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Abstract. This paper presents a novel data-hiding scheme for multi-
media data using non-negative matrix factorization (NMF). Nonnega-
tive feature space (basis matrix) is estimated using the NMF-framework
from the sample set of multimedia objects. Subsequently, using a secret
key a subspace (basis vector) of the estimated basis matrix is used to
decompose the host data for information embedding and detection. Bi-
nary dither modulation is used to embed/detect the information into
the host signal coefficients. To ensure the fidelity of the embedded in-
formation for a given robustness, host media coefficients are selected for
information embedding according to the estimated masking threshold.
Masking threshold is estimated using the human visual/auditory system
(HVS/HAS) and host media. Simulation results show that the proposed
NMF-based scheme provides flexible control over robustness and capac-
ity for imperceptible embedding.

1 INTRODUCTION

Digital watermarking refers to the process of imperceptible embedding of in-
formation (watermark) into a digital document (host data) to provide content
protection and/or content authentication. Watermark embedding schemes can
be classified into two major categories: (1) blind embedding, in which the wa-
termark embedder does not exploit the host signal information during the em-
bedding process, watermarking schemes based on spread-spectrum (SS) fall into
this category, and (2) informed embedding, in which the watermark embedder
exploits the properties of the host signal during the watermark embedding pro-
cess. Watermarking schemes based on quantization index modulation belong to
this category.

Existing watermark detectors may also be classified into two categories: (a)
informed detectors, which assume that the host signal is available at the detector
during the watermark detection process, and (b) blind detectors, which assume
that the host signal is not available at the detector. Although the performance
expected from a given watermarking system depends on the target application
area [?] robust embedding schemes and efficient detection procedures are inher-
ently desired.

This paper presents a secure data hiding scheme for multimedia data based
on the non-negative matrix factorization (NMF) of the host signal. The NMF



framework to estimate nonnegative feature matrix (or feature space) for the set of
preselected multimedia documents. The host signal is projected into the selected
nonnegative feature subspace for information embedding and detection. In order
to improve the security of the proposed scheme, a secret key (or password), K,
is used to select nonnegative feature basis vectors (or feature subspace) from the
estimated feature matrix. The host signal is projected into the selected nonnega-
tive feature subspace for information embedding and detection. For high capac-
ity, the QIM-based framework is used for information embedding and detection.
The proposed scheme exploits the human visual/auditory model to ensure the
fidelity and robustness of the embedded information. The proposed NMF-based
data hiding scheme is applicable to all media types, i.e. audio, video and images.
However, in this paper report performance results using digital images as the
host media for information embedding and detection.

2 NON-NEGATIVE MATRIX FACTORIZATION

The nonnegative matrix factorization or nonnegative matrix decomposition is
an emerging method for dimensionality reduction, sparse nonnegative represen-
tation and coding, image coding, blind source separation (BSS), classification,
clustering, data mining, etc. [2–4]. Paatero et al [2] introduced the NMF concept
first time in 1994, however their proposed NMF scheme does not impose sparse-
ness, smoothness or mutual independence (of the latent components) constrains
on the observed data, the NMF framework was further investigated by many re-
searches [3,4]. Lee et al [3] introduced the NMF based on the notion of learning
parts-based linear representation for nonnegative observed data. Nonnegativity
is a natural constraint for many real-world applications, e.g., in the analysis of
multimedia data i.e. images, video, audio, and text.

Existing dimensionality reduction schemes like PCA (principal component
analysis), ICA (independent component analysis), and VQ (vector quantiza-
tion) use additive and subtractive combinations of the basis vectors in order
to reconstruct the original space, as there are negative entries in the basis vec-
tors for PCA, ICA, and VQ used for original space reconstruction. The negative
entries in the basis vectors for PCA, ICA, and VQ are not directly related to
the original vector space in order to derive meaningful interpretation. Whereas,
in case of NMF the basis vectors are nonnegative which allows only additive
combinations of the basis vectors to reconstruct the original space. Lee at el [3]
have shown that the NMF applied to face images yield features corresponding
to institutive notion of face parts like lips, nose, eyes, etc. in contrast with the
holistic representations learned by PCA and VQ [4].

