SECURITY AND COOPERATION IN WIRELESS NETWORKS

Thwarting Malicious and Selfish Behavior
in the Age of Ubiquitous Computing

A GRADUATE TEXTBOOK

Levente Buttyan and Jean-Pierre Hubaux

ISBN 9780521873710

DRAFT

Version 1.3

February 2, 2007

The copyright on this book is held by Cambridge University Press, who have
kindly agreed to allow us to keep the book available on the Web until it is
published.

http:/ /secowinet.epfl.ch

ii

To Zsombi, Benci, and Boti
To Catherine, Sylvie, Nathalie, and Emilie

Preface

We have entered the era of wireless networks. By now, the number of wireless phones
has superseded that of wired ones. Wireless LANs are routinely used by millions of
nomadic users. Wireless devices have become commonplace in private homes, facto-
ries, and hospitals. And technologists promise us a world of ubiquitous computing, in
which myriads of tiny, untethered sensors and actuators will communicate with each
other, promptly taking care of our various needs and wishes.

In addition to this pervasiveness, we are witnessing a change of paradigm: initially,
wireless devices had limited or no programmability and were managed (and secured)
in a highly centralized fashion. Today, high-tier wireless end-systems are full-fledged
personal computers and take an increasingly active role in the networking mechanisms.
In the extreme case of multi-hop ad hoc networks, the end systems are the network.

Unfortunately, this evolution is creating new vulnerabilities. Even existing wireless
networks (and especially wireless LANs) exhibit a number of security weaknesses,
some of which have been painstakingly fixed a posteriori. It is now clear that the
security solutions devised for wired networks cannot be used as such to protect the
wireless ones. An additional problem is that the frenzy to commercialize quickly new
products and new services is in contradiction with the design of a well-thought (and
possibly standardized) secure architecture.

This textbook aims at preventing ubiquitous computing from becoming a pervasive
nightmare. It contains a thorough description of existing and envisioned mechanisms
devised to thwart misdeeds against wireless networks. Indeed, we believe that the
protection of wireless networks now requires more attention and a more systematic a
priori approach.

In addition to the usual security concerns of networking, we need to address selfish
behavior. The reason is that each wireless communication makes use of a fraction of
the spectrum that has been and will remain a scarce resource. Moreover, most wireless
devices are battery-powered, and for them energy is scarce as well. Consequently, the
behavior of a wireless device can affect the service enjoyed by a another, neighboring

iv

device. Likewise, the behavior of a wireless network can affect the performance of
another wireless network, especially if both networks operate in the same frequency
band. These are the reasons we mention “cooperation” in the title of this book;
wherever appropriate, we will make use of game theory in order to formalize the
problems.

We believe this textbook to be the first of its kind regarding the treatment of
security and cooperation in wireless networks. Due to the constant evolution of the
field, one of the major challenges of writing such a book is ensuring that it will have
a reasonably long shelf life (and that the material learned from this book has long
lasting value). The strategy we have adopted is to focus on the principles and to keep
examples as generic as possible.

What this book is not

This book covers a substantial amount of material, but it obviously does not aim
at covering everything. In particular, it is not an introduction to security or cryp-
tography, nor is it a tutorial on game theory (but we do provide an appendix on
each of these topics for the convenience of the reader). It is not an introduction to
wireless networks. It is not a book on wired networks security. It is not a handbook
on jamming and anti-jamming techniques. It is also not a book on wireless security
standards (the reader is referred to the numerous books recently published on this
topic). Finally, the book is not about the computing aspects of security, such as the
protection against viruses.

What this book is about

The book provides a thorough analysis of the major trends in wireless networks and
explains the implications in terms of security and cooperation. It provides a detailed
description of the problems and a precise explanation of mainstream solutions wher-
ever they exist, and of potential solutions otherwise. The structure of the book is
captured by the following figure.

Security Cooperation
12. Behavior enforcement

| 8. Privacy protection | |11. Operators in shared spectrum|

| 7. Secure routing | | 10. Selfishness in PKT FWing |

| 6. Secure neighbor discovery |

| 9. Selfishness at MAC layer |

| 5. Security associations |

| 4. Naming and addressing |

| 3. Trust |

Appendix A:
Security and crypto

Appendix B:
Game theory

| 2. Upcoming networks |

| 1. Existing networks |

The twelve chapters are organized in three parts. Part I is an introduction,
providing some background information. Chapter 1 describes how existing wireless
networks are secured. Chapter 2 contains a description of upcoming wireless networks,
such as mesh, vehicular, sensor and RFID networks. It identifies general trends,
such as increasing decentralization and growing programmability of the devices and
discusses their implications in terms of security and cooperation. Chapter 3 is devoted
to the difficult issue of trust in wireless networks; it explains the relationships between
trust, security, and cooperation, and discusses the adversary model.

Part II describes the techniques aiming at thwarting malicious behavior;! as
such, it makes use primarily of security techniques. Chapter 4 addresses the problem

1 As we will see, malicious behavior encompasses many misdeeds, including the willingness to access
to unauthorized information or to deliberately affect the availability of the network for other users.

vi

of naming and addressing; it explains how the Sybil and the replication attacks can be
thwarted in such networks. Chapter 5 explains how security associations can be set up
between wireless devices, notably by exploiting their physical proximity. Chapter 6
addresses secure neighbor discovery and explains the wormhole along with techniques
to thwart it. Chapter 7 provides techniques to secure the fundamental operation of
routing in wireless multi-hop networks. Finally, Chapter 8 addresses the crucial issue
of privacy in upcoming wireless networks.

Part III focuses on the techniques intended to prevent selfish behavior;? therefore,
it heavily relies on game theory. Chapter 9 focuses on the MAC layer. It first explains
the techniques by which a WiFi selfish user can increase its share of the bandwidth,
at the expense of well-behaved users; then it provides a detailed study of selfish
behavior in pure ad hoc networks. Chapter 10 discusses the problem of selfishness in
packet forwarding, and explains why incentives to cooperate are needed. Chapter 11
addresses the difficult question of the coexistence of operators in the same part of the
spectrum. Finally, Chapter 12 describes examples of protocols that encourage selfish
devices to adopt a desirable behavior.

Appendix A contains a detailed description of those topics of security and cryp-
tography that are needed to understand the book. Likewise, Appendix B provides
a tutorial on game theory for wireless networks.

In order to make the book more concrete, we make use of several running examples
to illustrate the various concepts we have introduced; these examples belong to the
families of upcoming networks identified in Chapter 2: personal communication net-
works (including community, mesh, and mobile ad hoc networks), vehicular networks,
and sensor as well as RFID networks.

Some of the chapters are specific to a given protocol layer: chapters 6 and 9 are
focused on the MAC layer, whereas chapters 7, 10, and 12 are related to the network
layer.

Intended audience

This textbook is intended for Master’s and PhD students as well as for researchers.
It should also be of interest for the practitioners who want to get a broader view of
the field.

Some familiarity with networking and security principles is useful for a proper
understanding of this book.

2 Selfish behavior, as we will see, means the overuse a common resource.

vii

About the title

The title of this book, “Security and Cooperation in Wireless Networks”, is well suited
for the security aspects. But the word “cooperation” can be misleading, because it
can be confused with the notion that wireless devices cooperate with each other at
the physical layer (e.g., for beamforming). The usual term in networking is “non-
cooperative behavior”, but it is not particularly appropriate for the title of a book.

How to use this book

This book is designed to be covered in one semester course. If the students have little
background on security, it is appropriate to start the course by covering Appendix A.
Covering Part I should then be straightforward. At the end of Part I, the students
could be encouraged to read the description of the security scheme of a wireless system
not covered in the book (e.g., WiMAX) and check if they can understand it.

In Part IT, each chapter can be addressed relatively independently, but the proposed
order should make the understanding easier.

In current engineering and computer science curricula, game theory is usually not
taught. Hence, with all likelihood, it will be necessary to first cover Appendix B
before tackling Part III. Each of the four chapters of that part is fairly self-contained
and can therefore be studied independently of the other. However, the beginning of
the first of them (Chapter 9) is particularly intuitive because it addresses the concrete
reality of WiFi systems. The last chapter (Chapter 12) is especially important as it
combines the concepts of security and cooperation.

In case only few hours per week are available, another approach consists in covering
Part I and Part II in one semester, and then Part III in a follow-up (maybe optional)
course in the following semester. Indeed, the two first parts of the book constitute a
self-contained introduction to wireless security.

Additional material

The URL of the Web site of this book is http://secowinet.epfl.ch/. Additional mate-
rial, such as slide shows (in pdf or PowerPoint® formats) will be progressively posted
there.

Lausanne - Budapest, 2004 - 2007

3 Trademark of Microsoft Inc.

viii

Acknowledgements

We would like to thank the students, former students, and post-docs in our research
groups for their invaluable contributions. In particular, many thanks to Gergely ACS,
whose research influenced Chapter 7; Naouel Ben Salem, whose research in mesh
networks and in protocols for behavior enforcement was very helpful for Chapters 2
and 12; Srdjan Capkun and Mario Cagalj, whose research shaped significantly the
material of Chapter 5; Mario again, as his research was also a direct source of in-
spiration for Chapter 9, as was also the research carried out by Maxim Raya, Imad
Aad, and Alaeddine El Fawal; Maxim again, along with Panos Papadimitratos, whose
research in the security of vehicular networks proved to be very useful in several of
the chapters, and in particular in Chapter 2; Mark Felegyhazi, whose research greatly
influenced Chapter 10 and the second part of Chapter 11, and who contributed very
significantly in clarifying the concepts in Appendix B, devoted to game theory; Julien
Freudiger, for the questions of Chapter 12; Tamas Holczer and Péter Schaffer, whose
research shaped the first part of Chapter 11; Hossein Manshaei for his contributions
to the clarification of Bianchi’s model and for some of the questions of Chapter 9; and
Jun Luo, Jacques Panchard, and Marcin Poturalski who provided detailed feedback
on many of the chapters.

Srdjan Capkun deserves a specific acknowledgement for having been the first to
teach a class based on a very early version of this book.

Several researchers provided very useful insights and a great support to this project;
this was particularly important, considering the relative novelty of the topic. In
particular, we would like to express our gratitude to Tansu Alpcan, David Basin, Jean
Bolot, Daniel Figueiredo, Virgil Gligor, Matthias Grossglauser, Markus Jakobsson,
Phil Janson, Frank Kargl, Edward Knightly, P. R. Kumar, Jean-Yves Le Boudec,
Li Erran Li, Peter Marbach, James Massey, Cristina Nita-Rotaru, Charles Perkins,
Adrian Perrig, Patrick Thiran, Don Towsley, David Tse, Nitin Vaidya, Jean Walrand,
Dirk Westoff, Heather Zheng, and Sheng Zhong. Many thanks also to Victor Bahl for
having suggested the idea of this book several years ago.

ix

We would like to thank the Swiss National Science Foundation for funding the
National Competence Center in Research Mobile Information and Communication
Systems (NCCR/MICS, sometimes nicknamed the “Terminodes project”); many of
the ideas developed in this book have matured in the framework of this research
program. We are indebted to those of our colleagues who have spent long hours to
run the center, in particular Martin Vetterli, Thomas Gross, Karl Aberer, and Lothar
Thiele. Martin deserves a special note: without his extreme dedication and visionary
capabilities, the NCCR/MICS would not have taken off and, as a consequence, this
book would have never existed.

We are indebted to Rafik Chaabouni who was instrumental in the formatting of the
book and demonstrated a remarkable mastery of Latex idiosyncracies, and to Thomas
Thurnherr who edited several figures. We would like also to extend our gratitude to
Holly Cogliati who provided us with many recommendations to improve our English
expressions.

Anna Littlewood and Phil Meyler, both from Cambridge University Press, deserve
our gratitude for having assisted the whole editorial process; Phil selected the cover
figure and helped us formulating the title of the book in the most concise way.

LB is indebted to JPH for initiating the writing of this book. Without the enthusi-
asm and dedication of JP, this book would not exist today. LB is also grateful to his
colleagues, Istvan Vajda and Boldizsar Bencsdth, and to his students, Gergely Acs,
Laszlé Csik, Laszlé Déra, Tamés Holczer, and Péter Schaffer for taking care of the
various ongoing projects of the CrySyS Lab while he was absent due to the writing
of this book. Special thanks goes to Istvan Vajda for the many useful discussions on
provable security. Finally, LB is infinitely grateful to his wife Zita for an endless list
of things.

JPH is grateful to his dean, Willy Zwaenepoel, for his comments (and warnings)
about this project. JPH is also indebted to David Messerschmitt for hosting him as
a visiting scholar at the EECS department of the University of California, Berkeley,
several years ago. Many of the questions addressed in this book have their seed in
the discussions with David as well as with Michael Katz and Sergio Verdu.

Contents

Part I Introduction

The security of existing wireless networks

1.1
1.2
1.3
14
1.5
1.6

Vulnerabilities of wireless networks
Security requirements

How existing wireless networks are secured
Summary

To probe further

Questions

Upcoming wireless networks and new challenges

2.1
2.2
2.3
24
2.5
2.6

Introduction

Upcoming wireless networks

Trends and security challenges in wireless networks
Summary

To probe further

Questions

Trust assumptions and adversary models

3.1
3.2
3.3
3.4
3.5

About trust

Trust in the era of ubiquitous computing
Adversary

Summary

To probe further

Part II Thwarting malicious behavior

Naming and addressing

4.1
4.2

The future of naming and addressing in the Internet
Attacks against naming and addressing

xi

81
84

84
90

4.3
4.4
4.5
4.6

Protection techniques
Summary

To probe further
Questions

Establishment of security associations

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Key establishment in sensor networks
Exploiting physical contact
Exploiting mobility

Exploiting the properties of vicinity and of the radio link

Revocation
Summary

To probe further
Questions

Securing neighbor discovery

6.1
6.2
6.3
6.4
6.5

The wormhole attack

Wormbhole detection mechanisms
Summary

To probe further

Questions

Secure routing in multi-hop wireless networks

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Routing protocols for mobile ad hoc networks

Attacks on ad hoc network routing protocols

Securing ad hoc network routing protocols

Provable security for ad hoc network routing protocols
Secure routing in sensor networks

Summary

To probe further

Questions

Privacy protection

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Important privacy related notions and metrics
Privacy in RFID systems

Location privacy in vehicular networks
Privacy preserving routing in ad hoc networks
Summary

To probe further

Questions

Part IIT Thwarting selfish behavior

xii

93
101
101
101

103
104
116
117
127
133
135
136
139

141
142
146
166
167
168

169
169
182
191
215
224
232
232
234

235
238
241
252
258
265
266
268

271

9 Selfish behavior at the MAC layer of CSMA /CA 274

9.1 Operating principles of IEEE 802.11 275
9.2 Detecting selfish behavior in hotspots 279
9.3 Selfish behavior in pure ad hoc networks 300
9.4 Summary 327
9.5 To probe further 327
9.6 Questions 328
10 Selfishness in packet forwarding 330
10.1 Game theoretic model of packet forwarding 331
10.2 Meta-model 334
10.3 Analytical results 338
10.4 Simulation results 343
10.5 Summary 346
10.6 To probe further 346
10.7 Questions 348
11 Wireless operators in a shared spectrum 349
11.1 Multi-domain sensor networks 349
11.2 Border games in cellular operators 359
11.3 Summary 373
11.4 To probe further 374
11.5 Questions 375
12 Secure protocols for behavior enforcement 376
12.1 System Model 376
12.2 Cooperation-optimal Protocol 378
12.3 Protocol for the Routing Stage 380
12.4 Protocol for Packet Forwarding 384
12.5 Discussion 386
12.6 Summary 387
12.7 To probe further 387
12.8 Questions 388
Appendix A Introduction to cryptographic algorithms and protocols 391
A.1 Introduction 391
A.2 Encryption 392
A.3 Hash functions 404
A.4 Message authentication codes 407
A.5 Digital signatures 409
A.6 Session key establishment protocols 410
A.7 Pseudo-random number generators 415

A.8 Advanced authentication techniques 416

xiii

A9

To probe further

A.10 Questions

Appendix B A tutorial on game theory for wireless networks

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8

Bibliography

Index

Introduction
Static games
Dynamic games
Repeated games
Discussion
Summary

To probe further
Questions

Xiv

420
420

422
422
426
435
443
449
452
452
453
457
477

Part 1

Introduction

1

The security of existing wireless networks

Before discussing wireless networks, it is necessary to take a broad look at networking
in general and to see why malicious and selfish behavior is such a relevant issue. For
this purpose, we will consider the Internet.

The Internet is probably the most impressive achievement ever in networking: A
simple set of brilliant engineering rules has led to the deployment of the most pervasive
network that, in spite of its size (or rather, thanks to it), supports a growing number
of services and applications. At the core of these rules stands of course the principle
of universal connectivity.

Unfortunately, the Internet is plagued by several major problems, fuelled by this
very principle. Viruses and spam have become a daily issue for most users around the
world, many people fall prey to phishing attacks, and denial of service (DoS) attacks
are routinely perpetrated against the servers of major corporations. An additional
problem is that some network providers tend to establish walled gardens, by which
they offer specific capabilities exclusively to their customers. Finally, some providers
are tempted to interconnect their network in a way that is beneficial to themselves, but
can be detrimental to the rest of the community [207]. The situation is so critical that
many prominent specialists, including some of the founding fathers of the Internet,
call for a profound revamping of the network [99].

All these problems have a common cause: they are due to human intention, not to
technical problems. They also have common implications: They consume other users’
time and nerves. They also represent a formidable tax on the usage of the network,
in terms of firewalls, filters, anti-spam software, anti-DoS systems, and the related
workforce in charge of deploying and operating these tools.

It is clear that the problem is very complicated. One of the reasons is that most of
the vulnerabilities we have mentioned do not revolve exclusively around the commu-
nication protocols: They can also be related to the operating system and (especially
for viruses) to the programming techniques and they can depend on human factors.

4 The security of existing wireless networks

Nevertheless, in this book we focus as much as possible on the issues primarily related
to networking.

Another reason for this complexity is that it is extremely difficult to anticipate
the kind of misbehavior that will affect a network while not yet deployed. In addi-
tion, competition encourages rapid deployment of new networking technologies and
of new services, thus leaving little time to devise and implement (let alone standard-
ize) protection mechanisms. Consequently, very often the protection mechanisms are
designed a posteriori and constitute as many patches to the network. This leads to a
growing complexity of the deployed systems (and complexity is often detrimental to
security).

We believe that the widespread adoption of upcoming wireless networks creates
even more formidable challenges in terms of misbehavior prevention. As malice and
selfishness are the core problems addressed in this book, we make a distinction between
these two kinds of misbehavior: malice aims at doing harm to known or unknown
individuals or organizations, whereas selfishness consists in overusing the network
resources (possibly at the expense of the other users). With this terminology, a virus
designer is malicious, whereas a spammer is selfish. We will refine these concepts in
Chapter 3.

Having discussed the lessons that can be drawn from the Internet, we will now
see the peculiarities of wireless networks that are relevant to malice and selfishness.
We will first discuss existing wireless networks, leaving the treatment of upcoming
wireless networks to the next chapter.

1.1 Vulnerabilities of wireless networks

Existing wireless networks are primarily personal communication networks, meaning
that the end systems are meant to be used by human beings to communicate either
with other human beings or with servers. In the next chapter, we will see that
some of the upcoming wireless networks have a different purpose, in the sense that
communications, in a growing number of cases, will not involve human beings. As
we will see, this has profound implications in terms of how these networks need to be
protected.

The most obvious characteristic of wireless networks is that communication takes
place over a wireless channel (which is usually a radio channel, but can also be an
infrared channel). Such a channel suffers from a number of vulnerabilities, mentioned
hereafter.

e The channel can be eavesdropped: By placing an antenna at an appropriate
location, an attacker can overhear the information that the victim transmits or
receives. Eavesdropping is often used to carry out attacks, notably passive attacks.

1.1 Introduction to wireless networks 5

Passive attacks consist in listening to the network and analyzing the captured data
without interacting with the network. Such an attack can be illustrated with the
weakness of WEP (described later in this chapter). Usually, the protection against
such misdeeds is achieved by encrypting that information.

e The data can be altered: an attacker can try to modify the content of the mes-
sage exchanged between (wireless) parties. These attacks are called active attacks.
We will see later several cases of active attacks such as man-in-the-middle attacks
perpetrated on GSM.

e The absence of wired link makes it much easier to cheat on identities: Being
untethered, the attacker can more easily impersonate a legitimate user.

e The radio channel can be overused: The radio spectrum being a shared resource,
there is a risk that a wireless operator or a user makes an excessive use of it. To solve
the problem between cellular operators, the solution consists in allocating to each
of them a licensed piece of the spectrum; but it can happen that several operators
have to share the same spectrum, as it is the case today in WiFi. The problem
of overuse by mobile users has not been an issue in cellular networks, because the
bitrates were upper-bounded by the protocols, under the supervision of the base
stations; but it can be an issue in WiFi because the stations can be programmed
in a selfish way. We will come back to this problem in Chapter 9.

e The channel can be jammed, notably in order to perpetrate a DoS attack: By
transmitting at the same time the victim transmits or receives data, an attacker
can make it impossible for the victim to communicate. This problem has been
studied in detail over the last decades. Typical solutions include spread spectrum
and frequency hopping (and very often a combination of the two). We will not focus
on anti-jamming techniques in this book, as they are more related to the physical
layer; yet, in Chapter 9 we will see that the threat of jamming can actually thwart
selfish behavior.

A second characteristic is that the users are usually mobile!, which has several
implications.

e As the user roves with her mobile device, the device becomes a way to permanently
trace his whereabouts, hence jeopardizing her privacy.? We will devote a full
chapter to this crucial topic of privacy; In Section 1.3, we will see how this problem
is (very partially) solved in existing wireless networks.

The term “mobile” can designate a terminal that either communicates, moves, and then commu-
nicates again, or that communicates while moving (achieving the latter is of course technically
more challenging). The precise meaning of this adjective will depend on the context in which it
is used.

The passive attacks mentioned above can be mounted against another component of privacy,
namely the privacy of data.

The security of existing wireless networks

Mobility also means that a given device must be able to roam across wireless
networks controlled by different operators. This requires that appropriate roaming
agreements are made between operators, notably to define the pricing and billing
policies.

To be mobile the device must be small, meaning that it has limited storage, com-
puting power, and energy. The last of these limitations is the most significant,
as technological progress on batteries is much slower than on electronics. Usually,
the problem is solved by minimizing the number of computational operations to be
performed by the mobile station. This can however lead to poor engineering of the
security protocols.

A mobile station can easily be stolen, with the risk that it is misused or reverse
engineered and that the data that it contains are accessed. The solution to this
problem typically consists in encrypting the data it contains and embedding a
tamper-resistant component in order to protect the cryptographic keys.

1.2 Security requirements

Based on the characteristics that we have just described, we are now in a position
to discuss the requirements usually expected to be met by secure systems. This will
help us to better understand how (and to what extent) they are fulfilled in existing

wireless networks.

The most obvious requirement is authentication: For example, an operator must
be able to know who is trying to obtain connectivity through his network; likewise,
the user wants to make sure that he is indeed connected to the wireless operator
she chooses. Hence authentication is a fundamental mechanism to support access
control.

Access control is the ability of an organization (e.g., a network operator) to grant
appropriate access to resources (connectivity, data,...) based on the user’s identity
and the organization’s policy.

We have mentioned that the radio channel is particularly vulnerable to eavesdrop-
ping. Hence confidentiality of the exchanged information is also an important
requirement.

As the radio channel is also highly vulnerable to active attacks, the integrity of
data must be appropriately protected. The data to be protected are not only the
users’ data, but also the data related to the control of the network.

Another requirement we have already mentioned, is privacy. The network should
not reveal the location of the user, nor the party with which she communicates (yet
it is generally admitted that law enforcement agencies must have access to these
two families of information, at least under some well defined conditions).

1.8 How existing wireless networks are secured 7

e Non-repudiation is also an important requirement: for example, it should not
be possible for a user, who has made use of a given service provided by a given
operator, to pretend that she did not. In other words, it must be possible for an
operator to prove that a given user really made use of the service that it provides,
typically in case of a billing dispute.

e Last but not least, the network must provide a certain level of availability. This
means in particular that it should provide higher priority to very important commu-
nications, such as an emergency call from a cellular phone; it should also guarantee
a fair share of the radio resource to mobile users located in the same radio domain.

1.3 How existing wireless networks are secured

Let us now examine how the security requirements listed above are satisfied — or not —
in existing wireless networks. The examples that we will consider here cover a wide
range of network types beginning from wide area wireless networks and ending with
personal area networks. More specifically, we briefly describe how security is provided
in cellular networks, in WiFi LANs, and in Bluetooth. We do not intend to give a
very detailed description of the security architectures of these systems; instead, and
in line with the spirit of this book, we describe only the principles underlying those
security architectures.

1.3.1 Cellular networks

Cellular networks have been deployed at a lively pace in the last decade, and prolif-
erated throughout the world. Today, cellular networks are so popular that in some
countries, the number of mobile subscribers already exceeds the number of fixed tele-
phone lines. Originally, cellular networks provided only voice communication services
and they could also be used to send and receive short text messages. Today, the
range of applications is much wider, including data communications, Internet access,
multimedia applications (e.g., video telephony), and mobile payment services, just to
name a few.

For political and historical reasons, cellular networks in different parts of the world
are based on different standards. In this subsection, we focus on the European ini-
tiatives: GSM (Global System for Mobile Communications) and UMTS (Universal
Mobile Telecommunications System). We note, however, that the principles are sim-
ilar in other cellular networks (notably in the US, in China, and in Japan).

GSM

Cellular networks are infrastructure-based networks. The infrastructure consists of
base stations and a wired backbone network that connects the base stations together,

8 The security of existing wireless networks

as well as to the wired telephone system and to the Internet. Each base station serves
only a limited physical area, called a cell, hence the name cellular. However, all the
base stations of a given network operator together can cover a large area (typically a
whole country in Europe). In addition, by connecting their backbones together and
setting up appropriate roaming agreements, different network operators can jointly
provide ubiquitous coverage and enable continent wide and ever worldwide mobility
for users.

The terminal equipment in cellular networks is typically a mobile phone. Mobile
phones in a given cell are logically connected to the base station of the cell via wireless
channels. They can initiate and receive calls to and from other mobile phones and
fixed telephones via the base station (and the backbone infrastructure). In fact, the
only wireless part in the system is the link between the mobile phone and the base
station; the rest is a wired network.?

Setting up and running a cellular network is very expensive. A large share of the
costs stems from the fact that cellular networks operate in licensed bands, meaning
that the network operator must pay a licence fee for the use of the spectrum. The
other part of the costs can be attributed to installing the base stations and deploying
the backbone network, as well as to setting up the billing and the customer care
infrastructure. At the end of the day, these costs are borne by the subscribers, who
must pay for the services (including the access to the network) provided by the network
operator.

This leads us to the main security requirement of GSM (at least from the operators’
point of view): subscriber authentication. Subscriber authentication is needed in
order to support billing (i.e., to identify who must be charged for using the network).*
In addition to subscriber authentication, GSM also provides some countermeasures
for the inherent weaknesses of the wireless channel. More specifically, GSM provides
confidentiality for voice communications and signalling over the wireless interface, and
it protects the privacy of the subscribers by hiding their identity from eavesdroppers.
Being a wide area system, GSM supports the roaming of subscribers across networks
operated by different network operators. This means that the above mentioned GSM
security services operate in a multi-party environment.

A fundamental assumption in the GSM security architecture is that there exists a
long-term contractual relationship between a subscriber and a network operator; the
latter is called the home network operator of the given subscriber. When setting up
this relationship, the home network operator verifies the identity of the subscriber, and
obtains further information about her, including the billing address. This contractual
3 Base stations can also be connected to the backbone infrastructure via wireless links. However,

those links are static and can be easily secured by the network operator.

4 This guarantees only a weak form of non-repudiation, because a malicious operator could forge
faked evidence of communications.

1.8 How existing wireless networks are secured 9

relationship is represented by a long-term secret key that is shared by the subscriber
and the home network operator, and serves as the basis for the authentication of the
subscriber.

In GSM, the secret key and other identity related information of the subscriber are
not stored in the mobile phone, but in a separate security unit, which is called the
SIM (Subscriber Identity Module). The SIM is implemented as a smart card with a
small form factor, which can be inserted in and removed from the mobile phone. In
effect, the key could have been stored in the non-volatile memory of the mobile phone
itself, encrypted with a password. However, storing the key in a removable module
has proved to be an excellent design choice, because it allows for the portability of
the subscriber identity across different devices: The subscriber can remove the SIM
from one mobile phone, insert it into another (e.g., when she buys a new device), and
she still has the same phone number and receives a single bill.

Subscriber authentication in GSM is based on the so-called challenge-response prin-
ciple. The subscriber receives an unpredictable random number as a challenge, and
she must compute a correct response in order to be authenticated. The correct re-
sponse is computed from the challenge and the long-term secret key of the subscriber.
As the secret key is known exclusively to the subscriber and to the home network
operator, no one else can compute the correct response. Thus, if the network opera-
tor receives the correct response, it believes that the response was produced by the
subscriber; hence she must be present. The unpredictability of the challenge ensures
the freshness of the response: The network operator knows that the response must
have been computed after it sent the challenge, because no one (not even the sub-
scriber) could predict what the challenge would be. Clearly, the computations needed
for authentication are not performed by the subscriber herself, but they are carried
out by her mobile phone and the SIM without any user intervention.

We will now describe the steps of the GSM subscriber authentication protocol. For
the sake of generality, we assume that the subscriber roams into a foreign network,
usually referred to as the visited network. As the first step, the mobile phone reads
the IMST (International Mobile Subscriber Identity) from the SIM, and sends it to
the visited network. Based on the IMSI, the visited network determines the identity
of the home network of the subscriber. Then, the visited network forwards the IMSI
to the home network via the backbone. The home network looks up the secret key
K that corresponds to the subscriber identified by the IMSI. It then creates a triplet
(RAND, SRES, CK), where RAND is an unpredictable random number used as the
challenge, SRES is the correct response to the challenge, and CK is a key to be used
for encrypting communications over the wireless interface between the mobile phone
and the base station of the visited network. RAND is generated by a Pseudo-Random
Number Generator (PRNG). SRES and CK are computed from RAND and K using
the algorithms denoted by A3 and A8, respectively, in the GSM specifications. The

10 The security of existing wireless networks

triplet (RAND, SRES, CK) is sent to the visited network, which challenges the mobile
phone with RAND. The mobile phone passes RAND to the SIM, which computes
and outputs the response SRES’ and the encryption key CK’. The mobile phone
sends SRES’ to the visited network, which compares it to SRES. If SRES’ = SRES,
then the subscriber is authenticated. In this case CK’ = CK also holds. After the
successful authentication of the subscriber, the communications between the mobile
phone and the base station of the visited network are encrypted and decrypted with
CK by using the stream cipher denoted by A5 in the GSM specifications. The steps
of the protocol are summarized in Figure 1.1.

mobile phone visited home
+ SIM card network network
IMSI PRNG
> IMSI R
RAND K
o— i
RAND K (RAND, SRES, CK) Yy Y
l RAND B A3 A8
Yy v V} L o sres ¢ l
A3 || A8 > RAND SRES CK
T :
SRES* CK SRES = SRES'

Fig. 1.1. Illustration of the GSM authentication protocol

Note that the protocol ensures that the visited network can authenticate the sub-
scriber without possessing the subscriber’s long-term secret key. This is achieved with
the help of the home network that provides a matching challenge-response pair to the
visited network as part of the triplet. Similarly, the establishment of the encryption
key between the mobile phone and the base station of the visited network is carried
out with the help of the home network and the triplet mechanism. This requires
some trust in the home network operator by the visited network operator, which is
established by signing roaming agreements between the two operators. In practice,
the home network can transfer several triplets to the visited network when the sub-
scriber first authenticates herself (e.g., when she switches on her phone). In this way,
there is no need to contact the home network every time the subscriber needs to be
authenticated.

The identity of the subscriber is hidden from eavesdroppers on the wireless interface

1.8 How existing wireless networks are secured 11

as follows. After each successful authentication, the subscriber receives a temporary
identifier called TMSI (Temporary Mobile Subscriber Identifer) from the visited net-
work. The TMSI is encrypted with the freshly established key CK, therefore, it
cannot be eavesdropped. In the next authentication request, the mobile phone uses
the TMSI, instead of the IMSI, to identify the subscriber. The TMSI is mapped to the
IMSI by the visited network, and then the protocol proceeds as we described above.

When the subscriber moves into another visited network, the new network contacts
the previous one and sends it the TMSI received from the mobile phone. The previous
network looks up the data associated with the TMSI and transfers the IMSI of the
subscriber and the remaining triplets (if any) to the new network, so that the new
network can continue serving the subscriber. It can happen that the data associated
with the TMSI are no longer available in the previous network (e.g., if the mobile
phone has been switched off for a long time). In this case, the new network requests
the mobile phone to send the IMSI in order to bootstrap the TMSI mechanism again.

To summarize, the GSM security architecture provides the following security ser-
vices:

e Subscriber authentication is based on a challenge-response protocol and a long-term
secret key shared by the subscriber and the home network operator. Data needed
to authenticate the subscriber is transferred from the home network to the visited
network in form of triplets, such that the long-term secret key is not revealed to
the visited network.

e Confidentiality of communications and signalling over the wireless interface is en-
sured by encryption with a session key established between the subscriber’s mobile
phone and the base station of the visited network, during the subscriber authenti-
cation procedure, with the help of the home network operator.

e Protection of the subscriber’s identity from eavesdroppers on the wireless interface
is ensured by using short-term temporary identifiers instead of the real identifier of
the subscriber during subscriber authentication. In some cases, the real identifier
must be used; however, this happens rarely, and so it is difficult for eavesdroppers
to track subscribers.

UMTS

The GSM security architecture provides a reasonable level of protection, but it has
some deficiencies; hence the design of a new security architecture for UMTS, the next
generation cellular network in Europe.

One main problem with the GSM security architecture is that it provides only uni-
lateral authentication, where the subscriber is authenticated and the visited network
operator is not. This means that someone can set up a fake base station and imple-
ment a man-in-the-middle attack. This probably seemed to be too far fetched in the

12 The security of existing wireless networks

80’s when GSM was designed. But today, there are commercially available devices,
called “IMSI catchers”, that were originally intended for protocol testing purposes,
but can also be used (or misused) to implement a fake base station attack.

The fake base station issue is further aggravated by the fact that GSM authenti-
cation triplets can be re-used indefinitely. Indeed, the subscriber cannot verify the
freshness of the challenge that she receives in the subscriber authentication protocol.
Thus, a fake base station can coerce the subscriber’s mobile phone to re-establish an
old, possibly compromised, encryption key with the fake base station.

Another problem is that the GSM security architecture does not provide integrity
protection services for communications and signalling over the wireless interface. Al-
though it is true that modifying messages on-the-fly in a wireless channel is quite
challenging (if not impossible in practice), if the communication between the mobile
phone and the visited network takes place through a fake base station, then the at-
tacker does not need to carry out the modifications in the wireless channel, but it can
implement the attack within the fake base station. In addition, as a stream cipher is
used for encryption, the attacker can easily manipulate individual bits in encrypted
messages without decrypting them. Of course, if the messages carry parts of a voice
communication, then the attacker can only achieve some distortion, but it is very
unlikely that it can alter the true content of the communication in an unnoticeable
way. It can still, however, attack the signalling information. Moreover, besides voice
communications, cellular networks are increasingly used for data communications,
where flipping a single bit in a message can have devastating consequences.

Additional reasons for a new design include the short length of the encryption
key (practically 54 bits only), and the weaknesses discovered in the commonly used
implementation of the A3 and A8 algorithms, which, under specific conditions, allow
an attacker to compromise the long-term secret key of the subscriber and clone her
SIM card [64].

The UMTS security architecture addresses the weaknesses listed above. The de-
sign approach was to keep the general principles of the GSM security architecture,
and to extend it with the necessary mechanisms for authenticating the network to
the subscriber and providing integrity protection over the wireless interface. For
this reason, the GSM triplets are replaced by authentication vectors that have five
elements: (RAND, XRES,CK,IK,AUTN). As before, RAND is an unpredictable
random number, generated by a PRNG, and used as a challenge in the subscriber
authentication protocol, XRES is the expected response to RAND, and CK is an en-
cryption key to be used between the mobile phone and the base station of the visited
network. Both XRES and CK are computed from RAND and the long-term secret
key K of the subscriber. In addition, IK is an integrity protection key and AUTN is
a token that authenticates the home network to the subscriber and proves the fresh-

1.8 How existing wireless networks are secured 13

ness of RAND. AUTN consists of three fields: AUTN = (SQN & AK, AMF, MAC),
where

e SN is a sequence number maintained synchronously by both the subscriber and
the home network;

e AK is called the anonymity key, and it is used to hide the value of SQN from
eavesdroppers. AK is generated from RAND and K

e AMEF is an authentication and key management field used to pass parameters from
the home network to the subscriber, but it is not fully specified in the UMTS
standard;

e MAC is a message authentication code computed over RAND, SQN, and AMF
using the long-term key K.

