
k-subscription: Privacy-Preserving Microblogging
Browsing Through Obfuscation

Panagiotis Papadopoulos
FORTH-ICS, Greece

panpap@ics.forth.gr

Antonis Papadogiannakis
FORTH-ICS, Greece

papadog@ics.forth.gr

Michalis Polychronakis
Columbia University, USA

mikepo@cs.columbia.edu

Apostolis Zarras
Ruhr-University Bochum

apostolis.zarras@rub.de

Thorsten Holz
Ruhr-University Bochum

thorsten.holz@rub.de

Evangelos P. Markatos
FORTH-ICS, Greece

markatos@ics.forth.gr

ABSTRACT

Over the past few years, microblogging social networking services
have become a popular means for information sharing and com-
munication. Besides sharing information among friends, such ser-
vices are currently being used by artists, politicians, news chan-
nels, and information providers to easily communicate with their
constituency. Even though following specific channels on a mi-
croblogging service enables users to receive interesting informa-
tion in a timely manner, it may raise significant privacy concerns
as well. For example, the microblogging service is able to observe
all the channels that a particular user follows. This way, it can infer
all the subjects a user might be interested in and generate a detailed
profile of this user. This knowledge can be used for a variety of
purposes that are usually beyond the control of the users.

To address these privacy concerns, we propose k-subscription:
an obfuscation-based approach that enables users to follow privacy-
sensitive channels, while, at the same time, making it difficult for
the microblogging service to find out their actual interests. Our
method relies on obfuscation: in addition to each privacy-sensitive
channel, users are encouraged to randomly follow k−1 other chan-
nels they are not interested in. In this way (i) their actual interests
are hidden in random selections, and (ii) each user contributes in
hiding the real interests of other users. Our analysis indicates that
k-subscription makes it difficult for attackers to pinpoint a user’s
interests with significant confidence. We show that this confidence
can be made predictably small by slightly adjusting k while adding
a reasonably low overhead on the user’s system.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues—Privacy;
C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection

Keywords

Obfuscation; Microblogging Services; k-anonymity; Anonymous
subscription; Privacy-Preserving Browsing;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA

Copyright 2013 ACM 978-1-4503-2015-3/13/12 ...$15.00.

1. INTRODUCTION
Microblogging social networking services, such as Twitter, Tum-

blr, Identi.ca and Fanfou, enable users to have timely access to
all their information and entertainment needs. Through a publish-
subscribe model, a user subscribes (“follows” in the language of
microblogging) to a number of other users, or information providers
in general (“channels”). These channels may correspond (i) to the
user’s friends, (ii) to artists the user is interested in, (iii) to politi-
cians the user supports, (iv) to news channels, (v) to religious chan-
nels, (vi) to hospitals or doctors, and so on. When a new message is
published in one of the channels a user follows, it appears on user’s
screen. This personalized information delivery, although useful,
raises some privacy concerns. For example, if a user follows a par-
ticular politician, the service may be able to infer the user’s political
beliefs. If the user follows a religious channel, the service may be
able to infer the user’s religious preferences. If the user follows a
channel about a particular health problem, the service may be able
to infer that the user is interested in this health problem.

As microblogging services become increasingly popular with
hundreds of million of users, such privacy concerns will become
even more crucial in the future. Indeed, by providing a handy user
interface and by co-locating all of a user’s interests into one con-
venient screen, microblogging services contain a huge amount of
information about users’ interests and needs. In this setting, there
may be users that although they really want to have access to timely
information, they may not be willing to disclose their personal pref-
erences and interests to the microblogging service, and potentially
to the corporations that may collaborate with it.

To avoid being identified, users may log into the microblogging
service using a pseudonym or a fake account. However, informa-
tion from the user’s IP address, third-party tracking cookies [15], or
browser fingerprinting [8] may enable the microblogging service to
pinpoint the identity of the user and trace the fake account to a real
person. Although a fake account might seem to be giving a sense of
pseudonymity, it will not take long for a service to gather enough
information so as to correlate a fake account with a real identity. A
momentary lapse of vigilance is usually all it takes from the user
to provide ample identifying information to the microblogging ser-
vices. Another way to protect a user from being identified by a
microblogging service is to use an anonymization service to access
the Internet. For example, widely-used anonymous communication
networks, such as Tor [6], are effective at hiding a user’s real IP ad-
dress, but are of little help when the user logs into a service such
as a microblogging service. Additionally, a potential blocking of
Tor nodes will make it difficult, if not impossible, to use it.

One might envision to use both a fake account and Tor at the
same time in order to have stronger anonymity. Unfortunately, this
approach would still be subject to contamination from information
gathered during different browsing sessions, such as browser fin-
gerprints or cookies, which would alternate between anonymous
and eponymous web browsing. To remedy this problem one might
use (i) a fake account, (ii) an anonymization network, such as Tor,
and (iii) a virtual machine per browsing session or destination web
site, so as to limit cross-contamination. Although this triplet seems
to provide a comfortable level of anonymity, its applicability and
ease of use is questionable: it is not clear whether ordinary users
will find it easy to install all the necessary software. Also, mod-
ern devices, such as tablets and smartphones, which have rapidly
penetrated the market, may not be able to install virtual machines.

Numerous approaches have been proposed to conceal users’ ac-
tivities when browsing the web [4,5,9,16]. However, none of them
can be adopted for microblogging services as the underlying threat
model or technical implementation does not fit to the use case we
address in this paper. Most of the previously described approaches
rely on the fact that in order to conceal one’s interests we need to
hide one’s real identity. This paper addresses a world where this
is not easy, and may not even be possible. Indeed, a wide vari-
ety of web tracking mechanisms aided by increasing legal pressure
on anonymity systems may lead to a world where anonymous web
surfing would practically belong to the past. At this point we see
two choices: (i) to believe that we will always be able to anony-
mously browse the web, and thus the massive losses of privacy we
see in real life will never percolate to cyberspace, or (ii) to proac-
tively develop privacy-preserving approaches for a world where it
will be difficult, if not impossible, to hide one’s real identity.

In this study, we explore the second choice and develop new
obfuscation-based approaches to preserve privacy and conceal users’
real interests. Whenever a user is interested in following an actual
channel C1, she is encouraged to follow k − 1 noise channels as
well: C1, C2, C3, ..., Ck. If the user follows all these channels,
the microblogging service will not be sure which channel she is
actually interested in. Moreover, if there is a plethora of users fol-
lowing the channel C1 while they are not actually interested in it,
the microblogging service will not be able to identify the users that
are interested in C1. By fine tuning this number of channels, users
are able to achieve the level of privacy they are comfortable with.

Obfuscation itself is an age-old idea. It has been used in war
to confuse radars detecting incoming bomber planes [23], in con-
sumer organizations through super market card swapping to con-
fuse marketers wanting to build customer profiles [10], and in web
searches [4,11] to hide the user’s real interests from search engines.
To the best of our knowledge, this is the first time that obfuscation is
applied to provide privacy in the area of microblogging services. In
cases where it is not possible to hide an event, such as an approach-
ing war plane, a query to a search engine, and a channel followed in
a microblogging service, obfuscation provides a reasonable mech-
anism to confuse the adversary to the point of not being able to
distinguish real information from the added noise.

