

Abstract— This paper presents the implementation of a

secure application for an academic institution that offers

numerous services to both students and the faculty. The

primary focus of this paper is to provide a technical

implementation of a new architecture for encrypting the

database. The scope of this paper mainly includes but is not

limited to symmetric and public-key cryptography,

authentication, key management, and digital signatures. The

final results of this paper demonstrate that what security

features one should implement in order to achieve a highly

secured application. This paper presents the implementation

of a stand alone system that can be implemented on any legacy

systems, and still operates effectively. In other words, it is self

sufficient in terms of the data that it stores.

I. INTRODUCTION

Some of the major services that the intended application

offers to both students and the faculty are as follows:

‾ The intended application is flexible in a sense that it

gives ability to add/delete users, courses, students, and

documents.

‾ Flexibility to change passwords. The secure application

provides highly transparent environment to its users (i.e.,

the students and the faculty can use this application in a

highly transparent manner). There should be minimal

input from the user due to security features.

‾ One of the key features that the proposed application

offers is the “forgotten passwords”. In other words, the

secure application makes sure that if a user forgets his/her

password, they should not completely lose their

documents.

‾ In addition, the proposed application ensures that an

administrator should not be able to decrypt the

documents.

‾ Finally we design and develop this secure application by

assuming that the communication is not secure at all.

 Some of the security measures that we consider during

the design and development of the targeted secure

applications are as follows: Log all accesses activities to the

server and provide features in the secure application to

1
Contact author: srizvi@bridgeport.edu,

search for unusual access patterns. If possible, put an upper

limit on the number of document that a single user can

access or we should have a warning mechanism in the

application to ensure fairness. Our secure application

should have a permission system to the document that

determines if a user is permitted to access it. If the

documents are read-only, add a software application called

"Secure Viewer" that never stores the document to disk. A

user should also have the capability to add a specialized

crypto board on the server. This crypto card would be used

to encrypt/decrypt files on the server.

One of the major objectives of the targeted secure

application is to provide secure storage of the faculty

documents as well as maintaining authorized access to the

documents for the authorized users. In order to maintain

this level of security, there is a need to design a strong and

secured application that let the documents of the faculty

being kept secret by implementing data Integrity and

confidentiality as well as making the documents partially

shared or available. Our design approach, therefore,

implements a complete line of defensive authentication and

authorization cryptographic standards to protect the data

and to maintain its integrity while at the same time making

it available for the authorized users. In particular, in order

to design and implement such a secured application, the

following are the minimum key security-elements that

should be addressed by us in this paper: User authentication

and Authorization [1, 2], ACL Management & Access

Availability [3], Data encryption and decryption [4, 5], Data

integrality, and Document Accountability [2]. Fig. 1 shows

the implementation of the above five security components

for both faculty as well as the student-users. Furthermore,

the class diagram as shown in Fig. 2.

II. COMPONENTS OF THE PROPOSED ARCHITECTURE

A. User Authentication and Authorization

The secure application is certainly required to employ a

strong mechanism to authenticate the users. The most

frequently used strategy is asking for a user name and

A Novel Encrypted Database Technique to Develop a Secure Application for an

Academic Institution

1Syed S. Rizvi,
2
Aasia Riasat,

3
Mustafa A. Khan and

4
Khaled M. Elleithy

1, 3, 4Computer Science & Engineering Department, University of Bridgeport, Bridgeport, CT
2Computer Science Department, Institute of Business Management, Karachi, Pakistan

srizvi@bridgeport.edu1, aasia.riasat@iobm.edu.pk2, mustafak@bridgeport.edu3 ,elleithy@bridgeport.edu4

T. Sobh et al. (eds.), Novel Algorithms and Techniques in Telecommunications and Networking,
DOI 10.1007/978-90-481-3662-9_50, © Springer Science+Business Media B.V. 2010

password to authenticate the user. Some key points that we

should consider in the design of authentication mechanism

are: transmitting the password in clear (i.e., we may use

SSL to protect the user privacy and to safe the application

by being played in the hand of some intruder after he

capture the network traffic and thus get the password).

Also, it is required that the secure application provides

secure storage of the user names and passwords along with

a method to manage them, including resetting or revoking

the passwords or user accounts. Our another important

concern during the preliminary design of secure application

is whether to store the password in some hash format or

storing it in the plain text format as the user entered. In

order to keeps the user confidentiality intact and also letting

the password to become non human understandable,

hashing, therefore, becomes one of our design choices.