The construction of AUTN and the authentication vector is illustrated in Figure 1.2.
Functions fy, fo, f3, f4, and f5 are appropriate one-way functions defined in the
UMTS standard.

(PRNG] K SQN AMF

RAND
¢ A\ l A\ ¢ A\ l \] i"""
N | T | Lo]
AK A\
Y Y Y
| sanoAK | AMF | MAC |
A\] \J A\] A\]
|rRanD | xrEs [ck | & | Aumn

Fig. 1.2. Construction of AUTN and the authentication vector in UMTS

The subscriber authentication protocol is modified in such a way that, upon re-
quest, the visited network receives an authentication vector from the home network
and it passes not only the challenge RAND to the subscriber, but also the authentica-
tion token AUTN. The subscriber first generates the anonymity key AK and decodes
the sequence number SQN received in AUTN. SQN is encoded with AK to protect
the privacy of the subscriber. Otherwise, an eavesdropper could associate different

14 The security of existing wireless networks

executions of the authentication protocol with consecutive sequence numbers to the
same subscriber. Once SQN is obtained, the subscriber verifies the MAC. If this
verification is successful, then she knows that RAND originates from her home net-
work. Then, the subscriber verifies if SQN is greater than the last sequence number
stored by the subscriber. If this does not hold, then the protocol fails. This prevents
the subscriber from accepting an old challenge. Finally, the subscriber computes a
response RES to RAND and sends it back to the visited network. The subscriber
also computes CK and IK. Naturally, these computations are not performed by the
subscriber herself, but her mobile phone and its security unit, which in this case is
called USIM.

The visited network compares RES to XRES, and if they are equal, then the
authentication of the subscriber succeeds. After that, the mobile phone and the base
station of the visited network protect the integrity and the confidentiality of their
communications with IK and CK, respectively.

There is one weakness in the UMTS subscriber authentication protocol identified in
[391]: the visited network is not authenticated to the subscriber. Although the visited
network can authenticate itself to the home network, the home network does not pass
any confirmation regarding the identity of the visited network to the subscriber in
the authentication token AUTN. This allows a malicious network operator X to
masquerade as network Y to the subscriber. It would still authenticate itself as X to
the home network, but the subscriber would not know this, and she would believe that
she is served by Y. This can be a problem, as X and Y could use different tariffs, and
the subscriber would learn that she actually used a more expensive network when she
receives her bill at the end of the month. One solution to this problem is to include
the identifier of the visited network in the AMF field of AUTN.

1.3.2 WiFi LANs

Security has always been considered an important issue in WiFi networks. Conse-
quently, early versions of the IEEE 802.11 wireless LAN standard [185] already fea-
tured a security architecture, called WEP (Wired Equivalent Privacy). As its name
indicates, the objective of WEP is to render wireless LANs at least as secure as wired
LANs (without particular security extensions). For instance, if an attacker wants to
connect to a wired Ethernet network, she needs physical access to the Ethernet hub.
However, this is usually made difficult by placing the hub in a locked room. In case
of an unprotected wireless LAN, the attacker has an easier job because she does not
need to have physical access to any equipment in order to connect to the network.
WEP is intended to transform this easy job into a difficult one. More precisely, WEP
is intended to increase the level of difficulty of attacking wireless LANs such that it

1.8 How existing wireless networks are secured 15

becomes comparable to the difficulty of attacking wired LANs (e.g., breaking into
locked rooms).

Unfortunately, WEP did not make attacks as difficult as its designers hoped. This
would not have been a problem if the weaknesses had been discovered in due time. But
things happened differently: WEP has already been deployed when cryptographers
and security experts discovered its flaws. It became evident that WEP did not provide
adequate protection. Soon after this discovery, tools that automate the cracking of
WEP keys appeared on the Web.

In response to these developments, the IEEE came up with a new security archi-
tecture for wireless LANSs, described in an extension to the 802.11 standard. This
extension is called IEEE 802.11i. In this subsection, we discuss both WEP and IEEE
802.11i. The reason for discussing 802.11i is clear: this is the current approach to
protect WiFi LANs. We discuss WEP because, despite its known weaknesses, many
systems still support it (for backward compatibility), and thus probably many people
and organizations still use it. Also, the design flaws in WEP illustrate many subtleties
in security protocol design that are interesting in general.

WEP

There are two basic security problems in wireless LANs: First, due to the broadcast
nature of radio communications, wireless transmissions can be easily eavesdropped.
Second, and more important, connecting to the network does not require physical
access to the network Access Point (AP), thus any device can try to illegitimately use
the services provided by the network. WEP attempts to solve the first problem by
encrypting messages. The second problem is addressed by requiring the authentication
of the mobile stations (STAs) before allowing their connection to the network.

The authentication of the STA is based on a simple challenge-response protocol,
similar to that used in GSM systems. Once authenticated, the STA communicates
with the AP by encrypted messages. The key used for encryption is the same as the
one used for authentication. The encryption algorithm specified by WEP is based
on the RC4 stream cipher (for the description of the operation of RC4 see e.g., page
397-398 of [335]). Stream ciphers produce a long pseudo-random byte sequence out
of a short secret seed value; this pseudo-random sequence is then XORed to the clear
message (byte by byte) in order to generate the encrypted message. WEP works in
the same way. The sender (the STA or the AP) of a message M initializes the RC4
algorithm with the secret key and XORs the pseudo-random sequence K produced
by RC4 to M. The receiver of the encrypted message M @& K uses the same secret
key to initialize the RC4 algorithm that will then produce the same pseudo-random
sequence K. Then K is XORed to the encrypted message to obtain the clear message:
MeK)eoK=M.

But the description above is not precise enough: There is one more thing that

16 The security of existing wireless networks

WEP does when encrypting messages. It is easy to see that if encryption worked as we
described in the previous paragraph, then every message would be encrypted with the
same pseudo-random sequence K, as RC4 is initialized with the same secret key before
encrypting every message. This would be bad for several reasons. Let us assume, for
instance, that an attacker eavesdrops two encrypted messages M; &K and M@ K. By
XORing these two messages together, she gets (M1 ®K)® (M@ K) = My ® M,. This
is equivalent to one message being encrypted with the other, but clear messages are
far from being pseudo-random sequences. Thus, M; @& Ms is a very weak encryption,
and the attacker is likely to be able to break it using the statistical properties of the
clear messages.?

In order to address this problem, WEP appends an IV (Initialization Vector) to
the secret key before initializing the RC4 algorithm, where the IV changes for every
message. This ensures that the RC4 algorithm produces a different pseudo-random
sequence for every message. The receiver should also know the IV in order to be able
to decrypt the messages received. For this reason, the IV is sent in clear together
with the encrypted message. In principle, this is not a problem, as the knowledge of
the IV is not enough to decrypt the message: the secret key is also needed for the
proper initialization of the RC4 algorithm. As for the sizes, we note that the IV is 24
bits long and the secret key is usually 104 bits long®, although some vendors provide
products that allow for longer keys. Figure 1.3 illustrates the WEP encryption and
decryption procedure.

Figure 1.3 also shows that before encryption, the sender attaches an integrity check
value (ICV) to the clear message. The purpose of this value is to enable the receiver to
detect any malicious modifications of the message by an attacker. In the case of WEP,
the ICV is a CRC value computed for the clear message. As a CRC value alone cannot
enable the detection of malicious modifications (because the attacker can compute the
new CRC value for the modified message), the CRC value is also encrypted in WEP.
The rationale is that in order to modify the message in an unnoticeable way, now
the attacker must encrypt the new CRC value, but she cannot do this without the
knowledge of the secret key. This reasoning is not quite solid, as we will see below.

We must also mention how keys are handled in WEP. The standard states that each
STA has its own key, known only to that STA and the AP. However, this makes key
management on the AP’s side complicated, since the AP must store a key for every
STA. For this reason, most implementations do not actually support this option. The

standard also specifies a default key, known to every STA and the AP. Originally,
5 Tt is also possible that the attacker (partially) knows the content of one of the messages (e.g., the
value of the header fields), in which case she can easily compute the (partial) content of the other
message.

In various marketing materials, this is interpreted as “128-bit security”. This is of course mislead-
ing (as marketing materials in general), because out of 128 bits, 24 bits are transferred in clear,
hence known by the attacker.

1.8 How existing wireless networks are secured 17

| message + ICV |

encrypt

v message + ICV

decrypt

| message + ICV |

Fig. 1.3. Encryption and decryption in WEP

this key was intended to be used for the encryption of broadcast messages originated
by the AP. But most WEP implementations support only this default key. Hence, in
practice, in most wireless LANs there is a single common key. This key is installed in
every mobile device and in the AP manually. Clearly, this solution can only be used to
protect the communications from an outside attacker, but the devices that belong to
the network can (in principle) decrypt each other’s messages (and impersonate each
other).

As it will be clear from the brief overview below, WEP does not actually achieve
any of its original design goals. The discovered flaws are instructive; they demonstrate
the many pitfalls of security protocol design.

e Authentication: Authentication in WEP has several problems. First of all, au-
thentication is not mutual, meaning that the AP does not authenticate itself to the
STA. Second, the authentication and the encryption mechanism use the same secret
key. This is not desirable, as an attacker can exploit the weaknesses of both the
authentication and the encryption method to break the secret key. Having different
keys for different functions is a better security engineering practice.

The third problem is that the STA is authenticated only at the time when it tries
to connect to the network. Once the STA is associated with the AP, anyone can
send messages in the name of that STA by spoofing its MAC” address. Apparently,
this is not a real problem, because the attacker does not know the secret key
that is needed to construct well-formed encrypted messages. Hence, the attacker’s

7 When followed by “address”, “protocol”, or “layer”, “MAC” means Medium Access Control, and
not Message Authentication Code.

18

The security of existing wireless networks

messages are dropped by the AP anyway. But as we mentioned before, often each
STA uses the same secret key. This means that the attacker can fabricate messages
in the name of one STA by using encrypted messages of another STA recorded
earlier. This is not detected by the AP.

The fourth problem stems from the fact that WEP uses RC4 in the authenti-

cation protocol for encrypting the random challenge. Thus, an attacker can easily
obtain the challenge C and the encrypted challenge R = C @ K by overhearing
the exchange, and from these, she can compute the pseudo-random sequence K.
However, knowledge of K allows the attacker to impersonate the STA later on, as
she can now compute the response R’ = C’ ® K for any other challenge C’. The
IV mechanism of WEP does not mitigate this problem, since the IV is selected by
the sender of the encrypted message; in our case, the sender is the attacker, who
will always select the IV that was appended to R. Moreover, as in practice, every
STA uses the same key, the attacker can connect to the network in the name of
any STA. Obviously, a successful association with the AP is only the first part of
the attack; in order to send and receive messages in the name of a legitimate STA,
the attacker needs to know the secret key. However, other flaws in WEP described
below allow the attacker to retrieve the secret key.
Integrity protection: The integrity protection of WEP messages is based on at-
taching an ICV to the message, where the ICV is a CRC value computed for the
message and encrypted with the secret key. Formally, the encrypted message can
be written as (M||CRC(M)) ® K, where M is the clear message, K is the pseudo-
random sequence produced by the RC4 algorithm from the IV and the secret key,
CRC(.) denotes the CRC function, and || denotes concatenation. It is well known
that the CRC function is linear with respect to the XOR, operation, which means
that CRC(X @Y) = CRC(X) @ CRC(Y). Based on this observation, an attacker
can manipulate protected WEP messages by flipping any of their bits unnoticeably,
although she does not get access to the contents of the messages. Let us denote the
changes that the attacker wants to make in the message by AM. Then the attacker
wants to obtain (M ®AM)||CRC(M ®AM))® K from the original protected mes-
sage (M||CRC(M)) @ K that she eavesdropped. For this purpose, it is sufficient to
compute CRC(AM), and then to XOR AM||CRC(AM) to the original protected
message. The following derivation shows why this works:

(M||CRC(M)) ® K) ® (AM||CRC(AM))
= (Ma&AM)||(CRC(M)® CRC(AM)))® K
= (Ma&AM)||CRC(M & AM))e K
where in the last step we used the linearity of the CRC function. Since CRC(AM)

1.8 How existing wireless networks are secured 19

can be computed without the secret key, the attacker can succeed despite the en-
cryption and the ICV mechanism.

Another related integrity requirement is the detection of replayed messages. Un-

fortunately, WEP does not use any replay detection mechanism, therefore, an at-
tacker can replay any previously recorded message that will be accepted by the
AP.
Confidentiality: As we said before, when using a stream cipher, it is essential that
each message is encrypted with a different pseudo-random sequence. In WEP, this
is ensured by the IV mechanism, but this has some problems too. The origin
of the problem is that the IV is only 24 bits long, which means that there are
only approximately 17 million possible IV values. A WiFi device can transmit
approximately 500 full length frames in a second, thus, the whole IV space is used
up in a few hours. Once all IVs have been used, they start to repeat, and repeating
IVs mean repeating pseudo-random sequences used for encryption. The problem is
aggravated by the fact that in many networks, there is a single secret key used by
every device with potentially different IVs. Hence the IV space will be used up even
faster. Another practical problem is that in many WEP implementations, the IV is
initialized with 0 at startup, and then incremented by one after each message sent.
This means that if there are several devices switched on nearly at the same time,
then they all use the same sequence of IVs; if they use the same secret key too, then
the pseudo-random sequences used for encryption will be the same. In this case,
the attacker would not even need to wait, but it would get messages encrypted with
the same pseudo-random sequence immediately.

The total collapse of WEP is caused by the inappropriate use of the RC4 cipher.
It is known that there exist so-called weak RC4 keys [138]. A weak key is a seed
value from which the RC4 algorithm produces an output that does not look random.
More precisely, when a weak key is used to seed RC4, one can infer the bits of the
seed from the first few bytes produced by the algorithm. For this reason, security
experts suggest always throwing away the first 256 bytes of the RC4 output. This
simple solution would have solved the problem of weak keys, but WEP did not adopt
it. Also, due to the ever changing IV value (which is part of the seed), a weak key
can be encountered sooner or later, and the attacker can easily know that a weak key
is being used, because the IV is transmitted in clear. Based on these observations,
some cryptographers constructed a method that breaks the full 104-bit secret key
by eavesdropping on only a few hundred thousands messages. Compared to the
previously described flaws, this one is the far most serious, because it allows the
attacker to crack the secret key itself: And once she has the secret key, she can do
everything. Moreover, the attack is not only powerful, but easy to automate, and
thanks to some “helpful” people, automated attacking tools are readily available
on the Web for public use (e.g., Aircrack, Weplab).

20 The security of existing wireless networks

IEEE 802.11%

When the flaws in WEP became apparent, the IEEE began to develop a new security
architecture for WiFi networks, described in the 802.11i specification [187]. The new
concept is called RSN (Robust Security Network) in order to distinguish it from WEP.
RSN was designed more carefully than WEP. It includes a new method for authentica-
tion and access control, which is based on the model defined in the 802.1X standard.
The mechanisms for integrity protection and confidentiality are also changed, and
they use the AES (Advanced Encryption Standard) [5] cipher instead of RC4.

However, it is not possible to switch from WEP to RSN overnight. The reason is
that for efficiency reasons, many WiFi devices (mainly WLAN adapter cards) support
the encryption algorithm in their hardware. Thus, old devices support RC4 and not
AES. This problem cannot be solved by a simple firmware update; the hardware needs
to be changed, which slows the deployment of RSN.

This has been recognized by the IEEE too, and they included an optional protocol
in the 802.11i specification, which still uses the RC4 cipher but fixes the flaws in
WEP. This protocol is called TKIP (Temporal Key Integrity Protocol).

Manufacturers immediately adopted TKIP, as it provides a solution to the prob-
lems of WEP, and it can be deployed immediately without changing the hardware.
They did not wait until the 802.11i architecture was finalized by the lengthy stan-
dardization procedure, but they issued their own specification, called WPA (WiFi
Protected Access), based on TKIP. In other words, WPA is a specification supported
by WiFi manufacturers, and it contains a subset of RSN that can also run on old
devices that support only the RC4 cipher. Authentication and access control, as well
as key management, are the same in WPA and in RSN. The difference between the
two concepts lies in the mechanisms used for integrity protection and confidentiality.
We must also mention that RSN is also called WPA2 by many manufacturers.

Below, we first give an overview of the authentication, access control, and key
management procedures of 802.11i. Then, we briefly summarize the operation of
TKIP (used in WPA) and AES-CCMP (used in RSN).

Authentication and access control: The model of authentication and access con-
trol in 802.11i was borrowed from the 802.1X standard [186]. IEEE 802.1X was
originally intended for wired LANSs, but it turned out that the same concepts can be
used in wireless LANs too (with a few extensions).

The 802.1X model distinguishes three entities in the authentication procedure: the
supplicant, the authenticator, and the authentication server. The supplicant wants to
access the network, and for this reason it wants to authenticate itself. The authenti-
cator controls access to the network. In the model, this is represented by controlling
the state of a port. The default state of the port is “closed”, which means that data

1.8 How existing wireless networks are secured 21

traffic is disabled. The authenticator can “open” the port if this is authorized by the
authentication server. Actually, the supplicant authenticates itself to the authenti-
cation server, and if this authentication is successful, then the authentication server
grants access to the network by instructing the authenticator to open the port.

In the case of WiFi networks, the supplicant is the mobile device and the authen-
ticator is the AP. The authentication server is a process that can run on the AP in
the case of smaller networks, or on a dedicated server machine in the case of larger
networks. In WiFi, the port is not a physical connector, but a logical control imple-
mented in software running on the AP.

In a wired LAN, a device authenticates itself once, when it is physically connected
to the network. There is no need for further authentication (at least for network
access control purposes), because the port used by the device cannot be used by
someone else. This would require first disconnecting the device that currently uses
the port, which would be detected by the hardware of the authenticator, and the port
would be disabled. The situation is different in WiFi networks, because there is no
physical connection between the STA and the AP. Hence, once the STA authenticates
itself and associates with the AP, someone else can try to steal its session by spoofing
its MAC address. For this reason, 802.11i extends 802.1X with the requirement of
setting up a session key between the STA and the AP when the STA first requests
access to the network; this session key can then be used to authenticate any further
communications between the STA and the AP.

The authentication procedure in 802.11i uses EAP (Extensible Authentication Pro-
tocol) [9] to carry the messages that need to be exchanged between the STA and the
authentication server (see Figure 1.4 for illustration). Note that EAP is only a carrier
protocol: It does not provide authentication services itself, but it can carry the mes-
sages of any higher layer authentication protocol. That is why it is called “extensible”.
How the higher layer protocol messages are embedded into EAP messages must be
specified for each and every higher layer protocol. Such specifications already exist for
many widely used protocols such as the TLS (Transport Layer Security) Handshake
and the GSM authentication protocols.

There are four message types in EAP: request, response, success, and failure. EAP
request and response messages carry the messages of the embedded authentication
protocol from the STA to the server, and from the server to the STA, respectively. The
EAP success and failure messages are used to signal the result of the authentication
to the supplicant.

As we indicated before, in 802.1X, the supplicant authenticates itself to the au-
thentication server. This means that in WiFi networks, the EAP protocol and the
embedded higher layer authentication protocol are executed by the mobile device
requesting access and the authentication server. The AP relays messages without
interpreting them. The AP understands only the EAP success and failure messages.

22 The security of existing wireless networks

s i

AP Auth Server

0

wn
]
>

EAPOL (802.1X)

EAP over RADIUS (RFC 3579)

EAP (RFC 3748)
EAP-TLS (RFC 2716)
TLS Handshake (RFC 2246)

Fig. 1.4. Authentication protocol architecture of 802.11i.

When it sees an EAP success message passing, it enables the port and lets the mobile
device connect to the network.

EAP messages between the mobile device and the AP are carried by the EAPOL
(EAP over LAN) protocol defined in 802.1X. EAP messages between the AP and the
authentication server can be carried by various protocols. WPA mandates the use
of RADIUS [10] for this purpose, whereas RSN specifies RADIUS only as an option.
In any case, RADIUS is already quite widely deployed, therefore it is expected to be
often used in RSN;, too.

As we mentioned before, the result of the authentication process in WiFi is not only
the authorization for the mobile device to access the network but also a session key to
protect further communications between the mobile device and the AP. However, as
authentication takes place between the mobile device and the authentication server,
the session key is also established between them, and it must be securely transferred
to the AP. The RADIUS protocol makes this possible by means of the MS-MPPE-
Recv-Key RADIUS attribute that has been specified for key transfer purposes. The
session key is transferred in encrypted form, where the encryption uses a long-term key
shared by the AP and the authentication server. This latter key is usually installed
manually in the AP and in the RADIUS server by a system administrator.

Key management: The session key established between the mobile device and the
AP as the result of the authentication procedure is called the pairwise master key
(PMK). Tt is a pairwise key, because it is known only to that mobile device and the
AP (and the authentication server, but it is considered to be a trusted entity); and it
is a master key, because it is not used directly for encryption or integrity protection of
messages, but it is used to derive encryption and integrity keys. More precisely, both
the mobile device and the AP derive four keys from the PMK: a data-encryption key,

1.8 How existing wireless networks are secured 23

a data-integrity key, a key-encryption key, and a key-integrity key. These four keys
together are called the pairwise transient key (PTK). We must note that AES-CCMP
uses the same key for encryption and for integrity protection of data, therefore, in
the case of AES-CCMP, the PTK consists of three keys only. Besides the PMK, the
derivation of the PTK also uses as input the MAC addresses of the parties (the mobile
device and the AP) and two random numbers generated by the parties.

The mobile device and the AP exchange their random numbers using the so-called
four-way handshake protocol. This protocol also provides evidence to each party that
the other party possesses the PMK. Messages of the four-way handshake protocol are
carried by the EAPOL protocol in EAPOL messages of type Key. The contents of
the messages and the operation of the four-way handshake protocol are described as
follows:

(a) The AP sends its random number to the mobile device. When the random
number is received by the mobile device, it has everything needed for the
derivation of the PTK. Hence, the mobile device computes the PTK.

(b) The mobile device sends its random number to the AP. This message also car-
ries a Message Integrity Code (MIC), computed by the mobile device using the
key-integrity key just derived from the PMK. Upon reception of this message,
the AP has everything needed for the derivation of the PTK. Hence, the AP
computes the PTK and then uses the key-integrity key to verify the MIC. If the
verification is successful, then the AP believes that the mobile device possesses
the PMK.

(¢) The AP sends a message that contains a MIC to the mobile device. The MIC
is computed using the key-integrity key of the PTK. If the mobile device can
successfully verify the MIC, then it believes that the AP possesses the PMK
too. This message contains the starting value of a sequence number that will
be used to number further data packets, and hence to detect replay attacks. In
addition, this message signals to the mobile device that the AP has installed
the keys and it is ready for encrypting all subsequent data packets.

(d) The mobile device acknowledges the reception of the third message. This
acknowledgement also means that the mobile device is ready for encrypting all
subsequent data packets.

Once the PTK is derived and the keys are installed, subsequent data packets be-
tween the mobile device and the AP are protected by the data-encryption and data-
integrity keys. However, these keys cannot be used to protect broadcast messages sent
by the AP. Those broadcast messages should be protected with keys that are known
to all mobile devices and the AP. Therefore, the AP generates additional key material,
called the group transient key (GTK). The GTK contains a group encryption key and

24 The security of existing wireless networks

a group integrity key and it is sent to each mobile device separately encrypted with
the key-encryption key of the given mobile device.

TKIP and AES-CCMP: Both TKIP (Temporal Key Integrity Protocol) and AES-
CCMP (AES CTR Mode and CBC MAC Protocol) are based on the key hierarchy
described in the previous paragraph. In particular, they use the data-encryption and
data-integrity keys (of the PTK) to protect the confidentiality and the integrity of the
data packets sent between the mobile device and the AP. However, they use different
cryptographic algorithms. TKIP, just like WEP, uses RC4, but unlike WEP, provides
more security. The advantage of TKIP is that it runs on old WEP hardware after
some firmware upgrade. AES-CCMP needs new hardware that supports the AES
algorithm, but it provides a clearer, more elegant and robust solution than TKIP
does.
TKIP fixes the flaws in WEP as follows:

o Integrity: TKIP introduces a new integrity protection mechanism, called Michael.
Michael operates at the Service Data Unit (SDU) level (i.e., it operates on data
received by the MAC layer from higher layers before those data are fragmented).
This makes it possible to implement Michael in the device driver, which in turn
allows the introduction of Michael as a software upgrade.

In order to detect replay attacks, TKIP uses the IV as a sequence number.
Thus, the IV is initialized with some initial value and then incremented after the
transmission of every message. The receiver keeps track of the IVs of the recently
received messages. If the IV of a freshly received message is smaller than the
smallest stored IV value, then the receiver drops the message; whereas if the IV is
larger than the largest stored IV value, then it keeps the message and updates its
stored IVs. If the IV of an incoming message falls between the smallest and the
largest stored IV value, then the receiver checks if that IV is already stored; if so,
then it drops the message, otherwise it keeps the message and stores the new IV.

e Confidentiality: Recall that the main problem with WEP encryption was that the
IV size was too small and that the existence of RC4 weak keys was not taken
into consideration. In order to overcome the first problem, in TKIP, the IV size is
increased from 24 bits to 48 bits. This seems like an easy solution, but the difficulty
is that the WEP hardware still expects a 128-bit long RC4 seed value. Thus, the
48-bit IV and the 104-bit key must somehow be compressed into 128 bits.

As for the problem of weak keys, in TKIP, each message is encrypted with a
different key. Thus, the attacker cannot observe a sufficient number of messages
that are encrypted with the same (potentially weak) key. The message keys are
generated from the data-encryption key of the PTK.

TKIP’s new IV mechanism and the generation of the message keys are illustrated

1.8 How existing wireless networks are secured 25

in Figure 1.5. The 48-bit IV is divided into a 32-bit upper part and a 16-bit lower
part. The upper part of the IV is combined with the 128-bit data-encryption key of
the PTK and the MAC address of the device. The result of this computation is then
combined with the lower part of the IV in order to obtain the 104-bit message-key.
The RCA4 seed value for TKIP is obtained by concatenating the message-key to the
lower part of the IV and a dummy byte (designed to avoid weak RC4 keys).

48 bits
——
l v ‘ l data-encryption key
~ " —
upper lower]
32 bits 16 bits 128 bits
key-mix
(phase 1) +—— MAC address
key-mix
2 (phase 2)
g
g
(v iv] message-key RC4 seed value
—— — |
3x8 = 24 bits 104 bits

Fig. 1.5. Generation of the RC4 seed value in TKIP

The designers of AES-CCMP had an easier job than the designers of TKIP, because
they were not constrained by the peculiarities of the old WEP hardware. Thus, they
simply replaced RC4 and based their design on the AES block cipher [5]. They
defined a new mode for AES, called CCM, which is the combination of two previously
known mechanisms: CTR (Counter) mode encryption and CBC MAC (Cipher Block
Chaining - Message Authentication Code) (see Appendix A for more details on these
mechanisms). In the CCM mode, the sender of a message computes the CBC MAC
value of the message, attaches it to the message, and then encrypts the whole lot
in CTR mode. The CBC MAC computation covers the header of the message too,
while the encryption is applied only to the message body. The CCM mode ensures
both confidentiality and integrity of the message. Replay detection is ensured by
sequence numbering the messages. The sequence number is integrated into the CBC
MAC value of the message by placing it in the initialization block of the CBC MAC
computation.

26 The security of existing wireless networks

Public WiFi hotspots

So far, we described how WiFi LANs are secured in a corporate environment. In
public WiFi hotspots, there are slightly different security issues and solutions. The
main differences between the corporate and the public settings are the following;:

e The users of a public WiFi hotspot do not belong to a common group, hence they
do not necessarily trust each other and the operator of the hotspot. Similarly, the
hotspot operator does not trust the users. Therefore, any security solution based
on a common group key (e.g., WEP) is inappropriate for the public setting. Firstly,
using the group key, users can impersonate each other. Secondly, users can reveal
the group key to anyone allowing illegitimate access to the hotspot.

e In addition, in a public WiFi hotspot that can be used free of charge, the users
usually do not have a long-term relationship with the operator of the hotspot. This
means, in particular, that user authentication cannot be based on long-term secret
keys, like in corporate networks. Moreover, installing any type of key is a hassle
for users.

e Finally, in the case of public access, the network behind the WiFi LAN can be inse-
cure, unlike in a corporate environment, where the corporate intranet is considered
to be secure. Hence, not only the wireless channel needs protection, but it could
be more advantageous for users to use security services in a higher layer (e.g., in
the transport layer).

The main concern of the public hotspot operator is to get paid for the services
that it provides. But, as we saw above, the solution cannot be based on requiring
the users to install keys. Hence, a much more pragmatic solution is adopted in most
practical cases: password-based user authentication. The idea is the following: When
a user buys a subscription, she gets a username and a password. The access points
of the hotspot are run in open mode without any protection at the MAC layer. Thus
anyone can connect to the hotspot, get an IP address, and begin sending IP packets
to the Internet. However, the access points route every packet to a special gateway,
called the hotspot controller, which blocks all IP traffic. In fact, the controller will
let go through only those IP packets that carry an HTTP request to a special login
page. Thus, the only action a user can take is to go to that login page and type
her username and password. If this is done successfully, then the IP address of the
user is inserted in a white list, and no more packets originating from that IP address
are blocked by the hotspot controller. The hotspot controller can keep track of the
connection time and the amount of traffic associated with each user, and it blocks
the traffic again if the user exceeds her quota. To protect herself from other users of
the hotspot, the user can use transport layer security solutions (e.g., TLS) at her own
risk.

1.8 How existing wireless networks are secured 27

1.3.3 Bluetooth

Bluetooth is a wireless technology that uses short range digital radio communications
and offers fast and reliable transmission of both voice and data. The main objective
of Bluetooth is to eliminate wires between nearby devices such as a mobile phone and
a headset, a laptop and a mouse, or a computer and a printer. Unlike wireless LANs,
where there are wireless stations and access points, in the case of Bluetooth, there
are only wireless stations. However, the operation of Bluetooth networks (so called
piconets) is based on the master-slave principle, where one of the stations takes the
role of the master and the other stations (up to 7) become the slaves.

The Bluetooth specifications define a security architecture that aims at providing
authentication and confidentiality services for communicating Bluetooth devices. Be-
fore presenting this security architecture, we should note that Bluetooth has some
inherent characteristics that make the job of an attacker slightly more difficult than
in the case of wireless LANs. First, Bluetooth devices use frequency hopping in order
to avoid interference with other devices that operate in the same unlicensed ISM band.
The frequency hopping scheme uses 79 different channels and changes frequency 1600
times per second in a pseudo-random manner. This makes eavesdropping slightly
more difficult, because the attacker must listen on practically all 79 channels in par-
allel. Second, as we mentioned above, Bluetooth is a short-range radio technology
enabling communications over a few meters only. This means that an attacker must
be physically close to the victims in order to eavesdrop on their communications,
which further reduces the likelihood of attacks. Nevertheless, none of the inherent
characteristics of the Bluetooth technology would stop a determined attacker, hence
the need for security mechanisms in Bluetooth.

The Bluetooth security architecture is concerned with the establishment of a secured
wireless link between two Bluetooth devices. This involves the authentication of the
devices to each other and the setting up of a confidential channel between them. Both
are based on a secret link key shared by the two devices. To generate the link key, a
pairing procedure is used when the two devices communicate for the first time. We
will first explain how the link key is established and then describe how it is used for
the authentication of the devices and for the derivation of the encryption key. The
presented mechanisms use the cryptographic functions Ey, Fo1, Fag, and E3, each of
which is based on the SAFER+ block cipher [264].

There are two ways to establish a link key. The first method is used when one of
the devices has memory limitations and can store only one key, otherwise the second
method is used. However, both methods start by setting up a temporary initialization
key Kn;t. This is illustrated in Figure 1.6 and explained as follows: First, one device
selects a random number IN_RAND and sends it to the other device. Then, both
devices compute K;,;; as a function of IN_.RAND, a shared PIN, and the length L

28 The security of existing wireless networks

of the PIN. The length of the PIN can vary between 1 and 16 bytes. Typically,
the PIN is a 4-digit number with a default value of 0000. The PIN can be shared
between the devices in several ways. If both devices have some input facility, then the
user can choose a random PIN and enter it into both devices. If only one device has
an input facility, then the user can enter the pre-configured PIN of the other device
into the first device. Otherwise, pairing is not possible.

i i IN_RAND
: IN_RAND : ! :
i i : L i
! PIN—> i ! PIN —»] i
! En : : Ex :
Pl : bl :
i Kinit ; i Kinit ;

Fig. 1.6. Setting up the temporary initialization key between two Bluetooth devices

Let us now consider how the link key is established when one of the devices, say A,
has memory limitations. In this case, A sends its long-term unit key K 4 to the other
device B encrypted with the initialization key K;,;; that they have just established.
B obtains K4 by decrypting A’s message, and K 4 becomes the link key.

When none of the devices has memory limitations, the link key is established in the
following way: Both A and B choose a random number RAND 4 and RAND g, respec-
tively. A computes LK _K 4 as a function of RAND 4 and its unique device address
BD_ADDR,. Similarly, B computes LK _Kpg. Then, they exchange RAND 4 and
RAND g encrypted with K;,;;. When A receives RAND g, it can compute LK _K 5.
Similarly, when B receives RAND 4, it can compute LK _K 4. Then, both can com-
pute LK_K 4 & LK _K g, which becomes the link key. The computation of the link
key is illustrated in Figure 1.7.

When two devices share a link key (that they have just established or kept from
a previous session), they authenticate each other using a simple challenge-response
protocol, which is illustrated in Figure 1.8. One of the devices, referred to as the “ver-
ifier”, generates a random number AU_RAND and sends it to the other device, called
the “claimant”. They both compute an authentication response from AU_RAND, the
device address BD_ADDR of the claimant, and the link key Kp;,.. The claimant then
sends the obtained value SRES’ to the verifier, which then compares it to the value
SRES that it computed. If SRES’ = SRES, then the authentication is successful.

1.8 How existing wireless networks are secured 29

i v : ! Y i
| RAND, - ; ; - i
;) ! ! Y :
| — b—(rap, |
-~ \ v RANDg ® E [~ y RAND, v - |
I a o ! ' a o!
= gl a]
P < Ey En |31 rx—> En Ba =31
|2 S! |2 S|
i © i @
; oD | E va BN !
; LK Ky T LK Kg ; ; LK Ky ‘I’ LK Kg ;
" Kiink ; EB Kiink i

Fig. 1.7. Setting up the link key between two Bluetooth devices

After that, the two devices run the same protocol with the roles swapped to achieve
mutual authentication.

! AU_RAND i AU_RAND
| | : AU RAND !
| Y i i @ Y i
' 8 : ' 8 |
P Bt Je—Kink i P B Ky !
= - = :
;o i ;o :
i l 7 o SRES' | | |
; ACO SRES \r | ! SRES' ACO i
! verifier successifailure i i claimant i

__

Fig. 1.8. The authentication protocol in Bluetooth

If the protocol above fails, then the verifier device will wait some time before a new
attempt can be made. This waiting time increases exponentially with every failed
attempt in order to make it impractical for an attacker to defeat authentication by
trying different keys in rapid succession.

The encryption key K.,. is computed by both devices as a function of three ele-
ments: the link key Kj;,k, the authenticated cipher offset ACO generated during the

30 The security of existing wireless networks

authentication protocol, and a random number EN_RAND generated by the master
device. Encryption is performed with a stream cipher called Fy in the Bluetooth
specifications. Besides the encryption key K., Ey also inputs the unique address
BD_ADDR,,qster of the master device, and the clock value CLOCK ,,,4ster Of the mas-
ter. The algorithm Ej produces a key stream that is XORed to the data sent between
the devices. The generation of the encryption key and the key stream is illustrated
in Figure 1.9.