In this paper, we present the design and analysis of k-subscription:
our approach to obfuscate users’ real interests in microblogging
services. We study the anonymity provided by two different obfus-
cation strategies in an analytical way, and we evaluate the anonymity
offered by k-subscription in a realistic scenario using simulations.
To assess the practical feasibility and effectiveness of k-subscription,
we have implemented an extension for the Chrome browser that en-
ables privacy-preserving subscription to Twitter channels through
obfuscation. Our experimental evaluation shows that the overhead
introduced by k-subscription is reasonable in practice.

To summarize, we make the following main contributions:

1. We propose k-subscription: the first obfuscation-based ap-
proach to hide a user’s interests in microblogging services.
Our approach encourages users to follow k − 1 noise chan-
nels apart from each channel they want, so as to hide (i) their
real interests in a set of k channels, and (ii) other users’ in-
terests in the microblogging service.

2. To quantify the effectiveness of our approach, we introduce
a new notion: the Disclosure Probability PC . This is the
service’s confidence that a user is interested in channel C.

3. We present an analytic evaluation of our approach and derive
closed-form formulas for the disclosure probability. These
formulas suggest that the disclosure probability can be made
predictably small by fine-tuning the obfuscation level k.

4. We evaluate k-subscription in a more realistic scenario using
simulations, which are based on models derived from a real-
world dataset with sensitive channels from Twitter.

5. We implemented our system as a plug-in for the Chrome
browser using Twitter as case study. We experimentally eval-
uate our prototype and show that it has minimal bandwidth
requirements and negligible latency to browsing experience.

2. SYSTEM DESIGN

2.1 Threat Model
We assume the existence of a microblogging service where users

are able to follow individual channels. A channel can be the ac-
count of a physical person, of an entity such as a corporation, of a
news site, of a politician’s office, and so on. Additionally, we as-
sume that the microblogging service is capable of recording the
users’ interests by observing which channels each user follows.
The information about the users’ interests, which is property of the
microblogging service, could be later sold to advertisers [21], and
could be used for a variety of purposes, all of which are beyond
the control of individual users [12]. We view this capability of the
microblogging service as a potential concern for the users’ privacy,
and we would like to develop mechanisms that hide the users’ real
interests from the microblogging service.

In this work we assume an “honest but curious” microblogging
service. In this aspect, the microblogging service may try to find
the user’s interest based on the channels the user is following, but
it will not try to “cheat” by actively interfering with the process
users are employing to protect their privacy, or try to gain more
information than what a user is willing, or required, to give. For
example, the microblogging service will not create fake channels
or fake users in order to break the anonymity of ordinary users. We
think that this “honest but curious” model is reasonable in practice,
as popular microblogging services have a reputation they do not
want to jeopardize by becoming hostile against their own users.
Therefore, we expect such microblogging services to only try to
passively gain knowledge based on data given by their users.

We also assume that when users follow channels, they act as con-
sumers of information and refrain from interacting with any chan-
nel by posting information, replying, retweeting, or sharing their
interests in any other way. Indeed, if a user starts posting about
a sensitive issue, it will be easy for the microblogging service to
identify the user’s interests. We believe that most users want to
find and consume information about a sensitive issue, and they will
not take the risk of being identified by posting information about
it. If some users would like to post, reply, or retweet anonymously
about a sensitive issue, they may use k-subscription in combination
with alternative solutions, such as #h00t [3] and Hummingbird [5].

Notation Explanation

S : Set of sensitive channels that can be followed
C : Sensitive channel
U : Number of all users in the system
UC : Number of users actually interested in channelC
URC

: Number of users following channelC at random

pC : Popularity of channelC (pC = UC/U)
PC : Probability that a user following C is interested in C
N : Number of sensitive channels a user is interested in
k : Obfuscation level (per channel)

Table 1: Summary of Notation

2.2 Our Approach: k-subscription
Table 1 summarizes the notation we use throughout this section.

Assume that user A is interested in following channel C, which
deals with a sensitive issue, such as a medical condition. If user A
follows only this channel, the microblogging service would easily
figure out that A is interested in this medical issue. In this paper
we propose k-subscription: a system that makes sure that the mi-
croblogging service is not able to pinpoint A’s interests with rea-
sonable accuracy. To do so, k-subscription follows an obfuscation-
based approach, which advocates that along with each channel C
the user is interested to follow, she should also follow k − 1 other
channels (called “noise” channels). The number of noise channels
are such that the microblogging service will not be able to deter-
mineA’s interest with high probability, and will not be able to iden-
tify the actual set of users interested in each specific channel. All
the noise channels are randomly chosen from a set S of “sensitive”
channels. Note that A’s real interests are also members of S.

2.3 Uniform Sampling
When a user wants to follow channel C, k-subscription encour-

ages the user to follow k − 1 other channels as well (say C1, C2,
..., Ck−1). In this way, the microblogging service will not know
whether the user is actually interested in channel C or one of the
C1, C2, ..., Ck−1. In our first algorithm, k-subscription-UNIF,
these channels are chosen randomly with uniform probability from
S. Algorithm 1 presents the pseudocode for k-subscription-UNIF.

Algorithm 1 k-subscription-UNIF: Choose noise channels uni-
formly from the set S

F = ∅; // initialize the set of channels to follow

for (i = 1 ; i ≤ k − 1 ; i++) do
Ci = randomly select a channel from set S ;
S = S \ Ci ; // remove Ci from S

F = F ∪ Ci ; // add Ci in the set of channels to follow

end for

F = F ∪ C ; // add C in the set of channels to follow

Follow all Channels in F in a random order ;

k-subscription-UNIF is a naive but powerful approach for obfus-
cation and we use it as a basic principle for our method. However,
this approach leads to some practical problems. In case that not all
channels enjoy the same popularity, then uniformly sampling from
S may result in higher disclosure probability for the more popular
channels. Thus, we discuss an improved version in the next section.

2.4 Proportional Sampling
A user following a popular channel (say C) along with several

unpopular ones has a higher probability of being interested in C
than in the rest of them. Capitalizing on this knowledge, the mi-
croblogging service has a better chance of finding those users who
follow popular channels. To mitigate this issue, we propose k-

subscription-PROP that sample channels from set S according to
their popularity. Assume that UC is the number of followers of
channel C and US =

∑

∀C∈S
UC is the number of followers of all

channels in S. Thus, instead of sampling all channels with prob-
ability 1/|S|, we sample channel C with probability UC/US . In
Twitter, the popularity of a channel can be inferred by the number
of users following the respective account. In other microblogging
services similar metrics are available to determine the popularity
of a channel. k-subscription with proportional sampling for adding
noise does not affect the respective channel popularity.

2.5 Following Multiple Channels
Users may be interested in following more than one sensitive

channels. Using k-subscription, users just need to select k−1 other
noise channels to follow for each channel C they are interested in.
Therefore, a user interested in following N channels will result in
following k × N channels in total. However, it is very likely that
a user will be interested in N sensitive channels that are semanti-

cally related. This case may significantly increase the disclosure
probability. Indeed, the microblogging service can easily find the
correlated channels: it will get all the channels a user is follow-
ing, classify them into semantic categories, and identify the sets of
channels that are semantically related. If there is only one set of
related channels, it is more probable that the user actually follows
them, and the remaining unrelated channels are the selected noise.

