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Abstract. DPA Contest is an international framework which allows re-
searchers to compare their attacks under a common setting. The latest
version of DPA Contest proposes a software implementation of AES-256
protected with a low-entropy masking scheme. The masking scheme is
called Rotating Sbox Masking (RSM) which claims first-degree security.
In this paper, we review the attacks submitted against DPA Contest
v4 implementation to identify the common loop holes in the proposed
implementation. Next we propose some ideas to improve the existing
implementation to resist most of the proposed attacks at affordable per-
formance overhead. Finally we compare our implementation with the
original proposal in terms of complexity and side-channel leakage.
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1 Introduction

Physical systems are now an integral part of our life. Such systems use embedded
computers and sensors to perform desired computation based on feedback from
physical processes and vice-versa. Some typical application of physical systems
are in domains like health management, traffic management, data-centers, power-
grids, etc. Given the critical nature of applications, it becomes an attractive
target for all kinds of attacks. This brings in the need for security and privacy.

A common solution to security threats is to use cryptography. Modern cryp-
tographic algorithms are based on strong mathematical problems and are con-
sidered secure from a theoretical view point. On the other hand, when these
algorithms are implemented in a physical systems, they become vulnerable.
These attacks which compromise the physical implementation of cryptography
are known as physical attacks or “Side-Channel Attacks” (SCA [1,2]). In such
cases, designers resort to countermeasures. Countermeasures for SCA tend to
modify the implementation in a way that the mere basis of SCA is removed.
Having said that, a perfect countermeasure is not possible to design. This is
because certain non-linearities in the target device which are not under the con-
trol of designer leave the countermeasure imperfect. Therefore a common trend
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in SCA countermeasure research is to make the design harder to attack, given
the design constraints. In this paper, we focus on symmetric ciphers that run as
software codes on embedded computers.

Common countermeasures for software implementations of ciphers are mask-
ing and shuffling [3,4]. Another lesser studied countermeasure for software im-
plementations is hiding [5]. All the countermeasures come at a significant cost
overhead in terms of memory, time or both. Hiding based countermeasure makes
the leakage uniform and independant of the data processed. Shuffling is a sim-
ple countermeasure which plays on randomizing the order of operations of the
cipher. Masking on the other hand uses a random value called “mask” which is
mixed with the sensitive data. The mixing is done by using different operations
like XOR, addition, multiplication etc. Out of the three countermeasures for
software implementations, masking is the most studied one.

Recently, researchers have started looking into the lightweight solutions for
SCA countermeasures. These countermeasures are designed to resist not all but
a selection of important and powerful attacks. One such countermeasure is Ro-
tating Sbox Masking (RSM) which is a type of Low-Entropy Masking Scheme
(LEMS). RSM was initially proposed for hardware implementations [6] and fur-
ther tuned for software targets in [7]. We choose RSM because it has been studied
widely by researchers worldwide under the framework of DPA Contest [8]. DPA
Contest allows researchers to apply their attacks on a common set of available
side-channel traces, in order to find the best attacks. During the fourth version
of the contest i.e. DPA Contest v4 (DPACv4 [9]) the target was a AES-256
implementation protected with RSM running on an ATMEL AVR-163 micro-
controller. Both the implementation and the traces were made available as a
part of the framework.

In this paper, we review the attacks proposed in DPACv4 framework to iden-
tify the common pitfalls of the proposed implementation. Next we try to propose
an improved implementation of RSM which does not suffer from some of the ob-
vious and noted pitfalls. The rest of the paper is organised as follows: Sec. 2
provides general background on DPA contest and its latest version and RSM. In
Sec. 3, we review the attacks proposed under the framework of DPACv4 with
prime focus on non-profiled attacks to identify the main pitfalls in the imple-
mentations. A proposition to improve the original implementation of DPACv4
is given in Sec. 4 followed by security evaluation in Sec. 5. Finally conclusions
are drawn in Sec. 6. Technical proofs are relegated in appendix.

