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Abstract The transport of larvae between coral reefs is
critical to the functioning of Australia’s Great Barrier Reef
(GBR) because it determines recruitment rates and genetic
exchange. One way of modelling the transport of larvae
from one reef to another is to use information about
currents. However the connectivity relationships of the
entire system have not been fully examined. Graph theory
provides a framework for the representation and analysis of
connections via larval transport. In the past, the geometric
arrangement (topology) of biological systems, such as food
webs and neural networks, has revealed a common set of
characteristics known as the ‘small world” property. We use
graph theory to examine and describe the topology and
connectivity of a species living in 321 reefs in the central
section of the GBR over 32 years. This section of the GBR
can be described by a directional weighted graph, and we
discovered that it exhibits scale-free small-world character-
istics. The conclusion that the GBR is a small-world
network for biological organisms is robust to variation in
both the life history of the species modelled and yearly
variation in hydrodynamics. The GBR is the first reported
mesoscale biological small-world network.
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Introduction

The transport of larvae between coral reefs is critical to
their function because it determines recruitment rates and
genetic exchange (Veron 2002; van Oppen and Gates
2006). Dispersal processes for marine organisms are diverse
(Ninio and Meekan 2002; Mora et al. 2003) but two main
types can be identified: the brooders and broadcasters. Each
of these strategies affects the fraction of larvae from one
reef that arrives at another. For broadcasters in particular,
the pre-competent larvae will drift in a relatively passive
manner with the currents (Ayre and Hughes 2000). Strong
currents can transport larvae over long distances for several
weeks while they remain pre-competent (Ayre and Hughes
2000). Both local and distant populations can be linked by
this transport of larvae.

The processes that shape the diversity of Australia’s
Great Barrier Reef (GBR) are complex and dependent on a
range of biophysical factors (Hughes et al. 1999; Sale 1999;
van Woesik 2000; Brinkman et al. 2001; Harriott and
Banks 2002), including water currents that transport larvae
and warm water (Mora et al. 2003). The oceanic flow,
called the Eastern Australian Current, interacts with the
tidal cycles and wind conditions to provide transport
mechanisms (Brinkman et al. 2001; James et al. 2002) for
the exchange of larvae between reefs throughout the central
and southern GBR (Ayre and Hughes 2000; Harriott and
Banks 2002). While there is general acceptance of the
importance of these processes, their implications for the
function and management of the GBR has not been fully
examined.

While many studies describe the transport of larvae from
one reef to another (Swearer et al. 1999; James et al. 2002;
Siegel et al. 2003; Nishikawa and Sakai 2005), the effect on
the entire system has not been fully examined (Mumby
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1999). Over an extended period, larval transport linkages
create a recruitment network, the structure of which
determines the nature of interactions between distant reefs.
Matrices describing a single recruitment event have been
calculated (James et al. 2002; Bode et al. 2006). One way
of assessing the role each reef has within the entire network
is to use graph theory (Franc 2004; Proulx et al. 2005).

Graph theory models of disparate systems, like the
World Wide Web, metabolic pathways, the neural network
of a worm, electronic circuit design and the professional
relationships of film actors, have found networks that are
highly clustered and well connected (Hayes 2000; Ferrer et
al. 2001; Wagner and Fell 2001). Biological systems, from
metabolic pathways (Jeong et al. 2000) to lake trophic
structures (Montoya and Sole 2002) and the neural net-
works of a worm, all show a relatively new pattern called a
‘small world’ (Watts and Strogatz 1998). This pattern is
named after the universal exclamation of ‘what a small
world!” when strangers appear to be closely associated by
mutual connections (Watts and Strogatz 1998). First
described in sociometry research (Milgram 1967; Travers
and Milgram 1969), small worlds describe how community
formation can facilitate the effective interaction of distant
individuals across an entire population where there are only
interactions between small groups of neighbours (Radicchi
et al. 2004).

Graph theory has been applied to ecological research
previously but with a focus on measuring simple landscape
indices such as dispersal pathway length (van Langevelde et
al. 1998; Bunn et al. 2000; Urban and Keitt 2001). These
landscape connectivity graphs that record the movement of
wildlife are relatively simple due to the difficulty in recording
the movements of individual animals. While these graphs
form a foundation for the use of graph theory in ecology,
they lack the size and intricate structure for complex network
analysis, especially when compared with the forest songbird
habitat network of Minor and Urban (2008).