One way to address this issue could be the following: when-
ever a user is interested in N related channels, the (k − 1) × N
noise channels could be selected in N -tuple groups, so that each
N -tuple consists of N related noise channels. However, this ap-
proach has a certain limitation: the microblogging service and k-

subscription may use different similarity metrics to identify related
channels. For instance, the microblogging service may use a more
fine-grained similarity metric to find out the actual related channels.

Fortunately, k-subscription is able to protect users’ interests even
when they are interested in multiple semantically related channels.
Although a user will actually follow the set of N related sensi-
tive channels she is interested in, which can be identified by the
microblogging service, there will be a significant number of other
users that also follow the same set of N related channels due to
random noise channel selections, i.e., without being interested in
them. This is due to the increased random selections when users
are interested in multiple channels. Thus, the microblogging ser-
vice will not be able to know which of the users following all these
N related channels are actually interested in them.

3. ANALYTICAL EVALUATION

3.1 Analysis of k-subscription-UNIF
The disclosure probability PC is the probability (as it can be

calculated by the microblogging service) that a user who follows
channel C is really interested in C. In our analysis we assume that
the microblogging service is able to infer each channel’s popularity
UC by the number of its followers or other external information,
the number of users U that have adopted k-subscription, the size
of set S that is publicly released, and the value of k used by each
user, e.g., as a user subscribes to these k channels in a short period.
Since along with channel C a user follows k − 1 other channels as
well, the disclosure probability is PC = 1/k. However, for large
values of k (i.e., in cases where the user wants to add a lot of noise)
the microblogging service has a more effective way to increase its
certainty about the interest of a user in a particular channel C. It
knows that the UC users who are interested in channel C actually
follow it. At the same time, however, there are U −UC other users

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

D
is

c
lo

s
u
re

 P
ro

b
a
b
ili

ty
 P

C

k: Obfuscation Level

channel popularity = 10%
channel popularity = 1%
channel popularity = 0.1%

(a) PC as a function of k for different chan-
nel popularities.

Disclosure Probability PC - pC=0.01

 1000 10000

|S|: sensitive channels

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

O
b
fu

s
c
a
ti
o
n
 L

e
v
e
l
(%

 o
f
|S

|)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

(b) PC as a function of |S| and k, shown as a
percentage of |S|, for channel popularity 1%.

Disclosure Probability PC - pC=0.01

 0.2
 0.1

 0.05

1000 2000 3000 4000 5000

|S|: sensitive channels

200

400

600

800

1000

O
b
fu

s
c
a
ti
o
n
 l
e
v
e
l

k

(c) PC as a function of |S| and k, for channel
popularity 1%.

Figure 1: Disclosure Probability PC of k-subscription-UNIF as a function of the obfuscation level k and the size of S.

that are not interested in C, who may have randomly included C
among their noise channels. The probability of C being included
in the set of channels followed randomly by a user interested in a
channel different than C is bounded by 1 − (1 − 1/|S|)k−1, as
this user will select k − 1 channels randomly from S, which also
includes C. Therefore, the average number of the U − UC users
not interested in C that will follow C randomly as noise (URC

) are
less than (U −UC)× (1− (1− 1/|S|)k−1). So, the ratio of users
following C who are really interested in C is less than

UC

UC + (U − UC) × (1 − (1 − 1/|S|)k−1)

Since the microblogging service does not know who are the users
UC interested in the channel C, it can only assume that all users
followingC are interested inC. The probability of a user following
C actually being interested in C (denoted as PC) is given by:

PC < max(1/k,
UC

UC + (U − UC) × (1 − (1 − 1/|S|)k−1)
) ⇒

PC < max(1/k,
pC

pC + (1 − pC) × (1 − (1 − 1/|S|)k−1)
)

(1)

where pC is the channel’s popularity. We see that the total number
of users U and the number of users UC interested in channel C do
not affect the disclosure probability. Instead, the channel’s popu-
larity pC , the parameter k, and the total number of channels |S|,
are the key factors that affect the disclosure probability.

3.1.1 Estimating the Disclosure Probability

First we arbitrarily fix |S| to 1,000 channels. Figure 1(a) shows
how the disclosure probability PC changes as a function of k (the
level of obfuscation). We see that when the popularity pC of a
channel is rather high (i.e., 10%), then it is difficult to obfuscate it
with the k-subscription-UNIF approach. Indeed, when as many as
10% of the users are interested in channel C, then it would take a
significant percentage of the rest 90% to include channel C among
their noise channels, which is very difficult to achieve. However,
when popularity is around 1%, then it is much easier to obfuscate it
using this approach. Indeed, for k = 100 the disclosure probability
is as low as 0.1, which means that the microblogging service can
not state with confidence larger than 10% that a userAwho follows
channel C is really interested in C. Fortunately, when the popular-
ity ofC is even lower (i.e., around 0.1%), the disclosure probability
becomes 0.01 for obfuscation levels as low as 100. That is, the mi-
croblogging service can not say with confidence higher than 0.01
that a user who follows C is really interested in C.

In our next figure we explore how the disclosure probability
changes as a function of the number of sensitive channels |S| and
the obfuscation level k. That is, if we double |S| how should we in-
crease k so as to have the same disclosure probability? Figure 1(b)
shows a plot of the PC as a function of |S| and k. Note that the
obfuscation level k in the y-axis is shown not as an absolute num-
ber but as a percentage of the number of sensitive channels. From
this figure we clearly see that lines of the same color run horizon-
tally. Horizontal lines mean that the value is the same for constant
y (obfuscation level as a percentage of |S|). This implies that as
long as the obfuscation level is a constant percentage of the size of
the set of sensitive channels |S|, the disclosure probability remains
constant. To put it simply, if we double the number of sensitive
channels, we need to double the obfuscation level k (in absolute
numbers) in order to keep the disclosure probability constant.

To explore the relation between |S| and k even further, Fig-
ure 1(c) shows the iso-probability contours of the disclosure proba-
bility PC as a function of the number of sensitive channels (i.e., |S|
on x axis) and the obfuscation level (i.e., k on the y axis). We plot
the contours for probabilities 0.05, 0.1, and 0.2. Interestingly, we
see that the iso-probability contours appear as straight lines, clearly
implying an almost linear relation between |S| and k. That is, dou-
bling |S| would require a twice as high k in order to keep the prob-
ability of disclosure to the same level. Similarly, if we can afford
to double the obfuscation level, we can provide the same disclosure
probability for twice as many sensitive channels. Or, equivalently,
if we are forced to half the obfuscation level, we can still provide
the same disclosure probability but only for half as many sensitive
channels. These results are very encouraging in the sense that we
can still achieve the levels of PC we are comfortable with, even
when we are forced to use small obfuscation levels.

Figure 2 shows the impact that the number of sensitive channels
|S| and the channel popularity pC have on the disclosure proba-
bility. The obfuscation level k is set to 100. We see that the iso-
probability contours are almost straight anti-diagonal lines indicat-
ing an almost inversely proportional relation between |S| and pC .

