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Abstract. This paper presents algebraic collision attacks, a new power-
ful cryptanalytic method based on side-channel leakage which allows for
low measurement counts needed for a successful key recovery in case of
AES. As opposed to many other side-channel attacks, these techniques
are essentially based on the internal structure of the attacked crypto-
graphic algorithm, namely, on the algebraic properties of AES. More-
over, we derived the probability distributions of Euclidean distance for
collisions and non-collisions. On this basis, a statistical framework for
finding the instances of side-channel traces leaking most key information
in collision attacks is proposed.
Additionally to these theoretical findings, the paper also contains a prac-
tical evaluation of these side-channel collision attacks for a real-world
microcontroller platform similar to many smart card ICs. To our best
knowledge, this is the first real-world study of collision attacks based
on generalized internal collisions. We also combined our methods with
ternary voting [1] which is a recent multiple-differential collision detec-
tion technique using profiling, where neither plaintexts, ciphertexts nor
keys have to be known in the profiling stage.

Key words: Side-channel attacks, collision attacks, algebraic cryptanalysis,
multiple-differential collision attacks, ternary voting, AES, DPA

1 Introduction

Motivation. The motivation of this paper is to develop a framework minimizing
the number of online measurements needed for a successful key recovery in a real-
world noisy environment. This is to a certain extent equivalent to extracting a
maximum amount of key information from the given side-channel signal, which
is the central question of side-channel cryptanalysis. In practice, this setting is
important in such cases where the attacker has very restricted access to the
device due to organizational policies or where only few cryptographic operations



with the same key are allowed, which is used as a side-channel countermeasure
in some real-world systems. An independent line of motivation we pursue is
to come up with an efficient and practical alternative to such well-known side-
channel techniques as differential power analysis (DPA) [2] and template attacks
[3], [4] which would be free of their main natural limitations: Dependency on a
certain leakage model for DPA and the necessity of thoroughly characterizing
the attacked device for template attacks.

Side-channel collision attacks are a well-suited base for the solution of these
problems due to the inherently low numbers of needed measurements, the ab-
sence of any concrete leakage model, and the possibility to build collision tem-
plates without detailed knowledge of the target.

Collision attacks. Basic side-channel collision attacks [5] were improved in [6]
by introducing the notion of generalized collisions that occur if two S-boxes at
some arbitrary positions of some arbitrary rounds process an equal byte value
within several runs. However, [6] treats only the linear collisions of AES which
are generalized collisions that occur in the first AES round only. Moreover, the
results in [6] as well as those in [5] assume that the collision detection is absolutely
reliable, while there are significant error probabilities in real-world scenarios.
Though this problem was approached in [1] by introducing multiple-differential
collision detection (binary and ternary voting), a sound real-world evaluation of
these methods is still lacking.

Our contribution. Additionally to linear collisions, we consider nonlinear col-

lisions that are defined as generalized collisions comprising several rounds. They
deliver extra information contained in further AES rounds. Each such collision
can be considered as a nonlinear equation over a finite field. The set of all de-
tected collisions corresponds to a system of nonlinear equations with respect to
the key, which can be solved using techniques closely related to the algebraic
cryptanalysis of AES with a reduced number of rounds which are referred to as
algebraic collision-based key recovery.

For collision detection, the Euclidean distance is used. We obtain probability
distributions of this statistic in the univariate Gaussian noise model. We show
that for large numbers of points in the side-channel trace these two Euclidean
distances can be approximated by normal distributions with different parame-
ters. This allows us to define a statistical metric for the time instants of the trace
leaking most information for collision detection. It turns out that these points
are quite different from those leaking key data in standard DPA.

Combining these improvements, we achieve a considerable reduction of the
number of online measurements needed for a successful key recovery. We imple-
mented the attacks for an Atmel AVR ATMega16 microcontroller. The practical
results can be found in Table 1. In a version of the attack, we additionally use
collisions from ternary voting, a multiple-differential collision detection tech-
nique from [1]. Neither plaintexts, ciphertexts nor keys have to be known in the
profiling stage.