2 General Background

2.1 DPA Contest

DPA Contest is an international contest which allows researchers from all over
the world to compete on a common ground. It was launched in 2008 and since
then four versions of the contest have completed. The first version of the contest
targeted an unprotected DES implementation running on a ASIC fabricated in
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ST 130 nm technology. Version 2 of the contest targeted a unprotected AES
implementation running on an FPGA platform [25]. The database of traces of
both implementations was made available online, with a goal to find the attack
which recovers the secret key using minimum number of traces. The next version
of the contest (v3) was an acquisition competition which focused on finding the
best measurement setup. The latest or the fourth version of the contest was
launched last year. This contest targets a protected AES-256 implementation on
a 350 nm metal-3 layer ATMEL AVR-163 microcontroller. Protection applied is
RSM which is a LEMS and discussed in next subsection.

2.2 Masking and RSM

Masking splits sensitive data Z ∈ Fn
2 into (d+ 1) variable random shares, noted

R = (Ri)i∈J0,dK, in such a way that the relation R0 ⊥ · · · ⊥ Rd = Z is satisfied
for a group operation ⊥ [10]. Typically, ⊥= ⊕, the exclusive-or (XOR) opera-
tion. Such schemes claim dth-order security. When a cryptographic algorithm is
modified to introduce masking, two computations are performed: masked sen-
sitive and mask compensation computation. In software, this computation is
performed in serial. The linear operations can be easily masked. Masking the
non-linear sbox S involves computing S(Z)⊕M ′ from the variables M , Z ⊕M
and M ′ (new mask) without compromising with SCA resistance.

GLUT [11], a proposed solution, pre-computes a look-up table, associated to
the function S′ : (X,Y, Y ′) 7→ S(X⊕Y )⊕Y ′. This approach is very expensive in
practice (the implementation cost is raised to the power 3). Rotating Sbox Mask-
ing (RSM) is based on precomputed table look-ups at the same time reducing
the area overhead of GLUT. The optimization comes from reusing sboxes and
removal of computation of mask compensation. RSM is a LEMS but the low-
entropy is covered for by carefully choosing the mask set M . From a security
point of view, M is chosen such that the jth order moment of the conditional
leakage Lj |Z = z given a guess on the sensitive variable Z are all the same for
j = 1, 2, · · · , d. Thus only an attack of order (d + 1) can succeed. Under this
constraint, the masks set M must be an orthogonal array of strength d [12].

The unmasking and masking which is integrated into the precomputed masked
sbox removes the need for computation of corresponding mask compensation.
The set of chosen mask M can be a public parameter however M should be
shifted by a random offset before each encryption. The linear operations are
masked by a simple XOR operation with precomputed constants applied at the
end of each round. For a linear operation P , a mask mi can be computed as
P (mi) ⊕ mi on the fly or stored precomputed in memory. We refer interested
readers to [6], [7] and [13] for details of RSM and its security analysis.

2.3 DPACv4 Implementation

DPACv4 targets an AES-256 implementation protected with RSM. It was mostly
written in the C language, and compiled using avr-gcc. The overall algorithm
running on the smartcard is described in Alg. 4 in Appendix A.
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A quick glossary for Alg. 4 is as follows:

– MaskedSubBytesi(X) = SubBytes(X ⊕Mi)⊕Mi+1

– MaskCompensationoffset = Maskoffset ⊕MixColumns(ShiftRows(Maskoffset))
– MaskCompensationLastRoundoffset = Maskoffset ⊕ ShiftRows(Maskoffset)

The MaskedSubBytes operation firstly calls the 8 sboxes with even index
followed by remaining 8 sboxes with odd index. The Maskoffset operation applies
16 mask bytes to 16 state bytes according to the computed index. The mask set
used for DPACv4 is:

Mi∈J0,15K = {0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a,
0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff} .

3 Summary of Attacks Presented in DPACv4

Since the launch of DPACv4 in July 2013, 28 attacks have been submitted and
evaluated. The results of all these attacks along with their brief description is
available on the website of the contest. In general, the submitted attacks can
be classified in two categories: profiling based attacks and non-profiling based
attacks.