1 1 1]
1 I 1 1
1 1 1 1
1 ! 1 1
1 1 1 1
1 ! 1 1
1 1 1 1
1 I 1 1
: | : :
i EN_RAND i T EN_RAND i
i : i :
! \ H ! \ !
: | Do :
1 (o] ! 1 1
b2 B e K | Lo B e Ky |
o | o |
1
i g Kene i i % Kenc !
1 £ \ ! 1 £ Y 1
4 (= I -4 o |
ia P P o |
i 2 B «3 ! i 2 B |« 8
1 | ~ ! 1 | P 1
1 a 3 ! ! o 3 1
! m 2 i i m & |
' g | i s i
| hd i ! v '
| DATA <—> ; ; »PD<— DATA |
1 ! 1 1
1 1 1
i master i ! slave i

Fig. 1.9. Generation of the encryption key and the key stream in Bluetooth

Security experts have identified some weaknesses in the Bluetooth security archi-
tecture [202, 347]. One problem is that the strength of the whole system is entirely
based on the strength of the PIN. As the PIN is typically a 4-digit number, it is
fairly easy to try all 10000 possible values. To do this, it is sufficient for the attacker
to eavesdrop on a single run of the above described protocols. Then, for each guessed
value PIN’, the attacker can compute the corresponding initialization key K/ ,,,
then the corresponding link key K., by using the eavesdropped random numbers.
Each guessed link key K, , can be tested using the challenge-response pair available
from the eavesdropped execution of the authentication protocol. This means that
the PIN can be cracked off-line, hence the mechanism of exponentially increasing the
waiting times between failed authentication attempts is ineffective; there will be only
one (successful) attempt once the PIN is cracked off-line. Moreover, many devices
just use the default PIN (i.e., 0000).

Another problem is that for memory constrained devices, the link key is the long-

and

1.4 Summary 31

term unit key of the device. Hence, an attacker can easily obtain the unit key of a
memory constrained device A by establishing a link key with it. Once the unit key is
obtained, the attacker can impersonate device A. The attacker can also decrypt the
communication between A and any other device B, because the link key between A
and B is also the unit key of A.

There is also a privacy problem that stems from the use of fixed and unique device
addresses. As Bluetooth devices are often personal gadgets, a device address can
be associated with a person. Then, the attacker can track the whereabouts of that
person by tracking the use of the given device address.

Finally, cryptographers have discovered weaknesses in the Fy stream cipher used in
Bluetooth. Apparently, the encryption key can be broken with much less effort than
the cost of a brute force attack (which is 2!28 as the encryption key is 128 bits long).
The details of the attack are out of the scope of this overview; the interested reader
is referred to [165] for more information.

1.4 Summary

In this first chapter, we were concerned with the security of existing wireless networks.
First, we identified two important characteristics of wireless networks that have a
strong effect on their security. The first characteristic is that communication takes
place over wireless channels that are easy to eavesdrop on, jam, and overuse. The
second characteristic is that users of wireless networks are usually mobile. This has
some implications both in terms of security requirements and solutions. Besides
the classical security requirements of authentication, confidentiality, integrity, and
availability, we identified location privacy as a security requirement that is unique
to mobile networks. We also argued that security architectures designed for wireless
mobile networks must take into account the limited resources of portable mobile
devices, and the lack of their physical protection. In addition, the security architecture
should support the roaming of users across networks operated by different network
operators.

In the second part of this chapter, we gave an overview of some existing wireless
security architectures. More specifically, we described how cellular networks (GSM
and UMTS), WiFi LANs, and Bluetooth is secured. These examples can serve as
a reference to which security solutions developed in the rest of the book can be
compared.

1.5 To probe further

The description of the security architectures in Section 1.3 was deliberately kept
concise, because the focus of the book is not on how existing wireless networks are

32 The security of existing wireless networks

secured but more on how upcoming wireless networks should be secured. The in-
terested reader can find more information on the presented security architectures in
many articles and books (see e.g., [267] for GSM security, [285] for UMTS security,
[121] for WiF1i security, and [145] for Bluetooth security).

Details about the flaws in WEP can be found in [364, 58, 26]. At the time of this
writing, the most prominent tools to crack WEP are Aircrack and Weplab®. These
tools are based on statistical analysis attacks originating from an unknown person
nicknamed Korek. Rafik Chaabouni improved these attacks and found a new one
during a semester project at EPFL (see [92] for the details).

Attacks against Bluetooth security are described in [202, 342], while privacy issues
in Bluetooth are discussed in [202, 354].

Although the examples that we considered in Section 1.3 cover a broad spectrum,
there are other examples of existing wireless security architectures. An early version of
the WiMAX security architecture and a brief analysis of its weaknesses are presented
in [209]. An updated version of the WiMAX security architecture is published as
part of the IEEE 802.16e specification [188]. But, the WiMAX standard was still not
stable at the time of this writing therefore we did not address it. Some security issues
in underwater wireless networks are discussed in [106].

1.6 Questions

(a) What are the main vulnerabilities of wireless networks?

(b) What security services are provided by the GSM security architecture? What
important security services it does not provide?

(c) Let is consider the authentication vector in UMTS. What is the purpose of the
AUTN field? Does the MAC in AUTN authenticates the keys CK and IK?
How is the freshness of CK and I K ensured?

(d) What are the main weaknesses of the WEP protocol?

(e) How does the authentication scheme of 802.11i differ from that of 802.1X?

(f) Why do you think the MAC address of the device is included in the computa-
tion of the message keys in TKIP (see Figure 1.5)?

8 Both can be downloaded from htp://www.sourceforge.org/

2

Upcoming wireless networks and new
challenges

2.1 Introduction

As we have seen in the previous chapter, the development of wireless networks has
followed a centralized pattern: The network infrastructure (meaning all pieces of
equipment except the terminal) has remained under the full supervision of the network
operator, who traditionally used to be a large organization, very careful at respecting
the legislation (and at nurturing the value of its own brand). As a result, the users
generally tend to trust the operator, but do not generally trust the other users.

As we have also seen, current technology such as WiFi makes infrastructure equip-
ment (and in particular access points) affordable to very small operators or even
individuals, thus allowing the emergence of community networks and similar initia-
tives.

In this chapter, we will show that we are only at the beginning of this evolution,
and that not only WiFi, but also other wireless technologies are about to dramati-
cally transform the deployment and operation philosophy of wireless networks. As a
consequence, the notions of authority and of trust need to be completely revisited,
and this is exactly one of the reasons for writing this book: the novel organization of
the wireless networks calls for a thorough study of the possible malicious and selfish
behaviors, and of the techniques to thwart them.

In order to be as concrete as possible, we will first provide a certain number of
examples of emerging wireless networks, spanning personal networks, vehicular net-
works, sensors, and RFID (Radio Frequency IDentification, described later in this
chapter). Then, in spite of the substantial and deliberate diversity of these examples,
we identify relevant trends common to all or to most of them. By the same token,
from these trends we identify the most significant challenges that underpin Part 1T
and Part III of this book.

33

34 Upcoming wireless networks and new challenges

2.2 Upcoming wireless networks

For each wireless network presented in this section, we provide a brief description
and a set of security and cooperation challenges. If these challenges can be taken
up by well-established techniques, we mention possible solutions right away. If, on
the contrary, more sophisticated mechanisms are required, we refer the reader to the
related chapters of Part II and Part III.

2.2.1 Personal communications

Personal communications have been and are likely to remain the most relevant and
diverse kind of wireless communication systems. In the previous chapter, we have
discussed their security requirements. In this subsection, we will describe the most
relevant upcoming types of these networks; we start with those most similar to the
existing cellular and WiFi networks and progressively relax the assumptions of one-
hop radio connectivity between the mobile station and the base station and of a strong
trust relationship between the user and the operator.

Small operators, operators in shared spectrum

The first type of networks resembles existing cellular and wireless data networks: a
radio access device (a base station or a WiFi access point), installed and managed by
an operator, provides mobile devices with one-hop access to the backbone. Yet, even
this relatively classical type of networks will go through substantial modifications in
the coming years, and this will have strong implications.

First of all, the increased programmability of the devices opens the door to selfish
behavior with respect to the shared radio channel. In Chapter 9, we will see how
a selfish user can modify the behavior of her wireless adapter to achieve this selfish
goal, and how such a misdeed can be detected by the Access Point.

Moreover, the number of operators is likely to dramatically increase (especially in
unlicensed frequency bands), because of the low cost of the access points. This means
that the level of trust that can be associated with operators’ brands can significantly
decline. We will address this issue of trust in the next chapter.

Another important change is that the very notion of licensed band could be ques-
tioned. Indeed, the current practice consisting in allocating a different chunk of the
spectrum to each operator is highly inefficient and can become an obsolete approach
as soon as more sophisticated technology such as cognitive radios [135, 273] becomes
available. The implications of such a change can be overwhelming: In this new set-
ting, operators will have to cope with each others’ presence, and program their base
stations accordingly. In Chapter 11, we will show how to model this kind of situation.
Note that this scenario already happens on a small scale, when several WiFi operators
deploy their access points in the same area.

2.2 Upcoming wireless networks 35

Mesh networks

As shown in Figure 2.1, a typical mesh network is comprised of one Wireless Hot
Spot (WHS), connected to the Internet, and of several Transit Access Points (TAPs)
which relay traffic between the mobile stations and the WHS in a multi-hop fashion.
A nice property of the mesh networks is that they are (in principle) relatively easy to
deploy, as they require a single connection point to the Internet.

< /

Q WHS: Wireless Hot Spot

487 1AP: Transit Access Point

g Legend:
{

o MS: Mobile Station

Fig. 2.1. A Wireless Mesh Network: the (wireless) Transit Access Points (TAPs) relay the
traffic between the Wireless Hot Spot and the mobile stations

Wireless Mesh Networks (WMNs) represent a good solution to providing wireless
Internet connectivity in a sizable geographic area; this new and promising paradigm
allows for network deployment at a much lower cost than with classic WiFi networks.

WDMNs are particularly interesting for us, because they contain some features (and
vulnerabilities) typical of future networks such as wireless multi-hopping and are
already in the standardization and early deployment phase. And, as we will see, they
nicely illustrate the fact that performance (in this specific case fairness) and security
are closely related. For these reasons, we will describe these networks in some detail.

WDMNs, however, are not yet ready for wide-scale deployment for two main reasons.
First of all, the communications being wireless and multi-hop (and therefore prone
to interference), WMNSs present severe capacity and delay constraints. Nevertheless,
there are reasons to believe that technology will be able to overcome this problem,
for example by using multi-radio and multi-channel TAPs. The second reason for the

36 Upcoming wireless networks and new challenges

slow deployment of WMNs is the lack of security guarantees. The reader interested
in the security peculiarities of mesh networks should refer to Subsection 2.2.6.

Hybrid ad hoc networks

In mesh networks, the relay stations (the TAPs) between the mobile station and the
backbone are specialized devices under the control of one or several operators. A bold
design decision consists in removing these relay stations and assigning the relaying
task to other mobile stations. Such a network is usually called a “hybrid ad hoc
network” or, in some cases, a “multi-hop cellular network”.

The proper operation of these networks raises a number of formidable technical
challenges and it is unclear, at the time of this writing, whether such networks will ever
be implemented. These challenges include notably the problem of power management,
as (by definition) a priori planning is not possible. With respect to the focus of this
book, the routing protocol of such a network can be secured by making use of the
protocols described in Chapter 7; the packet forwarding operation can benefit of
stimulation mechanisms described in Chapter 10.

An example of hybrid ad hoc network is provided on Figure 2.2.

4 —
0 D:/

v H

Fig. 2.2. A hybrid ad hoc network: mobile wireless stations relay packets to and from the
Internet

Mobile ad hoc networks

A step further towards decentralization consists in removing completely the (on-line)
infrastructure: the network then consists only of (mobile) nodes that relay each others’
traffic (see Figure 2.3. These networks are usually called mobile ad hoc networks (often
abbreviated as “MANET” or wireless ad hoc networks.! Such networks have been a
I The first investigations and implementations of these networks took place in the seventies and

were intended for military applications; at that time, these networks were known as “Packet
Radio Networks.”

2.2 Upcoming wireless networks 37

strong stimulus to the research community, who has devoted to it hundreds of papers,
essentially during the last ten years or so. It is very important to distinguish between
the following two kinds of such networks.

. ~— B .= 1@

N ~— 0

M

Fig. 2.3. A mobile ad hoc network: mobile wireless stations relay packets mutually

a. Mobile ad hoc networks in hostile environments designate a set of mobile nodes
that are expected to carry out a mission in an environment where the presence of a
“strong” attacker is expected. This is typically the case of military networks (some-
times lamentably camouflaged as “rescue operation networks” in the literature). The
need for security is of course particularly acute in this category. In this case, the
authority would typically pre-load appropriate cryptographic keys in the devices, in
compliance with the role of each of the users; these keys would then protect the com-
munication between the devices during the unfolding of the mission. As long as a node
is not compromised, it is reasonable to assume that it will have a highly cooperative
behavior with respect to the other nodes of the network.

The security challenges typically encountered in this kind of networks include se-
cure routing, prevention of traffic analysis?, and resistance of a captured device to
reverse engineering and key retrieval. Secure routing is addressed in Chapter 7, and
the other two are not addressed in this book; the interested reader can check the spe-
cialized literature, for example the proceedings of the IEEE Conference on Military
Communications (MILCOM).

2 Traffic analysis consists in establishing who is communicating with whom, typically in a network
where all payloads are encrypted. It can also be used to locate a specific transmitter.

38 Upcoming wireless networks and new challenges

b. In self-organized® mobile ad hoc networks, there is no authority whatsoever to
take care of the network, not even in the initialization phase. This means that the
network is purely peer-to-peer, and that the nodes have to figure out how to secure
the communications by themselves. We will see in Chapter 5 how two nodes can
establish a security association between themselves. We will also show that selfishness
can be a serious issue in such networks; more specifically, we will show that, without
appropriate mechanisms, such a network can collapse, either because nodes selfishly
refuse to forward packets (Chapter 10) or greedily overuse the common radio channel
(Chapter 9). In both cases, we will explain how these problems can be solved.

It is unlikely that personal communication networks of this kind be deployed on a
large scale any time soon, because their operation is very difficult to ensure (power
management, for example, is extremely complicated). In addition, all-wireless net-
works exhibit intrinsic scalability problems [154], although the mobility of the nodes
can mitigate the problem, but at the expense of a higher packet delay [153]. Yet
some small scale applications can certainly be envisioned: a group of people can get
together, each equipped with a laptop or a PDA; they can be willing to establish
a network between their devices, without having to rely on an infrastructure. To-
day’s technology already allows doing this with laptops and PDAs, albeit somewhat
painstakingly.

Other personal communication networks As mentioned in the previous chapter,
there exist many other wireless personal communication networks, including Blue-
tooth and WiMAX. We do not discuss them here, however, as their characteristics in
terms of security and cooperation are already covered by the network types we have
just described.

2.2.2 Vehicular networks

Initiatives to create safer and more efficient driving conditions have recently begun
to draw strong support. Vehicular communications (VC) will play a central role
in this effort, enabling a variety of applications for safety, traffic efficiency, driver
assistance, and infotainment. For example, in order to improve safety, warnings for
environmental hazards (e.g., ice on the pavement) or abrupt vehicle kinetic changes
(e.g., emergency braking) will be provided by these systems.

Vehicular networking protocols will allow nodes, that is, vehicles or road-side in-
frastructure units, to communicate with each other over single or multiple hops. In
other words, nodes will act both as end points and routers, with vehicular networks

3 By self-organization, we refer in this book to the organization of security and not of other mech-
anisms such as routing.

2.2 Upcoming wireless networks 39

emerging potentially as the largest instantiation of the mobile ad hoc networking tech-
nology. By their very nature, vehicular networks stand somewhere in between the two
extreme cases of mobile ad hoc networks that we have just described: they cannot be
fully self-organized, but they also cannot be placed under the strict control of a single
authority.

The unique features of VC are a double-edged sword: a rich set of tools are offered
to drivers and authorities, but a formidable set of abuses and attacks becomes pos-
sible. Hence, the security of vehicular networks is indispensable, because otherwise
these systems could make anti-social and criminal behavior easier, in ways that would
actually jeopardize the benefits of their deployment. What makes VC security hard
to achieve is the tight coupling between applications, with rigid requirements, and
the networking fabric, as well as the societal, legal, and economical considerations.
Solutions to this problem involve the industry, governments, and the academia.

The reader interested in more details about the security of vehicular communica-
tions should refer to Subsection 2.2.7.

2.2.3 Sensor networks

Sensor networks are wireless networks that consist of a large number of sensor nodes
and a few base stations or sinks (see Figure 2.4 for illustration). The sensor nodes
are tiny devices that are equipped with sensing circuits that collect data about some
physical phenomena, such as light, sound, vibration, humidity, temperature, etc. In
addition, the sensor nodes have computing and wireless communication capabilities.
The base stations are much more powerful than the sensor nodes, and their role is
to collect the data gathered by the sensor nodes and to send those data to some
application unit for further processing. For this reason, the base stations are often
called sinks in the context of sensor networks.

The sensor nodes are usually battery powered, which has a profound effect on the
design of sensor networks. Since recharging the batteries is often impractical, or even
impossible in deployment scenarios, the main design criteria for sensor networks is to
reduce the energy consumption of the sensor nodes and increase network lifetime as
much as possible. All networking mechanisms are designed with this requirement in
mind.

In order to reduce their energy consumption, the sensor nodes cooperatively perform
many functions. For instance, sensor nodes communicate with the base station using
multi-hop wireless communications, where the nodes forward packets towards the
base stations on behalf of other nodes. This reduces energy consumption in two
ways: First, it is known that the energy needed for wireless transmission grows super-
linearly with the distance of the transmission. Thus, the overall energy consumption
can be reduced, if packets are sent in several smaller hops to the base station instead

40 Upcoming wireless networks and new challenges

<} sensor node
- =
=)
=
< v

7N\ =
= base station (sink)
/ /g\?~ d/

= = < \d

Fig. 2.4. A sensor network: sensor nodes forward packets towards the base stations on behalf
of other nodes in order to mitigate the overall energy consumption and interference.

<

of sending them directly in a single large hop. Second, communication via multiple
smaller hops reduces the interference between the devices, which means that fewer
re-transmissions are needed due to collisions.

In addition to packet forwarding, the sensor nodes can cooperate in the processing
of the gathered data. The idea is that instead of relaying raw sensor readings to the
base stations, the sensor nodes can perform in-network processing and aggregate data
on their way to the base stations. This can greatly reduce the number of packets that
need to be sent, and hence, reduce the energy consumption.

Sensor networks have many useful applications both in military and in civilian en-
vironments. In the military setting, they can be used in monitoring, surveillance,
and reconnaissance applications. In the civilian setting, they can be used for environ-
mental monitoring purposes (such as forest fire detection and earthquake prediction)
and in health applications (such as telemonitoring of physiological data of elderly or
chronically ill people, and drug administration). More civilian applications of sensor
networks include building automation, smart environments, monitoring the status of
structures, such as bridges, increasing the effectiveness of agricultural processes, water
management, etc.

In terms of security requirements, sensor networks must ensure the integrity (and
in some cases, the confidentiality) of the data delivered to the base stations. Similarly,
the integrity (and the confidentiality) of control messages sent by the base stations
to the sensors must be guaranteed. Availability is also an important security require-

2.2 Upcoming wireless networks 41

ment, especially when the sensor network is used in life critical applications, such as
earthquake prediction and telemonitoring of people’s health conditions.

These are more or less standard security requirements that can also be found in
traditional wired and wireless networks. However, the challenge is to satisfy these
requirements under the special operating conditions of sensor networks. First of
all, any security solution must take into account the requirement of reducing the
energy consumption of the sensor nodes. In addition, as we mentioned before, sensor
nodes are tiny devices, which means that their computing and storage capacity is
severely limited. Thus, cryptographic algorithms and protocols that require intensive
computation, communication, or storage cannot be used in sensor networks.

Furthermore, as sensor nodes are expected to be deployed in mass, they must be
cheap, which makes their physical protection against tampering difficult. Moreover,
sensor nodes are often deployed in areas where the access to them cannot be moni-
tored. This means that an adversary can corrupt some of the sensor nodes. By doing
that, the adversary can learn the content of the memory, including cryptographic se-
crets, of the corrupted nodes, and she can also modify the behavior of the corrupted
nodes. These constraints greatly increase the difficulty of providing security for sensor
networks.

As an illustrative example, in Chapter 5, we will elaborate on the problem of
establishing shared keys in sensor nodes. As we will see, traditional approaches for
key establishment are inappropriate for sensor networks. Hence, we must develop
new solutions that take into account the special characteristics described above. In
addition, in Chapter 7, we study how routing in sensor networks can be secured.

2.2.4 RFID

RFID (Radio Frequency Identification) is a wireless technology that enables the iden-
tification of objects and people by computers. Humans usually solve the task of
identification remarkably well by visual means. A huge amount of work in artificial
intelligence and computer vision has been carried out by researchers to endow com-
puters with similar capabilities. However, to a large extent, those efforts have failed:
computers still cannot recognize objects and people visually in a reliable manner.
RFID offers an alternative approach. The idea is to tag objects (and maybe even
people) with smart labels (so called RFID tags) that emit identifying information in
the form of a bit string, which can be easily interpreted by computers.

RFID systems have three types of components (see Figure 2.5 for illustration):
RFID tags, RFID readers, and back-end databases. RFID tags store identifying
information (typically a few hundred bits) about the objects or persons to which they
are attached. RFID readers can read this identifying information out from nearby

42 Upcoming wireless networks and new challenges

tags. The identifier obtained from a tag is used as an index into a back-end database
where virtually unlimited information can be stored about the given object or person.

RFID reader
RFID tag

DM back-end database
= - object ID

object information

Fig. 2.5. RFID systems have three types of components: RFID tags, RFID readers, and
back-end databases. The reader looks up in the database the detailed object information,
using the identifier obtained from the tag.

An RFID tag consists of a microchip and an antenna. The microchip stores the
identifying information, and the antenna is used for communicating with the RFID
reader. In addition, RFID tags can be active or passive. Active tags have their own
batteries, while passive tags harvest energy from the reader’s RF signal to power
themselves up. Passive tags communicate with the reader by reflecting the reader’s
RF signal, and modulating the reflected signal with the identifying information stored
in the microchip. This has the interesting side effect that the reader’s signal is much
stronger than that of the tag, and therefore, the reader can be eavesdropped from a
larger distance. Passive tags cost only a few tens of cents, and therefore, they can
be deployed in mass. Active tags are obviously more expensive, and hence, they are
usually used to label valuable objects (e.g., an entire container of goods).

RFID today

RFID technology is already used today in many applications, including access control
to buildings, toll-payment on highways, management of library books, and identifi-
cation of pets, just to list a few.? Essentially, the operating principles in all these
applications are the same.

In case of access control to buildings, the users carry plastic cards that contain
RFID tags. When a user draws her card near to the card reader at a door, her
identifying information is transmitted from the card to the reader. The computer
attached to the reader then looks up her access rights in a central database, and if
she is authorized to enter through that door, then it is opened.

In case of electronic toll-payment systems, the RFID tags are sticken to the wind-
shields of the vehicles, and the RFID readers are installed at the toll gates. When a

4 In addition, contactless credit cards and public transport cards also use RFID technology for the
communication with payment terminals and ticket validating terminals, respectively.

2.2 Upcoming wireless networks 43

user drives through a gate, her identifying information is read from the tag, and her
account held in a central database is updated.

Many libraries use RFID to facilitate the management of books. In this application,
the RFID tags are inserted into the books. When a book is checked out, the RFID
reader at the check-out desk reads the identifying information from the tag, and
updates the book’s status in a central database. When the book is returned, the tag
is read and the status information in the database is updated again.

The idea of tagging pets is to help the identification of lost animals, that allows
them to be returned to their owners. Similarly, there exists human implantable RFID
tags too. An intended application of those tags is to help finding the medical records
of patients in a hospital, but they could equally be used for access control purposes
too.

RFID tomorrow

As we saw above, RFID is already used today in many applications, but an even more
widespread use of this technology is expected in the future. There are plans to embed
RFID tags in bank notes to make forgery more difficult and to combat against money
laundering. Passports and ID cards will be based on RFID technology too in the near
future.> Note that in contrast to access control cards and library books that can be
carried by some people, but probably not every one, virtually every person carries
banknotes or some ID documents with her.

However, this is still not the end of the story. Many people believe that the “killer”
application for RFID will be the replacement of optical bar codes printed on consumer
products. Today, RFID tags are still too expensive to make this feasible, but in the
near future their price could drop below the threshold that allows item level tagging.
If this happens, virtually all objects will have RFID tags embedded in or attached
to them. There is even a standardization effort that aims to prepare the grounds for
this massive takeover. The organization behind this effort is called EPCglobal Inc.,
and it promotes the specifications for the so called EPC (Electronic Product Code)
tag.

RFID has two main advantages compared to optical bar codes: First, optical bar
codes usually indicate only the type of an object, whereas an RFID tag can store a
unique identifier that identifies not only the type, but also distinguishes the object
among many other objects of the same type. Second, reading of bar codes requires
line-of-sight contact with the reader, whereas RFID tags can be read without line-of-
sight contact and from a larger distance. This makes it possible to read RFID tags
in large quantities rapidly and remotely.

The advantages of RFID for the manufacturers and for the merchants are clear:

5 Indeed, at the time of this writing, the US and some European countries have already started to
issue electronic passports based on RFID technology.

44 Upcoming wireless networks and new challenges

it enables automated, and hence, more efficient control and management of products
throughout their whole life cycle, from the production line through the stock houses
to the shelves in the stores. The advantages for the consumers, however, are less
obvious. One advantage could be the possibility for fast check-out at point-of-sale
(POS) terminals. The idea is that an RFID reader at the POS terminal can read
all the tags of the goods in the shopping cart in a few seconds without the need to
take the goods out from the cart. This could considerably speed up the check-out
process and hence consumers would not need to stand in long queues when they do
their shopping for the week-end. Another advantage would be that items could be
returned by consumers without the need to keep the receipt received at the purchase,
because based on the unique identifier in the tag of a given item, the merchant can look
up in its database where and when that item has been purchased. Pilot experiments
are already carried out in large retail shops.

Yet another possibility would be to pull together product databases and purchase
records, and identify consumers (assuming that they are identifiable, for instance, they
paid with their credit cards) that purchased a given product in a given period of time.
This could be advantageous when a product turns out to be faulty or contaminated,
and all the consumers that bought it must be quickly notified. At the same time,
such an application would be dangerous, because it could be misused for profiling
consumers.

A more futuristic application of RFID with some advantages for the consumers
would be to make household appliances capable for interacting with items. One can
imagine for instance that a smart washing machine automatically determines what
program it should run by reading out the appropriate information from the RFID tags
embedded in the clothes put into the machine. Or, one can image a smart refrigerator
that would warn the user if some goods are about to expire or to run out; smarter
ones can even order goods on-line on behalf of the user.

Although such smart appliances seem to be a far fetched idea, interacting with
objects is not a fantasy anymore. Large mobile phone manufacturers have started
to integrate RFID readers in their handsets by means of a technology called Near
Field Communications (NFC). Such an NFC enabled mobile phone allows its user
to read identifying information out from RFID tags attached to nearby objects. In
addition, the mobile phone is also able to immediately obtain (and display) related
data from on-line databases through available GPRS or 3G data connections. One
can imagine many useful applications of this technology. An example would be the
following: Let us assume that a user sees a movie poster on the street. Using her
NFC enabled mobile phone, she can scan the RFID tag embedded into the poster,
and immediately find more information about the movie on the Web (such as the
trailer), including where and when it is played. Finally, she can even buy a ticket for
the next performance using her mobile phone.

2.2 Upcoming wireless networks 45

As we have seen above, RFID based automated identification enables many inter-
esting applications. However, the widespread deployment of RFID technology can
also lead to serious privacy problems. Imagine a world where virtually everything
is tagged with RFID tags. In that world, the monitoring of the movement and the
activities of people can be easily automated, meaning that tracking people could be
cheap and continuous in space and time. Without privacy protecting measures, such
a world could easily degenerate into a world described by Orwell in his book 1984
[290]. We believe that this is a very important problem, and we describe possible
technical solutions to it in Chapter 8.

2.2.5 Mobility in the Internet

The need to cope with the emergence of networks such as the ones described above
and with the growing mobility of hosts has led the Internet community to profoundly
reconsider the overall organization of the network. We summarize here the efforts
related to Mobile IPv6, insisting on the security challenges. The operating principles
of Mobile IPv6 are described in RFC 3775 “Mobility Support in IPv6”, of June 2004.5
This discussion will help us establishing a link between the security concerns of the
wireless and the wired parts of the network.

When a (wired or wireless) node changes location, in many cases it also changes
links, thus affecting its address. The consequence of this address change can be very
unpleasant to the user, as it can break all the existing connections of the mobile node
that are using the address assigned when it was on the previous link. Mobile TP
aims at solving this problem at the IP layer, thus making the mobility of the node
completely transparent to upper layer protocols such as TCP.

Mobile IP is a flexible standard, supporting many modes of operation. We provide
here only a brief description of the operating principles of Mobile IPv6, in order to
introduce the subsequent discussion of security.

The various components are represented in Figure 2.6.

The home link is the link to which the Mobile Node (MN) is “usually” attached.

The home address is an address assigned to the mobile node when it is attached to
the home link; the mobile node is always reachable through this address, regardless
of its current real location. The home agent is a router on the home link permanently
aware of the current location of the nodes that are away from home.

The foreign link is a link different from the home agent’s link, to which the mobile
node is temporarily attached (either by wire or wireless). A care-of address is an ad-
dress used by the mobile node while it is attached to a foreign link. The association

6 The reader interested in the operating principles of Mobile IPv4 can refer to RFCs 3220 and 3344
(both from 2002) “IP Mobility Support for IPv4”.

46 Upcoming wireless networks and new challenges

Mobile Node (MN)

Care-of address
/

! Foreign link

Home address
I /
|
|

Home link

IPv6 Internet

Home Agent (HA)

=]

Correspondent
Node (CN)

Fig. 2.6. Components of Mobile IPv6

of a care-of address with a home address for a mobile node is called a binding; corre-
spondent nodes and home agents store bindings in a binding cache. A correspondent
node is an IPv6 node communicating with a mobile node.

Two modes for mobility are supported by Mobile IPv6 for communication between
a mobile node and a corresponding node.

a) Bidirectional tunneling In this mode, the mobile node tunnels the packets in-
tended for the correspondent node through its home agent. Reciprocally, the
home agent intercepts packets addressed to the mobile node’s home agent
and tunnels those packets to the mobile node via its care-of address.

b) Route optimization This mode allows the optimal route between the mobile
node and the correspondent node. The mobile node registers its current ad-
dress binding with the correspondent node. In this way, the correspondent
node can send packets directly to the mobile node’s care-of address. In addi-
tion to optimizing the path between nodes, this option also reduces the risk
of congestion at the mobile node’s home agent (as the latter is not involved
in the packet forwarding process).

Route optimization is of course the most satisfactory solution in the long run and
we will therefore focus on it in our brief discussion of security. The reader interested

2.2 Upcoming wireless networks 47

in more details can refer to RFC 4225 “Mobile IP Version 6 Route Optimization
Security Design background”, December 2005.

Security principles and goal The security of Mobile IPv6 obeys two main princi-
ples. The first consists in complying with the end-to-end principle of Internet proto-
cols: In this specific context, this means minimizing the involvement of the routers;
In Mobile IPv6, only the home agent and the communicating nodes need to create
state.

The second principle is related to trust”: It is assumed that the mobile node and
the home agent know each other through a prior arrangement, whereas the mobile
node and the correspondent node do not need to have any prior arrangement.

The security goal of Mobile IPv6 consists in being “as secure as the (non-mobile)
IPv4 Internet”. This means in particular that there is little protection against at-
tackers that are able to attach themselves between a correspondent node and a home
agent.

Attacks The target of an attack can be any node or network on the Internet (station-
ary or mobile). An attacker can either aim at diverting (stealing) the traffic destined
to or sourced at the target node or cause a denial-of-service at the target node or
network. It is important to notice that IPv6 uses the same class of IP addresses for
both kinds of nodes (namely home and care-of addresses on one hand and stationary
nodes on the other hand). This means that attacks that in principle would concern
only mobile nodes are a threat to all IPv6 nodes.

Address stealing If binding updates were not authenticated, an attacker could send
spoofed binding updates from anywhere in the Internet, and realize the attack illus-
trated in Figure 2.7.

The attacker might define the care-of address to be either its own current address,
another address in its local network, or any other IP address. By selecting a care-of
address allowing it to receive packets, the attacker would be able to send replies to
the correspondent node, thus delaying the uncovering of the attack.

We have described only the basic address stealing attack. A number of attacks can
be derived from it; in particular, as it breaks the communication paths, it can be used
to mount denial-of-service attacks.

DoS attacks exploiting binding update protocols An attacker can try to exhaust the
resources of a target (mobile node or correspondent) by sending spoofed IP packets
that trigger a large number of binding update protocol instances.

7 The notion of trust will be discussed in detail in the next chapter.

48 Upcoming wireless networks and new challenges

Original packet flow New packet flow

False Binding Update:
->C

Attacker

Fig. 2.7. Address Stealing attack (RFC 4225): assume a packet flow from node A to node
B. The attacker redirects the packets to a different address, C, by sending a Binding Update
to A (hence node A believes that node B has moved to address C).

Protection mechanisms A robust countermeasure against the address stealing and
flooding attacks consists in a mutual authentication of the nodes involved in a bind-
ing update protocol, typically based on IPsec (described in the previous chapter).
However, to be usable between two arbitrary nodes, IPsec requires a global key man-
agement infrastructure (to be used typically by the Internet Key Exchange protocol,
see RFC 2409), which does not exist, and is unlikely to come into existence any time
soon.

Because of this major problem, a non-cryptographic solution was designed, which
relies on the assumption of an uncorrupted routing infrastructure. The cornerstone of
the solution is Return Routability (RR). The principles are illustrated in Figure 2.8.

It is intuitive that the presence of this test makes attacks much more difficult to
carry out. Yet the detailed description and the security analysis of this protocol are
beyond the scope of this book, and the interested reader is invited to refer to the
related RFCs. Return Routability can of course fall prey to a compromised routing
infrastructure or to an attacker located between the verifier and the address to be
verified.

Finally, we should mention that a possible protection against the mentioned DoS
attacks exploiting binding update protocols can be realized by each node setting
a limit on the amount of resources (processing time, memory, and communication
bandwidth) that it devotes for processing binding updates. However, this can lead to
a self-denying of some of the mobility mechanisms.

Privacy in Mobile IPv6 In this discussion of Mobile IPv6 security, we have con-
sidered only active attackers. However, it is clear that, simply by examining packets,
eavesdroppers can track the movements of individual nodes and therefore of users.
Mobile IPv6 is even more vulnerable to this kind of misdeed, as it adds potentially
sensitive information into the packet, such as Binding Updates. The interested reader

2.2 Upcoming wireless networks 49

Mobile Node (MN)

1) CoTl | | 22 | 3)BU

Home Agent
(HA)

2a) HoT

=

Correspondent
Node (CN)

Fig. 2.8. Return Routability (RFC 4225): The Mobile Node MN checks the routability to
the Correspondent Node CN (a) via the Home Agent HA (message Home Test Init or HoTT)
and (b) directly (message Care-of Test Init or CoTI); the correspondent node replies to both
of them independently by sending a Home Test (HoT) in response to the Home Test Init
and a Care-of Test (CoT) in response to the Care-of Test Init. It is only once the mobile
node has received both Home Test and Care-of Test packets that it sends a Binding Update
to the correspondent node. In addition, the bindings are short-lived, in order to mitigate
the effect of a possible malicious binding update (“time shifting attack”).

can refer to RFC 3041 “Privacy Extensions for Stateless Address Autoconfiguration
in IPv6”, of January 2001.

2.2.6 More on wireless mesh networks

Having provided an overview of the major trends as well as of the security and coop-
eration issues in the most significant types of upcoming wireless networks, we will now
detail two of the examples that we have already mentioned: we will address wireless
mesh networks in this subsection and vehicular networks in the following one. We
have chosen to detail these two examples, because their features provide a very nice
motivation of many of the mechanisms described in Part II and Part III of this book.

WDMNs represent a new network concept and therefore introduce new security

50 Upcoming wireless networks and new challenges

specifics. We describe these specifics by providing an overview of the fundamental dif-
ferences between WMNs and two well-established infrastructure-based technologies:
cellular networks and the Internet.

Difference between WMNs and Cellular Networks The major difference between
WDMNs and cellular networks - besides the use of different frequency bands (WMNs
usually make use of unlicensed frequencies) - concerns the network configuration: In
cellular networks, a given area is divided into cells and each cell is under the control
of a base station. Each base station handles a certain number of mobile stations that
are in its immediate vicinity (i.e., communication between the mobile stations and
the base station is single-hop) and it plays an important role in the functioning of
the cellular network; the entity that plays an equivalent role in WMNs would be the
WHS.