This indicates that the algebraic collision attacks on AES without profil-
ing are superior to standard CPA in terms of number of measurements needed.
Rather surprisingly, the efficiency of our collision techniques without profiling

is comparable to the stochastic methods [4] with profiling (one of best known
template-based attacks) for low numbers of profiling curves. Moreover, if profil-
ing is allowed for collision attacks, the number of online measurements can be
further reduced. Note that all the implemented collision techniques (both with
and without profiling) do use the knowledge of the time instances leaking most
information.

Table 1. Summary of results: Hamming-distance based CPA, basic collision attack (on
our ATmega16 AES implementation) without profiling and stochastic methods with
profiling (on an ATM163 AES implementation [4]) vs. collision attacks based on FL-
collisions with and without profiling for Coffline ≤ 240 (P – success probability, Conline –
number of online measurements, Cprofiling – number of profiling measurements, Coffline

– number of offline operations for key recovery)

P Conline Cprofiling

HD-based CPA 0.8 61 0

Basic collision attack [5] 0.85 300 0

Stochastic methods [4] for ATM163 0.82 10 200

FL-collisions, this paper 0.76 16 0

FL-collisions, this paper 0.72 12 625

2 Preliminaries

2.1 Basic Notation

All collision attacks have two stages: an online stage, where measurements on the
target device implementing the attacked cryptographic algorithm are performed,
and an offline stage, where the cryptographic key is obtained from the traces
acquired in the online stage. Additionally, a collision attack can be enhanced
to have a profiling stage, where some profiling traces are obtained from some
implementation of the attacked cryptographic algorithm.

In this paper we perform our collision attacks at the example of AES. We use
the following notation to represent its variables. K = {kj}16

j=1, kj ∈ GF(28) is the

16-byte user-supplied key (the initial AES subkey). X = {xj}16
j=1, Y = {yj}16

j=1

and Z = {zj}16
j=1, xj , yj , zj ∈ GF(28) are the first, next to the last and last 16-

byte AES subkeys, respectively. AES plaintexts are denoted by P i = {pi
j}16

j=1,

pi
j ∈ GF(28) and ciphertexts by Ci = {ci

j}16
j=1, ci

j ∈ GF (28), where i = 1, 2, . . .
is the number of AES execution.



Collision-based key recovery methods for AES are mainly parametrized by
the number γ of random plaintexts and/or ciphertexts needed to obtain the
cryptographic key with success probability P . In our collision attacks, γ can be
chosen between 4 and 20 in the majority of cases. We are interested in success
probabilities P ≥ 0.5.

2.2 Linear Collision-Based Key Recovery

Given a linear collision (within the first round of AES), one obtains a linear
equation with respect to the key over GF(28) of the form

S(pi1
j1
⊕ kj1) = S(pi2

j2
⊕ kj2), or kj1 ⊕ kj2 = pi1

j1
⊕ pi2

j2
= ∆j1,j2 for j1 6= j2.

In the example of Figure 1, one has the following equation: k4⊕k11 = p1
4⊕p2

11 =
∆4,11. S-boxes where collisions occurred (active S-boxes) are marked by the
numbers of collisions they account for. The input byte pi

j is characterized by its
position j ∈ {1, . . . , 16} within the plaintext block and the number i = 1, 2, . . .
of the plaintext block it belongs to.

If D collisions have been detected, they can be interpreted as a system of
linear binomial equations over GF(28):







kj1 ⊕ kj2 = ∆j1,j2

. . .
kj2D−1 ⊕ kj2D

= ∆j2D−1,j2D

This system cannot have the full rank due to the binomial form of its equa-
tions. Moreover, for small numbers of inputs to AES the system is not connected
and it can be divided into a set of h0 smaller independent (with disjunct vari-
ables) connected subsystems with respect to the parts of the key. Each subsys-
tem has one free variable. Let h1 be the number of all missing variables, and
h = h0 + h1. Then the system has 28h solutions. That is, Coffline = 28h guesses
have to be performed, which is the offline complexity of the attack. Each key
hypothesis is then tested using a known plaintext-ciphertext pair to rule out
incorrect candidates. Coffline quickly becomes feasible as the number of distinct
inputs grows. The probability that Coffline ≤ 240 (h ≤ 5) is about 0.85 for γ = 6,
if all collisions are detected. Note that the question of reliable collision detection
was not treated in [6].