Some of the attacks submitted under the DPACv4 framework proved to be
very efficient. For instance, in the profiling based attack category, 14 attacks have
been proposed. The best attack in this category can break the implementation
and recover the secret key with a single trace (attack phase). On the other
hand, for the non-profiling based attacks, the best attack takes as low as 14
side-channel traces to recover the secret key. In the following we focus on
non-profiling attacks.

The first attack which is a univariate correlation power attack (CPA [2])
was proposed by Moradi et al. [14]. This attack exploits a vulnerability which
arises from a basic design error. A vulnerability in RSM arises when a sbox
input xi masked with mask mi, is written over by a sbox output yi masked
with mi+1 in the same register. The activity of the register can be written as
(xi⊕ yi)⊕ (mi⊕mi+1). Now under the RSM countermeasure both the mask mi

and mi+1 are balanced. The set of mask for RSM belong to a code and carefully
chosen to satisfy certain properties and provide desired security. However, the
composite mask mi⊕mi+1 turns out to be unbalanced. This unbalance leads to
a first-order leakage which can be exploited by a simple univariate CPA.

The next attack by Kanghong et al. unrolls in two steps. In the first step, the
attacker tries to guess the value of initial offset used for each encryption. The
attackers exploit the fact that the Hamming weight HW of mask m0 ⊕m15 is
8, while for all other mask combinations (mi ⊕mi+1) it is 4. This difference in
Hamming weight can be observed in DPACv4 traces and the temporal location of
this maximum difference gives an idea of the offset. In the second and final step,
an attacker can group all traces with the same offset and launch a univariate
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CPA attack to recover the secret key. Kanghong et al. used 69 traces to recover
the key.

Thereafter several attacks exploiting the same vulnerability were proposed.
Each time the method to determine the offset was novel. Junrong et al. propose
two attack using maximal difference to determine the offset and recovering the
key in 110 traces. Zhou et al. use maximal difference and pattern matching to
determine the secret key in 14 traces. Next, Nakai et al. retrieve the offset using
F-Test followed by a CPA to find the key in 43 traces. Another attacker who
remains anonymous uses a first order CPA to first recover the offset followed by
a DPA to find the key.

Two more attacks belonging to the non-profiled category were proposed un-
der DPACv4. Zhou et al. attacked RSM using a second order CPA attacks. This
attack exploited the joint leakage which came from combination of sbox out-
put with input mask mi and plaintext blinding with mask mi+1. Although the
individual leakages of plaintext blinding and sbox output are masked, the joint
leakage becomes unmasked, which can be exploited by a CPA attacks. The other
attack was a collision attack. Firstly the attacks detects collision using Pearson’s
correlation to compute the 15 key differences between first byte and other 15
bytes of the key. Next the whole key can be recovered by a simple brute force
attack.

Apart from the DPA Contest framework, few other attacks were published on
the implementation proposed in DPACv4. Kutzner et al. [21] proposed several
attacks on the hardware and software implementations of RSM. Considering
the software implementation (as of DPACv4), two attacks were proposed. The
first attack guesses the offset followed by univariate CPA. In other words, it
exploits the same vulnerability as majority of the attacks. The second attack
proposed was by Kutzner et al. is indeed unique. It exploits a property called
constant difference in the RSM mask. Authors discovered that the difference
in mask between mi and mi+8 is constant. In other words, mi⊕mi+8 is constant.
This property was used to mount a 1st − order correlation enhanced collision
attack [15] to recover the secret key. A third (simulated) attack was presented
on hardware RSM in the same paper [21]. We noticed that this attack can also
be a potential threat to software implementation of RSM. It exploits the fact
that the mask mi used by sbox S0 in the first round is same as used by S7 in
last round, which allows collision attacks.

Few other papers were also published which attacked the DPACv4 traces.
Belgarric et al. [16] demonstrated practical bivariate attacks (using preprocess-
ing tools like Discrete Hartley Transform) by attacking in frequency domain.
Moreover, Ye et al. [17] proposed a couple of attacks based on mutual infor-
mation and collisions to exploit LEMS like RSM. All the attacks in those two
papers were possible owing to the fact that the attacker is aware of the pre-
dictable sequence of AES operations.