Whereas all the security aspects can be successfully handled by the base station
(with appropriate assistance from an on-line authentication server) in cellular net-
works, it is risky to rely only on the WHS to secure a WMN, given that the com-
munications in WMNs are multi-hop. Indeed, centralizing all security operations at
the WHS would delay attack detection and countermeasure and therefore would give
the adversary an undeniable advantage. Furthermore, multi-hopping makes routing
in WMNs a very important and necessary functionality of the network; and like all
critical operations, an adversary can be tempted to attack it. The routing mechanism
must thus be secured.

Multi-hopping has also an important effect on the network utilization and perfor-
mance. Indeed, if the WMN is not well-designed, a TAP that is several hops away
from the WHS would receive a much lower bandwidth share than a TAP that is next
to it. This leads to severe unfairness problems, and even potentially to starvation.

Difference between WMNs and the Internet In WMNSs, the wireless TAPs play the
role that is played, in the classic (wired) Internet, by the routers. Given that wireless
communications are vulnerable to passive attacks such as eavesdropping, as well as to
active attacks such as Denial of Service (DoS), WMNs are subject to all these attacks,
whose effects are amplified by the multi-hop aspect of the communications.

Another fundamental difference between the Internet and WMNs is that, unlike
Internet routers, the TAPs are not physically protected. Indeed, they are most often
in locations that are accessible to potential adversaries, e.g., deployed on rooftops or
attached to street lights. The absence of physical protection of the devices makes
WDMNs vulnerable to some serious attacks. Indeed, one very important requirement
regarding the TAPs - for the concept of mesh networks to remain economically viable
- is their low cost that excludes the possibility of strong hardware protection of the
devices (e.g., detection of pressure, voltage, or temperature changes). Therefore,

2.2 Upcoming wireless networks 51

attacks such as tampering, capture or replication of TAPs are possible and even easy
to perform.

This brief analysis of the characteristics of WMNs shows that, compared with other
networking technologies, the new security challenges are mainly due to the multi-hop
wireless communications and by the fact that the TAPs are not physically protected.
Multi-hopping delays the detection and treatment of the attacks, makes routing a
critical network service and can lead to severe unfairness between the TAPs, and the
physical exposure of the TAPs allows an adversary to capture, clone or tamper with
these devices.

Security principles of WMNs Before discussing the details of the security chal-
lenges in WMNSs, let us consider a simple example: Figure 2.9 shows a branch of
a WMN where a mobile station MS is within the transmission range of T'AP5; and
therefore relies on it to get Internet connectivity; the data generated and received by
the MS goes through TAP;, TAP, and WHS.

— e e P Hfgﬂg
MS

TAP3 TAP2 TAP1 WHS

Fig. 2.9. A typical communication in WMNs: The mobile station MS is within the transmission
range of TAP3 and relies on TAP; and TAP, to relay its traffic to and from WHS. From [47], ©
IEEE, 2006.

Let us consider an upstream message, i.e., a message generated by the MS and sent
to the Internet. Before this message reaches the infrastructure, several verifications
need to be performed:

e Given that Internet connectivity is a service that (usually) the MS has to pay for,
the TAPs and the WHS have to authenticate the MS.

e The MS has also to authenticate the TAPs to make sure that they belong to a valid
operational WMN. It has at least to authenticate T'AP5, the TAP to which it is
directly connected.

e The TAPs have to authenticate the other TAPs in the WMN to prevent TAP
forgery and to detect intruders.

e Finally, the data sent or received by MS has to be protected (e.g., to ensure data
integrity, non-repudiation and/or confidentiality).

Performing these verifications has to be efficient and lightweight, especially for the
MS; we thus want to avoid, if possible, the use of asymmetric cryptographic operations
by the MS. In fact, the MS being battery operated, the use of public key cryptography
primitives unsuitable as these primitives have a high computational overhead and are

52 Upcoming wireless networks and new challenges

prone to DoS attacks. Indeed, if the authentication protocol requires the computation
or the verification of a signature, this feature can be misused by an adversary that
can continuously ask the MS to compute or verify signatures; this attack can drain
MS’s battery.

In Figure 2.10, we represent a simple way to perform the four aforementioned
verifications in the WMN branch represented in Figure 2.9.

b~ @ & 1 %f%Q

MS TAP3 TAP2 TAP1 WHS
Ey (SRe
L» EKZ(SReQ) Ey (SReq)
_— K, Ek. (SReq)
— 'WHS
——
Ey (SR
Ey (SRep) K,(SRep)
Ey (SRe| 2
SRep Kz(p)

Fig. 2.10. Session establishment: The mobile station MS generates a session request SReq and
encrypts it using T'AP3’s public key K3. Then, TAPs decrypts SReq, encrypts it using TAPy’s
public key and sends it to T'AP», and so on until the message reaches the WHS. The session reply
message SRep is then generated by the WHS and sent back to the MS. It is protected in the same
way as SReq and it contains the information about the session key. From [47], © IEEE, 2006.

We assume, without loss of generality, that each node in the branch (i.e., TAP,
TAP,, TAP; and the WHS) has a public/private key pair that is assigned to it by
the network operator. These keys can be used to establish a session key kg between
MS and the WHS. This session key permits to secure the data sent and received by
the MS while limiting the use of public key cryptography to the session establishment
phase, which is occasional. Note that the session establishment is initiated by the MS
which reduces the risk to an attacker performing the DoS attacks described above.

In Figure 2.10, we represent an example of such session establishment: First, the
mobile station MS generates a session request message SReq and encrypts it using
T AP5’s public key K3. Upon receipt of SReq, T'AP3 decrypts it using its private key
Ky 1 encrypts it using TAP,’s public key and sends it to TAP,, and so on until the
message reaches the WHS.

To exemplify, SReq can be as follows:

SReq = Ex s (ReqID, roamingInfo, k, N)

where ReqID represents the request identifier (to prevent replay attacks), roamingInfo
represents the information needed by WHS to authenticate MS, k is the key that
WHS will use to encrypt the future session reply (SRep), and N is a nonce. SReq is
encrypted using WHS’s public key Kwpys.

The WHS uses roamingInfo to authenticate the MS. This authentication can be

2.2 Upcoming wireless networks 53

done in different ways, depending on the content sent by the MS: For example, using a
temporary billing account (e.g., credit card based authentication), a predefined shared
secret (if the MS is a client of the operator managing the WMN), or a roaming system
similar to the one used in cellular networks (if it is not a client of that operator); the
latter has the advantage of preserving the anonymity of the MS with respect to the
operator of the visited network.

Note that the fact for the WHS to receive a valid SReq message proves that all the
TAPs in the route between the MS and the WHS are valid TAPs. Indeed, assume
that an attacker replaced T AP, by a rogue device TAP;. When T AP} receives SReq,
the message is encrypted using the public key of TAP, and therefore TAP) is not
able to decrypt it correctly; the message T APj sends to TAP; is thus corrupted. If
T AP, is able to check the integrity of the message, it detects the attack and discards
SReq, otherwise the attack will be detected by the WHS as the data in SReq would
be meaningless; the WHS will then discard SReq.

If the session request SReq is valid, then the WHS generates a session reply message
SRep and sends it back to the MS. SRep contains information that allows the MS
(and, if needed, the TAPs in the route) to generate the session key kg and is protected
in the same way as SReq (i.e., encrypted and then decrypted successively using the
public keys of the TAPs in the route). It is also protected against eavesdropping as
the MS has to be the only mobile station that can interpret correctly the data in
SRep; The WHS uses the key k generated by the MS to encrypt the data sent in
SRep.

Once the session key kg is defined, it is used to check the integrity of the exchanged
messages, e.g., by computing Message Authentication Codes (MACs). The verifica-
tion of the MACs can be done end-to-end (i.e., when the session key is known only
to the WHS and the MS) or by each intermediate TAP (i.e., if the TAPs in the
route also know kg). The session key kg can even be used to encrypt the exchanged
messages if data confidentiality is a requirement. It is also possible to use MACs to
authenticate the TAPs involved in the communication and to detect intruders during
the session. Indeed, each two neighboring TAPs can establish (e.g., during session
key establishment) or have a predefined symmetric key that they will use typically
to compute Message Authentication Codes (MACSs) on the exchanged messages® and
therefore to authenticate the nodes involved in the communication hop by hop.

8 MAG s are usually used to verify the integrity of a message, but they can also be used to authen-
ticate the sender of the message. Indeed, assume that two parties A and B share a symmetric
key k. A can generate a message m, use k to compute a MAC on it and then send both m and
the corresponding MAC to B. Upon receipt of these data, B can use k to compute the MAC
on m and compare it to the MAC it received; if the two MACs are identical, and given that A
and B are the only two parties that know k, B can conclude that m was indeed generated by A.

This authentication technique is weaker than the one using asymmetric key cryptography, but it
is efficient.

54 Upcoming wireless networks and new challenges

Three fundamental security operations Our study of WMNs’ specifics has pin-
pointed three critical security operations: (i) securing the routing mechanism, (ii)
enforcement of fairness, and (iii) detection of corrupt TAPs. These challenges are
not the only ones: other network functionalities such as MAC protocols and nodes
locations also need to be protected. In addition, WMNs are vulnerable to the same
kind of selfish behavior as WiFi (see Chapter 9). Yet, we choose to focus on these
three operations because they are, in our opinion, the most critical for WMNs.

Secure multi-hop routing By attacking the routing mechanism, an adversary can mod-
ify the network topology and therefore affect the proper functioning of the network.
For example, the adversary can want to partition the network or to isolate a given
TAP or a given geographic region, or to force the traffic through a specific TAP in
the network (e.g., through a TAP that it has compromised) in order to monitor the
traffic of a given mobile station or a region. Another example would be for the adver-
sary to artificially lengthen the routes between the WHS and the TAPs, which would
seriously affect the performance of the network.

To attack the routing mechanism, the adversary can tamper with the routing mes-
sages or perform DoS attacks:

(i) To prevent attacks against the routing messages, the operator can use one of
the proposed secure routing protocols for wireless multi-hop networks, which
we will describe in Chapter 7.

(ii) DoS attacks represent a simple and efficient way to attack routing. These
attacks can be very harmful, are simple to perpetrate, and are very difficult
to prevent. The adversary can disturb the communications between the TAPs
in a given area and force the reconfiguration of the network. In order to
solve this problem, the operator has to identify the source of the attack and,
if possible, counter it; of course, thwarting this attack will generally require
human involvement.

Fairness In WMNs, all the TAPs use the same WHS as a relay to and from the
infrastructure and therefore the throughput obtained by the TAPs can vary signifi-
cantly depending on their position in the WMN: The TAPs that are more than two
hops away from WHS could starve (i.e., their clients are not able to send or receive
significant traffic), which is highly unfair. The study conducted in [142] identifies the
problem and proposes a solution that guarantees a TAP-fair share of the bandwidth.
However, a TAP-based fairness is not necessarily the best solution for WMNs. Con-
sider as an example the one-dimensional WMN presented in Figure 2.11: A per-TAP
fairness policy leads to flows 1, 2 and 3 having each the same share of the bandwidth,
without taking into consideration the number of clients that are served by each of

2.2 Upcoming wireless networks 55

these TAPs. The bandwidth sharing should be fair client-wise, because the purpose
of a mesh network is to offer a service (typically Internet connectivity) to the mobile
stations that are usually paying the same flat rate. That is why, in the example of
Figure 2.11, flow 2 should have half as much as what flow 1 and flow 3 have, as
TAP?2 is serving only one client, whereas TAPs 1 and 3 are serving two clients each
(assuming all clients have equivalent needs).

o

“
bHiﬂb T i %7fﬁ(5b

e
B taps TAP2 o A TAP1 WHS

Flow 1

Flow 2

Flow 3

Fig. 2.11. The fairness problem. In order to define the bandwidth sharing, it is important to take
into consideration the number of mobile stations served by each of the TAPs. Flow 2 should thus
have half as much as what flow 1 and flow 3 have, as TAP_2 is serving only one client, whereas TAPs
1 and 3 are serving two clients each. From [47], © IEEE, 2006.

The fairness issue is closely related to the number of hops between the TAPs and
the WHS. This means that if the adversary manages to increase the number of hops
between a given TAP and the WHS, it can decrease dramatically the bandwidth share
of this TAP. A possible solution against this attack can be a periodic reconfiguration
of the WMN. Given that the WHS and the TAPs are static, the operator can define
- based on the traffic in the WMN - the optimal configuration of the WMN and force
the routes at the TAPs to the optimal routes. Once the network has an optimal
configuration, it is possible to use appropriate scheduling techniques to ensure per-
client fairness and to optimize the bandwidth utilization in the WMN; see Section 2.5
for references on this topic.

Detection of corrupt TAPs As explained previously, mesh networks typically employ
low-cost devices that cannot be protected against removal, tampering or replication.
An adversary can thus capture a TAP and tamper with it. Note that if the device
can be remotely managed, the adversary does not even need to physically capture the
TAP: A distant hacking into the device would work perfectly. The WHS plays a special
role in the WMN and can handle or store critical cryptographic data (e.g., temporary
symmetric keys shared with the mobile stations, long-term symmetric keys shared
with the TAPs, etc.). Therefore, we assume that the WHS is physically protected.

56 Upcoming wireless networks and new challenges

We identify four main attacks that can be performed on a compromised TAP,
depending on the goals the adversary wants to achieve.

The first attack consists in the simple removal or replacement of the TAP in
order to modify the network topology to the benefit of the adversary. This attack can
be detected by the WHS or by the neighboring TAPs when a sudden and permanent
topology change is observed in the network.

The second attack consists in accessing the internal state of the compromised
TAP without changing it. The detection of this attack is difficult, given that no
state change is operated on the TAP. Disconnecting the device from the WMN might
not be required for the adversary to successfully perform the attack; and even if
a disconnection were required, the “absence” of the device might not be detected,
as it can be assimilated to some congestion problem. If this attack is successful, it
guarantees to the adversary the control of the corrupt TAP and a perfect analysis of
the traffic going through it. This attack is more serious than simple eavesdropping on
the radio channel because the adversary, by capturing the TAP, can retrieve its secret
data (e.g., its public/private key pair, the symmetric key shared with the neighboring
TAPs or with the WHS, etc.) and can use these data to compromise, at least locally,
the security of the WMN, especially data confidentiality and integrity, and client
anonymity. Unfortunately, there is no obvious way to detect this attack. However, a
possible solution that mitigates its effect is a periodic erasure and reprogramming of
the TAPs; the adversary is then obliged to compromise the device again.

In the third attack, the adversary modifies the internal state of the TAP such
as the configuration parameters, the secret data, etc. The purpose of this attack can
be, for example, to modify the routing algorithm at the compromised node in order
to change the network topology. This attack can be detected by the WHS using a
software attestation mechanism, see Section 2.5.

Finally, the fourth attack consists in cloning a given TAP and installing the replicas
at some strategically chosen locations in the mesh network, which allows the adversary
to inject false data or to disconnect parts of the WMN. This attack can seriously
disrupt the routing mechanism, but it can be detected using appropriate techniques
for the identification of replicated nodes, see Chapter 4.

Two attack examples In order to illustrate the attacks described so far, we give
two attack examples that an adversary can perpetrate against the WMN (see Fig-
ure 2.12 (a)). In the first attack, the adversary corrupts T AP», whereas in the second
attack, it performs a DoS attack - based on jamming - on the communication link
between TAPs and T APs. Note that we assume the two attacks to be performed by
the same adversary, which represents the worst case (as it gives more power to the
adversary).

The goal of these attacks can be the following: First, by corrupting T'APs, the

2.2 Upcoming wireless networks 57

adversary can retrieve its secret data and therefore can compromise the integrity and
confidentiality of the data going through it, as well as the anonymity of the mobile
stations attached to TAP,, TAP3; and T AP,. Second, the DOS attack is a very simple
and efficient way to partition the WMN and trigger a network reconfiguration, which
will force more of the traffic to flow through the compromised T'AP.

It is imperative to detect these attacks in order to react accordingly. A possible
reaction to the corrupt TAP attack can be the replacement, by the network operator,
of the compromised T AP, (see Figure 2.12 (b)). The detection and disabling of the
jamming station can be more delicate: Finding the exact location of this station can be
difficult and, even if it is found, the network operator might not have the authority
to disable it (especially in the likely case where both the WMN and the jamming
station are operating in unlicensed band); in this case, a network reconfiguration is
required. This connectivity change affects the routing and can increase the number of
hops from a given TAP to the WHS (for example, in Figure 2.12, T AP was 2-hops
away from the WHS but after the network reconfiguration, it is 7-hops away), which,
as shown previously, can dramatically affect the performance of the WMN. Note that
the operator can decide to abandon a given TAP location if it is particularly exposed
(the TAP located there is repeatedly corrupted), in which case it would be necessary
to deploy additional devices to make up for the coverage gap.

Multi-operator WMNs So far, we have assumed the WMN to be managed by
a single operator, but a mesh network can also designate a set of wireless devices
belonging to different networks and controlled by different operators. Ensuring se-
curity is more delicate in this case: In addition to the security challenges that we
have already identified, one has to add challenges such as the mutual authentication
of nodes belonging to different “operating domains” or the application of different
charging policies for each of these domains (which can affect fairness).

Another important security challenge results from the utilization of the same spec-
trum by the different operators. If we assume that a mobile station can freely roam
across TAPs that are managed by different operators and that it attaches to the neigh-
boring TAP with the strongest signal, each operator can be tempted to configure its
TAPs to always transmit at the maximum authorized level (and thus make sure that
it is heard by the maximum number of mobile stations). This situation can lead to
a bad performance of the WMN, but can be solved using Multi-radio/Multi-Channel
(MR-MC) TAPs in the WMN (we will discuss this issue in Chapter 11). Note that
the use of MR-MC TAPs can also mitigate the effect of the DoS attack; instead of
jamming a single channel, the adversary has to jam all the channels used by a given
node to completely disable it.

58 Upcoming wireless networks and new challenges

Jamming attack

TAP8 x I l

I 4
TAP4 b & — | & 7 V= 4
TAP3 TAP2 TAP1
(COMPROMISED)

(a) Attacks

Jamming attack

_—
AR BN EaylN " 4
TAP3 TAP2 TAP1
(REPLACED)

(b) Countermeasures

Fig. 2.12. Two attacks and the related countermeasures: In (a), the adversary corrupted T AP,
and placed a jamming station between TAPs and TAPs. As shown in (b), the detection of these
attacks leads to the reconfiguration of the WMN: the operator replaced the compromised T AP, by
an uncorrupted equipment and updated the routing. In this example, the reconfiguration leads to

much longer routes for some TAPs (e.g., TAPs was 2-hops away from the WHS and is now 7-hops
away). From [47], © IEEE, 2006.

2.2 Upcoming wireless networks 59

2.2.7 More on vehicular networks

Having described mesh networks, we now will provide a description of the challenges
of vehicular networks, and sketch a “reasonable” solution. The problem is much more
involved than in the case of mesh networks and the progress towards the solution in
the academic and industry communities has proved to be much slower.

Vulnerabilities

Any wireless-enabled device that runs a rogue version of the vehicular communication
protocol stack poses a threat. We denote such rogue devices deviating from the defined
protocols as adversaries or attackers.

The adoption of a variant of the widely deployed IEEE 802.11 protocol? by the vehi-
cle manufacturers makes the attacker’s task easier. And even possession of credentials
cannot ensure alone the correct operation of the nodes. The nature of the attacker
(internal or external, rational or malicious, independent or colluding, persistent or
random) has an overwhelming influence on the amount of damage she can generate.
Here, rather than analyzing specific protocols, we are after a general exploration of
VC (vehicular communications) vulnerabilities.

Forgery The correctness and timely receipt of application data is a major vul-
nerability. Figure 2.13 illustrates the rapid “contamination” of large portions of the
vehicular network coverage area with false information where a single attacker forges
and transmits false hazard warnings (e.g., ice formation on the pavement), which are
taken up by all vehicles in both traffic streams of vehicles.

In-transit traffic tampering Any node acting as a relay can disrupt commu-
nications of other nodes: it can drop or corrupt messages, or meaningfully modify
messages. In this way, the reception of valuable or even critical traffic notifications or
safety messages can be manipulated. Moreover, attackers can replay messages, e.g., to
illegitimately obtain services such as traversing a toll check point. In fact, tampering
with in-transit messages can be simpler and more powerful than forgery attacks.

Impersonation Message fabrication, alteration, and replay can also be used to-
wards impersonation. Arguably, the source of messages, identified at each layer of the
protocol stack, could be of secondary importance. Often, it is not the source but the
content (e.g., hazard warning) and the attributes of the message (freshness, locality,
relevance to the receiver) that count the most. However, an impersonator can be
a threat: consider, for example, an attacker masquerading as an emergency vehicle
to mislead other vehicles to slow down and yield. Or, an adversary impersonating
roadside units, spoofing service advertisements or safety messages.

Privacy Violation With vehicular networks deployed, the collection of vehicle-
specific information from overheard vehicular communications will become particu-

9 http://grouper.ieee.org/groups/scc32/dsrc/

60 Upcoming wireless networks and new challenges

Attacker

‘Victims'
contaminated
with false alarm

Roadside
base station

Fig. 2.13. Message forgery: the attacker disseminates false alarms, e.g. in order to induce
the drivers to brake abruptly. From [321], © IEEE, 2006.

larly easy. Then, inferences on the drivers’ personal data could be made, and thus
violate her privacy. The vulnerability lies in the periodic or frequent messages gener-
ated by a vehicle: safety and traffic management messages, context-aware data access
(e.g., maps, ferryboat schedules), transaction-based communications (e.g., automated
payments, car diagnostics), or other control messages (e.g., over-the-air registration
with local highway authorities). In all such occasions, messages will include, by de-
fault, information (e.g., time, location, vehicle identifier, technical description, trip
details) that could precisely identify the originating node (vehicle) as well as the
drivers’ actions and preferences (Figure 2.14).

On-board Tampering Beyond abuse of the communication protocols, the at-
tacker can select to tinker with data (e.g., velocity, location, status of vehicle parts)
at their source, tampering with the on-board sensing and other hardware. In fact,

2.2 Upcoming wireless networks 61

v

* A enters the
@ parking lofattime
3

* A downloads
from server X

* A refuels at tinfe
t2 and locafion
S T k2y2,22)

@ At (xdy1,21)

at time t1
* A communicates
with B

Fig. 2.14. Vehicle tracking: the attacker has deployed three rogue antennas and takes ad-
vantage of the messages transmitted by the victim vehicle (A) in order to track her. From
[321], © IEEE, 2006.

it can be simpler to replace or by-pass the real-time clock or the wiring of a sensor,
rather than modifying the binary code implementation of the data collection and
communication protocols. Any VC security architecture should achieve a trade-off
between robustness and cost due to tamper-proof hardware.

Jamming The jammer deliberately generates interfering transmissions that pre-
vent communication within their reception range. As the network coverage area, e.g.,
along a highway, can be well-defined, at least locally, jamming is a low-effort exploit
opportunity. As Figure 2.15 illustrates, an attacker can relatively easily, without com-

62 Upcoming wireless networks and new challenges

Roadside
base station

Jammer

Fig. 2.15. Spectrum jamming: communications are disrupted in the neighborhood of the
jammer. From [321], © IEEE, 2006.

promising cryptographic mechanisms and with limited transmission power, partition
the vehicular network.

Challenges

The operational conditions, the constraints, and the user requirements for VC systems
make security a hard problem. We now discuss the most significant challenges specific
to VC.

Network Volatility The connectivity among nodes can often be highly transient
and a one-time event. For example, two vehicles (nodes) passing by each other will re-
main, in general, only for a few seconds within their transceiver range. In other words,
vehicular networks lack the relatively long-lived context and, possibly, the personal
contact of the device users of a connection to a hot-spot or the recurrent connection to
an on-line service across the Internet. Hence password-based establishment of secure
channels, gradual development of trust by enlarging a circle of trusted acquaintances,
or secure communication only with a handful of endpoints are impractical for securing
VC.

Liability vs. Privacy To make the problem harder, accountability, and eventu-
ally liability, of the vehicles and their drivers is required. Vehicular communication is
envisioned as an excellent opportunity to obtain hard-to-refute data that can assist

2.2 Upcoming wireless networks 63

legal investigations (e.g., in the case of accidents). This implies that, to begin with,
unambiguous identification of the vehicles as sources of messages should be possible.
Moreover, context-specific information, such as coordinates, time intervals, and asso-
ciated vehicles, should be possible to extract or reconstruct. But such requirements
raise even stronger privacy concerns. This is even more so when drivers’ biometrics
are considered: Biometrics, useful for enhancing vehicle access and control methods,
are highly private and unique data cannot be reset or reassigned.

Delay-Sensitive Applications Many of the envisioned safety and driver-assistance
applications pose strict deadlines for message delivery or are time-sensitive. Security
mechanisms must take these constraints into consideration and impose low processing
and messaging overhead. Not only must protocols be lightweight, they must also resist
to denial-of-service attacks. Otherwise, it would suffice for an adversary to generate
a high volume of bogus messages and consume resources so that message delivery is
delayed beyond the application requirements, and thus, in practice, denied.

Network Scale The scale of the network, with roughly a billion vehicles around
the globe, is another challenge. This, combined with the multitude of authorities
governing transportation systems, makes the design of a facility to provide crypto-
graphic keys a challenge per se. A technically and socially convincing solution is a
prerequisite for any security architecture.

Heterogeneity The heterogeneity in VC technologies and the supported applica-
tions are additional challenges, especially taking into account the gradual deployment.
With nodes possibly equipped with cellular transceivers, digital audio and Geograph-
ical Positioning Service (GPS) or Galileo receivers, reliance on such infrastructure
should not be the weakest link in achieving security. For example, if GPS signaling
can be spoofed, can the correctness of node coordinates and time accuracy be as-
sumed? In addition, with a range of applications with differing requirements, security
solutions must retain flexibility, yet, remain efficient and interoperable.

Slow penetration The adoption of wireless communications will be a very pro-
gressive process, spanning at least over two decades before all vehicles are equipped.
This means that any deployed architecture must be able to cope with the presence of
not (yet) equipped vehicles.

Security architecture

In this section, we present the components needed to protect VC against the wide
range of threats that we have just discussed. This provides an AAA (authentication,
authorization, accounting) framework for VC. We present in Figure 2.16 a “reason-
able” possible architecture, the components of which are described next. As the field
is still pretty immature at the time of this writing, this architecture should be consid-
ered as an “educated guess” (based on the many discussions that we had with several
representatives of the automotive industry) rather than the ultimate solution.

64 Upcoming wireless networks and new challenges

Services (e.g., toll
payment or
infotainment)

Secure positioning

Secure multihop routing

\/7 ~————

,/ Authenticated
/ message

~

Safety
message

! : Ty
| I 1 {Position, speed,

l m 1 : acceleration, direction,

| i ! time, safety events }

Cryptographic
material

—_————
e

| {Signer's digital signature , !
| Signer's public key PK, !

| CA's certificate of PK }

\
—————————_

Data verification

Fig. 2.16. Overview of the security architecture. The represented scenario depicts an au-
thenticated safety message generated from a vehicle involved in a collision. The message is
relayed hop by hop in the direction opposite to the one of the vehicles, by a secured rout-
ing protocol. Each vehicle checks the correctness of the signature and the plausibility of
the reported event. Secure positioning, also sketched in the figure, is an advanced (if not
futuristic) feature by which each vehicle will be able to prove that it is really located at the
position where it claims to be. From [321], © IEEE, 2006.

Security hardware Among the vehicle onboard equipment, two logical blocks are
needed for security, namely the Event Data Recorder (EDR) and the Tamper-Proof
Device (TPD).10

The EDR will be responsible for recording the vehicle’s critical data, such as posi-

10 Tn some proposals, both modules are implemented in the same hardware module.

2.2 Upcoming wireless networks 65

tion, speed, time, etc., during emergency events, similarly to an airplane’s black box.
These data will help in accident reconstruction and in attribution of liability. EDRs
are already installed in many road vehicles, especially trucks. These can be extended
to record also the safety messages received during critical events.

The car electronics, especially the data bus system, are easily accessible by the
owner or by a mechanic. Hence the cryptographic keys of a vehicle need proper
hardware protection, namely a TPD. The TPD will take care of storing all the cryp-
tographic material and performing cryptographic operations, especially signing and
verifying safety messages. By binding a set of cryptographic keys to a given vehicle,
the TPD guarantees the accountability property as long as it remains inside the ve-
hicle. The TPD has to be as independent as possible from its external environment,
hence it should include its own clock and have a battery that is periodically recharged
from the vehicle’s electric circuits. Yet, despite all these “features”, the TPD will still
suffer from the fact that it cannot control the correctness of the data it receives. This
can result in the TPD signing messages with bogus data. A solution to this problem
is to cross-check (among several neighboring vehicles) the plausibility and consistency
of the reported data.

A major obstacle to the adoption of TPDs is their high cost. But current products
are mainly intended for computation-hungry financial applications. Hence there are
several factors that can facilitate the introduction of TPDs in vehicles: (i) the creation
of a “lighter” version of TPDs, (ii) the leverage on the building-up expertise for
vehicular EDRs, and (iii) the economy of scale that will drive costs significantly lower.

Vehicular Public Key Infrastructure The large number of vehicles registered
in different countries and traveling long distances, well beyond their registration re-
gions, requires a robust and scalable key management scheme. Communication via
base stations (as in cellular networks) is not enough for VC, mainly because vehi-
cles need to authenticate themselves not only to base stations but also to each other
(without invoking any server), which creates a problem of scalability. In addition,
symmetric cryptography does not provide the non-repudiation property that allows
the accountability of drivers’ actions (e.g., for accident reconstruction or in order to
find the originators of forgery attacks). Hence, the use of public key cryptography is
a more, if not the only, suitable option for deploying VC security.

This implies the need for a Vehicular Public Key Infrastructure (VPKI) where
Certificate Authorities (CAs) will issue certified public/private key pairs to vehicles.
Similarly to current vehicle registration authorities, there will be several CAs, each
corresponding to a given region (e.g., country, state, metropolitan area, etc.). Other
candidates for taking the role of CAs are car manufacturers. In any of the two cases,
the different CAs will have to be cross-certified so that vehicles from different regions
or different manufacturers can authenticate each other. This will require each vehicle

66 Upcoming wireless networks and new challenges

to store the public keys of all the CAs whose certificates it needs to verify. Alternately,
in the case where CAs are regional authorities, vehicles can request new public/private
key pairs delivered by the foreign region they enter.!!

Authentication The fundamental security functions in VC will consist in authenti-
cating the origin of a data packet. Authentication and the inherent integrity property
counter the in-transit traffic tampering and impersonation vulnerabilities. In addi-
tion, authentication helps to control the authorization levels of vehicles.

To authenticate each other, vehicles will sign each message with their private key
and attach the corresponding certificate. Thus, when another vehicle receives this
message, it verifies the key used to sign the message and once this is done correctly, it
verifies the message. To reduce the security overhead, the common approach is to use
ECC (Elliptic Curve Cryptography) - the most compact public key cryptosystem so
far. But it is possible to reduce this overhead by signing only critical messages (e.g.,
with accident warnings) or one in every few messages (the frequency and redundancy
of messages can allow this). In addition, given the frequency of safety message broad-
casts (typically, every 100 ms according to the current draft standards), a vehicle can
ignore redundant messages.

Privacy To address the privacy vulnerability, a reasonable solution consists in using
a set of anonymous keys that change frequently (e.g., every couple of minutes) accord-
ing to the driving speed. Each key can be used only once and expires after its usage;
only one key can be used at a time. These keys are preloaded in the vehicle’s TPD
for a long duration, e.g., until the next yearly checkup; the TPD takes care of all the
operations related to key management and usage. Each key is certified by the issuing
CA and has a short lifetime (e.g., a specific week of the year). In addition, it can be
tracked back to the real identity of the vehicle - the Electronic License Plate (ELP) -
in case law enforcement necessitates this and only after obtaining a permission from
a judge. This conditional anonymity will help determine the liability of drivers in the
case of accidents. The downside of this approach is the necessity for storage space for
all the keys for one year, but these can fit in only a few Mbytes [318].

Link with the chapters of Part II and II1

With respect to the mechanisms described in the rest of the book, the reader is in-
vited to identify the similarities with other networks, but also the peculiarities of
vehicular networks. The design of vehicular networks security can leverage, to some
extent, on the techniques related to identity management, described in Chapter 5.
Likewise, secure neighbor discovery and secure routing between vehicles can be based

11 In this context, “foreign” means a region different from a vehicle’s home region.

2.8 Trends and challenges in wireless networks 67

on the mechanisms provided in Chapters 6 and 7. The difficult problem of key re-
vocation is described in Section 5.5. In addition, privacy can be designed according
to some of the techniques described in Chapter 8. Finally, the cooperative features
of vehicular networks (such as fine-grained traffic optimization) could be modeled by
means of game theory (see Part III for some examples of applications to other kinds
of networks), although this is still an open research topic.

2.3 Trends and security challenges in wireless networks

From the examples provided in the previous section, we can infer a certain number
of trends. For this purpose, let us consider again the classical cellular network: an
operator, alone in its licensed frequency band, operates a set of base stations; the
mobile stations, each duly equipped by the operator with a secret key, communicate
in one hop with those base stations. The analysis of the upcoming wireless networks
that we have just described shows that all the characteristics of this model will be
progressively relaxed.

Indeed, as we move from centralized networks to distributed or even self-organized
networks, security (and in particular key management) must be redesigned. As we
will see, even the apparently simple notions of naming and addressing require specific
attention, and we will devote a full chapter to them. In a subsequent chapter, we will
also show that the mobility of the nodes can be used to establish security associations
between nodes.

Multi-hopping increases the “security distance” between the device under the
control of the operator (base station, access point) and the mobile station. Conse-
quently, appropriate measures must be taken to prevent malicious or greedy behavior
from affecting the proper operation of the network.

The growing programmability of the devices provides the users with more flexi-
bility, in the sense that they can for example easily install new applications on their
devices. But at the same time, the devices can be misused to mount attacks of growing
sophistication; likewise, greedy behavior becomes a serious threat.

In addition, wireless devices are particularly vulnerable, in the sense that they
can be captured and potentially reverse engineered. An attacker can make clone a
captured device, typically to mount a Sybil or a replication attack.

Another dimension is the growing relevance that wireless personal devices is
taking: for example, mobile phones are used more and more to support payment
operations, which of course renders them even more attractive for potential attackers.

In a growing number of cases, these personal devices are also expected to deal with
heterogenous networks, for example by selecting the most advantageous connec-
tion offered in the neighborhood (e.g., WiFi Vs. cellular). As the various networks

68 Upcoming wireless networks and new challenges

are protected by mechanisms that can substantially differ from each other, this het-
erogeneity can be exploited by badly intentioned people.

Arguably the most formidable change is due to the emergence of wireless commu-
nications between embedded devices such as vehicles and sensors: The communi-
cation does not directly involve human beings anymore, but as we have seen, this fact
does not (by any means) make security or cooperation easier.

The miniaturization of the devices means that they will always have to cope
with limited computing power, transmission capabilities, and energy reserves. Con-
sequently, the security mechanisms will need to take these limitations into account;
likewise, these limitations will fuel the temptation of selfish behavior.

As we have seen in the previous examples, many wireless devices are mobile, and
their study requires making use of appropriate mobility models. The most popular
one is certainly the random waypoint model, in which a given mobile chooses a random
destination in the eligible space and moves to it in straight line at a randomly chosen
speed (up to an imposed maximum speed). Once it reaches that location, it stays
there for an amount of time generated randomly (again upper bounded by a given
value) and then it starts the process again.

Another important evolution to take into account is cognitive or smart radios.
Radios of this kind are able to sense their environment in order, for example, to
switch to a less congested frequency. This can pave the way to underlay systems, in
which a chunk of the spectrum is reserved to a primary operator (e.g., a television
broadcast operator), but can also be used by secondary users, provided that the latter
bring minimal interference to the former. Software-defined radios will tremendously
facilitate this evolution.

Another possible underlay can be based on Ultra Wide Band (UWB) radios,
which transmit at very low power over an extremely wide band (in the order of several
GHz). Their proper operation is technically challenging and requires, in particular, a
very tight synchronization. An interesting additional feature of UWB technology is
that it can be used for distance estimation.

As it is well known, the pervasiveness of the wireless technology raises delicate
trade-offs between usability and privacy. This latter topic is so important that we
will devote a full chapter to it (Chapter 8).

2.4 Summary

In this chapter, we have seen that the evolution of wireless networks leads to a large
number of challenges in terms of security and cooperation. In Figure 2.4, we provide
the relationship between the types of networks that we have just described and the
mechanisms of security and cooperation that we will define and discuss in the chapters
of Part IT and III.