DS

M

M

Password Derived Bytes

Algorithm

IV KEY (K) M

Encryption

Rijndael Algorithm

Encrypted

Message

IV KEY (K)

HASH: SHA1 Algorithm

Message Digest

(MD)

Digital Signature

RSA Algorithm

Private

Key

Public

Key

MD

Digital

Signature

(DS)

Public Key (PK)

 PK DS

Message Digest

(MD)

Message

(M)

Equal

Generates a key based on user’s password

Uses the Key (K) to encrypt the message (M)

SHA1

Algorithm

This message decryption is

performed if the messages

are transmitted without DS

(i.e., we intend to use DS

between faculty to faculty

data transfer

Message Digest

(MD)

Decrypting the signature using

the sender’s public key to

recover the original MD or

HASH

Receiver
Rijndael Algorithm

Generating private and

public keys

Message

(M)

Password

(P)

Username

(U)

Writing a text on the screen

Users: Faculty or/and Students

Fig. 1. Proposed Architecture for combining various security features for the intended application

RIZVI ET AL. 294

B. ACL Management & Access Availability

One of the requirements of the secured application is

making information always accessible to users who need it

and who have sufficient permissions to access it. In order to

achieve this task, the design of secure application should

provide a robust mechanism to perform good management

of document creation and access rights settings. Our secure

application provides a number of features that, for example,

allow owner to easily create and modify the documents,

choose the encryption technique available in the secure

application to store the document in encrypted format and

most importantly setting the access control lists ACL. An

owner can specify the objects and the accessibility domains

associated.

C. Date Encryption and Decryption

The design of a secure application is not possible without

the use of some encryption and decryption techniques. The

secure application, therefore, should employ encryption and

decryption technique for controlling the document integrity

and accessibility. The advantages of symmetric key

cryptography make our design choice rather

straightforward. However, since both parties need the same

key for effective communication to occur, key distribution

becomes an issue. For our secure application, the encryption

will takes place at the server where as the keys can be

generated by the owner of the files entering some text. In

addition, if file gets corrupted, the owner should be able to

produce the same set of the keys if needed. The keys can be

stored in encrypted format on the secured server, while just

the server side application can access the file that contains

the set of all keys that are used to encrypt the documents.

D. Data Integrity

Data integrity is one of the issues that we consider during

the development phase of our secured application. The task

is to make files secure by completely denying unauthorized

access to the files while at the same time make sure that the

files should be modified only by those (student or faculty)

who are authorized to do so (If any) or can not be modified

other than the owner of the document. We implement the

Fig. 2. Class diagram for the implemented project

A NOVEL ENCRYPTED DATABASE TECHNIQUE 295

concept of digital signatures that enable recipients to verify

the integrity of an electronic document that is used. In our

application, we ensure that the data integrity is maintained

after implementing the digital signatures. One way of

implementing this concept is the use of a one-way hash that

creates a fixed-length hash value or message digest for a

message of any length. With a hash attached to the original

message, a user or owner can determine if the message was

altered by re-computing the hash and comparing his or her

answer to the attached hash.

III. IMPLEMENTATION ISSUES AND DESIGN CHOICES

 In this section, we present our overall design structure

for the targeted application. In addition, this section

provides a comprehensive discussion on implantation issues

and our design choices for implementing each security

component we discussed above. The detailed flow diagram

of the proposed project is shown in Fig. 3.

A. Project Design Phase

The Secure Document application is designed and

developed to implement the security features that we have

learned during this course of Network Security. This project

was built using the .Net Framework and coded using C# as

the base language. The main tools used in the project are:

Visual Studio 2003 Development Environment, Asp .Net

Framework, MS Access (Database) for storing projects

entities and Documents, ADO.NET for database

connectivity, Internet Information Server IIS 5.0 (web

server), Secure Http (https). The database was designed in a

way that it would suit the application flow and all the

entities of the application. Next we describe each of them in

some detail along with the over all database design. For the

sake of simplicity, all the entities information are kept

simple in database, although this information can be made

comprehensive and complete in any real time

implementation and as per the development requirements.

Fig. 3. Detailed Flow Diagram of Secure Application for an Academic Institution

RIZVI ET AL. 296

B. Proposed Security Design

The proposed security design includes various security

measures that are incorporated in the intended application.

1) Custom Base Class: In our project we have used

ASP.NET Custom Base Class feature to secure access to all

the project web pages, data and services available on them.

For this purpose, we created custom base class called “My

Pages” which is derived for System.Web.UI.Pages and

consists of those classes that contain the code that put the

security checks and take care of the process of

authorization. All the web form’s codes behind classes are

derived from the Custom Base Class that provides the basic

infrastructure for the web page’s information access

security. To implement this hierarchy, we implemented the

.Net’s most prominent feature: session management to

maintain the user’s identity at each step of the application.

By using the custom based class implementation, we have

avoided the URL spoofing in which a person who is not

authorize to view the page contents or to access the

resources offered by it can be able to access the page’s

contents

2) Dynamic Key Generation and Management: In order

to prevent the unauthorized access to the keys that are used

to secure the documents upon storage, the keys for

encryption and decryption are chosen entirely at run time.

With this approach, we avoided to store them at any place

which consequently avoided any security threats. The

system will be a bit slow in the response but will save us the

cost of being insecure. The keys are generated based on the

session objects information of the person which is being

signed at the time of the document upload and encryption

request.

C. Basic Concepts Design and Flow Diagram

The basic concept includes the users, custom, validation

and calendar controls. Validating the user inputs

throughout the pages include telephone number and date

information. Updating the database based on the calendar

when the user specify the date. The retrieved information

from the database is displayed using data adapters, data

sets, data grids and data list. The main tools used as a basic

concept in .Net framework are: User Controls, Image

Controls, Html File Control, Data List, Data Grid, Calendar

Controls, Validation Controls, Regular Expressions, Data

Readers, Data Adapters, and Data Sets. The data flow

diagram is a high level representation of this project. It can

be seen in Fig. 3 that the data flow from top to bottom

where system administrator initiates and introduces

students, courses, and faculty.