In this study, we use graph theory to examine and describe
the network topology of species inhabiting 321 reefs in the
central section of the GBR (Fig. 1) based on 32 years of
connectivity matrices generated by James et al. (2002). In
particular, we ask three questions: (1) Is the GBR a scale-free
small-world network for marine organisms? (2) Do varia-
tions in the dispersal model parameters (duration of the pre-
competent period, the size of the settlement zone, predation
and when larvae are released) influence the pattern? (3) How
influential is the connection strength on the network metrics?

Graph theory, small worlds and scale-free distributions

Graph theory is a branch of mathematics that describes the
statistical nature of simple (Harary 1969; Gross and Yellen
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1999) and complex (Dorogovtsev and Mendes 2002;
Proulx et al. 2005; Steuer and Lopez 2008) static networks.
A graph G(V,E) can be defined as a finite set of vertices V
connected by edges E (Fig. 2). Geometric theorems of the
properties of simple graphs dominated the use of graph
theory until the advent of fast computers. Large graphs
were modelled as randomly assembled graphs or as regular
lattices (Albert and Barabasi 2002).

The degree (k;) of a vertex i defines the number of
connecting edges and hence the number of neighbouring
vertices (Fig. 2). All vertices in a regular lattice share a
common degree, <k>, and this configuration (often dis-
played as a grid of equally sized cells) is commonly used as
the basis for neighbourhood interaction models (Bjornstad
et al. 1999; Vuilleumier and Metzger 2006). In a random
graph, the degree of all the vertices has a Poisson
distribution and is characterised by a modal hump at the
mean degree (Proulx et al. 2005). The average degree for
all the vertices in a graph is denoted as <t>.

The clustering coefficient, as defined by Montoya and
Sole (2002), is the sum of the number of triangular linkages
9:(i € V1, ..., V) within the set of neighbours (Fig. 3) for a
selected vertex divided by the maximum possible neigh-
bour linkages where n is the number of vertices in the
network. For a unidirectional network, there are potentially
k(k — 1)/2 triangular linkages. The clustering coefficient is
thus defined as:

SEPC

(ki — 1)) (1)

The graphs modelling the GBR are directional weighted
graphs. For a directional network, there are potentially
twice as many, k(k—1), triangular linkages and so the
clustering coefficient is redefined from Eq. 1 as:

Zﬂ/

(ki — 1)) )

The average minimum path length L is the average
number of edges in the shortest path Ly,(7, j) between all
pairs V(i, j) in a graph averaged over n(n — 1)/2 vertices
(Montoya and Sole 2002)

L= }’l*l ZZLMm 7] (3)

Calculation of the average minimum path length
encompassed the directional structure of the network
by forcing the path tracing routine to travel in the
direction of lines. The assumption in Eq. 3 that L, ;=L;;
is relaxed in an asymmetric graph, and thus, the summa-
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Fig. 1 Graph of 1998 connectivity with hydrodynamic parameters of release by new moon, 1 km pick up zone, 1 week pre-competent period,
3 weeks competent period and no predation. The edges displayed are only those with weight greater than 0.02

Fig. 2 A simple graph contain-
ing five vertices and seven
edges. Four of the vertices have
a degree of 3; one has a degree
of 2

Fig. 3 Neighbourhood triangle 3 1
(dashed lines) forms the basis of
the clustering coefficient. Aver-
age minimum path length high- 2
lights the number of steps
(labelled) to reach the target
vertex

Target Vertice
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tion of path lengths is averaged over possible between-
vertex connections, n(n—1):

L= ﬁ i iLMin(iaj)- (4)

i=1 j=1

As a consequence of measuring the paths through the
network, three more metrics can be usefully derived:
diameter, closeness and betweenness (Freeman 1978). The
diameter, D, is the longest minimum path length that exists
between any vertices in a network. The closeness centrality
measure, CC;, is the sum of the minimum path lengths
connecting a vertex i to all other vertices j (i, j € V1,...,V,).
The betweenness centrality measure, BC,, is the proportion
of minimum paths connecting vertices i and j that pass
through vertex & (i, j, k € V1,...,V,,). The centrality measures
relate to the isolation (low CC), contagion (high CC) and
‘stepping stone’ (high BC) landscape ecology concepts
(Gustafson 1998).