69

2.4 Summary

TII 31ed Jo s1o3deyd o) 03 puodsellod INOJ 1se[o) SeaIdYM ‘Y0OO(SIU} JO
11 3ed Jo sioydeyd oy} 0} puodsaliod SUWIN[OD OAT)SI o], "Papeau jou (A[qeqolid) ST WSIURYDOU JRI[} JeY) SURSUI YUR[q © PUe
‘popeaU ST WISITURYDSW BT} ISYIOYM IRS[OUN ST J1 JRY) SURIW ;j © ‘YIOMIOU JRe() IOJ POPodU ST WSTURYDISIW oY) JRY) SuURIW X,
ue ‘YI0MI9U JeY) I10J [RIONId A[renoljred ST WISIURYDOLOUL O})R} SUBSW X, UR 9I0UM ‘WSIURYDOUW JUeAd[al A[qissod e soqLIosep
uwmod yoey] *(Yons se JI0MI9U SSI[odlm ® JOU ST 1 9SIRISQ ¢ JOUIIU] S} Ul AY[IQOJA],, SUIPN[OUl WOI] paureljal am Inq) 1odeyo
ST} Ul POQLIOSOp 9ARY oM e} YIomjau Sururoddn ue o) Spuodsollod MOl [oer SWSIURYIOW ‘SA SyIomjou Jurwododn “L1°Z “Sig

ariyg
SIIOM)OU I0SUDG

SI0MPOU TR[NOTYDA

SMN 'Y e o[iqow paziue3io jog
TAUD J[ISOY Wl SMN U "' 9[IqOIN
S)I0M)oU D0Y pe PLIqAH
syI0M)OU USOIN

wnaijoads pareys ut ‘do remipe)
SAMN “wuwoo siojerado [[euwg

Mo o | o
S
M e
K=

KR ™[R X%
A ik ke
A L

A A G R B R B B ER
®
A e P T S P B

0,
P’l_]
L,

SoT[TUIR] JI0MION

Ly,
» 8[11[,

By
Dp@

STWISTURTYODA]

70 Upcoming wireless networks and new challenges

2.5 To probe further

Gambiroza, Sadeghi, and Knightly study the characteristics of wireless mesh net-
works in terms of capacity and delay constraints [142]. Ben Salem and Hubaux [46]
show how to ensure per-client fairness in such networks and how to optimize the
bandwidth utilization. Kodialam and Nandagopal [221] explain how WMNs capacity
can be increased by multi-radio and multi-channel TAPs.

As for mobile ad hoc networks, the routing protocols are discussed in [306]. An
outlook for self-organized mobile ad hoc networks can be found in [183]. The reader
interested in references on the security aspects of routing in mobile ad hoc networks
is referred to Chapter 7.

The research on vehicular communications security is just beginning, with few
pioneer papers so far. In [55], Blum and Eskandarian describe a security architecture
for VC intended mainly to counter the so-called “intelligent collisions” (meaning that
they are intentionally caused). But this is only one type of attacks and building
the security architecture requires awareness of as many potential threats as possible.
They propose the use of a PKI and a virtual infrastructure where cluster-heads are
responsible for reliably disseminating messages (by a sequential unicast instead of
broadcast) after digitally signing them. Gerlach [146] describes the security concepts
for vehicular networks. Hubaux, Capkun, and Luo [184] take a different perspective
of VC security and focus on privacy and secure positioning issues. They point out the
importance of the tradeoff between liability and anonymity and introduce Electronic
License Plates (ELP), unique electronic identities for vehicles. Parno and Perrig [302]
discuss the challenges, adversary types and some attacks; they also describe several
security mechanisms that can be useful in securing these networks. Raya and Hubaux
[318] describe a security and privacy architecture for VANETSs with first evaluations
of the security overhead; along with Papadimitratos, they further refine the issue,
including revocation aspects in [321]. El Zarki et al. [387] describe an infrastructure
for VC and briefly mention some related security issues and possible solutions.

The reader interested in the privacy aspects of vehicular (and other) networks is
referred to Chapter 8.

The IEEE P1609.2 standard [195] is part of the DSRC standards for vehicular
communications supported by the US Vehicle Safety Communication Consortium
(VSCC). It proposes using asymmetric cryptography to sign safety messages with
frequently changing keys so that anonymity is preserved. There is no mechanism
proposed for certificate revocation. Instead, certificates have short lifetimes and are
periodically requested by vehicles through roadside base stations, implying the need
for a pervasive infrastructure.

In Europe, vehicular communications security is partially considered within the
projects NoW (Network on Wheels, http://www.network-on-wheels.de/) and GST

2.5 To probe further 71

(Global System for Telematics, http://www.gstproject.org/) as well as by the Car2Car
Communication Consortium (C2C-CC, http://www.car-to-car.org/). It is being
fully addressed by the European project SEVECOM (SEcure VEhicular COMmu-
nications, http://www.sevecom.org) that focuses on providing a full definition and
implementation of security requirements for vehicular communications.

Finally, a solution to provide privacy in vehicular networks is provided by the
CARAVAN scheme [331].

In terms of mobility models, the random waypoint is described in the work
by Johnson and Maltz [208]. Some limitations and recommended precautions have
been elaborated by Yoon, Liu, and Noble [384]. As for vehicular communications,
Choffnes and Bustamante [98] have explored the integration of road mobility and
traffic models, and stressed the substantial difference between vehicular mobility and
the random waypoint model. Finally, the reader interested in more advanced aspects
of mobility models can refer to the work by Le Boudec and Vojnovic [61], which
studies the properties of a broad family of mobility models.

Cognitive radios have attracted a tremendous amount of research interest over the
last years. For a survey, refer to Akyildiz et al. [17].

The detection of pressure, voltage, or temperature changes can be realized by appro-
priate techniques, but there is no absolute guarantee of perfect tamper-proofness, as
mentioned by Anderson and Kuhn [25]. Seshadri et al. [339] propose software-based
attestation techniques which can be used, as we have seen, to detect compromised
TAPs. Finally, the technique proposed by Parno, Perrig, and Gligor [303] can be used
for the distributed detection of node replication attacks.

Note: Intrusion detection techniques are now routinely used in (wired) networks.
We do not discuss them here, because they do not seem to exhibit significant pecu-
liarities in the case of wireless networks (beyond the protection techniques presented
in Part II). Another aspect that we do not develop in this book is the recent area of
secure positioning; the interested reader can refer to [86].

A comprehensive survey on sensor networks and applications can be found in [18]
written by Akyildiz et al. In addition, several projects have explored the research
field of sensor network security. A recent example from Europe is the UbiSec&Sens
Project (http://www.ist-ubisecsens.org).

Many details about the fundamentals of RFID technology can be found in [137]. A
historical overview of the evolution of RFID security from World War II until today
is presented in [325]. A comprehensive survey on the security and the privacy issues
in RFID systems, including an outlook to potential research problems in the field,
can be found in [211] written by Juels.

72

Upcoming wireless networks and new challenges

2.6 Questions

(a)
(b)
(©)

In your opinion, what are the three principal reasons why hybrid ad hoc net-
works are so difficult to implement?

Why is cooperation between nodes a non-issue in the case of mobile ad hoc
networks in hostile environments?

Assume a group of ten persons, each equipped with a laptop containing an
IEEE 802.11 adaptor. Is that enough to set up a self-organized mobile ad
hoc network? If yes, give a simple solution by which they could make their
communications confidential to non-members of the group? What if they want
peer-to-peer confidentiality within the group? What happens if a new member
joins the group? What happens if a member leaves the group?

Why is it not possible to rely exclusively on symmetric cryptography in order
to secure vehicular networks?

Why is privacy an issue in vehicular networks, considering that today’s vehicles
have licence plates?

Would it be possible to get rid of the certification authority, and let each vehicle
generate its own signatures? Why?

3

Trust assumptions and adversary models

Before diving into the mechanisms of malice and selfishness prevention, which will be
the topic of the rest of this book, we will now focus on the notion of trust and we will
refine the definition of the adversary model.

3.1 About trust

As we have already hinted in the previous chapter, building and maintaining trust
will be much more difficult in upcoming wireless networks than in existing ones. Yet,
trust is absolutely fundamental for the future of (wireless) communications. Once
computing has become ubiquitous, it will probably be de facto mandatory, as are al-
ready today mobile phones and personal computers; but what if it is not trustworthy?
What if it is as unsafe as today’s Internet? Moreover, no business is possible without
trust, and wireless networks are essentially driven by business considerations.

Trust can be defined as the belief that another party (a person, an organization,
but also a device) will behave according to a set of well-established rules and will
thus meet one’s expectations. This notion is fundamental in all human societies (and
also in many animal groups); generally, a breach of trust is considered to be a major
offense.

But trust is a fuzzy notion, be it considered across persons or across areas of
competence: No matter how close they are to each other, different people may trust
very different things, even in front of the same evidence. Likewise, a person A may
trust a person B for the accomplishment of a certain task, but not another: most
people trust their mother in general, but rarely for piloting a helicopter; similarly,
a subscriber trusts a cellular operator to provide her with connectivity over a given
territory, but not necessarily for striking the most advantageous roaming deals (from
the subscriber’s point of view) with other operators. To make things worse, even in
a given area of competence, trust is neither symmetric nor transitive.

73

74 Trust assumptions and adversary models

It is important at this stage to position trust with respect to security and to coop-
eration.

Trust preerxists security. As mentioned, initially trust is a “natural” phe-
nomenon, and it has existed for millennia, before any concept of security was in-
vented. Security is simply a technique to infer trust: if I trust something, security
can help me trusting something else. For example, if I trust that my personal com-
puter is not compromised, that the security protocol I use is not flawed, and that the
cryptographic algorithm running on both sides is not (yet) broken, then I can trust
that what I see on my screen is indeed a Web page corresponding to my bank and I
can carry out my e-banking transactions with the legitimate belief that I will not be
defrauded. It should be clear from this simple example that any security mechanism
requires some level of trust in its underlying components.

Cooperation reinforces trust. In the definition that we have provided, trust is
about the ability to predict the behavior of another party. People being what they
are, a reasonable assumption is to assume selfishness of the other parties. Therefore,
if a system is designed in such a way that the socially desirable behavior coincides
with a party’s vested interest, then it is likely that that party will indeed behave as
desired.! Hence the possible emergence of a virtuous cycle: I observe the other party’s
cooperative behavior. This lets me believe that she will continue to be cooperative in
the future, and hence my trust in her. It also encourages me to be cooperative, which
will reinforce the trust that she has in me, etc.

Because of the complex characteristics of trust, and as it is very deeply rooted
in our human nature, trust is difficult to quantify and to model, in the same way
as the “quality of service” of a communication application is difficult to assess in a
fully objective way. It is in fact easier to describe the reasons to trust someone or
something, which are the following.

Moral values As mentioned, any society has its rules, and in many cases we will
consider that other parties obey these rules, typically because of their educa-
tion or because they fear bad publicity, should their misbehavior be disclosed.
So for example, we trust a large cellular operator to protect our privacy as
long as there is no strong reason (e.g., a legal enquiry) to depart from that
attitude.

Experience about a given party Previous interactions are of course revealing about
the trustworthiness of a given party; these interactions can be either first hand
or be reported by other parties, meaning that reputation is a fundamental
component of trust. Of course, the frequency of the interactions as well as

1 As explained in Appendix B, this situation corresponds to the case in which Pareto-optimality
coincides with a Nash equilibrium.

3.2 Trust in the era of ubiquitous computing 75

the durability of the other parties (and of their identifiers) are very important
to make experience relevant.

Rule enforcement organization If the stakes are high (e.g., the risk of accident
when driving a car), the obedience to the rules is further “encouraged” by
a specialized agency. For example, the way cellular operators use the radio
spectrum is usually regulated by a governmental agency; the way mobile users
make use of the radio spectrum is usually controlled by the operator.

Rule enforcement mechanism As it is not possible to “put a cop behind each
wireless device”, technical mechanisms must be deployed to either make at-
tacks more difficult or to encourage the desired behavior.?

As an example of the former case, it is much more efficient to encrypt radio
communications rather than to deploy police force everywhere to check that
no one is eavesdropping. Several examples of the latter case are described in
Part III of this book.

Experience of collective behavior Although malicious behavior refers to poorly
understood psychological mechanisms, it is possible to consider that one be-
havior is much more frequent than another. For example, usually a driver
chooses an itinerary to reach her destination by taking into account exclu-
sively her own benefit and not the implications of this decision on the other
drivers; but it is (fortunately) very unusual that a driver throws a box of nails
on a highway, just for the dubious pleasure to generate an accident. Likewise,
network users will often keep trying to set up a communication in spite of the
fact that the network is congested; but very few will make the effort to jam
a given area simply to “enjoy” complicating other people’s life.

3.2 Trust in the era of ubiquitous computing

In the previous chapter, we have explained the major characteristics of upcoming
wireless networks. Our discussion of trust building will now be useful to explain why
this evolution has profound implications in terms of trust.

We have seen that the number and diversity of operators will increase, that the
wireless communication chain between the end device and the operated devices will
become longer, that the mobility of the devices will increase, and that the overall
number of devices will explode. Consequently, the two first items of the previous list
(moral values and experience about a given party) will lose relevance: the compliance
to the first becomes more difficult to observe and the increasing mobility of the devices
2 This encouragement can be realized by either providing rewards in case of good behavior (e.g., by

means of micropayments) or by punishing misbehavior (e.g., by reducing the provided quality of
service).

76 Trust assumptions and adversary models

and the shorter lifetime of organizations makes the second more difficult. Rule en-
forcement organizations will have to evolve, because some of the techniques they use
are not scalable (this is the case for example when sending engineers in various parts
of the country to make measurements about the power used by base stations). Hence
these organizations will have to rely more and more on rule enforcement mechanisms.

Rule enforcement mechanisms are indeed the way of the future. Whenever neces-
sary, they will take into account the experience of collective behavior. These mecha-
nisms can be classified in two categories. The first category aims at preventing bad
things from happening and is typically based on security and cryptographic tech-
niques. The second category aims at encouraging desirable behavior (or discouraging
undesirable behavior). It usually quantifies the benefit to the user and leverages
on game theory and mechanism design. Both categories can be complemented by
anomaly detection mechanisms.

3.3 Adversary

Considering the diversity of upcoming wireless networks, it would be foolish to try
to define a common adversary model: A threat on a vehicular network is not the
same as one on a sensor network, for example. In the previous chapters, we have
already described some possible misdeeds (hence giving some information about the
attacker); in each of the following chapters of this book, we will define what the
specific adversary is. Yet at this stage we will make several comments of general
interest.

Malice and selfishness

As mentioned in the first chapter, an intuitive distinction between malice and selfish-
ness consists in stating that the former refers to the willingness to do harm (which
includes the access to personal data), whereas the second corresponds to the overuse
of common resources such as a network or a radio spectrum.

In the classical security view, only the former is considered: for some reason there
is an attacker, and she is willing to perpetrate her attack no matter what. This makes
a lot of sense in the original application area, namely warfare: “we” are right, and we
must make all possible efforts to fight our enemy, even at the cost of defeating him
(breaking their cryptographic codes can be tremendously helpful to achieve that goal,
of course). But as we move from military to commercial settings, the motivation to
deploy security mechanisms becomes weaker, leading to the unpleasant situation of
today’s Internet, because (i) the attacker is much more difficult to identify, (ii) those
who deploy the security mechanisms are not necessarily those who benefit from them
(we will come back to this issue shortly), and (iii) the attempts to overuse the network
resources (as is the case with spam) can be very difficult to thwart.

3.8 Adversary models 77

This shows that malice and selfishness must be considered jointly, if we want
to seriously protect the wireless networks of the future. For this reason, we believe
that the specialists in charge of these tasks must have an appropriate understanding
of both security and game theory. Indeed, security techniques are useful to thwart
malice whereas game theory can help modeling (and therefore preventing) selfishness.
But this segregation in two camps is a bit artificial, as we will see towards the end
of this book. Yet the distinction between malice and selfishness is useful, and we will
make use of the following definitions.

Definition 3.1

A misbehavior is the action of a party or group of parties consisting in deliberately
departing from the standardized or otherwise prescribed behavior in order to reach a
specific goal.

In this first definition, it is thus assumed that the standardized or prescribed be-
havior is of public knowledge.

Definition 3.2

A misbehavior is selfish (or greedy, or strategic) if it aims at obtaining an
advantage that can be quantitatively expressed in the units (bitrate, joules, or coverage)
of wireless networking; any other misbehavior is considered to be malicious.

From this last definition, we see that a technique aiming at increasing one’s share
of the bandwidth (in general at the expense of other users) is selfish. Likewise, an
operator who increases the power of its base stations (thus leading to an overall
degradation of the communication quality of the mobile users connected to the base
stations of other operators) is selfish as well. A Denial of Service attack is malicious,
but it can obviously rely on techniques borrowed from selfish attacks. Finally, an
attack aiming at obtaining information about or from another user of the network
(hence an attack against privacy) is malicious.

The distinction between Part II and Part III of this book is based on this defini-
tion; as we will see, Part II corresponds to what is usually considered to be security
concerns, whereas Part III focuses on cooperation issues. The last chapter of Part
I1I shows how mechanisms to enforce cooperation can be designed based on security
techniques.

An additional reason to consider both security and cooperation is that one of the
explanations for the lack of deployment of security mechanisms is the lack of incentives
to do so, especially when the failure to deploy a security mechanism falls on other
people. This topic is considered to be important enough to have triggered the creation
of a workshop devoted to it: the Workshop on the Economics of Information Security
(WEIS).

78 Trust assumptions and adversary models

Yet another reason why malice and selfishness should be jointly studied is that, in
a number of cases, the techniques to thwart them can (and in some instances, should)
be combined. Here are a few examples.

e A mechanism aiming at enforcing a given behavior (designed for example with the
help of game theory) needs to be secured in order to be effective. For example,
reputation-based systems make sense exclusively if the involved parties can verify
each others’ identities.

e A security mechanism can be modelled and studied as a game: the attacker is
modelled as being one of the players and the other players are the defendants;
see [243] for an application to intrusion detection. In another example, players are
peers running a protocol in which they progressively unveil information; see [73] for
an application to the modelling of a rational exchange protocol.

e More generally, there is always a trade-off between security and usability, meaning
that security should be properly calibrated with respect to the objective threat.
Game theory, by its ability to quantify the payoffs of the various parties, offers the
perspective of substantial progress on that front.

Adversary models

A popular adversary model used in security is defined by Dolev and Yao [116]. This
model notably assumes that the attacker can (i) be a legitimate party (e.g., a regis-
tered network user), (ii) send and receive messages to any party in the network, and
(iii) be a potential “man-in-the-middle” everywhere in the network (meaning that she
is able to read, modify, block, replay, or insert any message anywhere in the network).
Finally, the model assumes that the cryptographic primitives are unbreakable.

Nevertheless, in order to properly protect upcoming wireless networks, we need to
modify this model.

e First, we need to include selfish opponents, as we have just explained.

e The Dolev-Yao attacker model may be too strong for our purpose, in the sense
that the attacker of a wireless network does not necessarily have access to all com-
munication links between all devices: for example, the attacker’s pervasiveness is a
reasonable assumption against a specific mesh network, but not against a continent-
wide vehicular network.

e The notion of physical location of the (wireless) parties becomes very important,
as we will see in several of the following chapters.

e Likewise, the topology and the communication primitives of the network become
very relevant. For example, as we will see, an attacker can try to disrupt the
communication between legitimate parties by jamming a communication link or by
fiddling with the route establishment protocols.

3.4 Summary 79

e The risk of capture and cloning must be taken into account, as we have already
seen for the case of mesh networks.

e The huge number of parties (e.g., several thousand sensors per human being; a
total of one billion road vehicles) makes key management a challenge per se.

e Finally, specific attention must be devoted to the assumption of unbreakability of
the cryptographic primitives: no matter how much progress is made in technology,
there will always be business opportunities for low tier devices, whose computing
and communication capabilities will be very limited, thus calling for the design of
ad hoc cryptographic primitives; in this case, the system model must take this
issue into account.

Considering all these peculiarities as well as the diversity of the wireless networks
that we have described in the previous chapter, it is clear that any attempt to define
a single attacker model in wireless networks is doomed to fail. Consequently, in the
following chapters we will describe the attacher’s model that we assume for each
considered problem.

Note: It would be naive to believe that, just because the opponent needs to be in
power range of the victim to perpetrate an attack, these attacks will be less frequent or
less harmful than against wired networks. Indeed, the wireless attack can be carried
out over the Internet, from a compromised device; or the attack can be perpetrated
by devices that the opponent has previously installed in a given area of interest, and
which she can monitor from a remote distance. Progress in technology will make this
easier and easier to accomplish, unfortunately.

3.4 Summary

In this chapter, we have seen that some level of trust is needed for the proper func-
tioning of a wireless communication system. We have also explained that the current
trends in wireless networks require a thorough re-examination of how trust can be
built and maintained in those networks. We have explained that malice and selfishness
must be considered jointly, and that this can lead to solutions based on security and
game theory considerations. Finally, we have refined the notion of adversary model
in a wireless setting.

3.5 To probe further

Trust has been investigated in the area of distributed systems. The notion of trust for
inter-realm authentication in large distributed systems is discussed in the contribution
by Gligor, Luan, and Pato [149]. Kohlas and Maurer provide a solution for confidence
valuation in a public-key infrastructure based on uncertain evidence [222]. A general

80 Trust assumptions and adversary models

reflection on reputation in future communication systems can be found in the work
by Mundinger and Le Boudec [278].

Only a few researchers have tackled the issue of trust in (wireless) networks. Stajano
and Anderson [352, 353] explore the role of physical contact between devices in order
to establish trust; we will further develop this issue in Chapter 5. Anderson, Chan, and
Perrig [24] argue that in order to bootstrap trust between sensors, it makes sense for
them to whisper their key in clear to their neighbors, thus departing from traditional
key establishment protocols; we will come back to this issue, again in Chapter 5. A
reputation-based system, aiming at reinforce mutual trust, is described in the work
by Buchegger and Le Boudec [66].

A trust evaluation framework and its application to mobile ad hoc networks are
described in a contribution by Sun et al. [357]. Alternative solutions are provided by
Theodorakopoulos and Baras [359], Jiang and Baras [204], and Zouridaki et al. [401].

Finally, Eschenauer, Gligor and Baras explain the peculiarities of trust establish-
ment in mobile ad hoc networks by making use of a military example [127].

In the area of computing, the most remarkable industrial effort so far is probably
the notion of Trusted Platform, developed by the Trusted Computing Group.® Yet
this endeavor has been criticized, because it tremendously reinforces the power of the
hardware vendors.

3 https://www.trustedcomputinggroup.org

Part 11

Thwarting malicious behavior

Thwarting malicious behavior 83

This second part of this book is about malicious behavior in wireless networks. Each
of the chapters describes a fundamental aspect, by first introducing some possible
attacks, and then detailing the corresponding countermeasures.

Chapter 4 describes the question of how to designate an end station in a network.
It shows that the question is far from being solved, even in the Internet. It then
describes the related attacks, namely the Sybil and the replication attacks. Finally,
it explains how they can be thwarted.

Chapter 5 is about bootstrapping security between wireless devices located in radio
range of each other. An attacker can try to fool one of the parties by establishing
a second association with the attacker (herself) rather than with another intended
party. The described countermeasures take advantage of physical vicinity or of the
mobility of the nodes.

Chapter 6 focuses on the notion of (radio) neighbor. With the wormhole attack, it
is possible to let a given node believe that another node is its radio range, when in
reality it is not. This chapter explains why this attack is dangerous, and details the
several techniques to thwart it.

Chapter 7 addresses the problem of secure routing in multi-hop wireless networks.
It explains that, if unprotected, routing is vulnerable to a vast collection of devastating
attacks. It then explains the basic mechanisms to prevent them.

Finally, Chapter 8 details the formidable challenge of privacy raised by wireless
networks. The problem being particularly difficult to quantify and to comprehend, the
chapter is based on three highly complementary examples: RFID, vehicular networks,
and routing in ad hoc networks.

It is important to mention that most of the protection mechanisms described in
these chapters are not (yet) implemented in operational products, as they refer to
upcoming networks. Yet we strongly believe that a thorough understanding of these
networks is crucial to being able to properly design and implement protocols in this
complex field.

As this part heavily relies on security and cryptographic mechanisms, the reader
unfamiliar with these concepts is strongly encouraged to refer to Appendix A.

4

Naming and addressing

In any network, nodes need to be addressable, notably in order for the routing pro-
tocol to be able to convey traffic to them. As the node addresses usually have arcane
formats, it is common practice to also make use of names, which are easier to manip-
ulate by human beings; there are specific servers (such as the Domain Name System
(DNS) in the case of the Internet) that convert names into addresses.

In static networks, it is common practice to relate the address of a node to its
location in the network; in this way, routing can typically be organized in a hierarchical
fashion. This principle becomes problematic, however, as soon as some nodes start
moving.

Naming and addressing strategies have been heavily debated within the Internet
community, essentially because of mobility and security, as we have seen in Subsec-
tion 2.2.5; it is very difficult to predict how naming and addressing will evolve in
the coming years. But this topic is crucial for us, because naming and addressing
mechanisms are vulnerable to a number of attacks.

In this chapter, we will first describe an ambitious naming and addressing architec-
ture envisioned for the Internet. We will then focus on the network layer and describe
specific attacks related to the mobility and to the intrinsic vulnerability of the nodes.
Finally, we will describe the corresponding protection techniques.

4.1 The future of naming and addressing in the Internet

The Internet has two global namespaces, the DNS (Domain Name System) names
and IP addresses. Both are tied to pre-existing structures (administrative domains
and network topology, respectively). Unfortunately, this organization is not really fit
for mobility or for the addressing of myriads of tiny (wireless) devices. For example, if
a node moves, it will then be attached somewhere to the network; it is still the same
node, but its address has changed. Likewise, with such a solution it is impossible

84

4.1 The future of naming and addressing in the Internet 85

to designate an object (e.g., a Web page) without having to relate to the domain or
machine on which it is located.

This analysis has led a number of researchers to propose different approaches for
naming and addressing. At the time of this writing, there is no real consensus on
how this should be done in the future generations of the Internet, but several leading
ideas are emerging. In the following, we will discuss a proposal made by Balakrishnan
et al. [37], which is inspired by a number of ongoing research efforts, as pointed out
by the authors. The reason we address this proposal is that it contains extremely
useful concepts for our discussion. We will of course focus on the aspects of highest
relevance to ourselves, namely mobility and security. Balakrishnan et al. insist on the
tremendous difficulty of modifying the core of the Internet (its routers); consequently,
their solution works with the existing IPv4 addressing scheme and is IPv6 capable.

Their proposal is built on four principles.

Principle 1 “Names should bind protocols only to the relevant aspects of the under-
lying structure; binding protocols to irrelevant details unnecessarily limits flexibility
and functionality.”

This apparently trivial principle is in fact frequently violated in today’s Internet.
Consider for example a search of the Web site of this book. A search engine asked to
retrieve “Security and Cooperation in Wireless Networks” will typically return a URL
such as http://secowinet.epfl.ch/, which includes a domain name. In addition, that
information will be converted into an IP address visible to the web browser, instead
of being confined in a lower-layer software procedure.

Avoiding this kind of violation requires the definition of two new identification
layers. Principle 1 means that the applications must be able to refer to services
with persistent names, that are independent of the machine hosting the service. This
capability is supported by two new identification layers, the first of which relies on
service identifiers (SIDs). These SIDs are typically the output of mapping services
that take as input names called user-level descriptors (ULDs). User-level descriptors
correspond to strings of characters understandable to humans, such as email addresses
and search queries.

The second new identification layer is based on the following fact: Transport proto-
cols exchange data between two endpoints, and the network locations of the endpoints
are irrelevant to the transport layer mechanisms. Yet, in today’s Internet, hosts name
TCP connections by a quadruple that includes two IP addresses. The unfortunate
consequence is that a TCP connection breaks when the IP address of an endpoint
changes. Admittedly, there exist solutions to work around this problem (such as Mo-
bile IP, as we have seen in Chapter 2), but none of them addresses the architectural

86 Naming and addressing

problem. Hence the second new naming layer contains topologically independent
endpoint identifiers (EIDs).

These two new identification layers require two additional name resolution mecha-
nisms: from SIDs to EIDs and from EIDs to IP addresses.

To illustrate this layering principle, consider again the case of Web browsing from a
client. A user types a ULD (in this case a search query) in a search engine running on
the client. As we have seen, the search engine returns an SID. The application then
resolves that SID, thus receiving one or more EIDs that identify the end-hosts that
run the service. The client will then establish one or more connections (e.g., TCP)
with the service EIDs. The transport layer then resolves the EID to the current set
of TP addresses to which the EID is attached.

The second principle focuses on the independence between the identifiers and the
underlying networks.

Principle 2 “Names, if they are to be persistent, should not impose arbitrary re-
strictions on the elements to which they refer.”

There exist different techniques to implement this principle. The most radical one
consists in making use of a completely flat namespace able to represent all present and
future identifiers. In a flat namespace, identifiers have no structure, which guarantees
compliance with Principle 2. It is the approach adopted here for both SIDs and EIDs.

The two principles mentioned so far focused on the role of names, identifiers, and
addresses. As we have seen, a ULD leads to an SID, which resolves into an EID,
which in turn can be converted into an IP address. Yet, in many cases (and we will
see some examples in this book), more flexibility is needed in the resolution process,
which is expressed by the following principle.

Principle 3 “A network entity should be able to direct resolutions of its name not
only to its own location, but also to the locations or names of chosen delegates.”

This principle allows a destination which is unwilling to handle a request directly to
direct the request to a chosen delegate. This principle can also provide some protection
against DoS attacks, as we will explain shortly.

As we will see in Chapter 7, some routing protocols in ad hoc networks allow source
routing: In the header of each packet to be sent, the source includes the whole list
of node identifiers through which the considered packet is expected to travel. An
extension of this mechanism is loose source routing, in which only a few nodes along
the route are imposed.

4.1 The future of naming and addressing in the Internet 87

A similar mechanism can be highly desirable in the namespaces that we have in-
troduced: a source should be able to indicate that its packets should traverse a series
of endpoints (specified by a series of EIDs), or that their communications traverse
a series of services (specified by a series of SIDs). This leads to the fourth and last
principle.

Principle 4 “Destinations, as specified by sources and also by the resolution of SIDs
and EIDs, should be generalizable to sequences of destinations.”

The described identifier layers are represented in Figure 4.1.

user-level descriptor (ULD lookup
(e.g., e-mail address, search string,...)

Application obtains SIDs corresponding
to ULD using a lookup or search service

SID resolution

Application's session protocol (e.g., HTTP) resolves
SID to EIDs using SID resolution service

EID resolution

Transport protocol resolves EID to
IP addresses using EID resolution service

IP address "resolution” (routing)

Fig. 4.1. The naming layers in a possible future organization of the Internet. From [37], ©
ACM, 2004.

As mentioned, EIDs and SIDs can typically be organized as flat namespaces. This is
of course a major difference with existing naming techniques based on DNS, the scal-
ability of which is based on a hierarchical organization. Relatively recent research on
peer-to-peer systems has paved the way to scalable and highly distributed flat names-
paces, organized around the notion of distributed hash tables (DHTs) [8]. DHTs are
a vibrant research theme, and we refer the interested reader to the related literature.

88 Naming and addressing

Here we just briefly discuss the challenges raised by the application of DHTs to the
name resolution process.

DHTs have emerged in the framework of peer-to-peer (P2P) systems, but it is
clear that a self-organized and untrusted P2P system would be inappropriate for a
crucial Internet mechanism. What has to be envisioned is a set of machines provid-
ing the name resolution service using a flat namespace resolution algorithm such as
DHTs. Recent advances in DHT research have shown that they can guarantee global
uniqueness of the names, as well as an acceptably low resolution time.

A difficulty of this approach, as compared with DNS; is the incentive for properly
running and managing the endpoints participating in the DHT mechanism; a related
question is why the end users would trust the infrastructure. A possible solution could
be based on Resolution Service Providers (RSPs), which would form a competitive yet
cooperative commercial market like current ISPs. The various ISPs would have peer
relationships to exchange updates, in a way similar to the tier-1 ISPs interconnect
today with each other.

4.1.1 Resistance to attacks of the described architecture

The architecture that we have just sketched can help to resist several attacks. This is
particularly important for mobile devices which, as they rove, are much more exposed
to attacks than when they are attached to their home network.

At the SID level, the delegation mechanism that we have seen allows the owners
of services and data items to invoke application-level proxies. For example, consider
a mobile user who wants to receive email from an SMTP mail server after having it
filtered for viruses and spam at a third-party site offering this kind of service. The
indirection by means of the SIDs makes it easy to specify that all messages addressed
to that specific mobile need to be first sent to the third party.

Phishing attacks are also relevant here, as they consist in luring a victim to
access a Web page controlled by the attacker. A URL such as http://www.ieee.org
gives some information about the organization running a given Web server (although
this information can be very misleading in certain cases). On the contrary, a name
from a flat name space provides the human user with no clue of this kind. A solution
to this naming opacity is to let specific third-parties offer directory services mapping
SIDs to human-readable names; this is not an easy task, however.

A last issue to be mentioned here is Denial of Service resistance: a given system
(a mobile node, typically) can protect itself from attackers by placing a forwarding
intermediary between itself and untrusted correspondents and by installing traffic
filters at the forwarding intermediary.

4.1 The future of naming and addressing in the Internet 89

4.1.2 Naming and addressing in the running examples

The proposal that we have described is very attractive, because it provides mecha-
nisms able to support mobility of personal communication devices. Hence it is in-
teresting to see whether the running examples that we have introduced in Chapter 1
could leverage on this approach.

Obviously, personal communications would benefit tremendously from the flexibil-
ity brought by these principles; in particular, the emergence of numerous wireless
operators as well as the progressive deployment of mesh networks could leverage on
the fact that services and endpoint identifiers are decoupled from user-level descriptors
on the one hand and from IP addresses on the other hand.

The situation is somewhat different in vehicular networks because, as we have seen,
these networks have very specific requirements. First, the identifiers of the vehicles
must be renewed at a high pace, in order to provide an appropriate level of privacy.
This means that in this case the identifier EID should be renewed at an equivalent
pace, in such a way that the vehicle is permanently addressable. But this can make
rather complicated the resolution from SID to EID and from EID to an IP address,
and it is not clear who would be in charge of the proper unfolding of this operation.
Second, safety operations are of course strongly related to the geographic location of
the vehicles. This means that it must be possible to address the vehicles located in
a given area, hence geocasting is likely to be a frequent operation. Ironically, this
brings back into the picture the temptation to address nodes by their topological
location in the network; however, the topology of the network evolves very fast in this
case. Finally, real-time constraints (especially for safety-related operations) are very
stringent in these networks, and this is of course at odds with any address resolution
mechanism (which generally involves access to remote servers).

Likewise, the architecture that we have described does not easily fulfill the pecu-
liarities of wireless sensor networks. One reason is that the resolution operations that
we have described involve additional communication overhead, which is of course un-
desirable for energy-limited devices. Another reason is that, as it is the case with
vehicular networks, the geographic location is extremely relevant (much more than
the identifier of a specific sensor). This means that naming and addressing in sen-
sor networks require very specific solutions. Consequently, the appropriate solution
probably consists in the use of proxy gateways, able to cope on the one hand with the
rules of the Internet and on the other hand with the constraints of sensor networks.

To conclude, the architecture that we have described is extremely appealing for
personal communications; but specific, additional mechanisms are needed to fit the
constraints and peculiarities of wireless embedded systems.

The purpose of this discussion was to show that the fundamental operations of
naming and addressing, which may seem straightforward at first sight, raise a num-

90 Naming and addressing

ber of formidable challenges. It is very important to keep these challenges in mind
when studying the issues of security (including privacy, of course) and cooperation in
wireless networks.

We will now make our purpose more specific by focusing on the network and MAC
layers. We will first identify relevant attacks and then describe appropriate counter-
measures.

4.2 Attacks against naming and addressing

Numerous attacks can be envisioned against naming and addressing, and we refrain
here from giving an exhaustive list; in particular, we do not describe attacks against
DNS, which are well-known and somewhat remote from our scope. We rather focus
our discussion on attacks that are directly related to wireless networking.

4.2.1 Neighborhood attacks

A first family of attacks, we will denominate “neighborhood attacks”, consists in ex-
ploiting vulnerabilities of the neighbor discovery protocols. Indeed, in many networks,
nodes have to discover their local environment and to advertise their own presence.
The details vary of course substantially from standard to standard, and in compliance
with the philosophy of this book, we will refrain from diving into this level of details.
We will therefore consider a generic model, loosely inspired from IPv6, and explain
the threats. In Chapter 6, we will address a related problem: how an attacker can
pretend to be in radio range, when in reality she is not.