Here we considered following NMF model in order to estimate nonnegative
basis vectors, bi : i = 1, · · · ,m, from the data matrix X ∈ Rm×N , X = BS
where B ∈ Rm×n is known as mixing matrix that contains basis vectors or fea-
ture space, S ∈ Rn×N is the coefficient matrix containing the underlying hidden
components, si, i = 1, · · · , n and X, B, and S obey nonnegativity constraint [3].



The nonnegative matrix factorization with sparseness constraints can also
be used to learn parts-based features of observed multimedia data. The sparse-
ness constraints for the NMF helps to find an improved decomposition of the
observed data, especially when Lee at al’s proposed NMF scheme [3] fails to
do so [4]. Hoyer [4] has been shown that sparseness constrained NMF can find
qualitatively different parts-based representations that are more compatible with
the sparseness assumptions instead of sparsifying the results of standard uncon-
strained NMF. In this paper, Hoyer’s non-negative sparse coding (NNSC) [4] is
used for learning basis vectors (or feature space) of the image data set (the ob-
served data). Fig. 1 shows the basis vectors estimated from on the natural images
using NNSC software package available at [5]. The basis vectors given in Fig. 1
are estimated using 40 natural images with following settings of NNSC software
package, 1) total 15000 image segments was used, 2) each segment consists of
16×16 samples, 3) maximum number of iteration was set to 20000, 4) sparseness
of the estimated coefficients was set to 0.85, 5) unconstrained sparseness for the
basis vectors, and 6) number estimated sources was set to 72.

Fig. 1. Basis Vectors from Natural Images Estimated using NMF with Sparse-
ness Constraints using NNSC software Package [5]

3 DATA EMBEDDING

The proposed data embedding process consists of two stages (a) the host image
decomposition using selected basis vectors Bsb from the estimated based using
the NMF with sparseness constraints, and (b) input message M, embedding (en-
coding) by modifying (dithering) image coefficients in the selected features sub-
space using QIM. The nonnegative basis matrix B or nonnegative feature space
is estimated based on the sparseness constrained NMF using a set of preselected
images (see section 2). The host image is then projected to the feature subspace
selected from the feature space B using a secret key K (or password). The input
message M = {m1, · · · ,ml} is embedded into the host image by modifying im-
age coefficients in the selected feature space using the binary dither modulation
(a special case of QIM) [1]. In order to meet the fidelity requirement of the em-
bedded information, estimated masking threshold or just noticeable difference,
(JND) from the host image based on the human visual system (HVS) [7] is
used. To this end, the estimated JND from the host image in the selected fea-
ture space is used to select image coefficients suitable for information embedding



for a given quantization step size ∆ (used for information encoding/decoding).
The quantization step size ∆ or embedding strength determines how much data
can be embedded into a given host image. Therefore, stronger embedding can
be achieved at the cost of lower embedding capacity and embedding distortion
and vice versa (simulation results given in section 5 also highlight this fact).

The proposed scheme uses binary dither modulation (BDM) for information
encoding/decoding. Low complexity is the main reason of using BDM for the
simulation results presented in this paper. However higher dimensional QIM-
based schemes with better capacity performance can also be used for information
encoding/decoding. The binary dither modulation is quantization process based
on two grids corresponding to the value of the message bit mi ∈ {0, 1}. Fig. 2
illustrates the concept of binary dither modulation, in Fig. 2 the set Q0 (’O’)
is defined by uniform quantizer with quantization step size ∆ which is used
to map the host signal coefficient value si to a watermarked signal value ŝ to
encode mi = 0. Similarly, the set Q1 (’X’) is another uniform quantizer with
quantization step size ∆ and an offset of ∆/2 and used to encode mi = 1. In
Fig. 2 ∗ represents the selected image coefficient s ∈ R in the feature subspace
for information encoding using quantizer Q0 or Q1 depending on the embedding
message m = 0 or m = 1.