Graphs that have a high level of clustering and short path
lengths compared with random or regular lattices are
known as small-world graphs (Watts and Strogatz 1998).
However, there is no explicit definition of the properties of
small-world graphs (Schnettler 2009). Small-world topolo-
gy increases the connectivity of vertices, effectively making
it smaller, in terms of interactions, than a random or regular
one. Clusters connected by longer links enable any point in
the network to be located a small number of steps from any
other point, and this forms the basis of Stanley Milgram’s
six degrees of separation for the network describing human
social interactions (Barabasi 2002).

An additional characteristic of some small-world networks
in the real world is that the number of vertices with &
connections can be described by a power-law P(k) ~ k™7
where 7y is a constant (Barabasi et al. 2000). This property,
referred to as a scale-free degree distribution, defines a graph
where the majority of vertices are weakly connected and a
small, but significant, number are very strongly connected
(Albert et al. 2000). In contrast in a random graph, the
number of vertices, n, with degree, k, shows a Poisson
distribution where few, if any, vertices are very strongly
connected. However Li et al. (2005) present a convincing
argument that the power law used in many publications does
not represent a scale-free network consistently, and instead,
they suggest the use of the size-rank measure: R(k) = ¢¥; 7,
where R(k) is the rank of the degree y; subject to y; being
from a finite sequence such that y; >y, > ... >y, and c is
a fixed constant and ~ is a scaling index.

While the number of connections reveals many of the
topological structures, the strength of each connection can be
used to describe the exchanges between the vertices. In the
case where the strength of connection between two vertices
is known, the value of the edge weight, w;;, describes the

@ Springer

intensity of interaction occurring between vertex i to vertex j.
The inbound and outgoing strength indices for vertex i are
defined (Barrat et al. 2004; Newman 2004) as:

V=Y e P = Y Wy (5)

Jjev(i)jEE; jev(i)jeE;

where (i) is the set of neighbours of vertex 7, E; is the set of
edges having the inbound direction to vertex i, and E;; is the
complementary set of edges having an outbound origin from
vertex i. The average in- and outbound strengths for the

entire graph are:
, 1 & 1 <&
Sm —— E IN dSOut —— E 'OUT‘ 6
3 o 3 K )

Empirical studies of complex networks show them to be
sparsely connected, tightly clustered and with a relatively
small diameter (Hayes 2000), which can be described by the
respective indices of degree distribution, cluster coefficient
and average minimum path length (Montoya and Sole 2002).
Having explained the necessary graph theory, we now
describe the methodology used to create and analyse a large
larval transport network for a section of the GBR.

Methods

In this section, we will outline how the larval transport
network in the marine environment was constructed and
analysed. For many marine organisms, the mechanism of
dispersal is limited to the broadcasting of relatively passive
larvae into highly dynamic water bodies (Barber et al.
2000; Shanks et al. 2003). Due to the difficulties in
measuring the larval passages, connectivity research is
heavily reliant on hydrodynamic simulations. Our study
used connectivity matrices generated by James et al. (2002)
that simulate the release of larvae from 321 reefs into a
Lagrangian hydrodynamic model of the Cairns section of
the GBR (Fig. 1). These matrices estimate the number of
simulated fish larvae that manage to survive from the
spawning reef to the settlement reef. The spawning reef can
also be the settlement reef (self-seeding) but these results
are not used in the graph structure since the primary aim is
to examine inter-reef connections. The strength of the pair-
wise connections is a function of the size and shape of the
donor and recipient reefs since we assume that larvae are
spawned with uniform density along the reef edge.
Allowing for variation of factors such as mortality rates,
release timing, distance of attachment, pre-competent and
competent periods, the larvae are moved around in two
dimensional spaces according to currents that are driven by
wind and tidal forces. The simulations extend over the period
from 1967 to 1998 (Bode et al. 2006) and focus only on the
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summer months when dispersal is concentrated (James et al.
2002). We consider the model to represent all larvae that
have the dispersal properties with the parameters used in the
James et al. (2002) model, and hence, this can also include
coral larvae. Due to lengthy processing time required to run
the hydrodynamic model, the capacity to conduct sensitivity
tests on these dispersal parameters is limited.