2.3 Direct Binary Comparison Using Side-Channel Signal

There are ways of deciding if two S-boxes accept equal inputs using side-channel
information obtained from the implementation of the attacked cryptographic
algorithm. For instance, typical side channels are the power consumption of
devices as well as their electromagnetic radiation, which manifest some data and
key dependency in many cases.

Given two side-channel traces τ1 = (τ1,1, . . . , τ1,l) ∈ R
l, τ2 = (τ2,1, . . . , τ2,l) ∈

R
l, respectively corresponding to some pair of S-box executions with inputs a1
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and a2, it has to be decided whether a1 = a2 for collision detection. In this paper
we use the Euclidean distance based binary comparison test T (as in [5] and [1])
for this purpose:

T (τ1, τ2) =

{

0 (no collision), if H(τ1, τ2) < W
1 (collision), if H(τ1, τ2) ≥ W,

where W is a decision threshold and H is the following statistic:

H(τ1, τ2) = 1/

l
∑

j=1

(τ1,j − τ2,j)
2.

Test T is characterized by the following type I and II error probabilities4:

α = Pr{T (τ1, τ2) = 0|a1 = a2}, β = Pr{T (τ1, τ2) = 1|a1 6= a2}.

2.4 Ternary Voting: Indirect Comparison of Traces Using Profiling

As already mentioned in Subsection 2.1, collision detection can be made more
efficient if profiling is allowed. One approach to such template-based collision
detection is the ternary voting proposed in [1]: Test T on two target traces τ1

and τ2 for inputs a1 and a2 can be amplified by using further N reference traces

{πi}N
i=1, πi = (πi,1, . . . , πi,l) ∈ R

l, which correspond to some random unknown
inputs bi ∈ GF(28) and have been acquired on a similar implementation prior
to the online stage. The main idea of ternary voting is to indirectly compare τ1

and τ2 through the pool of reference traces {πi}N
i=1. The ternary voting test can

be defined as follows:

V (τ1, τ2) =

{

0 (no collision), if G(τ1, τ2) < U
1 (collision), if G(τ1, τ2) ≥ U,

where G(τ1, τ2) =
∑N

i=1 F (τ1, τ2, πi) with F (τ1, τ2, πi) = T (τ1, πi) · T (τ2, πi), U
is some decision threshold, and T is the binary comparison test as defined in
Subsection 2.3. The key observation is that the distributions of G(τ1, τ2) for
a1 = a2 and for a1 6= a2 will be different. Typically, for sufficiently large N ’s
G(τ1, τ2) will be higher for a1 = a2 than for a1 6= a2. To decide if there has
been a collision, the attacker needs to statistically distinguish between these
two distributions. We use ternary voting to amplify direct binary comparison,
combining the sets of collisions detected by both methods, see Section 5.2.

3 Algebraic Collision-Based Key Recovery

In this section we identify (Subsection 3.1) types of nonlinear generalized col-
lisions enabling efficient algebraic representation that give rise to efficient key

4 Note that α and β strongly depend on the statistical properties of the traces (among
many other factors, on the noise amplitude) and the choice of W .



recovery. Then the corresponding systems of nonlinear equations are constructed
(Subsection 3.2) and solved (Subsection 3.3). We first assume that all collisions
are detected correctly. We deal with collision detection errors in Subsection 3.4
and Section 4.

3.1 Nonlinear Collisions

FS-Collisions. Generalized collisions in the first two AES rounds occurring
between bytes of the first two rounds are called FS-collisions. If input bytes ai1

j1

and ai2
j2

of two S-boxes collide, one has the simple linear equation over GF (28):

ai1
j1
⊕ ai2

j2
= 0.

If ai
j lies in the S-box layer of the first round, then αi

j = kj ⊕ pi
j , for some i, j.