The considered model is depicted in Figure 4.2: several nodes are located in radio
range of each other (we will not discuss here the case in which some nodes are hidden to
some others, but this case can certainly open additional opportunities to an attacker).
One or several of these nodes can be routers, in which case they provide connectivity
to the backbone (the rest of the Internet, in practice); in this case, they will (generally)
also have a wireline interface.

As shown in the figure, we focus on the coexistence of two addressing schemes:
IP addresses, which as we have seen are of global relevance, and MAC addresses,
which are used at the local level. The protocol operates according to the following
principles: a node advertises its own presence by a Neighbor Advertisement message
and can request information about its neighbors by a Neighbor Solicitation. Likewise,
a router advertises its presence by a Router Advertisement message and information
about routers can be obtained by a Router Solicitation message.

The IP address can be either allocated by the local authority (typically by DHCP),
or by the node itself (this case is often called “address self-configuration” or “stateless

4.2 Attacks 91

Upper
layers
IP layer
MAC layer
Physical
layer
Mobile node
Upper
layers
IP layer
MAC layer
IP layer
Physical
layer MAC layer
Mobile node Physical To the
layer % Internet
Router
Upper
layers
IP layer
MAC layer
Physical Upper
layer layers
Mobile node IP layer
MAC layer
Physical
layer
Mobile node

Fig. 4.2. Scenario related to the attacks against neighbor discovery protocols

address allocation”). In this latter case, a mechanism called Duplicate Address De-
tection is generally used to make sure that no two nodes are using the same address.!

Assume an attacking node is present in the local network (or that an attacker
has compromised a legitimate node of the local network). This attacker can then
perpetrate redirect attacks (diverting the traffic from where it should go to another
destination) or DoS attacks (inhibiting communication). It can also try to combine
these two attacks to mount a flooding DoS attack: redirect as many traffic flows as
possible towards a given victim node, in such a way that the latter is overwhelmed.?

There are several ways by which an attacker can mount these attacks. Here are a
few examples.

An attacking node can spoof a Neighbor Advertisement or Router Advertisement
message. In this way, it can cause packets for legitimate nodes, both hosts and
I In IPv6, the heavy weight bits of the IP address correspond to the “network prefix”, which is

dependent of the networking location of the considered subnet.

2 These attacks exhibit some similarity with the ones described in Section 2.2.5. However, here we
focus on the case in which the nodes are in power range of each other.

92 Naming and addressing

routers, to be sent to some other link-layer address. The counter-measure consists
in having the mentioned messages be secured in some way. This can be based on
security associations between all nodes (if they exist), but this approach can require
much manual (hence undesirable) configuration. If such security associations do not
exist, a solution can consist in making use of Cryptographically Generated Addresses,
which we will describe shortly.

Another attack consists in disrupting the Duplicate Address Detection protocol: the
attacking node responds to every DAD attempt made by an entering node; in this
way, the entering node is unable to obtain an address. The countermeasures are
similar to those mentioned for the spoof attack.

4.2.2 Sybil and node replication attacks

The proper operation of any naming or addressing scheme usually requires that each
participant be assigned a unique name or address, in order to avoid ambiguities. This
property is often enforced by a central authority who assigns the names and addresses
and by authentication mechanisms that make it possible to verify the ownership of
names and addresses (in order to make the approach scalable, these mechanisms are
in fact usually supported by a hierarchy of authorities).

Yet, the trend is towards more decentralization, to such an extent, as we will see
later in this chapter, that in some cases nodes are expected to generate not only their
own address but also their own public / private key pair; in particular, this is of course
the case in self-organized mobile ad hoc networks.

An attacker can try to break the fundamental principle of address ownership and
uniqueness by mounting a so-called Sybil attack. This attack, initially described in
the framework of peer-to-peer systems, consists in creating an arbitrary number of
identities associated with the same entity. In a distributed system, the only reliable
way to thwart this attack is to have a central, trusted authority to vouch for a one-to-
one correspondence between entity and identity (techniques consisting in challenging
a set of entities, for example about their computational resources, are in practice
ineffective to detect Sybil attacks).

In the case of wireless networks, Sybil attacks are a major concern as well and they
call for appropriate countermeasures. For example, vehicular networks have strong
requirements in terms of liability. It is therefore mandatory to make sure that each
vehicle has a single identity, which means that it needs to be assigned and certified by
a trusted authority (the protection of privacy requires this identity to never be sent
over the communication channel).

A fundamental difference between peer-to-peer systems and wireless networks is
that in the latter, two entities (two nodes) can be in the vicinity of each other. As we
will see in Chapter 5, this property can be used in order to support the establishment

4.8 Protection techniques 93

of security associations, even if the identities of the nodes are not certified by any
central authority.

Another fundamental difference is that in wireless networks, an attacker can capture
a node. By doing so, it can notably perpetrate a replication attack, which is the
“dual” of a Sybil attack: instead of assigning different identities to the same entity,
the result of a replication attack is that several nodes share the same identity. By
doing so, an attacker can perpetrate a number of misdeeds, such as impersonating
legitimate parties, leading astray routing protocols, and breaking schemes based on
shared secrets.

Thwarting replication attacks is difficult even in the presence of a central authority.
In the next section, we will describe a countermeasure specific to the case of sensor
networks.

4.3 Protection techniques
4.3.1 Centralized solutions

As we have seen in Chapter 1, the most traditional protection technique (used typi-
cally in cellular networks) consists in having the network operator manually distribute
the identity along with a symmetric key to the subscriber; we have also described the
authentication protocols to be used when a subscriber roams in a foreign network.

In the Internet, a protocol called the Internet Key Exchange (IKE) [160] offers a
centralized solution. However, IKE requires the involved parties to be able to verify
each other’s certificates, a solution which would require a global key management
infrastructure in the general case. This latter requirement is usually considered to
be too demanding; for this reason, we will focus on the description of a distributed
solution.

4.3.2 Distributed solution: Cryptographically Generated Addresses

As we have seen, it is often the case that nodes generate their own address, for ex-
ample, this must be the case (by definition) in self-organized mobile ad hoc networks,
and as another example, the mobile nodes roving around mesh networks could also
benefit of this mechanism. But of course this flexibility opens the door to a number
of possible attacks, as an attacker can forge addresses.

A recently devised technique called “Cryptographically Generated Addresses”
(CGAs) [30] consists in binding the IP address of a given node to its public key.
We will first explain the principle, and then explain how to overcome specific limita-
tions. To simplify things, we will base our discussion on IPv6, but this principle can
be applied to any network in which a high number of bits (at least 50, say) represent-
ing the node address can take an arbitrary value. In IPv6, this part of the address is

94 Naming and addressing

called the “interface identifier”. In contrast, the other main field (the subnet prefix)
contains information related to the overall organization of and routing in the global
Internet.

‘ Public key ‘

‘ Hash function ‘

Subnet prefix ‘ Interface ID ‘

64 bits 64 bits
Fig. 4.3. Simplified principle of Cryptographically Generated Addresses

As shown in Figure 4.3, the node first has to generate its public key (along, of
course, with the corresponding private key). Then, by application of an appropriate
one-way hash function, the node generates the arbitrary sequence of bits to be inserted
in the interface identifier.

Therefore, it is possible to ask a given node to prove that it is the legitimate owner
of a given address: only the node that has generated the address knows the private
key and is thus able to properly respond to the challenge (assuming of course second
pre-image resistance of the hash function, see Appendix A).

It is important to notice that this mechanism does not prevent an attacker from
generating “legitimate” addresses, and therefore cannot prevent Sybil attacks. Conse-
quently, CGA-based authentication does not prove that a node with the authenticated
address exists. But it does prevent an attacker from stealing or spoofing an address
already chosen by another node. In this way, CGAs constitute a useful building block
to thwart the neighborhood attacks that we have previously described.

A vulnerability of this principle is that it can fall prey to a brute-force attack,
because of the limited number of bits of the address that can contain an arbitrary
string of bits (64, in our example). Indeed, this number is too small to guarantee
second pre-image resistance: An attacker could pre-compute a large database of in-
terface identifiers from public keys generated by himself, and use this database to find
matches to victims’ addresses.

It would be of course highly impractical to increase the size of the address field.

4.8 Protection techniques 95
16*Sec leftmost hash |
bits must be zero <::‘ Hash2

Zero Zero

Subnet Collision
Prefix Count

128 bits 64 bits
SHA-1

|Sec| | Hash1 |

3 bit Total 59
IPv6 Address: hash bits used

Interface Identifier (64 bits)

CGA Parameters: Modifier

Public Key

Subnet Prefix (64 bits)

[«
(]

Fig. 4.4. Detailed data flows in address generation of Cryptographically Generated Addresses
(from [30])

The solution consists in increasing the cost of both address generation and brute-
force attack by the same factor, while keeping constant the cost of address usage and
verification; this technique is known as hash extension. The operating principles are
depicted in Figure 4.4. The generation of a new CGA is based on three inputs: the
64-bits subnet prefix, the public key of the address owner, and a parameter called
“Sec”. This last parameter is an unsigned 3-bit integer, which qualifies the level of
expected security (0 being the weakest, and 7 being the strongest). As we will see,
increasing Sec by one adds 16 bits to the length of the hash that the attacker must
break.

As this last parameter must be conveyed in the address, the idea is to devote 3 bits
out of the 64 bits of the identifier address to it; as an additional 2 bits are reserved?,
we are left with 59 bits.

An important field is the Modifier: the address generator has to iteratively attempt
to modify it in order to fulfill the requirement of the hash extension. The idea is that

3 They appear in the figure and are called u and g. Their meaning is of no relevance to our
discussion.

96 Naming and addressing

the attacker will be forced to do the same amount of work if it wants to spoof a
legitimate address.?

Both the Modifier and the Collision Count are public.

A CGA address is typically generated as follows.

(a) Set the modifier mechanism to a random 128-bit value.

(b) Concatenate the modifier, 64+8 zero bits, and the encoded public key. Execute
the SHA-1 algorithm on the concatenation. The leftmost 112 bits of the result
are Hash2.

(¢) Compare the 16*Sec leftmost bits of Hash2 with zero. If they are all zero (or
if Sec=0), continue with Step (d). Otherwise, increment the modifier and go
back to Step (b).

(d) Set the collision count value to zero.

(e) Concatenate the modifier, subnet prefix, collision count and encoded public
key values. Execute the SHA-1 algorithm on the concatenation. The leftmost
64 bits of the result are Hashl.

(f) Form an interface identifier by setting the two reserved bits in Hashl both to
1 and the three leftmost bits to the value Sec.

(g) Concatenate the subnet prefix and interface identifier to form a 128-bit IPv6
address.

(h) If an address collision with another node within the same subnet is detected,
increment the collision count and go back to step (e). However, after three
collisions, stop and report the error.

The value of the security parameter Sec determines the cost of generating a new
address. As mentioned, the weakest level of security is when Sec = 0, in which case
the hash extension is not used. This is appropriate for nodes with modest security
concerns, or for nodes that frequently change addresses.

For security parameter values greater than 0, the brute-force search in steps (b)-(c)
takes, on the average, O(216*9¢¢), The idea is of course that an attacker would have
to make an equivalent effort, meaning that the ratio between the cost of a brute-force
attack and the cost of address generation remains at the constant value 2°°. The
system is engineered in such a way that the address generation process can be fully
carried out on a server (and not on the potentially anemic mobile device that will use
it).

The parameter collision count is used to modify the input to Hashl if there is an
address collision. In practice, it is recommended to not allow collision counts higher
than 2, because it is extremely unlikely for three collisions to occur. Hence, the
4 A note for the cryptographic-inclined reader: this technique is similar to “salting” encrypted

passwords in order to make them resistant to dictionary attacks. The complexity of the salt is
controlled by the Sec parameter.

4.8 Protection techniques 97

collision must be due to a configuration or an implementation error (or that a DoS
attack is taking place, in case the CGA-based proof of ownership is not used).

The verification of the address ownership is realized by the execution of the following
steps.

(a) Check that the collision count value is 0, 1 or 2, and that the subnet prefix
value is equal to the subnet prefix (i.e. leftmost 64 bits) of the address. The
CGA verification fails if either check fails.

(b) Concatenate the modifier, subnet prefix, collision count and the public key.
Execute the SHA-1 algorithm on the concatenation. The 64 leftmost bits of
the result are Hashl.

(¢) Compare Hashl with the interface identifier (i.e. the rightmost 64 bits) of the
address. Differences in the two reserved bits and in the three leftmost bits are
ignored. If the 64-bit values differ (other than in the five ignored bits), the
CGA verification fails.

(d) Read the security parameter Sec from the three leftmost bits of the interface
identifier of the address.

(e) Concatenate the modifier, 6448 zero bits and the public key. Execute the
SHA-1 algorithm on the concatenation. The leftmost 112 bits of the result are
Hash2.

(f) Compare the 16*Sec leftmost bits of Hash2 with zero. If any one of these is
nonzero, CGA verification fails. Otherwise, the verification succeeds. If Sec=0,
verification never fails at this step.

As mentioned, CGA is a building block that can be used to thwart some of the
attacks against neighbor discovery protocols. As mentioned by the author of this
proposal, it can also be used to secure Mobile IPv6, and to create IPsec security
associations.

4.3.83 Thwarting Sybil and node replication attacks

The protection against Sybil attacks very much depends on the deployment scenario.
As we have mentioned, if the system contains a central, trusted authority, the so-
lution is relatively straightforward. Otherwise, it is possible to take advantage of
some physical aspects related to the radio communication. Examples include radio
fingerprinting [156] or geographic location.

Preventing the node replication attack can be based on the physical protection of
nodes (to avoid them being captured, or to make them very difficult to replicate in case
they get captured). Again, these countermeasures are very much scenario-dependent.
In order to provide a concrete example, here we will describe how node replication
attacks can be detected in sensor networks [303]. The reason for this choice is that

98 Naming and addressing

sensors nodes typically employ low-cost commodity hardware components with very
limited (if any) protection against tampering. Even if an adversary compromises a
single node, she can replicate it indefinitely, spreading her influence throughout the
network.

An intuitive solution to this problem would consist in requiring all the nodes to
transfer a list of their neighbors’ claimed locations to a central base station that can
identify potential conflicting location claims. The drawback of this approach is that
it creates a single point of failure: the adversary can compromise the base station,
or systematically interfere with its communications. In addition, some networks do
not even have a powerful, central base station. Hence the intention is to aim for a
decentralized solution.

The solution must take into account the limitations of sensor nodes; in particular,
it should minimize the amount of communications between nodes and require only
minimal memory storage at each of the nodes. The solution assumes that the adver-
sary cannot deploy nodes with arbitrary IDs; hence, the adversary needs to capture
at least one node. We will also assume that the nodes know their own geographic
position, for example by means of GPS receivers or appropriate connectivity infor-
mation. Likewise, we assume the nodes to be static and the network to utilize an
identity-based public key system®, such that each node « is deployed with a private
key, K !, and that any other node can calculate a’s public key using a’s ID, namely
K, = f(a). A last assumption is that any cloned node has at least one legitimate
node as a neighbor.

The basic idea is that each node a transmits its location to all its neighbors, thus
forwarding this information to a subset of nodes, called its witnesses. In the case of
a replication attack on node «, one of the witnesses can receive two different location
claims corresponding to the same ID of a. This information will provide evidence of a
replication attack on node «; consequently, the witness will broadcast this information
to the whole network and node « is revoked.

The selection of a set of neighbors is a crucial decision. If it is too small, the
probability of detection will be too low, and if it is too large, the communication
overhead could be unacceptable. In addition, this set must be unpredictable, otherwise
the attacker might compromise or jam all of the witnesses of the node on which she
is perpetrating the replication attack.

Let us now provide a precise description of the protocol. As a first step, each node
« broadcasts its location claim, along with a signature authenticating the claim. The
location claim has the format I Do, lo, H -1 (IDg,ls), where [, represents a’s location
and H is a hash function. Each of the node’s neighbors verifies o’s signature and the
5 This system could be replaced by a more traditional PKI; this would require, however, transmitting

the certificates of the public keys of the nodes, which would lead to a substantial communication
overhead.

4.8 Protection techniques 99

plausibility of the claimed location l,. Then, with probability p, each neighbor selects
g random locations in the scope of the network and uses geographic routing to forward
a’s claims to the nodes closest to the chosen locations.

When a witness receives a location claim, it first verifies the signature. Then
it checks the ID against all location claims it has already received. If it receives
two location claims for the same ID «, it blacklists a from further communication
by immediately flooding the network with the pair of conflicting locations. Every
node receiving this pair can independently verify the signature and agree with the
revocation decision.

The probability of replication detection can be computed in the following way. Call
d the average number of neighbors of a node (d is thus the average degree in the
connectivity graph). The number of witnesses receiving a given location claim will
bEG E[NReceive] =p- d- g.

Assume that the attacker inserts L replicas of a. We want to determine the proba-
bility that two conflicting location reports collide at at least one of the witness nodes.
Following the usual derivation of the birthday paradox, the probability P,., that
p-d- g recipients of claim {; do not receive any of the p-d - g copies of claim s is:

od-g\Pde
Pncl = (1_])9)
n

Likewise, the probability P,., that the 2-p-d- g recipients of claims l; and Iz do
not receive any of the p-d - g copies of claim I3 is given by:

2.0.d-a\P%9
- (1 2285
n

where n is the total number of nodes of the network.
In the same way, the probability P,. of no collision at all is:

g)

The approximation that (1 + z) < e* allows to simplify numeric computations:

d22

1:_[—ip?a?g?

6 This equality is only an approximation because the neighbors are assumed to choose the witnesses
independently from each other, which can lead to some redundant selection of witnesses.

100 Naming and addressing

2,422
—p2.d2.4 L—1 .
<e n 2y d

—p2.4d2.42 L(L—1)
<e n 2

The probability of collision can be lowered bounded as:

P, > (=R ey
P, is actually the probability of detecting an attack consisting in inserting L replicas
of the same node.

This means for example that in a network of n = 10,000 nodes, if each node has
g = 100 witnesses, and an average of d = 20 neighbors that forward the request
with a probability of p = 0.05, the system will detect a single replication of o with
a probability greater than 63%; if « is replicated twice it will be detected with a
probability greater than 95%.

Consequently, this mechanism provides a robust protection against replication at-
tacks. However, it is easy to see that it is quite demanding in terms of communica-
tions and memory. Each node generates p - d - g messages that must be evenly spread
throughout the network. If the network has a “reasonable” shape (such as a circle or
a square), the average distance between any two randomly chosen nodes is O(y/n).
Moreover, as it aims at meeting the conditions of the birthday paradox, the value
p - d-g must also be O(y/n). Assume that the nodes employ a duplicate suppres-
sion algorithm in which each node only broadcasts a given message once. Then the
two values obtained so far must further be multiplied by n, resulting in an overall
communication cost of O(n?). As for the storage, even if the size of each claim can
be reduced to the payload of a packet (around 36 Bytes), the network mentioned
previously (n = 10,000, g = 100, d = 20, and p = 0.05) would require, on average,
each node to store 3,700 Bytes, a high demand at least for low-tier sensors.

A technique to reduce the communication overhead, proposed by the same authors,
consists in observing that the described solution does not take advantage of the fact
that the relaying nodes involved in the multicast are not involved in the security
process, in spite of the fact that they are provided with the location claims. Hence,
an alternative solution, called “Line-selected multicast”, consists in defining the set
of witnesses as the set of nodes located along an appropriately chosen segment. The
analysis of the solution then boils down to the computation of the probability of
intersection between segments.

To conclude, we should stress that an adversary able to perpetrate Sybil and repli-
cation attacks is a powerful one; consequently, in most cases the related countermea-

4.4 Summary 101

sures will be less than perfect solutions. Hence, before any deployment, an appropriate
risk analysis must be carried out, in order to predict the implications of undetected
attacks.

4.4 Summary

In this chapter, we described an ambitious naming architecture for the Internet, and
discussed the extent to which it would fulfill the requirements of upcoming wireless
networks. We then described the attacks specific to naming and addressing, namely
the neighborhood, the Sybil, and the node replication attacks. We also described
several countermeasures, emphasizing those that are distributed; in particular, we
introduced Cryptographically Generated Addresses and detailed a technique to thwart
replication attacks in sensor networks.

4.5 To probe further

As mentioned, the layered naming architecture that we have presented is based on a
proposal by Balakrishnan et al. [37]. In this field, many investigations and proposals
have been made since the seminal work of Saltzer in 1982 [330]. The interested reader
may in particular look at the Host Identity Protocol (HIP) [277].

Cryptographically Generated Addresses are described in [30] and in the subsequent
RFC [31]. This work relies on the idea of binding the network address to the public
key of the host, and was investigated by Nikander [286], by O’Shea and Roe [292],
and by Montenegro and Castelluccia [275]. CGAs are used in particular in the Se-
cure Neighbor Discovery protocol (SEND) [27]. The discussion on the neighborhood
attacks was also inspired by an RFC devoted to trust models and threats [287].

The Sybil attack against peer-to-peer systems is described by Douceur [117]. Tech-
niques to prevent the Sybil attack in sensor networks have been proposed by Newsome
et al. [284]; some of these techniques are based on key predistribution schemes, which
we will address in Chapter 5. The solution to thwart replication attacks against sensor
networks is directly derived from the contribution by Parno, Perrig, and Gligor [303].

4.6 Questions

(a) Consider a vehicular network. In practice, what does it involve for an at-
tacker to mount a Sybil attack? How dangerous would it be? Referring to
Section 2.2.7, how do you think such an attack could be prevented?

(b) Same questions for a replication attack against a vehicular network.

(c) Is CGA useful to thwart the replication attack against a mesh network de-
scribed in Section 2.2.67

102 Naming and addressing

(d) In CGA (Figure 4.4), why are the 64 bits of the subnet prefix not involved in
the operation?

(e) In CGA (see Figure 4.3), why is it necessary that the hash function has the
property of second preimage resistance?

5

Establishment of security associations

In the previous chapter, we have seen how a given device can be properly and unam-
biguously designated by a name or an address. In this chapter, we will explain how
two wireless devices can securely identify each other and get ready to communicate
securely with each other; in other words, we will see how they perform authentication
and key establishment.

Authentication and key establishment are strongly related to each other, because
of their mutual dependency: once two (or more) entities have authenticated each
other, they usually can establish a key, in order to secure their future communica-
tions; conversely, an already established key can be very useful to perform future
authentication.!

These two operations are considered to be among the most fundamental (if not the
two most fundamental) mechanisms of network security. As a result, a huge number
of protocols have been proposed (and a sizeable number of them have already been
standardized and implemented) in order to support authentication and key establish-
ment in (wired) networks [62]. The choice of a protocol depends notably on the role of
the trusted server (if any), on whether the key is established by one of the principals
(and then transported to the other(s)) or agreed among the principals, and on the
underlying cryptographic mechanisms (symmetric or asymmetric).

In Part I, we have already stressed that wireless links are particularly vulnerable to
eavesdropping, and that mobile devices can be captured (and the secrets they contain
can be compromised); an additional problem we have mentioned is the fact that, in
many upcoming wireless networks, nodes cannot rely on the presence of an online
trusted server (whereas most standardized authentication and key establishment pro-
tocols do rely on such a server). For example, two vehicles can be in power range of
each other, but not of a roadside unit; likewise, at a given point in time, a group of
sensors may be able to communicate with each other and yet have no connectivity

1 Tt is important to keep in mind that, rather often, the purpose of a key establishment protocol is
to establish a session key, which by definition is short lived.

103

104 Establishment of security associations

with the sink; finally, by definition, a self-organized mobile ad hoc network does not
rely on any trusted server.

A possible solution consists in using public key cryptography: each device carries
a certificate, delivered by the trusted authority. This of course requires assuming
that some organization accepts the burden of delivering the certificates, which is not
always realistic. But there is a more general problem: as the trusted server is off-
line, the verifying device cannot ask whether the certificate is still valid or whether
it corresponds to a key that has been compromised. A solution then consists in the
trusted server delivering short lived keys and certificates. But this requires a frequent
interaction between each device and the server, which of course is not desirable, as it
would require the server to become every time available online. Another solution is
that the server periodically broadcasts certificate revocation lists, but again, this leads
to a strong assumption about the connectivity between the devices and the server.

Fortunately, as we will see in this chapter, we can take advantage of the physical
proximity of the devices to solve the problem. This physical proximity can be either
of long duration (as is the case in a static sensor network) or sporadic, if nodes are
mobile. We will also see that the mobility of the nodes can be exploited in order to
disseminate cryptographic material, and in the next chapter, we will see how a node
can check whether another node claiming to be a neighbor is indeed located in power
range.

We will first address key establishment in sensor networks, then describe authenti-
cation and key establishment in peer-to-peer personal communication networks, and
finally present revocation in vehicular networks. The first section, devoted to sensor
networks, is meant to be a didactic overview, whereas the subsequent sections focus
on more detailed examples and are thus a bit more technical.

5.1 Key establishment in sensor networks

Securing the operation of sensor networks requires the cryptographic protection of
messages exchanged between the nodes. Typically, every message needs origin authen-
tication and integrity protection, and some messages (e.g., control packets containing
sensitive information) may also need confidentiality services. Due to the very limited
resources of the sensor nodes both in terms of CPU power and available energy, it is
preferable to base the protection on symmetric key cryptographic primitives?. This,
however, raises the problem of how to establish the necessary symmetric keys in the
network.
2 This seems to be commonly accepted today (at the time of this writing). We note, however, that
sensor nodes could be manufactured with custom hardware to support asymmetric key cryptog-
raphy (e.g., circuitry for modular arithmetics). If such nodes are produced in mass, then the

manufacturing cost would not be prohibitive; smart cards are a good example of mass produced,
low-cost devices capable of performing asymmetric key operations.

5.1 Key establishment in sensor networks 105

5.1.1 Requirements

In fact, there are different types of keys that are needed in a sensor network. The
requirements are mainly determined by the typical communication patterns, which
are the following: wunicast (i.e., addressing a message to a single node), local broadcast
(i.e., addressing a message to all the nodes in the local neighborhood), and global
broadcast (i.e., addressing a message to all the nodes in the entire network). Unicast
messages are typically used when the sensor nodes send their sensor readings to the
base station or to another sensor node performing some aggregation task, and when
the base station sends control information to a specific sensor node. Local broadcast is
often needed by networking mechanisms such as routing. Global broadcast messages
are typically originated by the base station and they are used to distribute control
information that concerns all the nodes in the network.

In addition, there is a requirement to support in-network processing. In-network
processing means that some sensor nodes aggregate the data received from their down-
stream nodes into a more compact report before relaying it further towards the base
station. This reduces the amount of bits transmitted, and therefore, increases the ef-
ficiency and the lifetime of the network. This kind of aggregation must be supported
by enabling the aggregating node to access the content of the messages sent by the
downstream nodes. This typically requires hop-by-hop protection of messages instead
of end-to-end protection between the sensor nodes and the base station.

Another form of in-network processing is passive participation, which means that
a node can take actions based on overheard messages. For instance, a node may
decide not to report a sensed event if it overhears a neighboring node reporting the
same event. Passive participation requires that the nodes can access the content of
overheard messages even if those messages are cryptographically protected and not
destined to them.

5.1.2 Key types

In order to support the different communication patterns and in-network processing,
the following types of keys are useful in sensor networks:

e Node keys: A node key is a key that is shared by a sensor node and the base
station. It is used to protect unicast messages exchanged between the sensor node
and the base station that do not need in-network processing.

e Link keys: A link key is a key shared by two neighboring nodes (i.e., two sensor
nodes or a sensor node and the base station). Link keys provide protection for
unicast messages exchanged between neighboring nodes. They can be used for
encryption, message authentication, and integrity protection. They allow for in-
network processing by hop-by-hop protection of data packets sent from the sensor

106 Establishment of security associations

nodes to the base station. They can also be used to setup other keys between
neighboring nodes, such as cluster keys.

e Cluster keys: A cluster key is a key shared by a node and all of its neighbors.
This key is used to encrypt (and decrypt) local broadcast messages. In addition,
hop-by-hop encryption of a data packet with local broadcast keys makes passive
participation possible, as it ensures that the neighbors of the transmitting nodes
can learn the content of the packet.

e Network key: The network key is a key that is shared by all the nodes in the
network. It is used to encrypt (and decrypt) global broadcast messages.

Note that cluster keys and the network key are broadcast keys, and they cannot be
used for message authentication. The reason is that a node receiving a message with
a message authentication code computed with a broadcast key cannot be sure who
the originator of the message is; indeed, any node that possesses the broadcast key
may have sent the message.

Broadcast authentication based on symmetric-key cryptography can be realized
with the TESLA protocol [309]. The operation of TESLA is described in Appendix A,
therefore, we do not present it here. We note, however, that TESLA requires the
distribution of the root element of a TESLA key chain in an authenticated manner to
the potential receivers of the broadcast messages. In the case of global broadcast, the
root element of the TESLA key chain of the base station can be pre-loaded in every
sensor node before its deployment. In the case of local broadcast, the root element
of the TESLA key chain of any node can be sent to each of its neighbor in a unicast
message authenticated with the link key shared with that neighbor. In addition, in
both cases, new root elements can be distributed and authenticated using TESLA
itself when the current key chain is about to run out of elements.

5.1.3 Setting up node keys, cluster keys, and the network key

Setting up a node key is easy, as the key can be pre-loaded in the sensor node before
its deployment. Also, setting up a cluster key with the help of link keys already
shared by a node and its neighbors is easy: The node can generate a cluster key
and encrypt it for each of its neighbors using the link key that it shares with that
neighbor. The link keys can also be used to authenticate the cluster key. Since the
number of neighbors is typically quite limited, sending the cluster key in separate
unicast messages to each neighbor results in an acceptable overhead.

The network key can also be preloaded into the sensor nodes before their deploy-
ment. However, sensor nodes may be compromised and the network key may be
leaked. Moreover, unlike the leakage of a node key, a link key, or a cluster key that
has only a localized effect, the leakage of the network key affects the entire network.

5.1 Key establishment in sensor networks 107

For this reason, when node compromise is detected, there is a need to revoke the
compromised node and to update the network key.

The compromised node can be revoked by instructing its neighbors to delete the
keys that they share with the compromised node and to update their cluster keys.
The updated cluster keys are not distributed to the compromised node. Hence, the
compromised node is practically excluded from the network, as it will not be able to
send and receive encrypted messages to and from its neighbors.

Once the compromised node is revoked, the network key can be updated with the
help of the cluster keys in the following iterative way: The base station generates a new
network key and sends it to its immediate neighbors encrypted with the base station’s
cluster key. The neighbors of the base station decrypt the message, re-encrypt the
network key with their own cluster keys, and re-broadcast the encrypted network
key. This process is repeated until each node in the network receives the updated
network key. Note that the compromised node will not be able to obtain the new
network key as it is encrypted with the updated cluster keys of its neighbors that the
compromised node does not possess. Note also that the authenticity of the network
key can be ensured by a broadcast authentication mechanism such as TESLA.

What remains to solve is the problem of establishing link keys between neighboring
sensor nodes. One may think of pre-loading these keys as well into the sensor nodes
before deployment, but there are some problems with this approach. First, in many
applications, the post-deployment layout of the network may not be known a priori
(e.g., sensors are thrown out from airplanes), and therefore, it is not known which
nodes will be neighbors and need a link key. In addition, sensor nodes can later be
added to an already deployed network, for instance, in order to replace depleted or
faulty nodes. It is difficult to anticipate at the time of network deployment where
these new nodes will be added later, and thus, which nodes need to be pre-loaded
with additional keying material to be able to interact with the newcomers.

In the next two subsections, we present two approaches to solve the link key es-
tablishment problem between neighboring nodes. The first approach is based on a
short-term master key that is present in every node only for a limited amount of
time after its deployment. This master key is used to establish the link keys with the
neighbors and then it is deleted in order to prevent that the master key is leaked if
the node is later compromised. The second approach is based on pre-loading keying
material in the nodes before their deployment, but it is done in a clever way so that no
assumption on the post-deployment network topology is made and post-deployment
addition of new nodes is supported.

108 Establishment of security associations

5.1.4 Link key establishment using a short-term master key

The establishment of link keys can take advantage of the fact that sensor networks
are relatively static networks consisting of stationary nodes. This means that the
neighborhood of a node does not change frequently, but it remains more or less the
same as it was at the time of its initial deployment. Some nodes may be depleted
and die and new nodes may be added to the network occasionally, but this does not
result in large and dynamic topology changes. Therefore, it makes sense to discover
the neighborhood of the nodes and set up their link keys at the time of their initial
deployment.

The link key establishment protocol that we describe in this subsection uses a short-
term master key K,,;; that is pre-loaded in every node before its deployment. When
the node is deployed, it establishes its link keys with its neighbors, and then it deletes
the master key. It is assumed that link keys are established relatively quickly, and the
adversary cannot compromise the node before its link keys are established. In other
words, by the time the node could be compromised, the master key is already deleted
from the node, and the adversary cannot obtain it.

The link key establishment protocol consists of the following four phases: master
key pre-loading, neighbor discovery, link key computation, and master key deletion.

The master key pre-loading phase is performed before deployment in a secure envi-
ronment. During this phase, the master key K;,;; is loaded into the nodes, and each
node u computes a node master key K,, = fk, ,(u), where f is some pseudo-random
function.

The neighbor discovery phase starts right after the deployment of a node. First,
the node initializes a timer to fire after some time T,,;,. It then tries to discover its
neighbors by broadcasting a HELLO message that contains its identifier and waiting
for responses. A neighboring node v that hears the HELLO message of u responds
with an ACK message that contains the identifier of v. The ACK message of v is
authenticated with the node master key K, of v. Since node u still possesses the
master key K., it can compute K, and it can verify the message authentication
code attached to the ACK message.

Once the neighbors are discovered in this way, node u computes its link keys in the
link key computation phase. The link key K, between nodes v and v is computed as
K.y = fk,(u). Note that the same key can also be computed by node v. In addition,
no messages need to be exchanged between u and its neighbors in this phase. Note
also that node w is not authenticated explicitly to node v. However, each further
message that u sends to v will be authenticated with K,,, which proves the identity
of u.

Finally, when its timer expires, node u performs the master key deletion phase by
deleting from its memory Kj,;; and each node master key K, that it computed in the

5.1 Key establishment in sensor networks 109

previous phases. It does not delete, however, its own node master key K,,, as this is
needed to establish link keys with nodes that may be added later to the network.
Note that this link key establishment protocol can be used when several nodes are
deployed at the same time, as well as when a single node is added later to an already
deployed network. In the former case, neighboring nodes v and v may send HELLO
messages and wait for ACK messages in parallel; which results in the establishment
of two link keys K,, and K,, between them. They may decide to keep one of the
two keys and delete the other. Alternatively, if node u receives the ACK message of
node v before u sends its ACK message to v, then u can suppress its ACK message.

5.1.5 Link key establishment with random key pre-distribution

Now, we will describe a set of link key establishment schemes proposed for sensor
networks, called random key pre-distribution schemes. As their name suggests, these
schemes follow the key pre-distribution approach, but they trade effectiveness and
communication overhead for scalability and reduced memory use. In particular, in
random key pre-distribution schemes, not every pair of neighboring nodes share a
common key initially. This makes it possible to reduce the memory requirement
for pre-loaded keys, and thus, the approach becomes scalable and appropriate for
sensor networks. At the same time, it is ensured that any two neighboring nodes
that initially do not share a key can establish one, with high probability, with some
additional communications via intermediate nodes.

The general idea of random key pre-distribution can be traced back to the following
variant of the birthday paradox [268]: Given a set S of k elements, we randomly choose
two subsets S7 and S5 of my and ms elements, respectively, from S. The probability
of 51 N SQ 7é @ is

(k — ml)'(k - mg)'

Pr{SiNSy #0} =1— kN k —my — mg)!

(5.1)

For illustration purposes, we plotted the value of expression (5.1) in Figure 5.1, where
we set k = 100 and m; = mo = m. As we can see, the probability of the two
subsets intersecting increases rapidly with m, and it reaches % when m is around 8.
In general, it can be shown that the value of (5.1) will be close to % when £ is large
and m; and my are both close to vk. The paradox is that we would not expect such
a high probability of collision when the size of the selected subsets is only the square
root of the original set.

This result can be used in key pre-distribution to considerably decrease the memory
requirements imposed on sensor nodes while still maintaining a rather high probability
of any two nodes sharing a common key. For this reason, each node is pre-loaded
with a random subset of keys selected from a large key pool. Two nodes that have a

110 Establishment of security associations

-

=4
©
T

— k=100, m1 = m2

probability of intersection

o o 3 o ° o
s 8 @& @ I =
T T T T T T

o
N
T

01

Fig. 5.1. The value of expression (5.1) when k = 100 and m; = m2 = m. As we can see, the

probability of the two subsets intersecting increases rapidly with m, and it reaches % when

m is around 8. In general, the probability will be close to % when £ is large and m, and mg
are both close to \/E

common key in their subsets are able to communicate securely using the shared key.
The probability of this event will be rather high when the number of selected keys is
in the order of the square root of the pool size. Thus, we expect that large networks
can be supported with a rather limited size memory in sensor nodes.