We transformed the James et al. (2002) connectivity
matrices into graphs using tools created in both R statistics
(especially utilising packages ‘igraph’ (Csardi and Nepusz
2006) and ‘sna’ (Butts 2007)) and within an ArcGIS 9.3
(Environmental Systems Research Institute, Redlands,
USA) environment. Where the strength of connection is
greater than zero, a line is constructed between points
representing reefs. The line has the attributes of connection
strength, distance and direction of flow. The reef centroids
have the spatial attributes of area, perimeter and location.

We addressed the initial questions in the following manner.

1. Is the GBR a scale-free small-world network? The
values of average minimum path length (L), average
degree (<k>), connection strength (S), diameter (D),
edge number (F) and cluster index (CI) were analysed
for the years 1967 to 1998 and compared with other
networks of various topologies. The constructed net-
works, used for comparison and described in Table 1,
contained the same number of vertices and, where
possible, the same average degree. To examine the role
of individual reefs in maintaining high larval flow
through the network over time, the closeness and
betweenness centrality metrics were used.

2. How robust is our small-world emergent property to the
life history characteristic of species? The release timing,
distance of attachment, pre-competent and competent
periods are altered using the hydrodynamics of 1998 to
examine the changes in average minimum path length (L),
connection strength (S) and cluster index (CI).

Table 1 Alternative networks for comparison

3. How influential is the connection strength on the graph
topology? Using the 1998 graph, we removed the
connections in 15 equal steps based on three different
strategies; strongest links removed first, weakest links
removed first and randomly selected links removed. We
considered the impact on: average minimum path
length (L), edge number (E£) and cluster index (CI).
We also compare the Euclidian distance and the weight
derived from the hydrodynamic model for each edge.

Results

Is the GBR a small-world network? The average
minimum path lengths, L, (Fig. 4), for the GBR from
1967 to 1998 (with parameters of day release, 1 km pickup
zone, 1 week pre-competence, 3 weeks competent and no
predation (James et al. 2002)), are in the range 2.2 to 3.9
links, and the average cluster coefficient, CI, is in the
range of 0.26 to 0.31. The average degree <k> ranges from
128 to 67 ((k) =105.93,04 = 14.04), while the edge
count E ranges from 20,554 to 10,860 (E = 16,950.2,
op = 2,247.2). These GBR hydrodynamic networks are
comparable to the constructed small-world networks
(Table 1) of Watts and Strogatz (1998) and the Forest
Fire Network (Leskovec et al. 2007) and more clustered
than the classic Barabasi—Albert (Barabasi and Albert
1999) and Erdos—Renyi (Erdos and Renyi 1959) networks
(Fig. 5). The 1998 network was rewired randomly (0.5
probability) while preserving the original graph's degree
distribution, and this had the effect of reducing the clustering
coefficient. Other models included in Fig. 5 were the Tree
model, 2D lattice (or planar graph) and Star graph (every
single vertex is connected to the centre vertex only). The
centrality measures showed a large diameter network

Model name Description

Source

Watts-Strogatz network
with a specified probability
Forest Fire network

Firstly, a regular lattice is created, then the edges are rewired uniformly

This network model resembles how a forest fire spreads by igniting trees

Watts and Strogatz 1998

Leskovec et al. 2007

close by. Vertices are added sequentially, and edges are created with respect

to the neighbouring configuration
Barabasi—Albert network

In this model, one vertex is added in each time step, and edges are then created

Barabasi and Albert 1999

to link existing vertices with a scale-free probability, P(k) ~ k7

Erdos—Renyi network

This simple network creates the complete set of vertices and then adds edges

Erdos and Renyi 1959

chosen uniformly randomly from the set of all possible edges

Tree network
2D lattice

This model is based on a regular tree with 2 edges connecting the ‘child’ neighbours
A lattice of two dimensions is composed of a set of four vertices joined in a