Otherwise, one has

ai
j = xj ⊕ m(j−1) div 4 · bi

(j−1) mod 4+1 ⊕ mj div 4 · bi
j mod 4+5⊕

m(j+1) div 4 · bi
(j+1) mod 4+9 ⊕ m(j+2) div 4 · bi

(j+2) mod 4+13,

where m = (m0, m1, m2, m3) = (02, 03, 01, 01)5 and bi
j = S(kj ⊕ pi

j).

We distinguish between the following three types of FS-collisions: linear col-
lisions in the first round, nonlinear collisions between the first two rounds, and
nonlinear collisions within the second round. These three collision types are il-
lustrated in Figure 2. Collision 1 occurs between two bytes of the first round,
linearly binding k1 and k13. Collision 2 occurs between the S-box number 7 of
the second round and the S-box number 1 of the first round. It binds 6 key bytes:
k1, k3, k8, k9, k14, and k7. Collision 3 algebraically connects two MixColumn

expressions on 8 key bytes after the S-box layer with two bytes of the second
subkey in a linear manner. The algebraic expressions in this example are the
following:

1 : k1 ⊕ p1
1 = k13 ⊕ p1

13

2 : k1 ⊕ p2
1 = S−1(s2

7) =
x7 ⊕ 01 · S(k2 ⊕ p2

2) ⊕ 02 · S(k8 ⊕ p2
8) ⊕ 03 · S(k9 ⊕ p2

9) ⊕ 01 · S(k14 ⊕ p2
14)

3 : s3
7 = s3

16,
k7 ⊕ 01 · S(k3 ⊕ p3

3) ⊕ 02 · S(k8 ⊕ p3
8) ⊕ 03 · S(k9 ⊕ p3

9) ⊕ 01 · S(k14 ⊕ p3
14) =

x16 ⊕ 03 · S(k4 ⊕ p3
4) ⊕ 01 · S(k5 ⊕ p3

5) ⊕ 01 · S(k10 ⊕ p3
10) ⊕ 02 · S(k15 ⊕ p3

15)

Note that there are also mirrored collisions occurring between the S-boxes of the
last round (number 10) and the round next to the last one (number 9). Such
collisions are called LN-collisions.

5 Here and below any byte uv = u · 16 + v =
P7

i=0
di · 2

i is interpreted as the element
of GF (28) = GF (2)[ω] using a polynomial representation

P7

i=0
di · ω

i, where ω8 +
ω4 + ω3 + ω + 1 = 0 holds.



FL-Collisions. FL-collisions are generalized collisions between bytes of the first
and last rounds. If plaintexts as well as ciphertexts are known, an FL-collision
leads to a simple nonlinear equation. Linear collisions within the first round as
well as those within the last round can be additionally used.

Figure 3 illustrates these three types of collisions. Collision 1 occurs between
the 2nd byte of the first round and the 5th byte of the last round for some input
and output with p1

2 and c1
8 (note that the bytes do not have to belong to the same

input/output pair). Input y2⊕a1 to S-box 5 in the last round can be expressed as
S−1(z8⊕ c1

8) using the corresponding ciphertext and last subkey bytes. Collision
2 of Figure 3 is a linear collision within the last AES round. Collision 3 is a
standard linear collision within the first AES round. The following equations
result from these collisions:

1 : k2 ⊕ p1
2 = y5 ⊕ a1 = S−1(z8 ⊕ c1

8), S(k2 ⊕ p1
2) = z8 ⊕ c1

8

2 : y5 ⊕ a2 = y7 ⊕ b2, z8 ⊕ c2
8 = z6 ⊕ c2

6

3 : k2 ⊕ p3
2 = k13 ⊕ p3

13.

3.2 Constructing Systems of Equations for FS- and FL-Collisions

Equations for FS-collisions. The application of the Faugère F4 algorithm to
a system of equations constructed in Subsection 3.1 for FS-collisions gives results
that are superior to the linear collision attack and are summarized in Table 2.