Below, we elaborate on this idea in more detail. First, we describe a basic scheme
and some of its straightforward improvements. Then, we describe an approach to
combine random key pre-distribution with threshold cryptography in order to increase
the resistance of the scheme to node capture attacks.

The basic random key pre-distribution scheme

The basic scheme works in three phases. In the initialization phase, a large pool S of
unique cryptographic keys is randomly generated, and then, for each node, m keys are
selected randomly from S and pre-loaded into the node. This set of m keys is called
the key ring of the node. The number k of keys in S is chosen in such a way that any
two nodes will have a common key in their key rings with a certain probability p (see
analysis below).

After the sensors are deployed, the direct key establishment phase is performed. In
this phase, the nodes first find out with which of their neighbors they share a common
key. Such key discovery can be implemented by assigning short identifiers to each key
in S before deployment and by having each node broadcast the set of identifiers that
correspond to the keys in the node’s key ring. Two neighboring nodes that discover
that they share a common key can then verify that they both really possess that key

5.1 Key establishment in sensor networks 111

by executing a challenge-response protocol. The shared key is then used to protect
the link between the two nodes.

Some pairs of neighboring nodes may not have a common key in their key rings, and
therefore may not be able to setup a secure link in the direct key establishment phase.
In order to remedy this situation, a path key establishment phase is performed. In
this phase, neighboring nodes that do not share a key initially establish a shared key
through a path of intermediate nodes where each link of the path is already secured
in the direct key establishment phase. This will work only if the graph, which consists
of the nodes (as vertices) and the secure links created in the direct key establishment
phase (as edges), is connected. As we will see below, this can be achieved with high
probability by appropriately choosing the parameters of the scheme.

Setting the parameters: We use results from random graph theory to set the pa-
rameters of the basic scheme. Although sensor networks are not random graphs, as
nodes cannot have communication links with most of the other nodes in the network,
using the random graph metaphor is still useful to give us an idea of the order of
magnitude of the various parameters.

We know from random graph theory [125] that in order for a random graph to be
connected with high probability, the expected degree of the vertices should exceed a
certain threshold. More precisely, in order for a random graph to be connected with
probability ¢ (e.g., ¢ = 0.9999), the expected degree d of the vertices should be:

(In(n) — In(—1n(c))) (5.2)

where n is the number of vertices in the graph.

In our case, the edges of the graph correspond to the secure links created between
neighboring nodes in the direct key establishment phase. Let p denote the probability
that two nodes have a common key in their key rings. In addition, for a given density
of node deployment, let n’ be the expected number of neighbors of a node. Then, in
our graph of secured links, the expected node degree is d = p - n/. Thus, we obtain
that, in order for the basic scheme to work, the following should hold:

d

b= o (5.3)

d:n—l

where d is defined in (5.2).
Note that, using (5.1), we can compute p as follows:

B kl(k —2m)!
Recall that k is the number of keys in the key pool S, and m is the number of keys

(5.4)

112 Establishment of security associations

in the key rings of the nodes. We can use (5.4) to determine the values of k and m
for a given value of p.

Let us consider a numerical example. Let us assume that there are n = 10,000
nodes in the network, and the nodes are deployed in such a way that the expected
number of neighbors is n’ = 40. We want the basic scheme to work with probability
¢ =0.9999. Using (5.2), we can compute that the expected node degree in the graph
resulting after the direct key establishment phase should be d = 18.42. From this, we
obtain p = 0.46 using (5.3). Finally, we can use (5.4), to determine the values of k
and m. We can check, for instance, that for £ = 100,000 and m = 250, (5.4) evaluates
to approximately 0.5, meaning that a key pool size of 100,000 and a key ring size of
250 would be an appropriate choice. Alternatively, we can use (5.4) to determine k
if m is given due to the memory constraints of the sensor nodes. For instance, if the
key ring size is limited to m = 75 keys due to memory constraints, then we get from
(5.4) that the key pool size should be & = 10,000 to obtain a connected graph after
the direct key establishment phase with probability 0.9999.

A brief qualitative analysis: We can see that the basic scheme is quite well-
adapted to the special design constraints for key establishment schemes in sensor
networks. First of all, the parameters of the scheme can be adapted to support the
memory constraints of the sensor nodes. In addition, setting up pairwise keys does
not need any intensive computations. Indeed, when the nodes have a common key
in their key rings, that common key becomes the shared pairwise key, and no further
processing is needed, apart from a simple challenge-response protocol to ensure that
the nodes actually possess the key. When two nodes do not have a common key in their
key rings, they can establish a shared key through intermediate nodes. This requires
some additional processing, because the intermediate nodes must decrypt and re-
encrypt the key establishment messages sent between the nodes. However, this must
be done only once, at the beginning of the operation of the network. In addition,
simulation results in [126] show that the length of the path of the intermediaries is
limited to a few hops. This also indicates a moderate communication overhead of the
scheme.

The basic scheme does not make any assumptions about the network topology apart
from assuming that the expected node degree is known a priori. Moreover, the scheme
supports the post-deployment introduction of new nodes into the network. For this,
the new node must be pre-loaded with its own key ring, and no further action is
needed. In particular, the nodes already deployed do not need to be updated, and
the new node can use the basic mechanisms (direct and path key establishment) to
setup secure links with already deployed nodes.

The disadvantage of the basic scheme is that, by compromising sensor nodes, an
adversary obtains keys from the key pool, which may be used to secure links be-

5.1 Key establishment in sensor networks 113

tween other, non-compromised nodes. Thus, node capture affects the security of
non-captured nodes too. One way to mitigate this problem would be to increase the
pool size. In that case, however, the size of the key rings should also be increased
in order to ensure the same probability of connectivity of the graph resulting from
the direct key establishment phase. The problem is that the size of the key ring is
limited by the available memory in sensor nodes, and hence it cannot be arbitrarily
increased.

Another related disadvantage is that establishing path keys through captured nodes
jeopardizes the secrecy of the recently established key. In order to overcome this
problem, compromised nodes must be discovered and excluded from the network
rapidly, but discovering that a node is compromised is a very difficult problem in
itself.

Finally, yet another disadvantage of the basic scheme is that it does not provide
node-to-node authentication. This means that a node can establish shared keys with
its neighbors, but it does not know exactly who its neighbors are. Node-to-node
authentication would be useful in detecting node replication attacks and in identifying
and expelling misbehaving nodes.

q-composite random key pre-distribution

One approach to increase the resilience of the sensor network against node capture
attacks is to use g-composite random key pre-distribution. The g-composite scheme
differs from the basic scheme in requiring the nodes to have at least ¢ common keys
in their key rings in order to be able to establish a pairwise key. The pairwise key is
then computed as the hash of all shared keys.

The g-composite scheme degenerates into the basic scheme when ¢ = 1. Intuitively,
when g > 1, the probability that two nodes can directly establish a shared key is
smaller than the same probability in the basic scheme for the same values of the
parameters k and m, because it is less probable to share at least ¢ keys than to share
at least one. Thus, in order to maintain the same expected degree of the nodes after
the direct key establishment phase (and hence, to ensure secure connectivity), either
the size m of the key rings should be increased, or the size k of the key pool should be
decreased. However, neither of the above two options are desirable: in the first case,
the memory use of the sensors is increased, whereas in the second case, an increased
fraction of the keys in the pool is compromised by capturing the same number of nodes.
It is true, however, that the latter effect (increased fraction of compromised keys) is
counterbalanced by the fact that now, in order for the adversary to compromise a
link, it must compromise all the keys that have been hashed together to obtain the
link key.

The simulation results in [94] show that the g-composite scheme offers greater
resilience against node capture than the basic scheme does only when the number of

114 Establishment of security associations

captured nodes is small, whereas it tends to reveal larger fractions of link keys when
large number of nodes have been captured by the adversary. In effect, by requiring q to
be greater than 1, we make it harder for the adversary to obtain sufficient information
to compromise links at the beginning when only a few nodes have been captured. But
once a certain amount of information is collected by capturing more nodes, it becomes
more and more easy to compromise further links. In other words, the g-composite
scheme increases the entry cost of a node capture attack. This makes sense, as it is
reasonable to assume that it is more difficult to capture a large number of nodes than
to capture only a few of them.

Multipath key reinforcement

Multipath key reinforcement is a technique to strengthen the security of a link key by
establishing it through multiple disjoint paths. It can be applied in conjunction with
the basic scheme to greatly improve its resilience against node capture. The trade-off
is that establishing link keys through multiple paths results in a higher communication
overhead.

The operation of multipath key reinforcement is the following: Let us assume that
the direct key establishment phase of the basic scheme is performed, and two neigh-
boring nodes u and v have discovered that they have a common key K in their key
rings. Instead of simply using this key as the link key between w and v, the nodes
will establish their link key in the following way. Node u identifies a set of j disjoint
paths to v in the graph resulting from the direct key establishment phase, and sends
J key shares k1, k2,...,K; to v such that each key share is sent through a different
path. Each key share is protected during transit hop-by-hop, using the keys that are
discovered in the direct key establishment phase. Then, both u and v compute the
shared link key as K ® k1 @ ... ® k;.

The advantage of multipath key reinforcement is that in order to compromise a
link key, the adversary needs to compromise at least one key on every path through
which the key shares are transmitted. The simulation results in [94] show that ex-
tending the basic scheme with multipath key reinforcement enables it to outperform
the g-composite scheme, even when the latter is also extended with multipath key
reinforcement. The intuitive reason is that in the g-composite scheme, the trade-off
for the increased resilience is the reduced size of the key pool, which undermines the
effectiveness of multipath key reinforcement by making it easier for the adversary to
build up a critically large collection of compromised keys. As opposed to this, when
the basic scheme is extended with multipath key reinforcement, the size of the key
pool does not need to be decreased. The cost of the improved resilience in this case
is an added overhead in path discovery and key establishment traffic.

Note that multipath key reinforcement can also be used to reinforce path keys that
are established between nodes that do not have a common key in their key rings. The

5.1 Key establishment in sensor networks 115

operation of the mechanism in this case is similar to the one described above, with
the difference that the path key is computed as k1 @ k2 @ ... @ r;. This will further
improve the security of the schemes.

Random key pre-distribution combined with threshold cryptography

As we have seen above, the main problem of the basic random key pre-distribution
scheme is that if a node is captured, then all its keys become known to the adversary,
and as these keys might have been chosen from the pool by other, non-captured nodes
too, their compromise affects the security of the non-captured nodes. We would like
to extend the basic scheme in a way that minimizes the effect of capturing a node
on other non-captured nodes. In particular, if some key material is leaked, it should
not be directly usable by the adversary to learn the key material of other nodes.
A possible approach to achieve this is to extend the basic scheme with principles
borrowed from threshold cryptography.

The general idea of using threshold cryptography is that capturing less than a
certain number of nodes is not sufficient for the adversary to learn anything useful.
In order to compromise the links of non-captured nodes, the number of captured
nodes must exceed a threshold; hence the name threshold cryptography.

We start with the description of polynomial-based pairwise key pre-distribution,
and show how this can be combined with the basic random key pre-distribution scheme
later. Let f(z,y) = E:FO a;;x'y? be a bivariate ¢-degree polynomial over a finite
field GF(q), where q is a large prime number, such that f(z,y) = f(y,z). Each node
is pre-loaded with a polynomial share f(i,y), where ¢ is the ID of the node. Any
two nodes ¢ and j can compute a shared key. For this, node i evaluates f(i,y) at
point j and obtains f (i, j); similarly, node j evaluates f(j,y) at point ¢ and obtains

It can be proven that this scheme is unconditionally secure and t-collision resistant.
This means that any coalition of at most ¢ compromised nodes knows nothing about
the shared keys computed by any pair of non-compromised nodes. In addition, any
pair of nodes can establish a shared key, and this incurs no communication overhead
(apart from telling the node IDs to each other). The memory requirement of the
nodes is (t + 1)log(q), as each node needs to store a t-degree polynomial over GF(q).

This scheme could be applied in sensor networks, but it has some limitations. In
particular, it can only tolerate at most ¢ captured nodes, where the value of ¢ is limited
by the memory size of the sensor nodes. This means that ¢ is usually small, and thus
the larger the sensor network is, the more likely that the adversary can capture more
than ¢ nodes.

In order to overcome this problem, we can use the idea of random key pre-distribution;
but instead of a pool of keys, now we have a pool of t-degree polynomials. For each
sensor node i, we choose a subset of m polynomials from the pool and pre-load into

116 Establishment of security associations

node 7 the polynomial shares of these m polynomials computed at point . Two nodes
that have polynomial shares of the same polynomial can establish a shared key as
described above. It may happen that two nodes that want to establish a shared key
have no common polynomials. In this case, they can establish a shared key through a
path of intermediate nodes in the same way as path keys are established in the basic
random key pre-distribution scheme.

Combining the polynomial-based key pre-distribution scheme with the basic ran-
dom key pre-distribution scheme combines their advantages and results in a better
scheme. In particular, in the combined scheme there is a unique key between each
pair of nodes, thus capturing a node does not directly reveal the shared key of any
other pair of nodes. In addition, the storage overhead for each node is m(t+ 1) log(q),
which differs from the storage overhead of the polynomial based key pre-distribution
scheme only in a constant factor m. Although it requires slightly more memory in the
sensor nodes, the combined scheme has the advantage that it can tolerate the capture
of more than ¢ nodes. The reason is that in order to compromise a polynomial, the
adversary needs to obtain ¢t + 1 shares of that polynomial. However, due to the ran-
dom selection of polynomials, it is very unlikely that ¢ + 1 randomly captured nodes
have all selected the same polynomial from the pool, and thus collectively have t + 1
shares of the same polynomial.

It must be noted, however, that once a polynomial is compromised, every pair of
nodes that used the shares of that compromised polynomial to set up a secure link
is affected. This means that after capturing a critically large number of nodes, the
security provided by the system starts decreasing abruptly. The advantage of the
combined scheme is that it pushes the threshold where the system becomes insecure
much higher than in the basic random key pre-distribution scheme and in any of its
straightforward extensions (i.e., the g-composite scheme and multipath key reinforce-
ment).

Having described how key establishment can be carried out in sensor networks, we
will now move to personal communications.

5.2 Exploiting physical contact

In this and the two subsequent sections, we will explain how authentication and key
establishment can be engineered in peer-to-peer communication networks. In this
(short) section, we will explain how these operations can be achieved by means of
physical contact between the devices. Then we will leverage on a secure side channel
such as the one provided by infrared communications. Finally, we will assume that
even infrared is not available and show how to achieve peer-to-peer authentication by
relying only on radio communications.

Each individual (in this part of the world) possesses a growing number of wireless

5.3 Exploiting mobility 117

personal devices: mobile phone, laptop, PDA, remote control devices for appliances,
and so on. Some of these devices, such as the remote control of the car locks and
the garage door control unit, play an important security role. As a result, one of
the problems the user has to solve is to appropriately and securely initialize these
devices (and, whenever meaningful, the devices they control). More specifically, the
user must be able to tell a given device to “obey” or “become the slave” of another
device (already under the user’s control).

In a growing number of cases, the problem must be solved in the absence of any
trusted server. In addition, the slave devices should not be required to perform
complex computations such as modular exponentiations and should not be assumed
to have a screen.

To illustrate and solve this problem, Stajano and Anderson rely on the metaphor
of the resurrecting ducking [353]: a duckling emerging from its egg will recognize as
its mother the first moving object its sees that makes a sound. Likewise, a newly
purchased device will recognize as its owner the first entity that sends it a secret key.
The duckling can “resurrect” in the sense that - in well-defined conditions - it can be
reimprinted by its mother (its owner), for example if it is transferred to another user.

In order to secure the imprinting or reimprinting operations, the most convenient
solution is to use physical contact between the master and the slave devices to transfer
the secret. Once this operation is completed, the master and the slave can securely
communicate over the wireless channel by making use of this secret. Of course,
appropriate precautions need to be taken to protect the key in case one of the devices
is stolen.

An additional feature of this model is that the ducklings can communicate securely
also with each other, independently from the mother. This principle can be used
notably to secure communication between sensors.

5.3 Exploiting mobility

As we have mentioned in Part I, traditional mobile networks (such as cellular net-
works) are secured in a centralized way: each mobile device carries a (symmetric)
cryptographic key, provided by the operator at the time of contract signing.

In the previous section, we have explained that the authentication and the estab-
lishment of security associations between two devices can be achieved by physical
contact. But this solution is not always convenient, because the devices do not neces-
sarily provide the appropriate interfaces, or because users are not necessarily carrying
the required cables with them.

In this section, we will thus abandon physical contact and rather rely on a secure
side channel, as the one provided by infrared communication. We will also take a more
global view: instead of focusing on two nodes, we will consider how a whole mobile

118 Establishment of security associations

ad hoc network can be secured (hence the authentication and key exchange protocols
must be scalable). This is very important, notably in order to secure network-wide
mechanisms such as routing, as we will see in Chapter 7.

It is a common belief that peer-to-peer security is more difficult to achieve than
traditional security (based on a central trusted authority); moreover, wireless commu-
nication and mobility are considered to be at odds with security. Indeed, as we have
seen, jamming and eavesdropping are easier on a wireless link than on a wired one,
notably because such mischiefs can be perpetrated without physical access or contact.
Likewise, a mobile device is more vulnerable to impersonation and to denial-of-service
attacks.

Nevertheless, in this section and in the following one, we will show that physical
presence is the best way to increase mutual trust and to exchange information in a
secure way. Indeed, authentication is straightforward, as users can visually recognize
each other (if they meet for the first time, they can be introduced to each other by a
common friend whom they trust, or they can check each other’s ID).

We will thus show that, far from being a hurdle, mobility can in fact help security
by enabling basic functions such as authentication and key establishment, even at a
full network scale.

5.3.1 Mechanisms to establish security associations

In this subsection, we first describe the system model and then we propose the mech-
anisms for the establishment of security associations.

System Model

We assume that each legitimate user has a single device (or “node”) and that each
node is able to generate cryptographic keys, to check signatures and, more generally,
to accomplish any task required to secure its communications (including to agree on
cryptographic protocols with other nodes).

We also assume that the adversary can eavesdrop on all radio links® and can manip-
ulate messages in all kinds of ways. In contrast with the previous section, we assume
that any pair of nodes can communicate over a secure side channel (e.g., infrared),
provided that they are close enough to each other: the adversary cannot modify mes-
sages transmitted over this channel, but we do not require the secure side channel to
protect the confidentiality of the exchanged information. Finally, we consider that
the adversary can have at her disposal several fake devices.

We will first study the scenario of a self-organized mobile ad hoc network, as defined
in Part I. At the end of this subsection, we will consider the presence of a trusted
authority.

3 This is reasonable, as we want the solution to work also for small-sized networks.

5.3 Exploiting mobility 119

As mentioned in Part I, if the network is self-organized, it means that there is no
infrastructure (hence no PKI), no central authority, no centralized trusted third party,
no central server, and no secret share dealer, even in the initialization phase; each
node is its own authority domain.

In order to establish the security associations, we consider that the nodes can make
use of a secure side channel when they get in each other’s power range. As we will
show in Section 5.3.2, relying exclusively on the mobility of the nodes can lead to a
frustratingly low pace of establishment of the security associations. To expedite the
process, we introduce the additional, very intuitive notion of friend. Two nodes 14
and j are said to be friends if (i) they trust each other to always provide information
about themselves and about other nodes they have previously encountered and (ii)
they have already established a security association with each other (typically, they
know each others’ public keys). The security association between friends is assumed
to be established (or at least checked) over an out-of-band channel. Note that we do
not assume the friend relationship to be transitive, as this would require transitivity
of trust. Strictly speaking, this relationship does not even have to be symmetric, yet
to simplify the presentation, we will assume this symmetry to hold.

Mechanisms

If a node u possesses a certificate signed by a third party (typically one of her friends),
which binds node v with its (v’s) public key, then we say that there exists a one-way
security association from u to v. Two one-way security associations between nodes u
and v (one in each direction) constitute a two-way security association between the
nodes. Likewise, if u and v share a secret key k,,,, we say that there exists a two-way
security association between u and v.

If public-key cryptography is used, a (two-way) security association between two
nodes v and v is represented by triplet (U, k,, a,) at the side of v and triplet
(V, ky, a,) at the side of u, where U and V are the names of the users that are
associated with nodes v and v, k,, and k, are the public keys of » and v, and a,, and a,,
are the node addresses of u and v, respectively. Once nodes u and v have established
a security association between themselves, they can set up secure communication
channels that protect the integrity and confidentiality of the exchanged messages. In
fact, for efficiency reasons, u and v may want to use symmetric key cryptography for
the protection of their messages. In this case, they establish short-term symmetric
keys (session keys) using the public keys in the security association. In this way, the
nodes establish short-term symmetric-key security associations, which they can use
for example for efficient secure routing.

Similarly, if symmetric-key cryptography is used, a security association between
nodes u and v is represented by triplet (U, ky,, a,) at the side of v and triplet
(V, kuw, ay) at the side of u, where k,, is a symmetric key shared by u and v. In

120 Establishment of security associations

the symmetric-key based approach, we consider security associations to be always
two-way; it is not possible to establish a one-way security association.*

When two users meet, they are obviously given the possibility to visually identify
each other. The decision to set up a security association between two nodes is based
on this physical encounter. To support this mechanism, we assume that the two
devices can establish a secure side channel. A secure side channel can only be point-
to-point and works only when the nodes are within a “secure range” of each other.
We consider this assumption to be realistic, as almost all personal mobile devices are
equipped with infrared interfaces (although this tends to be less true, nowadays). We
assume that the activation of the side channel is made by both users consciously and
simultaneously. When activating the side channel, the users simultaneously associate
the name (or the face) of the other person to the established security association. This
operation is very similar to the exchange of business cards; in fact, it can even be
transparently combined with the exchange of electronic business cards (e.g., exchange
of vCards® between PDAs). These encounters make it possible for a user to associate
a face® to a given identity (and to a given public key), thus solving many of the
classical problems of security in distributed systems (e.g., impersonation attacks and
Sybil attacks).

We will now address the public-key approach, and then the symmetric one.

Public-key approach As we assume no authority, each user’s device has to generate
its public/private key pair(s). Three mechanisms support the establishment of new
security associations (Figure 5.2). Mechanism (a) is used when two nodes u and v
are in the vicinity of each other, and it consists in u and v exchanging their triplets
using the secure side channel. Because the secure side channel ensures the integrity
of the exchanged messages, it precludes the possibility of a man-in-the-middle attack.
This guarantees a secure binding between the received user name, public key, and
node address. In addition, the user can easily verify the validity of the received
name because the name should correspond to the person present at the encounter.
The node can also verify that the other node indeed possesses the private key that
belongs to the received public key by executing a simple challenge-response protocol.
Finally, the node address can be verified against the public key. The verification
of the node address against the public key is necessary, notably for secure routing.
4 In practice, the nodes can derive sub-keys from the shared symmetric key of the security associ-
ation, where each sub-key is used in one direction only and perhaps only for a specific security
service (e.g., either for integrity or for confidentiality, but not for both); this is a policy issue, out
of the scope of our discussion.

http://www.imc.org/pdi/

If a user wants to establish a security association with a user-independent device (e.g., a printer),
she will visually identify the device and bind its identity to the context in which the device

operates. Whereas here, we focus on the establishment of security associations between users’
personal communication devices.

5.3 Exploiting mobility

OO,

®

()

(b)

(c2))

U <> V

Exchange of triplets of cryptographic
material over a secure side channel

Security association established directly
over a secure side channel

Friends
u established a one-way security
association with v via a friend of u

u and v established a two-way security
association via their friends

121

Fig. 5.2. Three mechanisms to create new security associations using (a) the secure side
channel, (b) a common friend, and (cl, ¢2) the combination of the first two approaches
(mechanism (cl) is used only in the public-key based approach). From [87], © IEEE, 2006.

122 Establishment of security associations

One possible solution is to generate the node address from its public key” by making
use of Cryptographically Generated Addresses, described in Chapter 4. In this way,
node addresses are bound to public keys in a verifiable way. Note, however, that a
malicious node may generate several public keys and the corresponding node addresses
and distribute them to other nodes. Whether this is a problem very much depends
on how the routing protocol is secured (see Chapter 7).

A possible implementation of the direct establishment of security associations is
shown on Figure 5.3.

U v
Given ay, pick 74, Given ay, pick 7y
&u = h(ru||U]|kulaw) &o = h(ro ||V ||kvllav)
_ o oullge
ay||€o

rullU |l ae
7oV | lla
Verify h(ry||V]kv|law) = & Verify h(ru||U||kullau) = &u

Compare V; match(ky,ay)? Compare U; match(ky,ay)?
oy (ry || U]|V)

oy (ru|V]IU)
ucASC] B b

Legend
Radio channel:
Secure side channel: - - - - - - _ -

Fig. 5.3. Direct Establishment of a Security Association. From [87], © IEEE, 2006.

Users w and v first generate random numbers r,, and r,, respectively, and exchange,
through the secure side channel, their addresses a,, and a, and the cryptographic hash
values &, = h(ry||U||ku||an) and & = h(r,||V]|ky||ay) of their random numbers and
triplets. After this initial exchange, u and v send messages to each other through
the radio interface (as they have obtained each other’s node address in the first two
messages). They exchange their random numbers and triplets, and each of them
verifies if the hash value of the received random number and triplet is equal to the
received hash value &, (or &,). If this is the case, they can be sure that they have
received the random number and the triplet from the party with which they exchanged
the first messages through the secure side channel. The random numbers serve as
nonces and guarantee the freshness of the subsequent messages. Now, both users can
verify if the received user name corresponds to the other party and both nodes can
verify if the received node address matches the received public key. Finally, the nodes
generate and send to each other a signature (o()) on the received random number and

7 If the node has several public keys, then the node address is generated from a designated one.

5.3 Exploiting mobility 123

on the user names in order to prove that they possess the private keys that belong to
the exchanged public keys.

With Mechanism (b), two nodes u and v can establish a security association if they
have a common friend f. A simple solution is the following: Since f knows the triplets
of both u and v, it can issue (on request from u and/or v) fresh certificates for both
triplets and send them to v and u, respectively, via the network. Both u and v know
the public key of f and they also trust f, therefore they can both verify the received
certificates and will accept the information therein if the verification is successful.

Mechanism (cl) is a combination of the friendship relationships and the encounters,
and they establish only a one-way security association: If nodes w and f are friends
and f has obtained the triplet of v in an encounter with v, then f can issue (on request
from w) a fresh certificate for the triplet of v and send this certificate to u via the
network. As u knows the public key of f, and also trusts f, she can verify the received
certificate and accept the received triplet if the verification is successful. A two-way
security association between nodes u and v is then established as a combination of
two one-way security associations (from u to v and from v to u).

The protocols corresponding to Mechanisms (b) and (cl) are straightforward and
we do not detail them.

Symmetric-key approach The mechanisms used in the symmetric-key approach
are similar: They can be applied to both the self-organized and the authority-controlled
networks.

The first mechanism (Figure 5.2, Mechanism (a)) is a direct establishment through
the side channel: When the nodes are in the vicinity of each other, they can exchange,
through the side channel, their user names and node addresses, and additional data
that allow them to compute a shared secret. It is important to note, however, that
in a pure symmetric-key approach, setting up a shared secret between two parties
always requires a confidential side channel between them. This means that in this
case, the side channel must ensure not only the integrity but also the confidentiality
of messages. Like in the public-key implementation, the users can verify the received
names through personal encounters. The node addresses, in contrast, can be verified
against the received (and verified) names.

Mechanism (b) supports the establishment of security associations between two
nodes u and v via a common friend f. By assumption, f already has a security
association with both v and v, meaning that it has symmetric keys established with
them. In addition, f is trusted by both v and v. Therefore, to establish a session
key between u and v, well-known symmetric-key protocols can be used, where f plays
the role of the trusted (key) server. The session key can be generated either by f
who would send it to both u and v (like in the Kerberos protocol), or by u or v, in

124 Establishment of security associations

which case f would be used as a trusted relay (like in the Wide-Mouth-Frog protocol);
please refer to Appendix A for a description of these two protocols.

Finally, Mechanism (c2) can be used when two nodes v and v do not have a common
friend, or have a common friend f but do not want f to know their shared secret
key. Like in the public-key based approach, Mechanism (¢2) combine the first two
mechanisms (encounters and friends). Let us assume that u has a friend f who has
already set up a security association with v using the first mechanism. Similarly, let
us assume that v has a friend g who has set up a security association with u using the
first mechanism. Now u and v can set up a security association using f and g by u
generating key contribution k, and sending it to v via g, v generating key contribution
k, and sending it to u via f, and then both u and v computing a common value k,,,
from k, and k,.

The Friend-Assisted Establishment of a Security Association, shown in Figure 5.4,
illustrates this in more detail. In this protocol, nodes u and v first exchange the
names of their friends (to be used in the protocol as trusted relays) and two nonces r,,
and 7, (used to guarantee the freshness of subsequent messages). Then, u generates
some random key k,, and sends it to v via g (msg3 and msg4), and v generates some
random key k, and sends it to u via f (msg3’ and msg4’). Here, d,_., is a direction
bit that indicates that the message goes from z to y (and not from y to x).% req and
rep are bits that indicate that the message is a request to a friend or a reply from a
friend, respectively. We need these bits because every node can play either the role
of a requesting node (u and v) or the role of a friend (f and g), and thus we must
indicate not only that this is a message from = to y but also that x is the requesting
node and y is the friend (or vice versa). Finally, u and v compute a common value
Eky, from k, and k, using a publicly known pseudo-random function h (e.g., a hash

function).
u v
msgl fliru
mSg2 gllrv
3 ull By, g (dusglireqlvlikullre)
msg N
4 9By g (dg—vlireplullkuliry)
msg; >
v Bk, o (dy—plireqllullkyllTw)
f
msg3’ R ——
FllBg,, (dfqllreplviiky llmu)
!
msg4’ Wleg =~
Kyy = h(kuuku) Fuy = h(k“‘lk“)

Fig. 5.4. Friend-Assisted Establishment of a Security Association. From [87], © IEEE, 2006.

8 Note that since messages are always encrypted with a symmetric key kzy, the only possible
ambiguity is the direction.

5.3 Exploiting mobility 125

An interesting feature of the protocol is that it replaces a single trusted party with
two parties trusted by one entity each. If f and g are not colluding, then neither of
them has enough information to compute k,,. In addition, both v and v trust at
least one of them for not colluding.

Presence of an authority

We now assume that there is a central, trusted authority, but that it is not (or at least
not always) accessible online. A typical example is a vehicular network: neighboring
vehicles may need to establish a security association, but do not have the connectivity
(or simply the time) to contact a server in order to do so.

The existence of this authority makes things easier, as it can assign a unique identity
to each node.

If public-key cryptography is used, the solution is simple: The authority provides a
certified public key to each node. We can also assume that each node holds a correct
public key of the authority, so that it can verify the correctness of the certificates that
other nodes hold. Hence, when two nodes move into the (radio) power range of each
other, they will exchange certificates that contain their public keys, and establish a
security association.

If the system is restricted to the use of symmetric cryptography, then the protocols
we have presented for the case of the self-organized network can be used.

The major difference between the self-organized and the authority-based approach
stands in user involvement: In a self-organized approach, users need to establish
security associations consciously; on the contrary, in the authority-based approach
with public-key cryptography, users do not need to be aware of the establishment
of the security associations, as this is done automatically by their nodes. The use of
either of these approaches strongly depends on the purpose of the network. Typically,
the self-organized approach is useful in securing personal communications on the
application level, whereas the authority-based approach is used to secure networking
mechanisms such as routing.

5.3.2 Performance evaluation

In this subsection, we provide an estimate of the pace at which security associations
are created. We assume that, initially, each node established security associations
only with its friends; we further assume that each node has the same number of
friends.

In our analysis, we will observe the following values: the convergence r(t), which
represents the fraction of the security associations established until time ¢, and the
convergence (meeting) time ¢5s, which is the time needed to establish all the desired
security associations. One additional value of interest is the average meeting frequency

126 Establishment of security associations

1/t of nodes. Here, ¢y, is the node inter-meeting time. This value is important for
assessing the frequency of rekeying and the time necessary to perform key revocation.

In the simulations we describe, the Random Waypoint mobility model described
in Chapter 2 is used and we extend this model with some new features; we call
this new model the Restricted Random Waypoint model. As we have seen, in the
conventional Random Waypoint model a node chooses its destination and its speed
towards this destination randomly. After arriving at the destination, the node pauses
for a certain period of time, and then chooses its new destination and its speed.
In the Restricted Random Waypoint model, the nodes move in the same way as in
the Random Waypoint model, but their choice of destination points is restricted to
a number of fixed points on the plane with some probability p. This means that
with probability p, a node randomly chooses a point from a finite set of destination
points, and with probability 1 — p, it chooses as its destination a random point on the
plane. This model is closer to reality in the sense that users normally do not choose
destination randomly, but they rather move to some meeting points (e.g., meeting
rooms, lounges, restaurants) where communication between users takes place. If
p =1 and if the set of destination points is small, the convergence time will be small
as well. On the contrary, if p = 0, we have the standard Random Waypoint mobility
model and the convergence time will be longer.

In this mobility model, two nodes can establish a security association if they are
in the security range of each other (for the self-organized network) or in each others’
power range (in the authority based network). The security range is the maximum
range for the secure side channel to be set up; it is significantly smaller than the power
range of mobile nodes.

In all simulations, the same simulation area (a 1000mx 1000m square) is used and
the number of nodes is set to n = 100. When the nodes hit the area border, they
bounce off under the same angle under which they hit the border. The node maximum
speed is set to 5 m/s (except in one case on Figure 5.5a, where it is 20 m/s), and the
minimum speed to 1 m/s. The pause time is set to 100 s.

On Figure 5.5 we observe the convergence r™"**(¢) and the node meeting frequency.
Figure 5.5a shows that the friends mechanism speeds up convergence proportionally
to the number of friends. Furthermore, this shows that, as expected, a higher average
speed of nodes results in a faster convergence (and therefore a shorter convergence
time). The same figure also illustrates another very intuitive result: The convergence
is faster if the nodes gather at and around meeting points. It is also interesting
to observe that, in the most favorable case (in which the security range is 100 m
and the network is controlled by a central authority), 40% of security associations
are established in less than 1000 seconds (17 minutes). This is an important result,
given that, as we will show in Chapter 7, this percentage of security associations is
sufficient to support secure routing. Figure 5.5b shows the node meeting frequency

5.4 Exploiting the properties of vicinity and of the radio link 127

1 - 0O

09 fr 7 0.02 ‘ ‘

08 / /Cp %\\ —o- meeting frequency for two

0.7 b 0.015 nodes without friends

0.6 v g N
= A :

=] \
0.5 z N
- 0.4 / / e g 001 A
i E N
03 / // i E N
£ N
02 m 0.005 NN
0.1 o S
0 RANE
10 100 1000 10000 100000 1000000 0 =
time (s) 330x330 500x500 1000x1000 3330x3330
—o— =0, sr=100 m, p=1 ---- =0, st=5 m, p=0 .
—— =0, sr=5 m, p=1 — =2, sr=5m, p=1 area size (N)
o+ =0, sr=5 m, p=0.5 -0~ f=0, sr=5 m, p=0, v=20m/s
(a) (b)

Fig. 5.5. Restricted Random waypoint simulation results; (a) average convergence, (b) meet-
ing frequency. Here, f is the number of node’s friends, p is the restriction probability, v is the
node speed, and sr is the range within which the nodes can establish security associations.
The results are shown with 95% confidence intervals. From [87], © IEEE, 2006.

(two nodes), in areas of various sizes. We observe that the meeting frequency is
inversely proportional to the size of the area.

5.4 Exploiting the properties of vicinity and of the radio link

As we have just seen, authentication and key establishment can be based on the usage
of a secure side channel, typically by means of infrared communication. However, as
we have mentioned, infrared interfaces are not always available on devices anymore.
Consequently, we show in this section how security associations can be established by
making use only of the radio link, even in the absence of an authority.

More specifically, we consider the case in which two users, each equipped with a
personal device capable of communicating over a radio link, get together and want to
establish a shared key. Although they can visually recognize each other, we assume
that they do not share any authenticated cryptographic information (e.g., public keys
or a shared secret) prior to this meeting. The challenge is the following: How can the
users establish a shared key in a secure way?°

This situation corresponds to the frequent case in which two people get together
(e.g., at a meeting, or in the street) and make use of their devices to exchange in-
formation, for example their (electronic) business cards. Clearly, the communication
between these devices must be properly secured.