3.1.2 Finding a Reasonable Size for S

We now analyze how large S should be and how we can in-
fluence it. One can easily see that the larger S is, the higher the
disclosure probability will be (for a constant obfuscation level k).
Therefore, we do not want the set S to be very large. On the other
hand, a very small S would easily give away a user’s true interests,
and limit the users’ choice for sensitive channels. Indeed, if S con-
tains two channels, say C1 and C2, if a user follows C1 (no matter
whether she follows C2 or not), the microblogging service will be
able to conclude with probability 1/2 that the user is interested in

Disclosure Probability PC - k=100

 1000 10000

|S|: sensitive channels

 0.001

 0.01

 0.1

 1

C
h
a
n
n
e
l
P

o
p
u
la

ri
ty

 p
C

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 2: Disclosure ProbabilityPC of k-subscription-UNIF

as a function of the size of S and channel popularity pC . The
obfuscation level k is set to 100.

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

D
is

c
lo

s
u
re

 P
ro

b
a
b
ili

ty
 P

C

k: Obfuscation Level

channel popularity = 10%
channel popularity = 1%
channel popularity = 0.1%

Figure 3: Disclosure Probability PC of k-subscription-

PROP as a function of the obfuscation level k. Sampling

is proportional according to a channel’s popularity.

C1. In the same spirit, if S contains n members, the microblog-
ging service will be able to conclude with probability at least 1/n
that the user is interested in the channel she follows. As a result, S
should be large enough so that the probability 1/n is small enough,
so as not to be useful for the microblogging service. In the ab-
sence of any other information, the microblogging service is able
to conclude with probability UC/U that a random user is interested
in channel C. Therefore, the set S should be large enough so that
1/|S| < UC/U . We can estimate UC from external sources, or
based on the number of followers of channel C.

3.2 Analysis of k-subscription-PROP
Let us now derive closed formulas for k-subscription-PROP. The

probability ofC being included in the set of channels followed ran-
domly by a user interested in a different channel than C is bounded
by 1− (1− UC/U)k−1, as this user will choose at random k − 1
channels from S, and the probability of choosing C at each indi-
vidual choice isUC/U . The average number of users not interested
in C who will follow C randomly as noise (URC

) are less than
(U − UC)× (1− (1− (UC/U))k−1). So, the ratio of users who
follow C and are interested in C is less than

UC

UC + (U − UC) × (1 − (1 − UC/U)k−1)

Since the microblogging service does not know who are the UC

users interested in C, it can assume that all users following C are
interested in C. The probability of a user following C being inter-
ested in C (i.e., the disclosure probability) is bounded as follows:

PC < max(1/k,
UC

UC + (U − UC) × (1 − (1 − UC/U)k−1)
) ⇒

PC > max(1/k,
pC

pC + (1 − pC) × (1 − (1 − pC)k−1)
)

(2)

where pC is the channel’s popularity. We observe that instead of the
total number of users U and the number of users UC that follow the
channel C, the disclosure probability is affected only by channel’s
popularity pC , number of channels S, and obfuscation level k.

Figure 3 shows how disclosure probability changes with the level
of obfuscation k. We see that our k-subscription-PROP approach is
able to efficiently hide popular channels. Indeed, for a popularity of
about 10%, it is able to reach a disclosure probability of 0.1 using
only k = 40. When the popularity is 1%, even small obfuscation
levels such as k = 50 can lead to disclosure probability as low
as 0.02, which is very encouraging. One can notice in Figure 3
that as k increases for 10% popularity, the disclosure probability

tends to flatten out and in no case drops below 0.1. The reason is
that for a channel with 10% popularity, the disclosure probability
can never fall below 10% no matter how large the obfuscation level
we use is. There is a simple explanation for this: without taking
any channel-following information into account, the microblogging
service knows that 10% of the population is interested in channel
C. Hence, the microblogging service can safely assume that a user
is interested in C with probability 0.1.

3.3 Analysis for Multiple Channels
A user may want to follow more than one sensitive channels,

which may be semantically related to each other. For simplicity,
we assume that all users U are interested in exactly N sensitive
channels from S. Each user that is actually interested to follow the
N channels C1, ..., CN will also follow (k−1)×N noise channels
based on random choices from S. Besides the UC1,...,CN

users that
are interested in these N channels, there will be some other users
that will follow the same set ofN channels without being interested
in all of them, due to random noise channel selections. These users
contribute to hide the actual interests of the UC1,...,CN

users.
Since the microblogging service does not know the users who

are actually interested in channels C1, ..., CN , it can only assume
that all users following these channels are interested in them. The
disclosure probability PC1,...,CN

that a user following all these N
channels is actually interested in them is equal to:

UC1,...,CN

UC1,...,CN
+ (U − UC1,...,CN

) ×
(|S|−N

(k−1)N−N

)

/
(|S|
(k−1)N

)

=

pC1,...,CN

pC1,...,CN
+ (1 − pC1,...,CN

) ×
(|S|−N

(k−1)N−N

)

/
(|S|
(k−1)N

)

(3)

where
(

|S|−N

(k−1)N−N

)

/
(

|S|
(k−1)N

)

is the probability that a user selects

randomly these N channels from the set S with (k − 1) ×N ran-
dom choices when using the k-subscription-UNIF approach. We
estimate this probability with a hypergeometric distribution, where
all the successes N in the population S should be drawn with (k−
1)×N attempts. Since we assume that all channels have the same
popularity, the k-subscription-PROP approach has exactly the same
behavior with k-subscription-UNIF in this analysis. pC1,...,CN

is
the popularity of the N-tuple of sensitive channels, i.e., the percent-
age of users actually interested in all these C1, ..., CN channels.

We want to explore how the disclosure probability changes with
the number of channels N that a user may be interested in. We
assume that the users interested in N channels are UC1,...,CN

=
UC/N , i.e., they are reduced by N times. Note that we assume
a hyperbolic decrease of the users as N increases, instead of an

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

1
,.

..
,C

N

k: Obfuscation Level (per channel)

S=1000, pC=0.001

N = 1 channel
N = 2 channels
N = 3 channels
N = 4 channels
N = 5 channels
N = 10 channels

(a) |S|=1,000, channel popularity=0.1%

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

1
,.

..
,C

N

k: Obfuscation Level (per channel)

S=1000, pC=0.01

N = 1 channel
N = 2 channels
N = 3 channels
N = 4 channels
N = 5 channels
N = 10 channels

(b) |S|=1,000, channel popularity=1%

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

1
,.

..
,C

N

k: Obfuscation Level (per channel)

S=2000, pC=0.01

N = 1 channel
N = 2 channels
N = 3 channels
N = 4 channels
N = 5 channels
N = 10 channels

(c) |S|=2,000, channel popularity=1%

Figure 4: Disclosure Probability as a function of the obfuscation level k when users are interested in one up to ten sensitive channels,

for different size of S and channel popularity pC .

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

fo
llo

w
e

rs

Channel rank

(a=-0.073, b=-0.001, c=505747)

f(x)=x
a
 e

bx
 c

Figure 5: Distribution of the sensitive

channels popularity.

 0

 5

 10

 15

 20

 25

 30

 35

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
u

m
b

e
r

o
f

c
h

a
n

n
e

ls
 f

o
llo

w
e

d
 p

e
r

u
s
e

r

User rank

(a=55.6, b=-0.37)

f(x)=a x
b

Figure 6: Distribution of the number of

sensitive channels followed by a user.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

D
is

c
lo

s
u

re
 P

ro
b

a
b

ili
ty

 P
C

k: Obfuscation Level

Maximum
Average

Figure 7: Disclosure probability as a func-

tion of k using realistic simulations.

exponential decrease, because we believe that these N channels
will be probably semantically related. We set the size of S to 1, 000
and 2, 000 sensitive channels and we assume that all channels have
the same popularity pC , which is set to 0.1% and 1%.