Csardi and Nepusz 2006
Csardi and Nepusz 2006

square, which is then replicated for the specified size of the network

Star graph

In this simple network, every single vertex is connected to the centre vertex only

Csardi and Nepusz 2006
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Fig. 4 The graph shows the graph theory indices for the Cairns
section of the GBR for the years 1967 to 1998, assuming the
hydrodynamic model parameters of new moon release, 1 km sensory
settlement zone, 1 week pre-competence, 3 weeks competent and no

(D =8.68,0p =2.45,5<D < 14) with an exponential
distribution of the betweenness measure (BC = 17,300,
opc = 25,176, 45.26 < BC < 178,125), which highlight-
ed that a small number of reefs were acting as stepping
stones. The closeness measure (CC = 16.99, occ =
1.90, 11.32 < CC < 21.61) showed a normal distribution

Fig. 5 Comparison with alter-

predation. Metrics used are edge number (E), vertex number (N),
diameter (D) average minimum path length (L), average cluster
coefficient (CI), average strength (S) and average degree (<k>). From
1967 to 1998, the graphs consistently show small-world topologies

that describes that some reefs are isolated while others are
strongly connected. For each measure of high CC, low CC
and high BC, the reefs with highest rank were identified and
examined through the 32 years (Fig. 6). The plots show that
these reefs were consistent for the respective centrality
measure through time.

14 A
native models for the key
small-world metrics of average 12 © 2D Lattice
minimum path length (L) and
cluster coefficient (CT). The £
. . S 10 -
lower right area of the graph is 3
considered to demonstrate < l
small-world properties. The al- & 8
ternative models are described £
. = g
in Table 1 ©
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> 4@ Tree I ® o |
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Fig. 6 Box plots of the centrality metrics for the highest ranking reefs
compared with all the reefs, highlighting the individual reef
consistency through the 32 years of model runs. The closeness
centrality (a) shows the five reefs with highest and lowest values

The degree distribution was not found to be scale free
(based on both degree frequency and size-rank metrics) for
all years. This lack of scale-free degree distribution is
similar to other biological networks such as the Caeno-
rhabditis elegans neural network and the polymer chain
model reported by Amaral et al. (2000).

Is the GBR a small-world network for the larval
dispersal characteristics of different species? Varying the
larval dispersal parameters showed that the average
minimum path lengths, L, for the GBR from the 1998
network are in the range 2.69 to 4.31 links, and the cluster
coefficient, CI, is in the range of 0.21 to 0.34 (Fig. 7).
These ranges are comparable to the small-world networks
shown in Fig. 5. The life history characteristics influenced
the topology. Larvae released at dusk within 3 days of the
new moon created networks with less clustering compared
with those networks with larvae released daily during the
high tide. Other life history characteristics did not influence
the network consistently to the same extent; however, the
average minimum path length was reduced when the
competent period was shortened from 3 to 2 weeks. One
particular configuration consisting of new moon release,

indicating the contagion and isolated reefs. The betweenness centrality
(b) shows the top 10 reefs indicating the stepping stone or cut node
reefs

1 km pickup zone, 2 weeks pre-competence, 3 weeks
competent and no predation produced a network with
minimal average path length of L=2.69. This small network
with a diameter of 9 became the largest network (diameter=
15, L=4.31) with a simple change in the competency period
to 2 weeks. Altering the predation intensity did not change
the small-world properties but did alter the in- and
outbound average connection strength, S, substantially
from 0.64 to 0.03.

Despite the large range in the number of edges, from 4,053
to 25,319 (mean=12,222, 05=5,884.23), the average mini-
mum path lengths and the cluster coefficient showed a
narrow distribution (2.69 < L < 4.31, oy = 0.37, 0.21
< CI < 0.34, o¢c; = 0.041) across the parameter range.
Hence, we conclude that the GBR larval dispersal network,
as modelled by James et al. (2002), is a small-world network
for most species.