To summarize the threats exploited by attacks submitted in DPACv4, we
can identify four implementation pitfalls:
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1. The mask (mi,mi+1) although balanced by itself, were not balanced when
XORed together ((mi ⊕mi+1)).

2. Mask (m0,m15) have a higher Hamming distance than other mask, which
leaks the the value of the offset.

3. As the offset is incremented by a constant in every round, it lead to pre-
dictable sequence of operations which can be exploited by collision attacks.

4. The unaltered and predictable sequence of operations allows combination of
points, thereby leading to second-order CPA and collision attacks.

4 Proposition for Improving DPACv4 Implementation

In this section, we propose some improvements to the original DPACv4 imple-
mentation based on our know-how of its pitfalls. These pitfalls are discussed
and analyzed in the previous section. As stated earlier, designing a perfect coun-
termeasure is not possible. Trying to thwart all attacks at once is not an ob-
vious task. Of course, some solutions proposed by Rivain and Prouff [18] and
Coron [19] can be applied. However, it would lead either to explosion in imple-
mentation cost. In the following, we attempt to boost the security level of the
AES RSM implementation at reasonable cost overhead. We discuss each of the
pitfall in detail and make an attempt to fix it.

The first pitfall arises from the fact that the value mi ⊕ mi+1 exist in the
implementation, directly or indirectly. As stated earlier the mask mi and mi+1

are balanced, but the value mi ⊕ mi+1 is unbalanced. We analysed the code
of DPACv4 implementation. The original code was written in C language. It is
compiled using avr-gcc to generate assembly code. If we check the original C
code, mi⊕mi+1 is never computed itself. However on compilation with avr-gcc

certain instances of such nature may occur. avr-gcc reuses several general pur-
pose registers and 2-stage pipeline to optimize the design. Suppose there exist a
value x ⊕mi in a register or pipeline. This value is followed by y ⊕mi+1. The
side-channel activity at next clock will correspond to x⊕ y ⊕mi ⊕mi+1, which
is unbalanced.

Now looking into the DPACv4 implementation, the result of plaintext blind-
ing xi⊕mi stored in a register is overwritten by its sbox output MaskedSubBytes(xi⊕
mi). The latter term can be written as SubBytes(xi)⊕mi+1 It is well known that
the activity of the register follows the value update model i.e. xi⊕SubBytes(xi)⊕
mi⊕mi+1. Thus the accidental mi⊕mi+1 leakage occurs which can be exploited
in side-channel.

A straightforward way to avoid accidental computation of the form mi ⊕
mi+1 in the implementation flow, is to rewrite the complete code in assembly
language. However writing assembly code is a tedious and error-prone task. A
common practice is to write only the sensitive modules of the code in assembly.
This is considered as best practice to avoid any surprises from compilation.
Another precaution which must be taken at this stage is register precharge.
If we precharge every general purpose register to ‘0’ value before writing in a
new value, we can avoid all leakages of form mi ⊕mi+1. By ensuring these two
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conditions, one can get rid of accidental univariate leakage like the one presented
in [14].

The second pitfall identified in DPACv4 implementation is that the value of
offset is leaked in side-channel. In fact, the mask (m0 = 0x00,m15 = 0xFF )
have considerable higher Hamming distance of 8. All other adjacent masks have
a Hamming distance of 4, which can be identified in side-channel traces The fact
that, after each sbox, offset← offset + 1, allows to retrieve the offset since there
is a constant temporal distance between mask 0x00 and 0xFF . We consider
this vulnerability to be very serious as it was exploited by most of the attacks
submitted under DPACv4. Once the offset is know to the attacker, the attacker
can easily sort the traces with same offset. Same offset for a set of traces trans-
lates to same mask values i.e. a constant mask denoted by mk. Since the mask
is constant, the Pearson correlation ρ(x ⊕ mk, y) simplifies to ρ(x, y). This is
equivalent to a totally unmasked implementation.