Figure 4 shows the disclosure probability as a function of k for
different values of N , ranging from 1 up to 10. We see that as the
number of channels N increases, the disclosure probability is in-
creased for low values of k, but it decreases significantly for higher
k. The increase for low k values is because the users interested
in N channels are reduced just by N times, following a hyper-
bolic growth, while the probability of randomly selecting these N
channels for the rest users is reduced significantly by following a
hypergeometric distribution. Thus, it is unlikely for the rest users
to follow all these N channels at random with low k values. This
means that for users interested in many sensitive channels we need
to use a higher k to achieve a low disclosure probability.

In contrast, for higher values of k, we see a significant reduc-
tion of the disclosure probability when users are interested in more
channels. This is because the users interested in N sensitive chan-
nels follow k × N channels in total, so we have more random
selections for higher N values. For instance, when N = 5 and
k = 200, each user follows 1, 000 channels from S, i.e., all the ex-
isting channels in S when |S| = 1, 000. The same happens in case
of N = 10 and k = 100. When the size of S and channel popu-
larity pC increase, the disclosure probability increases respectively,
according to Equation 3. However, a proper selection of a higher k
value results in a much lower disclosure probability, as the users’
interests can be efficiently hidden among the random selections of
other users. Our experimental evaluation in Section 6 shows that
the network bandwidth and latency when following few hundreds
of noise channels are negligible, so our approach is able to protect
the users’ privacy even when they are interested in many sensitive
channels that are probably semantically related.

4. SIMULATION-BASED EVALUATION
To evaluate k-subscription in a more realistic setup, where users

are interested in a different number of sensitive channels, and sensi-
tive channels have different popularities, we built a realistic Monte
Carlo simulator. The simulator assigns a random popularity pC to
each channel following a similar distribution to real-world sensitive
channels. First, each user randomly selects the number of channels
N that she is interested in following, based on a distribution simi-
lar to real-world users’ selections. We assume that all N channels
are semantically correlated. Then, the user selects these channels
one-by-one at random, proportionally to channel’s popularity. The
noise selection is performed with k-subscription-PROP.

To simulate a realistic popularity distribution of sensitive chan-
nels, we selected a set S of 7, 000 sensitive channels using Twel-
low [1], a website that categorizes Twitter accounts according to
their subject. The selected channels correspond to Twitter accounts
dealing with health, political, religious, and other sensitive issues.
We estimate the popularity of each channel based on its number
of followers, i.e., UC . Figure 5 shows the distribution of sensitive
channel popularity in our dataset. We see that this distribution can
be approximated very well using a power law with exponential cut-
off model. We use this approximation in the simulator to assign a
popularity pC in each channel. We also see that only a small per-
centage of the sensitive channels exhibit relatively high popularity,
which increases the disclosure probability. In contrast, the major-
ity of sensitive channels have low popularity, which results in low
disclosure probability even for low values of k.

To simulate a realistic distribution of the number of sensitive
channels N that each user is interested in, we used the same real-
word dataset of sensitive channels. From the total 7, 000 channels,
we used the Twitter API to collect the user IDs of the followers of
500 sensitive channels related to disability issues, and we measured

the number of occurrences of each user ID. This is the number of
channels belonging in S that each user in our dataset follows. In
this analysis we found more than 530, 000 unique users. Figure 6
shows the respective distribution, which is approximated with a
typical power law function. This approximation is used in our sim-
ulations for realistic user selections. Also, we observe that only
0.85% of the users follow more than 4 sensitive channels, while
91.65% of the users follow just one sensitive channel.

The simulator keeps two counters per each channel: the num-
ber of users that (i) select this channel as actual interest (UC),
and (ii) select this channel as noise (URC

). Before exiting, the
simulator reports the disclosure probability per channel, which is
max(1/k, UC/(UC + URC

). Additionally, it keeps two lists per
user: (i) the channels she is interested in (Ci), and (ii) the chan-
nels she selects as noise (Cn). This way, the simulator reports
the disclosure probability per user, based on the set of sensitive
channels the user is interested in (Ci). This probability is equal to
max(1/k, UCi

/(UCi
+ URCi

)), where UCi
the number of users

interested in Ci and URCi
the number of users that Ci is included

within their Cn. This is because we assume that all channels in Ci

are semantically correlated. Among all the disclosure probabilities
reported per each user and each channel, the simulator reports the
overall average and maximum disclosure probability. We repeat
each simulation for 100 times and we use the average values.

We set |S| to 1,000 channels, U to 1,000,000 users, and we vary
k from 1 to 200. Figure 7 shows the average and maximum dis-
closure probability reported by the simulator as a function of k.
We see that k-subscription achieves a low average disclosure prob-
ability over all channels and users, which decreases rapidly with k.
However, we see that the maximum disclosure probability found
for an individual user remains equal to 1 for low values of k up
to k = 30. This is because there is at least one user interested in
an N-tuple that no other user has selected among her random noise
choices, especially for large values of N. However, as k increases,
we see that an increasing number of users tend to select a significant
percentage of the channels in S as random choices, e.g., users with
large value of N. As these users follow most of the channels in S,
they tend to hide the actual users’ interests, even for large and rare
N-tuples, reducing effectively the maximum disclosure probability.

5. IMPLEMENTATION
To evaluate the feasibility and efficiency of k-subscription we

have implemented a Twitter extension for the popular Chrome web
browser. The extension uses Twitter API v1.1 and complies with
the REST API Rate Limit. It is developed using Javascript and
JQuery, Json2, OAuth and SHA-1 libraries.

Figure 8 shows the overall operation of k-subscription extension.
Upon installation, users can follow Twitter accounts in exactly the
same way, though Twitter’s web interface or “Follow me” buttons
in third-party web pages. To enhance user’s privacy, k-subscription

intercepts all follow requests and checks whether they correspond
to sensitive channels contained in S. If so, the extension transpar-
ently subscribes the user to k− 1 additional “noise” channels from
S according to the k-subscription-PROP algorithm, where k can
be configured by the user. These channels remain hidden and the
user never interacts with them, providing exactly the same Twitter
browsing experience as before. For this reason, the extension keeps
a list of all “noise” channels and dynamically filters out the unso-
licited tweets of these channels from user’s feed. Other affected
information, such as the number of channels followed, is adjusted
appropriately by excluding the effect of the “noise” channels.

At the first run, the extension downloads the set S of sensitive
channels used for obscuring user’s selections. The set includes in-

k-Subscription

Sensitive Channels

Set

twitter.com

Actual + Noise

Channels

Actual Channels

https://twitter.com

Figure 8: Overall operation of the k-subscription browser ex-

tension for Twitter. Whenever a user follows a new sensi-

tive channel, k-subscription transparently follows additional

“noise” channels and removes the “noise” from user’s feed.

formation about each channel and its number of followers to im-
prove “noise” selection. The user can interfere with “noise” selec-
tion by proposing channels with predefined features such as lan-
guage and country. Users can disable the effect of k-subscription

on a follow request if they consider the related channel as non-
sensitive. When a user unfollows a sensitive channel, the extension
transparently removes its corresponding “noise” channels as well.