Our third question asks how influential the strength of
the connections on the graph topology is. First, let us
consider the distribution of out- and inbound strength
values. The inbound connection weights for the 1994 graph
shows a scale-free distribution (Fig. 8), which highlights

@ Springer
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Fig. 7 A comparison of changes in the small-world metrics of
average minimum path length (L) and cluster coefficient (CI) for reefs
connected by different assumptions about hydrodynamics and species
ecology. The various 1998 networks are grouped according to day
release on high tide/day release on dusk with new moon and labelled
with sensory settlement zone of 1 or 4 km (/kmSettle, 4kmSettle), pre-
competent period of 1 or 2 weeks (/wkPre, 2wkPre) and competent
period of 3 or 2 weeks (3wkCom, 2wkCom)

the sensitivity of the graph to changes in strength thresh-
olds. The inbound strength distribution (Fig. 8a) can be
described as R(k) = c¢¥; ™7, where Y;=s; and v=1.38 for
the 1994 graph. The distribution of the strength values
(s;™, 5;°UT) shows that a significant number of reefs have a
high inbound strength, indicating that these reefs were
acting as strong sinks of larvae. The inbound distribution
pattern did vary between the years but the majority were
described as scale free. We acknowledge that the size of a
reef in the James et al. (2002) model will partially
determine the larval numbers released and so influence
the source capacity of each reef. As a consequence, the
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outbound strength distribution across all years did not
exhibit scale-free trends and were similar to the 1994
network shown in Fig. 8b.

Edges (connections) in the 1998 graph were removed
based on a changing weight threshold using three different
strategies (strongest, weakest and randomly removed), and
the edge number, average minimum path length (L) and
cluster coefficient (CI) were recorded (Fig. 9). The weight
threshold was decreased from the maximum weight value,
for the strongest removal first strategy, in 15 equal incre-
ments. Similarly, for the weakest removal first strategy, the
threshold was increased from the minimum weight value.
The random removal strategy selected 1,011 edges each
step and deleted them. The strategy of removing the
strongest edges first shows that until the 13th step, where
the weight threshold was equal to 0.14, only 178 edges
were removed, reflecting that the 98% of edges had a
weight less than 0.14 (min=1.915e—06, mean=0.002,
max =0.608). This trend is also observed in the cluster
coefficient (CI) and the average minimum path length (L),
indicating that the small world character is robust for large
reductions in the maximum weight values. The second
strategy of removing the weakest edges initially shows a
rapid reduction in edge number and subsequent changes in
the small world properties. The cluster coefficient (CI)
reduced rapidly to zero at step 6, highlighting that small
reductions in the minimum edge weight elicit large changes
on community structure. Weaker edges tend to be longer
(measured by Euclidean distance, Fig. 10), and consequent-
ly, they act to bind the network together. Their removal
leaves a fragmented network sparsely connected with
strong edges that have short Euclidean lengths. The average
minimum path length was less affected and initially rose,
while edges with generally longer Euclidean lengths
(Fig. 10) were removed. By step 6, the network had
fractured into isolated communities with a diameter of one.
The random removal strategy shows only small changes in
the average minimum path length (L) until finally the
network consists of isolated pairs of connected reefs. The
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Fig. 9 Changes in the graph
theory metrics, L, CI and E, for
the reefs in 1998 when edges are
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cluster coefficient (CI) did not change until approximately
half the edges were removed (7,078 edges remaining from
15,167 total edges).

Next, we consider how robust the small-world network
property is given changes in the edge length. The longer
edges were removed (444, 333, 222, 111, 55 and 27 km)
but this did not alter the topology of the graph (Fig. 11)
until all the links were less than 55 km long. At this

5 6 7 8 o 10 11 12 13 14 15
Edge Reduction Steps

distance, the topology of the graph altered rapidly with the
average degree, <k>, and strength index, S, decreasing. At
55 km, the average minimum path length (L) increased as
edges that connected widely separated network sections
were removed from the network. However, the average
minimum path length (L) decreased as the maximum
Euclidean length was reduced to 27 km. In this case, only
the smaller more consolidated network remained (V=258),

@ Springer
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Fig. 10 Smooth scatter plot of all 15,167 edges for the 1998 graph
showing their Euclidian distance and the weight derived from the
hydrodynamic model. The strongly weighted edges tend to be shorter
in Euclidean length compared to the more numerous weaker edges

and subsequent edge length reduction resulted in fragmen-
tation of the network. The cluster coefficient (CI), which
measures the ratio of triangular linkages against the
maximum possible, increased as the clusters joined by
short lengths remained. The GBR remained a small-world
network despite the removal of edges with lengths longer
than 55 km but disintegrated into isolated clusters when the
lengths were limited to less than 27 km.