To protect against such attacks, we propose to use a random offset for each
sbox. Although we use a random offset for each sbox, the basic set of 16 mask
remains unchanged. Therefore all the security proofs which apply to RSM also
apply to our implementation. The random offset is applied by using a random
array of 16 independent indices. This array is generate to address the array of 16
masks independently for each sbox. Unlike the original implementation, this im-
plementation can (sometimes) use same mask for multiple sboxes. Moreover by
using independant offset for each sbox, we also solve the problem of collision at-
tacks as proposed in [21]. The correlation-enhanced collision attack [21] exploits
the fact that SubBytes(xi+ki) = SubBytes(xi+8)+ki+8+0x95. By randomizing
the manipulation of mask of indices i and i + 8, this attack is no more possi-
ble, as mi and mi+8 will not have same temporal distance. Similarly in [21] the
collision attack exploiting the first and last round becomes irrelevant. The over-
head associated with this countermeasure is that the set of MaskCompensation
becomes very large to store in the memory. To solve this problem we compute
the MaskCompensation on the fly which has a time penalty as overhead.

Finally, there were certain bivariate and higher order attacks proposed un-
der the framework of DPACv4. In [7], authors tweak the original RSM scheme
for software implementation to claim first degree security. Thus if higher order
attacks work on RSM, it is as expected. There are two possible ways to boost
the security level of this implementation. The first way is to modify the masking
scheme in order to resist higher-order attacks [20]. On the other hand, one can
combine countermeasures to boost the security level while keeping overhead in
check. We choose the second method and use shuffling [4] as an additional coun-
termeasure. As the prime targets of SCA are first and last rounds of AES, we
only shuffle the order of sbox execution of first and last round of the AES. This
shuffling is performed by drawing a random permutation for indices of execution
of sboxes for first and last round for each encryption. In the middle rounds, the
sboxes are executed as before i.e. 8 even sbox indices followed by remain 8 odd
indices. Since the window of execution of the concerned sboxes will change, the



8 S. BHASIN et al.

selection of trace windows for combination will not be easy. For the same reason,
attack proposed in [17] becomes impractical.

The attacks on DPAcv4 and the corresponding countermeasures proposed in
this section are all summarized in Tab. 1.

Table 1. Attacks on DPACv4 implementation and corresponding countermeasures
proposed in this article

Attacks \ Countermeasures A
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First-order attack [14] x x
Recover the offset [9] . x

Collision on the sbox [21] x x
Collision 1st-last rounds [21] x x

Bivariate attacks [16] x
MIA [17] x

4.1 Target Platform

To analyze our implementation we use the same platform as of DPACv4. The
target is a 8-bit AVR microcontroller Atmega163 embedded in a smartcard. It
contains 16Kb of in-system programmable flash, 512 bytes of EEPROM, 1Kb of
internal SRAM and 32 general purpose working registers. The smartcard is read
using a simple reader interface mounted on SASEBO-W board and controlled by
Xilinx Spartan-VI FPGA. The traces are acquired using a LeCroy WaveRunner
6100A oscilloscope using an EM probe. The acquisition bandwidth is 200 MHz
and the sampling rate FS = 500 MS/s.

4.2 Implementation

The proposed implementation is written in assembly language and carefully
checked to avoid most identified pitfalls. This implementation takes the well
optimized Rijndael furious and DPACV4 implementations as references.

Tab. 2 compares the unprotected Rijndael furious and DPACv4 implementa-
tions with our improved design. Please note that the numbers includes the cost
of key expansion as well as the embedded OS used in DPACV4. Rewriting the
sensitive part in assembly actually accelerated the proposed design compared
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to original one. Please note that Tab. 2 does not take into account the cost of
embedded CSPRNG which is used to generate the randomness needed for the
shuffled masking scheme. We make sure that the blinding operation is performed
in a specific order to avoid some horizontal attacks. Also, direct manipulation of
private shares with known variables is avoided. For example the key should first
be blinded with the random mask before blinding the plaintext. The improved
algorithm running on the smartcard is described in Alg. 1.