IV. SECURE DOCUMENT APPLICATION IMPLEMENTATION

In this section, we present a discussion on the

technicalities we encountered during the development phase

of this project. This includes implementation detail and

interface choice. In this application, the flow of the

application starts from the main (default) page where a

person sign in and then based on its role or membership,

he/she will be then directed to specific web pages and

resources he can access. The main entities in this

implementation include System Admin interface and

Faculty and Student Interfaces as outlined below.

A. System Admin and Faculty Interface

The system admin interface contains the links to the pages

where a system admin can perform course management,

faculty & students accounts managements In addition, a

system admin can assign courses to faculty and can register

students to specific courses. The links at the system admin

interface include faculty accounts, admin accounts, student

accounts, courses management interfaces. System

administrator manages student’s accounts by adding,

modifying, deleting student record. He/she can setup their

login accounts and can register them to the desired courses

Fig. 4. System Admin Control Panel: Faculty Accounts Management

Fig. 5. System Admin Control Panel: Student Accounts Management

A NOVEL ENCRYPTED DATABASE TECHNIQUE 297

offered by a certain semester. Figures 4, 5, and 6 show the

different parts of the system administration.

When a faculty member logs in to the application, he/she

is directed to a web page that provides the information and

services that are only related to that faculty member. As one

can see in Fig. 4, the faculty member has provided the

information regarding the courses that are assigned to him

and the documents (encrypted) that he has in his folder at

the server. In addition when a course is selected, the page

shows the documents that are related to that specific course.

The list of students who have given the access to his (faculty

member) documents are also shown here. The faculty

member has given the option to change the accessibility

permissions of the student by deleting the student record

form the list for whom he doesn’t want to allow the

accessibility of the document. The documents are uploaded

to the server in encrypted format and then stored into the

data base as a BLOB. During the uploading and encryption,

the secure Http Protocol is being used, so that the transfer of

the documents takes place securely as shown in Fig. 7. In

addition, Fig. 6 can be used by a system administrator to

manage the courses for both faculty and students.

B. Student Interface

When a student logs into the secure document application,

he has shown the list of his registered courses and their

complete description including faculty information (see Fig.

5). He can choose any of the documents that he want to

access and can click the download button. The download

button extract the document that are stored in the database

in the BLOB form and then decrypt it on to the-sever;

finally the document is made available in the browser for

the student. During the document transfer we again

implemented secure Http protocol to securely transfer the

document. The details are shown in Fig. 5. On the same

page student can change his password or secret question

and answer any time. Passwords and secret questions and

answers are stored in the encrypted format in the database

and hence.

V. CONCLUSION

In this paper, we presented a new design for providing

comprehensive security for a secure application by

combining many different security techniques using the

.NET framework. The most prominent feature of the .NET

is its full fleshed Cryptography-API that provides

techniques of encryption and decryption while hiding all the

technical details. This is one of the main reasons that we

achieved the goal of completing this secure application.

Secure HTTP communication provided by ASP.NET’s API

is also another most important and handy feature worth to

mention here. Some of the tools used in the application

include data access controls that avoid repetitive database

programming, built in authentication features and security

controls that enable automated management of user

accounts and roles and simplified web deployment. The

proposed project consists of different tools and techniques

for building secure web applications with strong database

accessibility and crypto graphic techniques. During the

design phase, we learned and practiced many new

techniques that we found very useful and interesting in the

context of building a secure and powerful web application

along with strong and real time database functionality.

REFERENCES

[1] L. Moningi, “Authentication and Authorization in ASP.NET,”

September 09, 2003. Available at: http://www.c-

sharpcorner.com/mrsharp.asp

[2] D. Watkins, “An Overview of Security in the .NET Framework,” Project

42, Sebastian Lange, Microsoft Corporation. January 2002.

[3] J. Meier, A. Mackman, B. Wastell, P. Bansode, A. Wigley, K. Gopalan,

“Security Practices: ASP.NET 2.0 Security Practices at a Glance,”

Microsoft Corporation, August 2005.

[4] A. Yao, “How to generate and exchange secrets,” Proceedings IEEE

27th Symposium on Foundations of Computer Science (FOCS), pp.

162–167, 1986.

[5] ISO/IEC 11770-2: 1996. “Key management - Part 2: Mechanisms using

symmetric techniques,” International Organization for

Standardization, 1996.

Fig. 6. System Admin Control Panel: Courses Management

Fig. 7. Faculty Member Interface

RIZVI ET AL. 298

	A Novel Encrypted Database Technique to Develop a Secure Application for an Academic Institution
	I. INTRODUCTION
	II. COMPONENTS OF THE PROPOSED ARCHITECTURE
	III. IMPLEMENTATION ISSUES AND DESIGN CHOICES
	IV. SECURE DOCUMENT APPLICATION IMPLEMENTATION
	V. CONCLUSION
	REFERENCES