Discussion

The Great Barrier Reef exhibits small-world patterns in the
years 1967 to 1998 across a range of larval dispersal
properties using the connectivity matrices generated by
James et al. (2002). This is the first mesoscale ecological
small-world network reported, and the properties of the

@ Springer

network are similar to other published small-world net-
works of biological systems. The average minimum path
length of approximately L=3 links with an average
maximum diameter of D=9 links (mean arc length=
90 km) distributed over 600 km of reef matrix shows that
the reefs are well connected relative to other sorts of graph.
For example, a random network connecting the 321 reefs
with the same number of connections (D=7, L=2.23)
would have links with a longer average Euclidean distance,
while a planar or nearest neighbour network where only the
neighbouring reefs are connected (D=34, L=12) would
have links with significantly shorter average Euclidean
distances. The high value for the clustering index within the
reef system indicates that a substantial proportion of inter-
reef larvae settle on neighbouring local reefs with a smaller
number travelling longer distances between clusters. This
pattern is supported by the experimental evidence using
particle dispersal around One Tree Island by Kingsford et
al. (2002). This experiment highlighted that the majority of
particles remained close to the donor reef despite the tidal
influences, while a small number were swept away to more
distant locations. The volume of larvae circulating in such a
system need not be immense to strongly influence
colonisation patterns (Ayre and Hughes 2000; Andrefouet
et al. 2002; Mumby 2006; Treml et al. 2008). The role of
each reef within the network, in terms of influencing larval
flow, can be assessed using the centrality metrics. The
results for the betweenness and closeness values (which is
primarily a function of their geographic location, size and
shape) show that the reefs play a consistent role through
time. Conservation measures should bias protection to-
wards these consistently important reefs.

We found that the GBR remained a well-connected small
world when the life history properties of the species being
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Fig. 11 Changes in the 1998 graph for the indices of L, S (outbound),
CI and <k> when the edges are incrementally removed based on their
Euclidean length
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modelled were varied substantially. Despite altering the
mortality rates, release timing, distance of attachment and
pre-competent and competent periods, the changes in
average minimum path length and cluster coefficient
(Fig. 7) remained within the range of other published small
worlds and those artificially generated (Fig. 5). This implies
that the small-world structure is the most likely structure for
marine species found in the GBR marine environment
notwithstanding that this network model ignores other
migration processes such as adult movement that are part
of the complete life cycle of marine organisms.

The GBR does not exhibit scale-free distributions of the
number of connections; however, the distribution of reefs
with respect to the number of larvae settling or migrating to
another reef (strength of inbound connection) can be
described as scale free (Fig. 8). The implications of this
pattern are that the reefs in this system did not have a
disproportionate number of connections, but that a substan-
tial number of reefs were strongly connected. In contrast,
weighted networks such as the world airline network and
scientific authorship (Barrat et al. 2004) exhibited heavy-
tailed distributions for weight. The weight of a connection
in these networks will be determined by the state of the
adjoining nodes (i.e. reef health and airport weather) and
so understanding the impact that the state will have on the
network topology and function will be essential in
understanding the dynamics of the system.