We envision that the set of sensitive channels S along with the
project in general would be maintained by the broader community
of users and/or Non-Governmental Organizations (NGO) that have
a specific view towards protecting privacy. Hence, S can be seeded
by an initial set of sensitive channels and further improved through
human intervention and participation of the community. Similar
privacy-concerned projects, such as Tor, enlist the help of volun-
teers to maintain and improve its networks of routers. We expect
that similar approaches can be applied for k-subscription.

Although k-subscription is effective at hiding the channels a user
is interested in, a microblogging service may be able to find the
user’s real preferences by collaborating with URL shortening ser-
vices. Users who click on a short URL are initially directed to the
URL shortening service (which may be operated by the microblog-
ging service, such as t.co in the case of Twitter) and then they are
redirected to the actual URL. By monitoring which short URLs a
user clicks, the microblogging service can learn the user’s interests.
We solve this problem within the k-subscription browser extension:
whenever a user clicks on a short URL, k-subscription opens all
short URLs posted in every channel the user follows. These URLs
are resolved to the final destination URLs without the browser re-
ceiving a single byte from the targeted web pages. Then, the exten-
sion serves to the user only the actually requested URL. This way,
the microblogging service will not be able to see which URLs a
user clicks, as k-subscription transparently opens all of them.

6. EXPERIMENTAL EVALUATION

6.1 Environment and Dataset
For all our experiments we used a PC equipped with an Intel

Core 2 Duo Processor E8400 with 6MB L2 cache, 4GB RAM, and
an Intel 82567 1GbE network interface. To populate the set S with
sensitive channels we used Twellow [1], a web site that categorizes
Twitter accounts according to their subject. We created a set S with
7, 000 Twitter accounts dealing with health issues, political beliefs,
abuses, religious preferences and more.

t.co

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

k: Obfuscation level

Figure 9: Time to follow a sensitive chan-

nel as a function of k.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8

P
e
rc

e
n
ta

g
e
 o

f
c
h
a
n
n
e
ls

Posts per hour

Figure 10: Number of tweets posted per

channel per hour.

 0

 10

 20

 30

 40

 50
k=100

 0
 5

 10
 15
 20
 25

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n
 (

K
b
p
s
)

k=50

 0

 2

 4

 6

 0 5 10 15 20 25 30

Time (minute)

k=1

Figure 11: Bandwidth consumed for a

user receiving tweets as a function of time.

6.2 Adding Channels
In this first set of experiments we set out to explore the delay

imposed by k-subscription when adding several noise channels in
order to follow and hide a sensitive channel the user is interested
in. Figure 9 shows how much time it takes to follow a sensitive
channel with k-subscription as a function of k, i.e., when also fol-
lowing k − 1 noise channels. We repeated our measurement for
each k 100 times with random choices, and we report the average
values. We see that the latency is an almost linear function of k, as
expected. Fortunately, the time to follow several tens of channels is
not significant. Indeed, it takes a little more than 1 minute to follow
100 channels and around 2 minutes to follow 200 channels. Since
this operation is done only once, i.e., when a user wants to follow
a sensitive channel, we believe that it does not add any significant
overhead. Moreover, this operation runs as a background process,
so it does not affect the user’s experience.

6.3 How Much Does the Noise Cost?
In our next experiment we tried to quantify how much more traf-

fic is generated by the noise channels. To do so, we measured
the total number of tweets generated by all channels, divided by
each channel’s lifetime and found the average number of tweets
per channel per unit of time. The CDF of this function is shown in
Figure 10. We see that the median channel (y=50%) generates less
than one tweet (actually 0.25 tweets) per hour while 93% of the
channels generate less than two tweets per hour. Overall, we see
that the extra traffic generated by the noise channels should be very
small. Even adding 100 noise channels generates no more than 25
tweets per hour, a negligible amount of traffic by most standards.

The reader will notice that the maximum posting rate that we
have observed is about 6 posts per hour (averaged over the entire
lifetime of the channel). Published statistics [24] suggest that the
most prolific twitter accounts post as much as one tweet update per
minute. Such accounts usually belong to news stations or even to
automated programs (bots). Given that each tweet corresponds to
just few hundred of bytes transferred over the network, even in such
cases the resulting network overhead will be relatively low.

6.4 Bandwidth Consumption
When a user follows k channels for each subscription, she down-

loads roughly k times more information than she actually needs.
However, we would like to see if the bandwidth needed for these
downloads can be sustained by a home DSL Internet connection or
not, and the respective network overhead in terms of used band-
width. A user interested in N sensitive channels will receive
tweets from N × k channels. The network overhead will be the
same when a user is interested in one channel with N times higher
k value. Thus, we evaluate our system while varying only the k
parameter, assuming a user interested in a single channel. Fig-
ure 11 shows the traffic load generated by our implementation over

a 30-minute period for a user following one sensitive channel with
k = 100, k = 50, and k = 1 (i.e, without using k-subscription).
We notice that the bandwidth consumption even in case of k = 100
is reasonably low, usually less than 1.5 Kbps. We see that even in
case of the vanilla system (see k = 1) the bandwidth consumption
is not significantly lower than in high values of k. In all cases it
is usually between 0.5 and 1.0 Kbps. By manually inspecting the
traffic we found that most of the bandwidth is used to download
information like images, trends and recommendations, which does
not depend on the value of k. The bandwidth used for downloading
the actual tweets, which increase with the value of k, was found to
be a small percentage of the total bandwidth consumption.

We observe a large spike at the beginning of each experiment,
when we have just opened the browser and loaded the Twitter page.
For instance, bandwidth consumption reaches 54 Kbps for k = 100,
29 Kbps for k = 50, and 7 Kbps for the vanilla system at the first
second. During this initialization stage Twitter downloads all the
necessary content (widgets, scripts, CSS, profile images, etc.). At
this stage, k-subscription downloads lot of tweets from all k chan-
nels. As we discard most of the tweets (belonging to noise chan-
nels) and keep only tweets from channels that a user is interested
in, we always download a larger chunk of tweets to be able to com-
pound the user’s actual timeline. For this reason we observe a rel-
atively higher spike as k increases. To improve browsing latency,
we transparently increase the page size to receive more tweets.

Note that profile images are cacheable, so k-subscription down-
loads the additional images (depending on k) only once, without
affecting the overall bandwidth consumption. After the initial spike
in the first few seconds, we see constantly low bandwidth consump-
tion, which correspond to the low rate of incoming tweets. The
average consumption in this 30-minute interval is 1.14 Kbps for
k = 100, 0.71 Kbps for k = 50, and 0.54 Kbps for k = 1. Overall,
we see that the total bandwidth consumed by k-subscription is not
really an issue even if the user follows as many as 100 channels.

