to nodes which are more central than the current node.

6. CONCLUSIONS
When faced with epidemic threats, it’s important to under-
stand the characteristics of epidemic spreading to stop or
mitigate them. Kim and Eiko [16] introduced the optimi-
sation problem to find influential neighbours to maximise
information diffusion. We have extended their work by in-
troducing several parameters (user propagation weight, de-
cay factor and content interestingness) to provide a more
general and practical information diffusion model.

We presented four neighbour selection schemes (Random, De-
gree, Propagation-weight and Hybrid selection) and ex-
plored their feasibility. We compared these selection schemes

by computing the ratio of the average number of activated
nodes to the total number of nodes in the network. We dis-
cussed which selection methods are generally recommended
under which conditions. In summary,

• the best neighbour selection schemes in general are Hy-
brid and Propagation-weight selection schemes. For
all tested networks (Email, Blog, Twitter and Face-
book), it is enough to set k = 1 or 2.

• the simulation results of Hybrid and Propagation-weight
selection schemes were not significantly different for
all network topologies. This implies that we can ef-
fectively spread information using the Hybrid scheme,
even without consideration of the “number of friends”
information – the Hybrid scheme can be simply im-
plemented without the knowledge about node degree
since the contribution of node degree is removed in the
calculation.

• Degree selection scheme performed well on network
topologies with a small average degree; however, in
network topologies with a large average degree, there
is a significant gap between Degree and Propagation-
weight selection schemes.

• if we increase k sufficiently (e.g. k = 4), Random se-
lection scheme would also perform well in spreading
information in social networks. This implies that it is
very difficult to develop methods to prevent the spread
of negative information (e.g. rumour) in real-world so-
cial networks. For example, it might not be helpful to
simply hide the “number of friends” each user has.

As an extension to this work, we plan to consider a theoret-
ical study to formally generalize and verify our results. We
will also employ practical techniques to reduce the spread
of information (e.g. rumour) by carefully monitoring users
with a high“user propagation weight”or“number of friends”.

Another interesting problem is to develop a more general
model for information diffusion. We may consider not only
a user’s neighbours but also neighbours of neighbours as the
candidate space of the initially activated nodes. In other
words, we can extend the concept of the INS problem by
expanding the set of the initially activated nodes with the
distance from an information source node.
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