The salient steps of the proposed data embedding process are outlined as,

– Basis matrix B estimation from the set of preselected images using the NMF.
– Feature subspace, Bsb, selection from the estimated feature space B using

K.
– The host image, I projection onto the selected feature subspace Bsb.
– Host image coefficient selection based on the estimated JND i.e. s(i, j) =

f(∆, JND(i, j)) in order to achieve target robustness or vice versa.
– The channel encoded binary message, M = {m1, · · · ,mn} embedding into

the selected images coefficients ,s(i, j) using binary dither quantisers Q0·, or
Q1· corresponding to the embedding message m.

– Watermarked image Iw reconstruction by using the modified and unmodified
coefficients.

The block diagram of the proposed NMF-based data embedding scheme is illus-
trated in Figure 3.

4 DATA DETECTION

The proposed NMF-based detector does not require the host image at the detec-
tor for information decoding/detection therefore falls into the category of blind
detection. However, the encoder parameters i.e. codebook and quantization step
size ∆, nonnegative basis matrix, and feature subspace selection key K are as-
sumed to be available at the detector. Security of the proposed scheme depends
on the following parameters 1) set of images used for nonnegative feature space
estimation, 2) estimated feature space, and 3) feature space selection key. The
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Fig. 2. Illustration of QIM using Binary Dither Modulation for Encoding Mes-
sage bit m = 0 and m = 1 using Quatizers Q0(·) and Q1(·) respectively, into the
Selected Coefficient s represented by ∗
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Fig. 3. Block Diagram of the Proposed NMF-based Secure Data Embedding

proposed scheme is reasonably secure as long as security of the estimated fea-
ture space ensured. In case security of estimated feature space is breached the
security of the proposed scheme is determined from secret key or password. Lets
assume that estimated feature space is known to attacker then active attacker
can guess feature subspace for information decoding with probability Pc = 1/r
where r = fracp!(p− h), here p is dimensionality of estimated feature space
and h is dimensionality of subspace used for information encoding/decoing. Let
us consider that 64–dimensional subspace of 72–dimensional estimated feature
space is used for data encoding/decoding, in this case correct decoding proba-
bility Pc =≈ 10−100. However questions such as how many feature vectors does
an attacker require to achieve target decoding probability, needs further inves-
tigation.

The information detection process consists of decomposing the watermarked
image subjected to attack-channel distortion, Ĩw using selected feature subspace.
The JND estimated based on the watermarked image is used to select the water-
marked image coefficients in the nonnegative feature subspace as the potential
information carriers. For information decoding from the selected coefficients of
the watermarked image subjected to attack-channel distortion, s̃w, the nearest
neighborhood decoding using predefined threshold and the maximum a poste-
rior (MAP) based decoding can be used. The nearest neighborhood decoding
is the simplest decoding for the QIM-based schemes. The nearest neighbor-
hood decoding requires the knowledge of the codebook used for information
encoding and its robustness depends on the quantization step size ∆ [1, 6].



Whereas, the MAP-based decoding relies on the probabilistic framework for
information decoding. For example, the MAP based decoding maximize the pos-
terior probability ,p(mi|s̃w), in order to estimate the embedded message m̂i i.e.
m̂i = maxmi{p(mi|s̃w)}. Bounkong et al [6] have shown that the decoding perfor-
mance of the MAP-based decoding for QIM-based embedding directly depends
on the probabilistic models for both the host signal in the selected nonnegative
feature subspace and the attack-channel noise. Simulation results presented in
this paper are based on the nearest neighborhood-based decoding. The nearest
neighborhood decoder is used for information decoding from the watermarked
image due to its simplicity over the MAP-based decoder. The block diagram of
the proposed NMF-based detection scheme is given in Fig. 4.
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Fig. 4. Block Diagram of the Proposed NMF-based Information Detection