Table 2. Cost Complexity of the original (DPACv4) over the new implementation and
Rijndael Furious

Architecture Rijndael Furious
Original Improved

Overhead
(protected) (protected)

Code Size (bytes) 2596 11136 17847 60%
RAM (bytes) 1 8 12 50%

Number of cycles 3579 113600 16004 −86%

4.3 Shuffling Algorithms

To generate the shuffle, we propose two algorithms:

1. the first one (Alg. 2) generates a full entropy permutation of J0, 2n−1K, and
works in O(n2 log(2n)) time;

2. the second one (Alg. 3) generates a low entropy permutation of J0, 2n − 1K,
but works in linear time O(n).

Alg. 2 redraws numbers repeatedly till there is no collision. Notice that we
suggest to draw numbers in {0, 1, . . . , 2n−1}, because it is easy to draw uniformly
n bits. Instead, randomly drawing numbers in an interval is not trivial (recall
that awkwardly applying a “modulo” would definitely break the uniformity).

Lemma 1. The expected running time of Alg. 2 is 2n
∑2n

m=1
1
m , that is equiva-

lent to O(2n log(2n)) for large values of n.

Proof. See Appendix B.

Algorithm 2: Full Entropy Shuffling

input : None
output: A permutation Fn

2 7→ Fn
2

Initialize a vector of 2n elements of Fn
2 ;

for ω ∈ {0, 1, . . . , 2n − 1} do // Scrambling

r ←R U(J0, 2n − 1K) ;
while r ∈ S[0, i− 1] do

r ←R U(J0, 2n − 1K) ;
end
S[i]← r ;

end
return S
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Algorithm 1: Modified AES implementation to overcome pitfalls of
DPACv4.
Input : 16-bytes Plaintext X JX0, X1 · · ·X15K,

SubKeys, 15 16-bytes constants RoundKey[r], r ∈ J0, 14K,
16 masks of 8 bit, called Mask[]

Output: 16-bytes Ciphertext X JX0, X1 · · ·X15K

/* Draw 16 4-bit (uniformly random, unknown) offset[] for the key

blinding */

/* Draw of 2 shuffling functions (uniformly random permutations),

Shuffle0, Shuffle13 : J0, 15K→ J0, 15K, bijective */

RoundKey[0]← RoundKey[0]⊕Mask[offset[]]

/* All rounds but the last one */

for r ∈ J0, 12K do
X = X ⊕ RoundKey[r] /* AddRoundKey */

if r = 0 then
for i ∈ Shuffle0(J0, 15K) do

Xi = MaskedSubBytesoffset[i]+r(Xi)

end

else
for i ∈ J0, 15K do

Xi = MaskedSubBytesoffset[i]+r(Xi)

end

end
X = ShiftRows(X)
X = MixColumns(X)
for i ∈ J0, 15K do

MaskCompensation[i] =
ShiftRows(MixColumns(Mask[offset[i]+(r+1)]))⊕Mask[(offset[i]+(r+1))]

end
X = X ⊕MaskCompensation[]

end

/* Last round */

X = X ⊕ RoundKey[13]
for i ∈ Shuffle13(J0, 15K) do

Xi = MaskedSubBytesoffset[i]+13(Xi)

end
X = ShiftRows(X)
X = X ⊕ RoundKey[14]

/* Ciphertext unmasking */

for i ∈ J0, 15K do
MaskCompensationLastRound[i] =
ShiftRows(Mask[offset[i] + 14])⊕Mask[(offset[i] + 14)]

end
X = X ⊕MaskCompensationLastRound[]
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Alg. 3 is inspired from the key scheduling of RC4.

Algorithm 3: Low Entropy Shuffling

input : k[2n], an array of 2n elements of Fn
2

output: A permutation Fn
2 7→ Fn

2

S[2n], an array of 2n elements of Fn
2 ;

for ω ∈ {0, 1, . . . , 2n − 1} do // Initialisation
S[ω]← ω

end
j ← 0 for ω ∈ {0, 1, . . . , 2n − 1} do // Scrambling

j ← j + S[ω] + k[ωmod2n];
swap(S[ω], S[j]) ;

end
return S

5 Security Evaluation

We acquired 32K side-channel traces for the proposed implementation using the
setup described above. The plaintexts and the key used were same as of DPACv4.
The main aim is to check for any first-order or univariate leakage present in
the implementation. To do so, we rely on leakage detection technique. More
precisely we use Normalized Inter-Class Variance (NICV [22]). NICV detects any
univariate leakage present in the side-channel traces and does not depend on a
leakage model. It is computed with respect to public parameters like plaintext
or ciphertext. NICV is expressed as:

NICV =
Var [E [Y |X]]

Var [Y ]
,

where Y denotes side-channel traces and X represent a chosen part of plain-
text or ciphertext. We compute NICV with respect to a input plaintext byte
for the collected traces. The results are shown in Fig 1(a). It can be deduced
from Fig 1(a), that no univariate leakage is present in the improved implemen-
tation in the SubBytes and further. We can see two big peaks during the initial
AddRoundKey in figure which indicate presence of a possible univariate leak-
age. We further investigated the peak using a univariate CPA attacks. Indeed
these peaks correspond to the loading of the raw plaintext byte into different
section of the card i.e. memory and ALU. This leakage does not contain any
information about the key used and therefore not sensitive. We can also see this
non-sensitive leakage on the NICV computed on traces of the original imple-
mentation of DPACv4 as shown in Fig 1(b). Moreover in Fig. 1(b), we detect a
univariate leakage related to the plaintext during the SubBytes operation. Such
leakage can be sensitive. We further investigated the leakage in the SubBytes
of original DPACv4 implementation. It turned out to be the same leakage as
exploited by Moradi et al [14].
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Fig. 1. NICV computed on the (a) proposed implementation; (b) original implemen-
tation of DPACv4

Next we investigate the leakage corresponding to the offset. In order to show
that our new implementation is less prone to folding attacks than the DPACV4
implementation we check that traces contains less leakage points related to the
offset value. We computed NICV with respect to the 4 bit offset used in the
first implementation. We can see in Fig. 2 that there are 48 significant peaks.
Those leakage points corresponds to the loading of the single 4 bit offset index
used to address the mask table, the sBox and the mask correction table. If the
device leaks in value, a single folding attack on one of those leakage point can be
sufficient to recover the full key. If the offset is partially leaked at each leakage
point, the attacker can exploit multiple leakage point to mount more robust
folding attacks.

Then we computed NICV with respect to the first 4-bit offset of 16 on our
new implementation. The results are shown in Fig 3. We can see three big peaks.
Those tree peaks corresponds to the loading of the index that is used to read
the mask,the sBox and the mask correction table in memory. Those leakage
are sensitive because it provide information on the byte of mask used to blind
the key. However, it is no longer possible to mount horizontal attacks since each
byte of mask is selected by a different random 4 bit offset. Knowing those leakage
point can however be used to mount ”folding” type attacks, provided that the
target leaks in value. If the target appears to leak in value, 16 folding attacks are
however not sufficient to recover the full key because the attacker should also
fold the dataset depending the 16 4-bit random shuffle. If the offset values are
partially leaked, only 3 leakage point per offset nibble are available to guess the
leaked value, which is not sufficient.

5.1 Insight on Horizontal attacks

In this section, we compare a full entropic sbox masking against improved RSM
proposed in Sec 4. A way to mask the non linear sbox is to use sbox recompu-
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tation [23]. As presented in [24] this kind of masking scheme can be defeated by
using “horizontal” attacks to first recover the mask and then performing first
order attacks. These attacks are possible due to the fact that the mask is used
256 times (in the case of AES) during the sbox recomputation. Mainly the input
mask of the sbox is sequentially XORed with all the possible values in F8

2. These
leakages allow an attacker to recover the value of the mask using for example a
CPA.

In DPACv4, it was also possible to build ”horizontal” attacks to recover
the random offset, and then the mask of all the sbox outputs. Indeed for each
plaintext byte there was the leakage depending on the following operation: xi ⊕
mi. Then as the sequence of mask is known there is only 16 possible guesses,
corresponding to 16 masks, to recover the mask using for example a CPA.

Remark 2. Note that there are 256 different exploitable leakages in the case of
the sbox recomputation and only 16 for RSM. But the results of the “horizontal”
attacks on RSM allows to recover the mask of the sixteen bytes of the states
whereas (depending on the implementation) the “horizontal” attack on the sbox
recomputation allows to recover the mask of only one byte of the state.