The system of nonlinear equations is considered over GF(2). For γ inputs
there are 128 variables of the first subkey K, 128 variables of the second subkey
X and 128 · γ intermediate variables for the output bits of the first round S-box
layer. The collision-independent part of the system consists of S-box equations
for the first round and linear equations for the key schedule. Since the AES S-box
can be implicitly expressed as 39 equations of degree 2 [7], we have 39 · 16 · γ
quadratic equations over GF(2) connecting the inputs and outputs of the first
round S-boxes, and 4 · 39 = 156 quadratic and 12 · 8 = 96 linear equations
connecting K and X using the key schedule relations. Each of the three types of
FS-collisions adds 8 linear equations to the system, resulting in 8 · D equations
if D collisions occurred.

Equations for FL-collisions. FL-collisions can be also obviously expressed
as a system of quadratic equations over GF (2). Now we show how to derive a
system of quadratic equations over GF (28) for these collisions. One way is to use
the BES expression [7]. However one would have 8 variables per one key byte in
this case. We describe a simpler system, which has only 32 variables.

It is clear that linear collisions in the first or the last round can be interpreted
as linear equations over GF (28). Let us consider a nonlinear FL-collision of type 1
(see example above). Its algebraic expression is given by S(kj1 ⊕ pi1

j1
) = zj2 ⊕ ci2

j2
for some j1, j2 ∈ {1, . . . , 16}, i1, i2 = 1, 2, . . . Recall that the AES S-box is the
composition of the multiplicative inverse in the finite field GF (28), the GF (2)-
linear mapping, and the XOR-addition of the constant 63. The GF (2)-linear



mapping is invertible, and its inverse is given by the following polynomial over
GF (28):

f(x) = 6e · x27

+ db · x26

+ 59 · x25

+ 78 · x24

+ 5a · x23

+7f · x22

+ fe · x2 + 05 · x.

Hence we have

(kj1 ⊕ pi1
j1

)−1 = f(zj2) ⊕ ci2
j2
⊕ 63) = f(zj2) ⊕ f(ci2

j2
⊕ 63).

If we replace f(zj2) by a new variable uj2 , we obtain the quadratic equation

(kj1 ⊕ pi1
j1

)(uj2 ⊕ f(ci2
j2
⊕ 63)) = 1,

which holds with probability 255
256 . The following proposition follows:

Proposition 1. Solutions to the equation S(kj1 ⊕pi1
j1

) = zj2 ⊕ci2
j2

coincides with

solutions to the equation

(kj1 ⊕ pi1
j1

)(uj2 ⊕ f(ci2
j2
⊕ 63)) = 1

under the change of variables uj2 = f(zj2) with a probability of 255
256 .

Moreover, if zj2 ⊕ zj3 = ∆j2,j3 = ci2
j2
⊕ ci3

j3
, then we have

f(zj2) ⊕ f(zj3) = uj2 ⊕ uj3 = f(∆j2,j3).

Thus, we derive for FL-collisions the system S of quadratic equations over
GF (28) in 32 variables K = {kj , uj}1≤j≤16. Furthermore, each equation of the
resulting system has only two variables. We call such equations binomial.

We say that a subset of variables K′ ⊂ K is connected, if for any non-trivial
partition of K′ = A ∪ B there is an equation in S in two variable v ∈ A and
w ∈ B. Thus K can be devided into disjoint subsets Ki with respect to S, where
Ki is either connected or singleton. Each Ki corresponds to an unique subsystem
Si, and we call (Ki, Si) a chain.

3.3 Solving Systems for FS- and FL-Collisions

Solving equations for FS-collisions. The system of nonlinear equations for
FS-collisions is solved in the following way. First the system is passed to the
F4 algorithm without modifications. If it is not solvable, one guesses the largest
connected linear component as in linear collision-based recovery (that is, 8 bits
per connected component, see Subsection 2.2), adds the corresponding linear
equation to the system and tries to solve the system again. The memory limit
for the Magma program was set to 500 MB. It can be seen from Table 2 that for
5 inputs most (> 93%) instances of the FS-system can be solved within several
hours on a PC. For 4 inputs, less systems are solvable (about 40%) within approx.
2 hours on a standard PC under Linux.