To evaluate the effect of the obfuscation level on bandwidth con-
sumption while browsing Twitter with k-subscription, we plot in
Figure 12 the bandwidth consumption as a function of k for two
different stages: (i) when the user loads Twitter and downloads her
timeline, which consists of the latest 20 tweets from the channels
she is interested in, and (ii) when Twitter is idle and just receives
new incoming tweets for 30 minutes. We see that the overhead is
very low, even for large k, and can be easily handled by a home
DSL or even a mobile connection. The bandwidth consumption is
much lower in the idle stage, as expected, due to the low number
of tweets per second, as shown in Figure 10. The increased band-
width during initialization is because k-subscription asks for more
tweets to display the default page of 20 tweets only from channels
that user is interested in. However, the initialization lasts for just
few seconds, e.g., 7.7 seconds for k = 100 and 2.8 seconds for
the vanilla system. Thus, the increased bandwidth in Figure 12(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n
 (

K
b

p
s
)

k: Obfuscation level

k-subscription
Vanilla system

Tor

(a) Initialization stage (load 20 tweets)

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th
 c

o
n

s
u

m
p

ti
o

n
 (

K
b

p
s
)

k: Obfuscation level

k-subscription
Vanilla system

Tor

(b) Idle stage (download incoming tweets)

Figure 12: Bandwidth consumption with k-subscription, Tor and vanilla system.

 0

 2

 4

 6

 8

 10

 12

1 10 20 30 40 50 60 70 80 90 100

B
ro

w
s
in

g
 L

a
te

n
c
y
 (

s
e
c
o
n
d
s
)

k: Obfuscation level

k-subscription
Vanilla system

Tor

Figure 13: Browsing latency as a function

of k when a user opens Twitter’s main page.

corresponds to short term spikes, while the low bandwidth in idle
stage (see Figure 12(b)) corresponds to much longer periods, as the
user keeps Twitter’s page open in the browser.

In Figure 12 we also compare the bandwidth consumption of k-

subscription with a Tor browser. Although Tor offers a completely
different type of anonymity than k-subscription, it could be used
with a fake account as a different approach to hide user’s interests.
Thus, we evaluate k-subscription using the performance of Tor with
a fake Twitter account as a baseline case. We see that Tor adds an
additional bandwidth overhead due to its data encapsulation. In
particular, the average packet size of Twitter traffic over Tor is 789
bytes, when the vanilla Twitter traffic has an average packet size
of 239 bytes. This is the main reason that during the idle stage the
bandwidth consumption of Tor is quite higher than the consump-
tion of k-subscription, e.g., two times higher when k = 90. During
the initialization stage, Tor has a higher bandwidth consumption
than k-subscription with values of k up to 10, and lower consump-
tion when k exceeds 10. This is due to the increased number of
tweets downloaded at startup by k-subscription with high k values
to construct a full page of useful tweets. However, as the initial-
ization stage lasts only for few seconds, compared with idle stage,
k-subscription adds less overhead in terms of bandwidth.

When k-subscription compounds the user’s timeline, it contin-
ues to download tweets in the background until it reaches a cer-
tain number, which is constant for each k value. This way, k-

subscription avoids leaking any information that Twitter could an-
alyze to find out the channels a user is interested in.

6.5 Browsing Latency
In our next experiment we set out to explore the latency that

k-subscription imposes to user’s browsing experience. We instru-
mented our browser extension to measure the latency from the time
that a user asks for one or more tweets till the time that the browser
actually displays the relative information in the page, excluding any
tweets from noise channels. This latency includes the time spent in
network for downloading tweets, as well as the time spent in the
CPU for excluding the noise and rendering the page. Note that the
user’s timeline is fully rendered when all the 20 tweets needed are
received, despite the fact that more tweets are downloaded in the
background to hide the actual user’s interests.

Figure 13 shows the latency for displaying a page with k-subscri-

ption for several values of k when the user opens Twitter and loads
her timeline. We see that the latency for downloading and display-
ing a full page with 20 tweets slightly increases with the number of
noise channels, reaching to 7.7 seconds for k = 100 when without
k-subscription (see k = 1) the latency to display the same page
is 2.8 seconds. Therefore, a slight delay of less than 5 seconds is
not expected to significantly affect the user’s browsing experience,
while, at the same time, it enhances her privacy. Selecting a smaller

number of noise channels results in even lower latency. Note that
this small delay is only observed at the initialization stage, due to
the increased number of tweets needed to construct the user’s ac-
tual timeline. When the browser remains open (idle stage) we do
not observe any noticeable delay to render the incoming tweets,
even at very high values of k. If an incoming tweet belongs to a
noise channel we just drop it, else it is immediately given to user
with no further delay. Thus, our approach does not impose any
significant overhead to the browsing latency.

In Figure 13 we also compare the browsing latency of k-subscri-

ption and Tor. We see that Tor requires a much higher latency to
display Twitter’s page, close to 10 seconds. This is due to the longer
path from user to Twitter through the anonymization network.

During the previous experiments we measured the CPU load
of the browser, using the Linux’s time utility. The CPU load
was negligible for all values of k, always less than 1%, even for
k = 100. Thus, our k-subscription browser extension does not
add any considerable CPU overhead to the system.

7. RELATED WORK
Anonymous communications. One way to hide a user’s ac-

cesses on the web is to use an anonymization service [6, 20]. Al-
though such services can effectively hide a user’s IP address, they
can not hide the user’s identity if the user is logged into a mi-
croblogging service or if a subset of user’s previous web accesses
is known [19]. Recently, obfuscation was used to hide a user’s dig-
ital tracks. Kido et al. [13] protect the user’s location privacy by
sending false position data together with the true information.
Search engine query obfuscation. Howe and Nissenbaum [11]

proposed TrackMeNot, a system designed to hide a user’s real in-
terest from a search engine. For each real query submitted to the
search engine, TrackMeNot also submits several other queries to
confuse the search engine and introduce doubt for the user’s real
queries. GooPIR [7] proposes an approach that is robust against
timing attacks. For each real query, GooPIR constructs k− 1 other
queries and submits all k of them at the same time. This way, the
search engine cannot construct a timing model on the user’s real
queries. Murugesan and Clifton [16] propose Plausibly Deniable
Search (PDS). Similar to GooPIR, each real query is accompanied
by k − 1 other noise queries. Each real query, however, is also
brought into a canonical from to prevent identifiability based on
typos and/or grammar/syntax of the queries [2, 17]. Ye et al. [25]
propose noise injection for search privacy protection. They give a
lower bound for the noise queries required for perfect privacy and
provide the optimal protection given the number of noise queries.

Although the above systems are very effective at hiding one
real query in a crowd of k queries, a determined adversary may
be able to find a user’s interests by studying successive sequences
of queries [4]. Indeed, if a user consistently generates authentic

queries on a particular topic, but the k−1 “noise” queries added are
on several different topics, then the adversary may easily find the
user’s real interests using clustering approaches. To protect against
clustering attacks, PRAW [9] generates dummy queries on topics
related to the topics the user is interested in.

Our work shares ideas with the above works on search engine
query obfuscation. However, it has a fundamental difference: in
the field of search engine query obfuscation it is possible for some
queries, especially the rare ones, to be submitted by only one user.
Therefore, it is easy for the search engine to identify the users
who submit rare queries and thus, to accurately find their interests.
On the contrary, in k-subscription we always make sure that each
channel, even the rare ones, is followed by lot of users. To put it
simply: it is not how many “noise” channels a user follows – it is
how many other users follow her channels of interest.
Hummingbird. Cristofaro et al. proposed Hummingbird, a

system to provide privacy in Twitter [5]. The system assumes that
a user (Alice) is interested in following a particular hashtag, e.g.,
from the New York Times (NYT). Hummingbird makes sure that
neither Twitter nor NYT learn that Alice is interested in this hash-
tag. To achieve this, information providers (such as NYT) encrypt
their tweets and information consumers (such as Alice) are able to
decrypt the tweets matching the hashtags they are interested in.