In our proposition, a random offset is used to mask each byte and it is no
longer possible to perform “horizontal” attack. Indeed it is necessary to guess
1616 values. Moreover, the shuffling makes the attack even more difficult as it is
necessary to guess the 16! possible orders of plaintext.

The Success Rate is given by the formula [10]: SR = 1 − e−n×k where n is
the number of traces, in our case the number of different leakages depending
on the mask, and k is a first order exponent (obtained from a Chernov bound).
Figure 4 shows the difference of the success rate for the recovering the mask for
improved RSM and the sbox recomputation.

Fig. 4. Difference of Success Rate for normal sbox recomputation vs our proposition
of RSM
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Remark 3. The sbox recomputation can also be done in a random order but it
is necessary to generate a permutation on 256 value. This generation could be
costly (see Alg. 2 and 3).

6 Conclusions and Perspectives

LEMS has its own advantages and shortcomings. An example of LEMS was
proposed in DPACv4, where researchers from all over the world were able to
attack a common implementations. 18 profiled and non-profiled attacks were
proposed revealing 4 major pitfalls of the proposed implementation. In this pa-
per, we analyze these pitfalls and propose an improved implementation. Our
results demonstrate that it is possible to resist the non-profiled attacks at an
overhead of 27% in code size, 50% in memory and 1.5% in computation time.

Disclaimer

The exact specifications of the improved implementation of the DPA contest v4
will be posted on the official website and related social media [9].
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A Algorithm of DPACv4 Implementation

The algorithm running on the smartcard for DPACv4 is described in Alg. 4.

Algorithm 4: AES implementation used for the DPACv4 (Source: [9]).

Input : 16-bytes Plaintext X JX0, X1 · · ·X15K,
Key, 15 16-bytes constants RoundKey[r], r ∈ J0, 14K

Output: 16-bytes Ciphertext X JX0, X1 · · ·X15K

Draw a random offset, uniformly in J0, 15K
X = X ⊕Maskoffset /* Plaintext blinding */

/* All rounds but the last one */

for r ∈ J0, 12K do
X = X ⊕ RoundKey[r] /* AddRoundKey */

for i ∈ J0, 15K do
Xi = MaskedSubBytesoffset+i+r(Xi)

end
X = ShiftRows(X)
X = MixColumns(X)
X = X ⊕MaskCompensationoffset+1+r

end

/* Last round */

X = X ⊕ RoundKey[13]
for i ∈ J0, 15K do

Xi = MaskedSubBytesoffset+13+r(Xi)
end
X = ShiftRows(X)
X = X ⊕ RoundKey[14]

/* Ciphertext unmasking */

X = X ⊕MaskCompensationLastRoundoffset+14
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B Proof of Lemma 1

The running time of Alg. 2 is probabilistic because of the conditional redraws
at line 2. Let i, 0 ≤ i < 2n, be the number of values already chosen. Then, a
uniformly drawn value r in J0, 2n−1K is a new value with probability (2n−i)/2n.
If it is not a new value, then j redraws are required, with probability(

i

2n

)j

× 2n − i
2n

.

Thus, the average number of random number drawing is:

1 +

+∞∑
j=1

j

(
i

2n

)j

× 2n − i
2n

= 1 +

+∞∑
j=1

j

(
i

2n

)j−1

× (2n − i)i
22n

= 1 +
i

2n − i

because 1
(1−x)2 =

∑∞
i=1 ix

i−1 for all x ∈ R such that |x| < 1.

Thus, the average time of Alg. 2 is

2n−1∑
i=0

1 +
i

2n − i

= 2n +

2n∑
m=1

2n −m
m

(m← 2n − i)

= 2n
2n∑

m=1

1

m
.

Now,

lim
N→+∞

N∑
m=1

1

m
− lnN = −γ ,

where γ is the Euler-Mascheroni constant (γ ≈ 0.577). Thus, the average running
time of Alg. 2 is equivalent to 2n ln(2n) when n tends to the infinity.