Table 2. Solving equation systems for FS-collisions over GF (2)

Inputs, γ 5 5 4 4

Success probability π 0.425 0.932 0.042 0.397

Offline complexity (time), s 142.8 7235.8 71.5 6456.0

Memory limit, MB 500 500 500 500

Number of variables 896 896 768 768

Linear/quadratic equations 96+8D/3276 96+8D/3276 96+8D/2652 96+8D/2652

Solving equations for FL-collisions. FL-collisions lead, as a rule, to better
results. Each equation binds only two GF (28)-variables, since one deals with
binomial equations introduced in Subsection 3.2 for FL-collisions. There are 32
variables K over GF (28). The algebraic relations on these variables are much
simpler, since one has both plaintext and ciphertext bytes (more information
related to the detected collisions).

Moreover, for the system we have a set of independent chains. Let (Ki, Si)
be a chain, and v ∈ K′. Since K′ is connected, there exists a relation between v
and any other variable of K′. It is not hard to prove that this relation can be
expressed as linear or quadratic equation in two variables.Further, some chain
can have a non-linear equation such that the corresponding variables still be
connected also without this equation. In this case we call this chain a cycle. For
any cycle the system has at most two solutions. Thus, there are often nonlinear
subsystems solvable independently (see the example below).

On average, there are about 1.02 independently solvable subsystems covering
30.08 out of 32 GF (28)-variables for γ = 5 inputs and 0.99 cycles covering 20.08
out of 32 GF (28)-variables for γ = 4 inputs. Statistically there are 43.58 collisions
for γ = 5 inputs and 29.66 collisions for γ = 4 inputs.

Table 3. Solving equation systems over GF (28) for FL-collisions

Inputs, γ 5 4

Success probability π 1.00 0.85

Offline complexity (operations) ≤ 240
≤ 240

Memory limit, MB 500 500

Number of variables 32 32

Average number of equations 43.58 29.66

Table 3 contains the results for applying the F4 algorithm to FL-systems
of nonlinear equations averaged over 10000 samples. After resolving the non-
linear subsystems using F4, as for FS-collisions, we guess variables defining the
remaining bytes in a way similar to the linear key-recovery. With Coffline ≤ 240,
practically all FL-systems are solvable for 5 inputs, an FL-system being solvable
with probability 0.85 for γ = 4 inputs.



3.4 Key Recovery Robust to Type I Collision Detection Errors

Both algebraic and linear collision-based key recovery methods can be made
tolerant to non-zero type I error probabilities of collision detection: A non-zero
value of the type I collision detection error probability α is equivalent to omitting
some collisions. If the number of inputs γ is somewhat increased, this is easily
tolerated by the methods, since the number of true (apriori) collisions grows
quadratically with the increase of the number of inputs.

Under the assumption that the type II error probability β is negligibly low,
we performed this trade-off between α, γ and success probability P for FS-, FL-
and linear collisions. The results can be found in Figure 4 and show that the
FL-collision based method is superior to FS- and linear collision based methods
even in the presence of strong noise. For example, while type I error probabilities
up to α = 0.65 are well tolerated with only γ = 7 inputs for FL-collisions, one
needs at least γ = 8 or γ = 9 inputs to achieve a comparable tolerance level for
FS- and linear collisions, respectively.

4 Towards Reliable Collision Detection in Practice

Probability distribution of Euclidean distance. Given two traces τ1 =
(τ1,1, . . . , τ1,l) ∈ R

l and τ2 = (τ2,1, . . . , τ2,l) ∈ R
l, we assume that each point τi,j

can be statistically described as τi,j = si,j + ri,j , where si,j is signal constant
(without noise) for the given time point i as well as some fixed input to the
S-box, and ri,j is Gaussian noise due to univariate normal distribution6 with
mean 0 and some variance σ2 remaining the same for all time instances in our
rather rough model. Let τ1 and τ2 correspond to some S-box inputs a1 and a2.