5 SIMULATION RESULTS

In order to test performance of the proposed data hiding scheme in terms of
fidelity, capacity, and robustness. Five 256 × 256 gray scale images are used.
The 72–dimensional nonnegative feature space is estimated using 40 natural
gray scale images. Hoyer’s NNSC software package [5] is used for feature space
estimation. The 64–dimensional feature subspace consisting is selected using
secret key K. The secret key K consists of 20 alphanumeric characters is used
as a seed to the pseudo-random number generator which iteratively generates
random number between 1 and 72-(iteration number), which is used to select
a feature from 72 − (iteration number) remaining vectors. Simulation results
presented in this section are based on following setting: 1) quantization step size
∆ ∈ {1.0, 2.0, 3.0}, 2) no channel coding is used, and 3) embedding distortion
is measured in terms of peak signal to noise ratio (PSNR) which is calculated
as,PSNR = 10 log10(

1
m× n

∑m,n
i,j (d2(i, j))) where d = Iw − I.

Fig. 5 shows the fidelity performance of the proposed NMF-based scheme at
the quantization step size ∆ = 2 (only two images of different textures are pre-
sented here due to space limitations). Fig. 5 shows that Baboon image has rich
texture compared to Bird image hence higher capacity for a given embedding
strength and likewise higher distortion and results given in Table 5 aslo agree
with this fact.

Experimental results presented in the Table 5 show that capacity of the pro-
posed scheme depends on the embedding strength and the host image character-



Fig. 5. Fidelity Performance of the Proposed Scheme: (from left to right) Orig-
inal Baboon Image Data Embedded Baboon with PSNR = 34.8704, Original
Bird Data Embedded Bird with PSNR = 53.76

istics. For example, for a given image, in order to achieve strong embedding we
have to compromise capacity and vice versa. Similarly, the images with stronger
texture have higher capacity over the low texture images for a given embedding
strength, e.g. 3960 bits can be embedded in Baboon whereas only 55 bits of data
in Bird for quantization step size ∆ = 2.

The robustness performance of the proposed scheme is also tested against
additive white Gaussian noise (AWGN) attack. To simulate this attack, white
Gaussian noise added to the watermarked image. The resulting image is then
applied to the proposed detector for information decoding. Robustness perfor-
mance of the proposed scheme in terms of Pe for various SNR (dB) values is
plotted in Fig. 6. The Pe plot given in Fig. 6 is obtained by averaging over 1000
independent simulations for each image listed in Table 5. Fig. 6 shows that for a
given image, robustness performance of the proposed scheme improves stronger
embedding but at the cost of embedding capacity and vice versa.

IMAGE ∆ Capacity PSNR (dB) IMAGE ∆ Capacity PSNR (dB)
Baboon 1.0 15257 35.22 Bridge 1.0 8250 38.26

2.0 3960 34.87 2.0 979 41.25
3.0 1232 36.46 3.0 88 48.00

Lenna 1.0 3509 41.84 Bird 1.0 1133 46.70
2.0 341 45.30 2.0 55 53.76
3.0 55 50.23

Hat 1.0 2805 42.81 Hat 2.0 132 49.00

Table 1. Performance of the proposed scheme in terms of Embedding Capacity
(in bits) and Fidelity for a given Embedding Strength
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Fig. 6. Robust Performance of the Proposed Scheme against White Gaussian
Noise Attack for Test Images Baboon, Lenna, Bridge, Bird, and Hat (top to
bottom)

6 CONCLUSION

This paper presents a novel secure data hiding scheme for multimedia data based
on the NMF. The nonnegative feature space is estimated using the sparseness
constrained NMF-framework for a preselected set of natural images. The sub-
space is selected from the estimated feature space using secret key which is
used to decompose the host image for information embedding and detection.
Simulation results show that performance of the proposed scheme in terms of
fidelity and capacity directly depend on ∆ used for information embedding and
detection.
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