Disturbances to the GBR in the form of cyclones, El
Niflo events and climate change are likely to impact on
the way reefs are connected by larvae (Harriott and
Banks 2002). The edge weight of the network, created by
the hydrodynamic model, is determined by a range of
complex interactions between reef topography, population
fecundity, water currents and neighbourhood configura-
tion. Within ecological time frames, only the currents and
fecundity are likely to be extensively disturbed (such as El
Nifio events influencing the East Australian Current), and
this will impact on the connection strength. The removal
of weaker or stronger edges from the network (Fig. 9)
reveals that the small-world character is robust when the
stronger edges are diminished but the removal of the
weaker edges rapidly resulted in a fragmented sparsely
connected network. The more numerous weaker edges act
to bind the network across the GBR, and this supports the
hypothesis by Ayre and Hughes (2000) that infrequent and
weak long distance dispersal is contributing to community
structure across the GBR. There are strong larval con-
nections between reefs located in relatively close proxim-
ity (Fig. 10), and field studies highlight the high levels of
similarity of neighbouring populations (van Oppen et al.
2008). Random removal of dispersal edges does not alter
the small world properties until only a small percentage of
edges are remaining. These results imply that the GBR

small-world character is robust against random distur-
bance but any disturbance that results in a regional
reduction in the capacity of the larvae to successfully
migrate long distances will effectively and rapidly increase
the GBR network size (specifically the diameter). Recov-
ery from large scale disturbances, through external
recruitment, will then be diminished.

When dispersal distances were limited to less than
27 km, the reef network broke into isolated clusters
(Fig. 11), rather than a small-world pattern. Until field
experiments resolve the issue of dispersal curves and self-
seeding proportions for a wide range of fish and coral
species (Jones et al. 1999), the small-world pattern will
remain speculative. In particular, the accurate parameter-
isation of dispersing larvae behaviour is required for the
proper use of the hydrodynamic model in predicting larval
dispersal (Kingsford et al. 2002) and hence the network
structure.

Numerous authors have expressed the need to include
information about connectivity in planning for and manag-
ing coral reef systems (Garcia-Charton and Perez-Ruzafa
1999; Jones et al. 2005; Mumby 2006; Minor and Urban
2008). With some justification, cross shelf and latitudinal
gradients dominate the ecological classification of the GBR
(for example Fabricius and De'ath 2001). These classifica-
tions do not attempt to include metapopulation processes
such as the dispersal of larvae, yet biodiversity protection
instruments such as the marine protected areas rely on
preserving these processes (Possingham et al. 2005). Graph
theory provides the capability to identify how individual reefs
are contributing to community structures. Prioritising reefs
based on the functional role within a larval network could
assist with the design of conservation reserves (Garcia-
Charton and Perez-Ruzafa 1999). Maintaining the network
as a strongly connected system across a diverse geographic
space (inshore to outer shelf) rather than as a series of
isolated communities will require the identification and
protection of reefs essential to enhancing larval flow. This
includes key isolated and highly connected reefs as well as
stepping stone reefs such as Low Island Reef (Fig. 0).

If the GBR is a small-world network, how does this alter
our perspective on the reef metapopulation? Is each reef
functioning as an isolated community (i.e. Jones et al.
2005) with occasional larval exchange (i.e. Ayre and
Hughes 2000)? Isolation occurs at different scales, and the
hierarchical nature of small worlds describes how clusters
exist within clusters and indeed some networks maybe
fractal in nature (Song et al. 2005). For example, the Palm
Passage (Fig. 12) provides a barrier to larval transport and
effectively isolates the southern cluster from larval recruit-
ment (Bode et al. 2006). This does not detract from the
findings of Jones et al. (1999) that many larvae circulate
then return to the reef of origin. Substantial evidence exists
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that planktonic larvae are found outside the local dispersal
zone (Mora et al. 2003), and this could provide the
mechanism to link populations in the GBR (Ayre and
Hughes 2000). The contribution that each reef makes to
GBR ecology needs to be evaluated in the context of the
wider network. This network can be simulated by a
hydrological model, such as James et al. (2002). Constrain-
ing the relationships between reefs to latitudinal and
longitudinal descriptors will disregard the intergenerational
connections that can serve to connect or, when absent,
isolate populations (Barber et al. 2000; Bode et al. 2008).

@ Springer

Our conclusion that the GBR is a small-world system
presents the largest known ecological network that
exhibits high levels of connectivity combined with tight
clustering. The implications for GBR conservation and
scientific research are significant because understanding
the metapopulation structure underpins our understand-
ing of coral reef function. Exactly how this new
understanding would explicitly change where we place
no-take marine protected areas in any rezoning of the
Great Barrier Reef is an important avenue for future
research.
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