If a1 = a2, the corresponding deterministic signals are equal (that is, s1,j =
s2,j for all j’s) and one has:

1/H(τ1, τ2)a1=a2 =
l

∑

j=1

(τ1,j − τ2,j)
2 =

l
∑

j=1

ξ2
j = 2σ2

l
∑

j=1

η2
j ,

where ξj = r1,j − r2,j , ξj ∼ N
(

0, 2σ2
)

and ηj ∼ N (0, 1). That is, statistic
1/H(τ1, τ2)a1=a2 follows the chi-square distribution with l degrees of freedom up
to the coefficient 2σ2. As the chi-square distribution is approximated by normal
distribution for high degrees of freedom, one has the following

Proposition 2. Statistic 1/H(τ1, τ2)a1=a2 =
∑l

j=1 (τ1,j − τ2,j)
2

for

τi = (τi,1, . . . , τi,l) ∈ R
l with τi,j ∼ N

(

si,j , σ
2
)

can be approximated by nor-

mal distribution N (2σ2l, 8σ4l) for sufficiently large l’s.

6 The real measured power consumption is often due to the generic multivariate normal
distribution. However, almost all entries of the corresponding covariance matrix are
close to zero. Thus, the model with independent multivariate normal distribution
seems to be quite realistic.



Alternatively, if a1 6= a2, one has

1/H(τ1, τ2)a1 6=a2 =

l
∑

j=1

(τ1,j − τ2,j)
2

=

l
∑

j=1

(

δ
(1,2)
j + ξj

)2

= 2σ2
l

∑

j=1

ν2
j ,

where δ
(1,2)
j = τ1,j − τ2,j , ξj = r1,j − r2,j , ξj ∼ N

(

0, 2σ2
)

and

νj ∼ N
(

δ
(1,2)
j /

√
2σ, 1

)

. That is, statistic 1/H(τ1, τ2)a1 6=a2 follows the noncentral

chi-square distribution with l degrees of freedom and λ =
∑l

j=1

(

δ
(1,2)
j /

√
2σ

)2

up to the coefficient 2σ2. Again, we have an approximation using

Proposition 3. Statistic 1/H(τ1, τ2)a1 6=a2 =
∑l

j=1 (τ1,j − τ2,j)
2

for

τi = (τi,1, . . . , τi,l) ∈ R
l with τi,j ∼ N

(

si,j , σ
2
)

can be approximated by nor-

mal distribution N
(

2σ2(l + λ), 8σ4(l + 2λ)
)

with λ =
∑l

j=1

(

δ
(1,2)
j /

√
2σ

)2

for

sufficiently large l’s.

Selection of most informative trace points. In the direct binary com-
parison, we try to distinguish between the distributions 1/H(τ1, τ2)a1 6=a2 and
1/H(τ1, τ2)a1=a2 . As described above these statistics approximately follow nor-
mal distribution for large numbers of trace points. That is, to efficiently distin-
guish between these two statistics it is crucial to decrease their variances while
keeping the difference of their means high. For this purpose, to increase the suc-
cess probability of the Euclidean distance test, we propose to discard points of
traces with small minimal contribution to the difference of means.

To illustrate this method of point selection, we assume for the moment that

δ
(1,2)
j = 0 for j > l/2 and δ

(1,2)
j 6= 0 for j ≤ l/2 with l even, that is, the second

half of the trace does not contain any data dependent information. Then we
can discard the second halves of the both traces τ1 and τ2 in the direct binary
comparison function and compute two related statistics on the rest of the points:

1/H ′(τ1, τ2)a1=a2 =

l/2
∑

j=1

(τ1,j − τ2,j)
2, 1/H ′(τ1, τ2)a1 6=a2 =

l/2
∑

j=1

(τ1,j − τ2,j)
2.

This will adjust the means and variances of the approximating normal distri-
butions: N

(

σ2l, 4σ4l
)

and N
(

2σ2(l/2 + λ), 8σ4(l/2 + 2λ)
)

, respectively. Note
that the difference of means remains unaffected and equal to 2σ2λ. At the same
time both variances are reduced, one of them by factor 2, which allows one to
distinguish between these two distributions more efficiently and, thus, to detect
collisions more reliably.

More generally speaking, for AES we have to reliably distinguish between

inputs in each (ai1 , ai2) of the

(

256
2

)

pairs of byte values, ai1 , ai2 ∈ GF(28).