Although Hummingbird is effective at hiding the hashtags Alice
is interested in, and seems related to our work, we see two main
differences with our approach: (i) Hummingbird requires the ex-
plicit collaboration of the information provider (e.g., NYT) who
should encrypt its tweets appropriately, and distribute keys so that
Alice will be able to decrypt the tweets matching the hashtags she
is interested in. In contrast, our system does not require any collab-
oration from the information providers: it is implemented on top
of Twitter as it is today. (ii) Although a user in Hummingbird is
able to hide the hashtag she is interested in, she cannot hide the fact
that she follows a particular channel (such as NYT). Our system is
able to help Alice hide the fact that she is interested in the particu-
lar channel by making sure that she follows several other channels,
and other people include this channel among their noise channels.

k-anonymity. Our work is similar to the concept of k-anonymity,
which suggests that data should be anonymized in a way that any
person in a released dataset should be indistinguishable from at
least k − 1 other persons in the same dataset [22]. To achieve
k-anonymity, data are generalized so that any information that can
uniquely identify a person will always point to at least k persons [18].
k-anonymity is frequently used together with l-diversity, which
makes sure that all the persons in the same k-anonymity group do
not have a common sensitive property [14].

8. CONCLUSION
Although microblogging services enable users to have timely ac-

cess to their information needs through a publish-subscribe model,
this creates major privacy concerns. As users declare all channels
they are interested in following, the microblogging service is able
to gather all their interests, including possible privacy-sensitive do-
mains. To remedy this situation, we propose k-subscription: an
obfuscation-based approach that encourages the users to follow k−
1 additional “noise” channels for each channel they are really inter-
ested in following. We present a detailed analysis of our approach
and show that by fine-tuning the k parameter we are able to re-
duce the confidence that the microblogging service has in knowing
which channels each user is really interesting in. We have devel-
oped a prototype implementation as an extension for the Chrome
browser using Twitter as case study. Our experimental evaluation
shows that users may easily follow hundreds of noise channels with

minimal run-time overhead when they receive news they are inter-
ested in. We believe that as an ever-increasing number of users
turn to microblogging services for their daily information needs,
privacy concerns will continue to escalate, and solutions such as
k-subscription will become increasingly more important.

Acknowledgements

We thank our shepherd Matt Fredrikson and the anonymous re-
viewers for their valuable feedback. This work was supported in
part by the FP7 project SysSec and the FP7-PEOPLE-2009-IOF
project MALCODE, funded by the European Commission under
Grant Agreements No. 254116 and No. 257007, by the German
Federal Ministry of Education and Research under grant 01BY1111
/ MoBE, and by the NSF through Grant CNS-1318415.

9. REFERENCES
[1] Twellow Directory. http://www.twellow.com/categories/.

[2] S. Afroz, M. Brennan, and R. Greenstadt. Detecting Hoaxes, Frauds, and
Deception in Writing Style Online. In IEEE Symposium on Security and
Privacy, 2012.

[3] D. Bachrach, C. Nunu, D. Wallach, and M. Wright. #h00t: Censorship
Resistant Microblogging. arXiv preprint arXiv:1109.6874, 2011.

[4] E. Balsa, C. Troncoso, and C. Diaz. OB-PWS: Obfuscation-Based Private
Web Search. In IEEE Symposium on Security and Privacy, 2012.

[5] E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams. Hummingbird:
Privacy at the time of Twitter. In IEEE Symposium on Security and Privacy,
2012.

[6] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security Symposium, 2004.

[7] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca. h(k)-private
information retrieval from privacy-uncooperative queryable databases.
Online Information Review, 2009.

[8] P. Eckersley. How Unique is Your Web Browser? In Privacy Enhancing
Technologies (PET), 2010.

[9] Y. Elovici, C. Glezer, and B. Shapira. Enhancing Customer Privacy While
Searching for Products and Services on the World Wide Web. Internet
Research, 2005.

[10] Epistolary. Rob’s Giant BonusCard Swap Meet.
http://epistolary.org/rob/bonuscard/.

[11] D. Howe and H. Nissenbaum. TrackMeNot: Resisting Surveillance in Web
Search. Lessons from the Identity Trail: Anonymity, Privacy, and Identity in
a Networked Society, 2009.

[12] R. Jones, R. Kumar, B. Pang, and A. Tomkins. I KnowWhat You Did Last
Summer: Query Logs and User Privacy. In ACM Conference on Information
and Knowledge Management (CIKM), 2007.

[13] H. Kido, Y. Yanagisawa, and T. Satoh. An Anonymous Communication
Technique Using Dummies for Location-Based Services. In IEEE
International Conference on Pervasive Services (ICPS), 2005.

[14] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.
l-Diversity: Privacy Beyond k-Anonymity. ACM Transactions on
Knowledge Discovery from Data (TKDD), 2007.

[15] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking: Policy and
Technology. In IEEE Symposium on Security and Privacy, 2012.

[16] M. Murugesan and C. Clifton. Providing Privacy through Plausibly Deniable
Search. In SIAM International Conference on Data Mining (SDM), 2009.

[17] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt, E. Stefanov, E. C. R.
Shin, and D. Song. On the Feasibility of Internet-Scale Author
Identification. In IEEE Symposium on Security and Privacy, 2012.

[18] H. Park and K. Shim. Approximate Algorithms for k-Anonymity. In ACM
SIGMOD International Conference on Management of Data, 2007.

[19] S. Peddinti and N. Saxena. On the Effectiveness of Anonymizing Networks
for Web Search Privacy. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2011.

[20] M. Reiter and A. Rubin. Crowds: Anonymity for Web Transactions. ACM
Transactions on Information and System Security (TISSEC), 1998.

[21] RT. Privacy betrayed: Twitter sells multi-billion tweet archive.
http://rt.com/news/twitter-sells-tweet-archive-529/.

[22] L. Sweeney. k-Anonymity: A Model for Protecting Privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002.

[23] J. Turner. Countermeasure Radar Chaff, 1970. US Patent 3,544,997.

[24] Twitaholic. Top 100 Twitterholics based on Updates.
http://twitaholic.com/top100/updates/.

[25] S. Ye, F. Wu, R. Pandey, and H. Chen. Noise Injection for Search Privacy
Protection. In International Conference on Computational Science and
Engineering (CSE), 2009.

http://www.twellow.com/categories/
http://epistolary.org/rob/bonuscard/
http://rt.com/news/twitter-sells-tweet-archive-529/
http://twitaholic.com/top100/updates/

	Introduction
	System Design
	Threat Model
	Our Approach: k-subscription
	Uniform Sampling
	Proportional Sampling
	Following Multiple Channels

	Analytical Evaluation
	Analysis of k-subscription-UNIF
	Estimating the Disclosure Probability
	Finding a Reasonable Size for S

	Analysis of k-subscription-PROP
	Analysis for Multiple Channels

	Simulation-based Evaluation
	Implementation
	Experimental Evaluation
	Environment and Dataset
	Adding Channels
	How Much Does the Noise Cost?
	Bandwidth Consumption
	Browsing Latency

	Related Work
	Conclusion
	References