Thus, the most informative points j of the traces are those with maximal mini-

mums of δ
(i1,i2)
j over all pairs of different inputs, that is, points j with maximal



values of

min
ai1 6=ai2

δ
(i1,i2)
j .

We estimated these values for all time instances j of our AES implementation
and compared this to the signal variance in the same time points, var(si,j), ai ∈
GF(28), which is known to be a good indicator of the points leaking information
in DPA. This comparison is represented in Figure 5 for two clock cycles of our
8-bit table look-up operation.

5 Experimental Validation

5.1 AES Implementation and Measurement Equipment

We performed our attacks for a typical AES implementation on the Atmel AT-
mega16 microcontroller, an RISC microcontroller from the 8-bit AVR family
with a Harvard architecture. 8-bit AVR microcontrollers are widely used in em-
bedded devices. To run a collision attack, the attacker has to know when the AES
S-boxes are executed. So we measured the power consumption of the table look-
ups corresponding to the relevant S-box applications. These include instances in
SubBytes, ShiftRows, and MixColumns operations.

The microcontroller was clocked at 3.68 MHz and supplied with an operating
voltage of 5V from a standard laboratory power source. The variations of the
power consumption were observed on a shunt resistor of 5.6 Ohm inserted into
the ground line of the microcontroller. The measurements were performed with
a LeCroy WaveRunner 104MXi DSO equipped with ZS1000 active probe. The
DSO has 8-bit resolution and 1 GHz input bandwidth (with the specified probe).
The acquisitions were performed at the maximum sampling rate of 10 GS/s
without any input filters. We stress that this measurement setup is not noise-
optimized7.

5.2 Attack Scenarios and Results

Performance metric. We use the following efficiency metric to compare the
performance of all these attacks: t ·γ/P , where t is the number of averagings, γ is
the number of different inputs, and P is the success probability of the attack. In
case of the Hamming-distance based CPA we apply a similar metric: n/p16, where
n is the number of measurements needed to determine a single-byte chunk of the

7 As in case of DPA [8], collision detection methods tend to be sensitive to the pre-
processing of measured signals. To denoise the traces, we proceed in two steps.
First, the traces are decimated by applying a low-pass filter to the original traces
and subsequently resampling them at a lower rate. Additionally to noise reduction,
this weakens time jitter. Second, the decimated traces are denoised by applying a
wavelet decomposition at a certain level, thresholding the detail coefficients, and
subsequent wavelet reconstruction. Our experiments show that symlets proposed by
Daubechies (first of all, the ’sym3’ wavelet) are most suitable for this operation.
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AES key with probability p. These metrics characterize the expected number of
measurements needed to recover the whole 16-byte key. The performance results
for CPA can be found in Figure 6.

Collision attacks without profiling. In the online stage, an attacker ob-
serves executions of AES for γ random inputs, each repeated t times. Then,
the t · γ traces are averaged t times and one obtains γ averaged traces for γ
random inputs. These are used to detect collisions – linear, FS- or FL-collisions
(see Sections 2 and 3) depending on the key-recovery method – with the direct
binary comparison (see Subsection 2.3). All key-recovery methods need AES
plaintexts to be known. Additionally, if the attack is based on FL-collisions, the
corresponding AES ciphertexts have to be known.

Note that since the adaptive threshold W is used in the direct binary com-
parison which eliminates all type II errors, many true collisions are omitted due
to the increased type I error probability by shifting W to the right. That is,
for given γ and α, the success probability P of the whole attack follows the
dependencies illustrated in Figure 4 for different key-recovery methods.

Profiling-amplified collision attacks. If profiling is possible prior to the
online stage, the ternary voting method (see Subsection 2.4) can be used to
detect additional collisions, which are omitted by the direct binary comparison
due to the application of the adaptive threshold. Taking additional collisions is
equivalent to the increase of α, which further improves the performance metric
t ·γ/P . In our profiling-amplified attacks we used N = 105 profiling S-box traces
τi which is equivalent to about 105/160 = 625 executions of AES in the profiling
stage. See Figure 6 for concrete results of collision attacks with profiling.
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