9 This situation is different from the establishment of a shared key between two Bluetooth devices
belonging to the same user, which we described in Chapter 1.

128 Establishment of security associations

Very often, the two users will want the security between their devices to be peer-
to-peer, thus operating independently from any authority. In practice, this means
that the mobile devices must run a protocol to authenticate each other and to protect
the data they exchange (to ensure confidentiality and integrity); the latter operation
typically requires setting up a symmetric shared key.!? This key can be used to secure
both immediate communications and communications that take place afterwards (e.g.,
when users exchange email over the Internet).

Assuming that they have visually authenticated each other, we will now show how
they can establish a key over the radio link. To this end, we will first precisely
define the model we consider, and then describe the protocol that solves the problem.
Note that a number of protocols have been proposed to solve this problem, and we
will enumerate them in Section 5.7. The solution we will present hereafter requires
minimal effort from the users (they do not need to type in any thing; all they have to
do is to push a button to trigger the unfolding of the protocol and compare a short
string of characters).

5.4.1 System model

The Diffie-Hellman (DH) key agreement protocol [362], described in Appendix A,
seems to be appropriate for the problem (and the set of assumptions) at hand; the
DH key agreement protocol is believed to be secure against a passive adversary'! (e.g.,
eavesdropping on a wireless link). Let us briefly review how the DH key agreement
protocol works. To agree on a shared key, two users, Alice (A) and Bob (B) proceed
as follows. A picks a random secret exponent X 4, and calculates the DH public
parameter X4, where g is a generator of a group of large order. B does the same,
that is, he calculates ¢*2. Finally, A and B exchange the public parameters g*4 and
g*? and calculate the shared DH key as K = gX4%5 = (g¥4)Xs = (gXB)Xa,

It is well known that the basic version of the protocol is vulnerable to an active
adversary who uses a man-in-the-middle (MITM) attack. At first glance, it may seem
that mounting the MITM attack against wireless devices that communicate over a
radio link and are located within the radio communication range of each other can
be perpetrated only by a sophisticated attacker. But this is not the case, as we will
now explain by a simple example in the framework of Internet protocols.

As we have seen in Subsection 4.2.1, neighbor discovery protocols involve both
the MAC and the IP addresses of nodes. In IPv4, the Address Resolution Protocol
(ARP) [313] is used by the Internet Protocol to map IP network addresses to the
hardware addresses used by a data link protocol (the MAC addresses). An attacker
10 In practice, it is recommended to make use of different keys for confidentiality, integrity (and,

where appropriate, authentication). We will not go to this level of detail here.
11 This is true if the Computational Diffie-Hellman problem [262] is intractable.

5.4 Exploiting the properties of vicinity and of the radio link 129

can send spoofed ARP-replies to the victim, who will consequently send all its packets
to the attacking machine. In this way, the attacker redirects the traffic between two
“legal” machines through an attacking machine, despite the fact that the two legal
machines were in radio communication range of each other. In this way, the attacker
can perpetrate a MITM attack (by altering the DH parameters). This attack can
easily be implemented by making use of publicly available tools for network auditing
and penetration testing, such as dsniff [348].

Of course, ARP-spoofing is not the only way to mount a MITM attack against
wireless devices. Examples of more involved MITM attacks against Bluetooth [349]
equipped devices can be found in [202] and [236].

Hence, the goal is to devise mechanisms that prevent the attacker from modifying
the DH parameters without being noticed.

Assumptions

We assume each user to be equipped with a computationally constrained personal de-
vice (e.g., a PDA). Each device is equipped with a radio transceiver (e.g., IEEE 802.11,
which is described in some detail in Chapter 9). We also assume that each device has
a human-friendly interface (i.e., a screen and a keyboard).

The solution that we will present makes use of the multiplicative group G with the
generator g. Here, we take G to be a subgroup of Zj of the prime order g, where
Zy, is the multiplicative group of non-zero integers modulo a large prime p. However,
the whole treatment here applies to any group in which the Decisional Diffie-Hellman
(DDH) problem is hard. These are all groups in which it is infeasible to distinguish
between quadruples of the form (g, g%, ¢¥,¢"Y) and quadruples (g, ¢*,g¥,9%) where
x,y, z are random exponents. Furthermore, we assume that p and the generator g of
Zy, (2 < g < p—2) are selected and published. All devices are preloaded with these
values.

Concerning the adversarial model, we adopt the Dolev-Yao threat model that we
already discussed in Chapter 3. Dolev-Yao is usually unsuitable for wireless networks,
yet in this specific case, as we consider only two parties communicating over a single
channel and do not address Sybil or replication attacks, the model is appropriate.
Thus, we assume that the attacker Mallory (M) controls the radio communication
channel: He can obtain any message transmitted over the radio channel. M can initi-
ate a conversation with any other user. However, we assume M to be computationally
bounded. We further assume that the two parties involved in the communication do
trust each other; otherwise, little can be done (a corrupted party can always disclose
any secret information received by another party). Whenever we speak of the security
of a given protocol, we implicitly assume that the users involved in the protocol (or,
more specifically, their devices) are not compromised.

130 Establishment of security associations

Commaitment schemes

Before describing the protocol, we still need to introduce one notion: the commitment
scheme. The principle of a commitment scheme is the following: (i) a user who
commits to a certain value cannot change this value afterwards (we say that the
scheme is binding), (ii) the commitment is hidden from its receiver until the sender
“opens” it (we say that the scheme is hiding).

A commitment scheme transforms a value m into a commitment/opening pair (¢, d),
where ¢ reveals no information about m, but (¢, d) together reveal m, and it is infeasi-
ble to find d such that (c, c?) reveals m # m. Now, if Alice wants to commit a value m
to Bob, she first generates the commitment/opening pair (c4,d4) < commit(m), and
sends ¢4 to Bob. To open m, Alice simply sends d 4 (and m if necessary) to Bob, who
runs 7 — open(éa,da). We denote with & the message at the receiver’s side when
message x is sent over a public (unauthentic) channel. If the employed commitment
scheme is “correct”, at the end of the protocol we must have m = m. In the security
analysis, we assume the use of an ideal commitment scheme.!'? We are now ready to
describe the protocol.

5.4.2 Protocol description

Our goal is to ensure the integrity of DH public parameters (g%4, g*#) rather than
the integrity of the agreed key K. The reason is the following: People build trust
in each other when they meet in person; secure communication is usually needed
only afterwards (typically when they communicate over the Internet). Clearly, in
such a scenario, it is not necessary to compute the shared DH key immediately; this
“expensive” computation (typically a modular exponentiation) can be postponed to
some later time, when (remote) secure communication is needed. In this way, we
reduce the computational burden on the personal devices used during the protocol
itself.

The simplest way to check the validity of the exchanged DH public parameters for
Alice (A) and Bob (B) is for them to report the exchanged public parameters g4
and ¢g*? to each other and then compare them. The comparison of the exchanged
values can be performed by looking at the screen of the communicating party, or
by reading aloud the values to be compared. Although this approach provides very
strong security, it is clearly impractical because it requires A and B to compare rather
large streams of digits. A possible way to make visual (and verbal) verification easier
for A and B is to represent the DH public parameters in a more readable form by, for
12 Tn particular, we assume the commitment scheme is non-malleable. Informally, an unmalleable

commitment scheme means that the attacker is unable to alter a commitment of a targeted party

into another (apparently legitimate) commitment. The interested reader may refer to [115] for
details on malleability.

5.4 Exploiting the properties of vicinity and of the radio link 131

example, significantly reducing the number of digits to be compared by hashing them
and potentially encoding the bits in a more readable form; the latter can be achieved
by splitting the result of the hash in small groups of bits, and associating a word of
the common language (e.g., “house”, “dog”, etc.) to each possible combination of
bits.!3. However, in this way, many different (long) DH public parameters translate
to the same (short) bit string (the check value). This may give some advantage to a
potential attacker.

Another simple approach consists in first exchanging ¢g*4 and ¢X# over the public
channel, and in turn, verifying (for example, visually) that h(gXAHgXB) matches
h(gXA lg%X2), where h is a hash function satisfying appropriate security properties,
“|I” denotes concatenation, and a symbol with a “hat” (“*”) designates a value received
over the wireless channel. In order for this approach to be usable, the output of the
hash function h should be truncated to a relatively short length (e.g., around 50
bits). With this approach, an adversary is successful if she can find values a and b
such that h(g*4|la) = h(b|lg*?); she is then said to find a collision on the truncated
output of h(-). Note that it is not sufficient for an adversary to find any collision on
h(-). However, the adversary is not constrained to finding a second pre-image'* for a
single fixed image value gX4 or g%#; indeed, an adversary controls the inputs to h(-)
through the values a¢ and b. Furthermore, the outcome of the used hash function is
truncated (e.g., 50 bits long). Therefore, even if h(-) is a second pre-image resistant
hash function, this still may not be a sufficient guarantee that the adversary cannot
find a collision between truncated h(g*4||a) and h(b||g*?).

In order to make the approach based on string comparison usable, it is essential to
make a proper trade-off between security and usability. The protocol that we will now
describe is called DH-SC (Diffie-Hellman key agreement with String Comparison); it
achieves an optimal trade-off between security and usability and is provably secure.

The protocol unfolds as shown on Figure 5.6. Most of the operations are carried
out by the devices of Alice and Bob. The only operation in which the two (human)
characters are consciously involved are (i) the decision to launch the protocol after
visual identification and (ii) the verification that i4 = ip.

Both Alice (A) and Bob (B) select randomly their secret exponents, respectively,
X4 and Xp from the set {1,2,...,q} (¢ being the order of G) and calculate DH
public parameters gX4 and ¢X2, respectively. A and B proceed by generating k-
bit random strings N4 and Np, respectively. Finally, A and B calculate commit-
ment/opening pairs for the concatenations 0||ID4|lg%¥4||Na and 1||IDg| g5 | Ng,
respectively. Here, 0 and 1 are two public (and fixed) values that are used to prevent

13 The interested reader can refer for example to RFC 2289 [157] for more information on this
solution.

14 For a given z, @ is said to be a second pre-image if z # = and h(z) = h(Il) [262].

132 Establishment of security associations

Alice Bob
Given ID 4, gXa Given IDp, gXB
Pick N4 €y {0,1}* Pick N €y {0,1}*
ma —0[[IDallg*4[Na mp — 1|IDp|lg*&||Np
(ca,da) < commit(my4) (¢B,dpB) < commit(mp
ca
_—
cB
- B
4 My — open(éA,(fA)

7?7,B<—open(63,dAB) - 4B Verify 0 in f4; ig <« Ng @ Na

Verify 1 in mp;ia «— Nag® Np
If 4 = ip, Alice and Bob output “Accept” mp and m 4, respectively.

Fig. 5.6. Operation of Diffie-Hellman key agreement protocol with String Comparison (DH-
SC). From [78], © IEEE, 2006.

a reflection attack (see Appendix A). ID, and IDp are human-readable identifiers
belonging to parties A and B (e.g., their e-mail addresses).

The following four messages are exchanged over the radio link. In the first message,
A sends to B the commitment c4. B responds with his own commitment cg. In turn,
A sends out d 4, by which A opens the commitment c4. B checks the correctness of
the commitment/opening pair (¢4, d 4) and verifies that 0 appears at the beginning
of m4. If the verification is successful, B sends in the fourth message dg, by which
B opens the commitment cg. A in turn checks the commitment and verifies that 1
appears at the beginning of mp. If this verification is successful, A and B proceed to
the final phase.

In the final phase, A and B first generate the verification strings i4 and ig, re-
spectively, as shown on Fig. 5.6 (@ is the bitwise “xor” operation). The length of
each of these strings is k. Finally, Alice and Bob simply compare i 4 and ig. If they
match, Alice and Bob accept each other’s DH public parameters ¢*4 and ¢*# and
the corresponding identifiers /D4 and IDp as being authentic. At this stage, Alice
and Bob can safely generate the corresponding secret DH key (gX4X2).

Let us now define formally what we mean by a secure protocol.

Definition 5.1 We say that a protocol I1(k, (A, B)) is a secure protocol enabling
authentication of DH public parameters between A and B if the (polynomial-
time) attacker M cannot succeed in deceiving A and B into accepting DH public
parameters different than ¢g*4 and X8, except with a satisfactorily small probability

O(27%).

To state the result about the security of DH-SC protocol, we need two additional
security parameters (k was already introduced before: it is the length of verification
strings i4 and ip). We denote with v the maximum number of sessions (successful

5.4 Exploiting the properties of vicinity and of the radio link 133

or abortive) of the DH-SC protocol that any party can participate in (during a whole
lifetime). We further assume that there are in total n parties in the world that are
using the DH-SC protocol. The following result is proven under the assumption that
an ideal commitment scheme is used.

Theorem 5.1 The probability that an attacker succeeds against the DH-SC' protocol
is bounded by ny2~F. Therefore, for the appropriately chosen parameter k, DH-SC is
a secure protocol enabling authentication of DH public parameters.

Note that the probability of success by the attacker as stated in Theorem 5.1, refers to
the success against any among all DH-SC protocol runs; in other words, the attacker
does not care which parties’ communication she breaks/influences. On the contrary,
the probability that the attacker is successful against a specific (targeted) party is
only y27F.

The proof of the theorem and the assessment of the security of the protocol can be
found in [78].

Let us give an example of possible values for the above parameters. Assume there

are at most n = 220

parties using the protocol and each party can participate in
at most v = 220 sessions (successful or abortive) in her lifetime. Then, by choosing
k = 55 we obtain that the highest probability of success by the attacker (having seen
a huge number ny = 24° of protocol runs) is at most ny2~% = 2715, Note that k also
represents the length of the verification strings i4 and i to be compared by users.
To make this task easier for users, as mentioned before, we can encode the bits in a
string of short words from some predefined dictionary. In our specific case, let us call
£ the number of short words into which we encode the k = 55 bits. For example, in
order to have ¢ = 5, where each word is 4 characters long, each user would have to
store a dictionary of 2¢ = 21! = 2048 4-character words. Of course ¢ can be reduced
further by using larger dictionaries.

5.5 Revocation

If public keys and certificates are delivered by an authority, it must be possible,
whenever necessary, for the authority to revoke them. This is one of the most difficult
problems of public-key cryptography, and it is clear that there is no one-fit-all solution.
Indeed, revocation is strongly related to the kind of trust expected between the users
and the authorities, and this trust can vary from one application to another.

In order to illustrate this concept, we will rely on one of our running examples,
namely the problem of key revocation in a vehicular network, based on the principles
introduced in Subsection 2.2.7.

The advantages of using a PKI for vehicular communications are accompanied by

134 Establishment of security associations

some challenging problems, notably certificate revocation. For example, the certifi-
cates of a detected attacker or malfunctioning device have to be revoked, i.e., it should
not be able to use its keys or if it still does, vehicles verifying them should be made
aware of their invalidity.

The most common way to revoke certificates is the distribution of CRLs (Certifi-
cate Revocation Lists) that contain the most recently revoked certificates; CRLs are
provided to passing by vehicles by roadside units. In addition, using short-lived cer-
tificates automatically revokes keys. These are the methods proposed in the IEEE
P1609.2 standard [195]. But there are several drawbacks to this approach. First,
CRLs can be very long due to the enormous number of vehicles and their high mobil-
ity (meaning that a vehicle can encounter a high number of vehicles when travelling,
especially over long distances). Second, the short lifetime of certificates still creates
a vulnerability window. Last but not least, the availability of an infrastructure will
not be pervasive, especially in the first years of deployment.

To avoid the above shortcomings, we describe a specific solution, based on a set of
revocation protocols called RTPD (Revocation Protocol of the Tamper-Proof Device),
RCCRL (Revocation protocol using Compressed Certificate Revocation Lists), and
DRP (Distributed Revocation Protocol). We present the details of RTPD, illustrated
in Fig. 5.7, and we only outline the main features of RCCRL and DRP; the interested
reader may refer to [318, 321] for more details.

In RTPD, once the CA has decided to revoke all the keys of a given vehicle M,
it sends to it a revocation message encrypted with the vehicle’s public key. After
the message is received and decrypted by the TPD of the vehicle, the TPD erases
all the keys and stops signing safety messages. Then it sends an ACK to the CA.
All the communications between the CA and the vehicle take place in this case via a
base station. In fact, the CA has to know the vehicle’s location in order to select the
base station through which it will send the revocation message. If it does not know
the exact location, it retrieves the most recent location of the vehicle from a location
database and defines a paging area with base stations covering these locations. Then
it multicasts the revocation message to all these base stations. In the case when there
are no recent location entries or the ACK is not received after a timeout, the CA
broadcasts the revocation message, for example, via the low-speed FM radio on a
nationwide scale or via satellite.

The RCCRL protocol is used when the CA wants to revoke only a subset of a
vehicle’s keys or when the TPD of the target vehicle is unreachable (e.g., by jamming
or by tampering of the device). Given the expected large size of CRLs in VANETS,
the key idea in RCCRL is to use Bloom filters (a probabilistic data structure used to
test whether an element is a member of a set) [65]. Thus, the size of a CCRL will
be only a few KiloBytes. RCCRL also relies on the availability of the infrastructure
that broadcasts the CCRLs periodically (say, once every 10 minutes). Compared with

5.6 Summary 135

Certification Authority (CA)

check for location

L ti information
o (:Cg on -— — > inform owner
atabase >
send secure message to TPD send secure message to TPD
and broadcast compressed CRL locally OR using (3) low-speed broadcast

using (1) a specific BS or (2) a paging area

@)

Base
Station FM Broadcast

compressed CRL‘//
AC

o 6o o
RN

Neighbors

secure secure
message message
to TPD to TPD

TPD: erase keys and stop)

Fig. 5.7. Revocation protocol of the tamper-proof device (RTPD). From [321], © IEEE,
2006.

RTPD, RCCRL warns the neighbors of a revoked vehicle because they also receive
the CCRLs.

The DRP protocol is used in the pure ad hoc mode whereby vehicles accumulate ac-
cusations against misbehaving vehicles, evaluate them using a reputation system and,
in case misbehavior is detected, report them to the CA once a connection is available.
Unlike RTPD and RCCRL, the revocation in DRP is triggered by the neighbors of a
vehicle upon the detection of misbehavior. Mechanisms for the detection of malicious
data [150] can be leveraged to spot vehicles generating these data (since all messages
are signed).

5.6 Summary

In this chapter, we studied the problem of key establishment in sensor networks.
We explained that in sensor networks, different types of keys are needed in order to
support different types of communication patterns and in-network processing. We
showed that node keys, cluster keys, and network keys can be established relatively
easily using the technique of key pre-loading and using already established link keys.
However, we identified the problem of link key establishment as a difficult one. We

136 Establishment of security associations

elaborated on two approaches to solve the link key establishment problem. The
first approach is based on a short-term master key known to every node after its
deployment for a limited amount of time. The second approach is based on the idea
of random key pre-distribution. We described a basic protocol that uses random key
pre-distribution and some of its enhancements.

We then moved to personal communications and explained how physical contact
can be used to establish security associations between devices.

Next we considered the case in which users find physical contact (of their devices)
impractical, and assumed the presence of a secure side channel, such as the one
provided by infrared communications. We explained that mobility can help securing
mobile networks. We illustrated this on two scenarios: self-organized networks and
networks with an off-line authority. In the first scenario, we showed that the solution
is intuitive to the users, as it mimics real-life concepts (physical encounters, friends),
and solves some classical problems of security in distributed systems. In the second
scenario, a direct establishment of security associations over the (one-hop) radio link
solves the well-known security-routing interdependency problem, which we will discuss
in Chapter 7.

We then removed the assumption of the presence of a secure side channel and de-
scribed how two users, moving into the vicinity of each other, can let their devices
authenticate each other and set up a security association. We explained that this
operation can be securely carried out in spite of the fact that (i) the two devices com-
municate exclusively over an unsecured radio link and (ii) the two users are assumed
not to share any prior information such as mutual certificates.

Finally, we described a way to implement revocation in the case of vehicular net-
works.

All these mechanisms are of course very useful to protect networking mechanisms
(for example, in order to secure routing, as we will see in Chapter 7). It is important
to note that they can also be used in order to protect application-level transactions.

5.7 To probe further

A considerable amount of research has been carried on the topic of establishment of
security associations; hence we have organized this section in the same order as the
themes addressed in this chapter.

Key establishment in sensor networks: In Section 5.1, we explained that an
important requirement for key establishment in sensor networks is to support in-
network processing. Notably, one of the reasons for setting up link keys and cluster
keys is to make in-network data aggregation and passive participation possible. We
note that some researchers have explored other ways to support in-network processing

5.7 To probe further 137

based on aggregation of encrypted data without prior decryption (see e.g., [90, 372]).
These concealed data aggregation schemes are promising; however, currently, they
support only a limited number of aggregation functions, and they do not allow for
passive participation.

The link key establishment approach that is based on a short-term master key was
proposed in [400] by Zhu, Setia, and Jajodia as part of LEAP (Localized Encryption
and Authentication Protocol), a key management scheme for sensor networks.

The basic random key pre-distribution scheme for link key establishment in sensor
networks was proposed by Eschenauer and Gligor in [126]. The g-composite random
key pre-distribution scheme and multipath key reinforcement was proposed by Chan,
Perrig, and Song as improvements on the basic scheme in [94]. The approach to
combine random key pre-distribution with threshold cryptography was proposed by
Du, Deng, Han, and Varshney in [119], and by Liu and Ning in [256]. The scheme
described in [119] is based on matrices, whereas the scheme proposed in [256] is based
on polynomials. In effect, the two proposals are analogous and lead to the same result
in terms of improvement with respect to resistance to node capture.

Since the seminal paper [126] of Eschenauer and Gligor on random key pre-distribution
in distributed sensor networks, a multitude of papers have been published on pairwise
key establishment in sensor networks. A comprehensive survey of these papers (up to
2005) can be found in [79], written by Campete and Yener. They not only describe
and classify the various approaches but also identify which contribution is based on
which other contributions.

Ezxploiting physical contact: As we have mentioned, Stajano and Anderson have
proposed the resurrecting duckling security policy model, [352] and [353], in which
key establishment is based on the physical contact between communicating parties
(e.g., their PDAs).

Ezxploiting mobility: The section of this chapter devoted to the exploitation of
mobility is based on [87].

In [399], Zhou and Haas propose a distributed public-key management service for
ad hoc networks in which the functionality of the central authority is distributed over
a subset of nodes through a threshold cryptography scheme.

Another approach, explored by Capkun et al. consists in letting each node carry a
subset of the trust graph [82, 182]. This approach requires some level of transitivity
of trust and was not investigated further.

We should also mention the work of Grossglauser and Tse [153] which shows that
mobility can help to increase the per-user throughput in ad hoc networks, and which
was a source of inspiration for the solution we have described.

138 Establishment of security associations

Ezxploiting vicinity: The section of this chapter devoted to the exploitation of mo-
bility is based on a contribution authored by Cagalj, Capkun, and Hubaux [78].

An approach inspired by the resurrecting duckling security policy model is proposed
by Balfanz et al. [39]. In that work, the authors go one step further and relax the
requirement that the location limited channel has to be secure against passive eaves-
dropping; they introduce the notion of a location-limited channel (e.g., an infrared
link), similar to the secure side channel mentioned in this chapter. A location-limited
channel is used to exchange pre-authentication data and should be resistant to active
attacks (e.g., man-in-the-middle). Once pre-authentication data are exchanged over
a location-limited channel, users switch to a common radio channel and run any stan-
dard key exchange protocol over it. Possible options for a location-limited channel
include: physical contact, infrared, and sound (ultrasound).

Asokan and Ginzboorg propose another solution based on a shared password [29].
They consider the problem of setting up a session key between a group of people
(i.e., their computers) who get together in a meeting room and who share no prior
context. It is assumed that they do not have access to public key infrastructure or
third party key management services. The proposed solution is the following. A fresh
password is chosen and shared among those present in the room (e.g., by writing it
on a sheet of paper or a blackboard). The shared password is then used to derive a
strong shared session key. This approach requires users to type the chosen password
into their personal devices.

It is well known that IT security systems are only as secure as their weakest link.
In most IT systems the weakest links are the users themselves. People are slow and
unreliable when dealing with meaningless strings, and they have difficulties remem-
bering strong passwords. In [310], Perrig and Song suggest using hash visualization to
improve the security of such systems. Hash visualization is a technique that replaces
meaningless strings with structured images.

In US patent no. 5,450,493 [261], Maher presents several methods to verify DH
public parameters exchanged between users. The first method described in [261] is
the most relevant for the problem considered in this chapter; other methods are based
on certificates and/or shared secrets. A and B first perform the DH key exchange
protocol and in turn report to each other values f(K4) and f(Kp), where K4 and Kp
are the shared DH keys as computed by A and B, respectively, and f is a compression
function (i.e., f maps a key to 4-digit hex vectors [261]). Unfortunately, this technique
has a flaw, that was discovered by Jakobsson [199].

Motivated by this flaw, Jakobsson [199] and Larsson [246] propose two solutions,
both based on a temporary secret shared between the two users (one of the solutions
is called SHAKE, which stands for Shared key Authenticated Key Exchange).

Dohrmann and Ellison [114] propose a method for key verification that is similar to
the one described in this chapter. This method is based on converting key hashes to

5.8 Questions 139

readable words or to an appropriate graphical representation. However, it seems that
users are required to compare a substantial number of words (or graphical objects)
and this task can take them as much as 24 seconds according to [114]. This time is
significantly reduced when the graphical representation is used.

In [143] and [144], Gehrmann et al., propose a set of techniques to enable wireless
devices to authenticate one another via an insecure wireless channel with the aid
of the manual transfer of data between the devices. The protocol, which they call
MANA 1I, is similar to the DH-SC protocol described in this chapter, but requires
the users to compare a higher number of bits.

Cameras are more and more frequently embedded on mobile devices such as mobile
phones. Yet another approach, proposed by McCune, Perrig, and Reiter [266] propose
to make use of the camera to capture the image displayed by another device and
perform authentication tests.

We should also mention other key-exchange protocols, proposed primarily for the
use in the Internet: IKE [160], JFK [14] and SIGMA [233]. All these protocols involve
authentication by means of digital signatures. We also should mention the work of
Corner and Noble [103], who consider the problem of transient authentication between
a user and her device.

5.8 Questions

(a) What is the purpose of authentication?

(b) In order to support link key establishment between neighboring nodes in a
sensor network, we could pre-load in each node n — 1 keys, where n is the total
number of nodes, such that each pair of nodes share a common key. What are
the disadvantages of this approach?

(¢) In sensor networks, in order to save energy, sensor nodes spend most of their
time in sleeping mode. When new nodes are added to an already deployed
network, the new nodes cannot immediately establish link keys with their
sleeping neighbors. Why is this a problem if we use the link key establishment
scheme based on a short-term master key? How can the problem be solved?

(d) Is it always necessary that both devices have a display when performing key
establishment between them? Why?

(e) What is the purpose of a commitment scheme?

(f) Can a key established by DH-SC be reused afterwards for authentication pur-
poses? Why?

(g) Assume we remove the commitment phase from the DH-SC protocol. What
kind of vulnerabilities would this modification create?

(h) Is the DH-SC protocol vulnerable to Denial-of-Service attacks based on jam-
ming? Why? What can the users do about it?

140 Establishment of security associations

(i) Do you think that the protocol illustrated in Figure 5.3 would be appropriate
in vehicular networks? Why? How about the protocol in Figure 5.47

6

Securing neighbor discovery

Many wireless networking mechanisms, notably routing, require that wireless nodes be
aware of their neighborhood. This means that the nodes must know which other nodes
they can communicate with directly. The procedure used to acquire this knowledge
is called neighbor discovery.

In wired networks, neighbor discovery is not an issue, because neighbor relationships
do not change often, and hence routers can be pre-configured with the list of their
wired neighbors. In contrast, in mobile wireless networks, the neighbor relationships
change dynamically, which makes neighbor discovery an important mechanism. It
is particularly important in the upcoming wireless networks that we described in
Chapter 2.

Neighbor discovery can be achieved through simple protocols, where a node that
wants to determine who its neighbors are broadcasts a neighbor discovery request,
and every node that receives this request responds with a neighbor discovery reply.
Receiving a reply means that the requesting node and the responding node can hear
each other’s transmission. In other words, they can communicate with each other
directly, and hence they should consider each other as neighbors. The neighbor dis-
covery protocol is sometimes called “hello protocol”, and the request and the reply
are called “hello messages”.

An adversary can try to thwart the successful execution of the neighbor discovery
protocol, for instance, by jamming the communication between two nodes. In this way,
the adversary achieves that two nodes, which otherwise could communicate directly,
cannot establish a neighbor relationship. Blocking the links between many pairs of
nodes in this manner can have serious consequences to the connectivity of the network,
and hence indirectly to upper layer protocols, such as routing.

Unfortunately, it is quite difficult to eliminate this attack. The usual way to prevent
jamming is to use spread spectrum communications. But, when the nodes execute
the neighbor discovery protocol, they usually have no common context that could
be used to determine the frequency hopping sequence to be used. It is possible, for

141

142 Securing neighbor discovery

instance, that the nodes meet each other for the first time, but even if they do not,
identifying the other already needs the exchange of messages. This means that the
neighbor discovery request should be broadcast using a pre-determined, public hop-
ping sequence that is vulnerable to jamming. Note that the more links the adversary
wants to remain undiscovered, the more effort she needs to invest in the attack, in the
sense that she must be physically present at many points in the network. In addition,
the adversary usually tries to avoid being detected, and jamming large parts of the
network almost certainly results in adversary detection. Therefore, such a jamming
attack is likely to affect only a limited number of nodes.

Besides preventing two nodes from establishing a neighbor relationship, the ad-
versary can also try to arrange that two far away nodes, which otherwise could not
communicate directly with each other, believe that they are neighbors. One way
to achieve this is identity spoofing: a node controlled by the adversary can use the
identity of a legitimate node and establish neighbor relationships with other nodes
in the name of that legitimate node. Identity spoofing can be prevented by building
cryptographic entity authentication mechanisms into the neighbor discovery proto-
col. Entity authentication is a widely studied problem in traditional networks, and
therefore we will not address it here; some of the basics can be found in Appendix A.

Another way to create false neighbor relationships that cannot be prevented by
cryptographic mechanisms solely, is to instal wormholes in the network. In this chap-
ter, we study this problem in details. We begin by explaining what a wormhole is
and how it can be used to mount severe denial-of-service attacks. Then, we give
an overview of some of the approaches that are proposed in the literature to detect
wormbholes.

6.1 The wormhole attack

A wormbhole is an out-of-band connection, controlled by the adversary, between two
physical locations in the network. The two physical locations representing the two
ends of the wormhole can be at any distance from each other; however, the typical
case is that this distance is large. The out-of-band connection between the two ends
can be a wired connection or it can be based on a long-range, directional wireless
link. The adversary installs radio transceivers at both ends of the wormhole. Then,
she transfers packets (possibly selectively) received from the network at one end of
the wormhole to the other end via the out-of-band connection and there re-injects the
packets into the network.

The effect of a wormhole on neighbor discovery is that some nodes that would not
be neighbors otherwise can establish a neighbor relationship due to the presence of
the wormhole. This is illustrated in Figure 6.1. More importantly, the wormhole can

6.1 The wormhole attack 143

have devastating effects on upper layer protocols, especially on routing, as we will see
below.

° . Ve .).C : ° ° . Ve —::_); °
e ©® ° ° H-- —O———: e
(a) (d)

(© 8]

Fig. 6.1. Tllustration of the effect of a wormhole on neighbor discovery and routing. Part (a)
shows a set of wireless nodes that are placed randomly on the plane. The gray disc around
node x represents its communication range. For simplicity, we assume that the size of the
communication range of every node is the same. Part (b) shows the neighbor relationships
between the nodes, and part (c) shows the minimum length routes to node x from all other
nodes in the network assuming the neighbor relationships in part (b). The route length is
measured in the number of the hops. Part (d) illustrates a wormhole, where the transceivers
of the adversary are denoted by black rectangles, and the out-of-band connection is repre-
sented by the dashed line. In part (e), nodes = and y become neighbors due to the presence
of the wormhole and the fact that the adversary relays the packets of the neighbor discovery
protocol between them. Part (f) shows the minimum length routes to node z from all other
nodes in the network assuming the neighbor relationships in part (e). One can observe that
in part (f), many of the nodes reach node z via the wormhole.

Clearly, the wormhole affects route discovery mechanisms that operate on the con-

144 Securing neighbor discovery

nectivity graph. For instance, link state routing protocols, such as the Optimized Link
State Routing (OLSR) protocol [100], search for the shortest paths in the connectivity
graph that is constructed locally by each node using the information obtained from
periodic link state update messages of the other nodes. With a well placed wormhole,
the adversary can achieve that many of these shortest paths go through the wormhole.
This gives a considerable power to the adversary, who can monitor a large fraction of
the network traffic, or mount a denial-of-service attack by permanently or selectively
dropping data packets passing through the wormhole so that they never reach their
destinations.

Some routing protocols, such as the Dynamic Source Routing (DSR) protocol [208],
do not rely on explicit neighbor discovery mechanisms. In these protocols, the nodes
discover their neighbors implicitly by means of route request and route reply messages.
However, these protocols are equally vulnerable to the wormhole attack. In DSR, for
instance, a node x that wants to discover a route to a node y broadcasts a route
request packet. Each node that receives this route request for the first time appends
its identifier to the request and re-broadcasts it. In this way, the whole network is
flooded with copies of the route request packet, some of which will eventually reach the
target node y. Each request packet that reaches node y contains the list of identifiers
of the nodes that processed the packet; this list represents a route between x and
y, discovered by the algorithm. A route reply is returned by node y to each request
received, which follows the reverse of the route obtained from the request.

Now, let us imagine that an adversary sets up a wormhole in the network, such
that one end of the wormhole is close to node x and the other end is close to node
y. When the adversary receives a route request originating from node z, she tunnels
it through the wormhole and re-broadcasts it near to node y. Most probably, due to
the fast out-of-band connection of the wormhole, the nodes near to node y receive
this tunneled copy of the route request earlier than the other copies that follow the
normal multi-hop routes in the network. Therefore, those copies of the request will
be discarded as duplicates later when they arrive near to node y. As a result, the
route discovery protocol will be unable to discover routes between x and y other than
those going through the wormhole. To some extent this is even worse than in the case
of link-state routing protocols, where the nodes, being aware of the topology of the
network, can at least try alternative (potentially suboptimal) routes when they realize
that the route through the wormhole provides an unacceptable level of throughput.

The wormhole attack is also dangerous in other types of wireless applications where
direct, one-hop communication and physical proximity play an important role. An
example is a wireless access control system for buildings, where each door is equipped
with a contactless smart card reader, and they are opened only if a valid contactless
smart card is presented to the reader. The security of such a system depends on the
assumption that the personnel carefully guard their cards. Thus, if a valid card is

6.1 The wormhole attack 145

present, then the system can safely infer that a legitimate person is present as well,
and the door can be opened. Such a system can be defeated if an adversary can set
up a wormhole between a card reader and a valid card that could be far away, in
the pocket of a legitimate user: The adversary can relay the authentication exchange
through the wormhole and gain unauthorized access. The feasibility of this kind of
attack has been demonstrated in [218].

Before we leave this section and begin the presentation of some countermeasures for
wormbholes, we must emphasize that, although the wormhole attack can have strong
effects on routing, it is essentially an attack against neighbor discovery. In particular,
in order to mount a wormhole attack, the adversary does not need to control nodes in
the network, hence she can stay “invisible” at the routing layer. It is sufficient for the
adversary to install simple radio transceivers at the two ends of the wormhole that
operate in the physical layer and function as repeaters. Due to the broadcast nature
of wireless communications, the adversary can overhear packets that are transmitted
in the proximity of her radio transceivers; she can capture these packets, and transfer
them through the wormbhole.

We must also note that the adversary does not need to understand what she trans-
fers through the wormhole. Indeed, the adversary does not even need to wait to
receive the entire packet before she starts to transfer it to the other end of the worm-
hole; she can operate on a bit-by-bit basis. This means that a wormhole attack can
be effective even if packets are encrypted; in this case, the adversary transfers the
encrypted bits through the wormhole, without breaking any cryptographic keys.

There exists an attack that has similar effects on routing to the wormhole attack,
but in contrast to the wormhole attack, it is carried out in the routing layer. This
attack is called tunneling attack. In the tunneling attack, the adversary controls some
corrupted nodes in the network. When one of her controlled nodes receives a route
request packet, the adversary puts the entire request packet in the payload part of a
normal data packet and sends this data packet to another adversarial node using the
normal multi-hop forwarding mechanism of the network. The receiving adversarial
node takes the route request out of the data packet and processes it as if it had
received it via its radio interface. All this is similar to the way in which IP packets
originating from one part of a virtual private network (VPN) are tunneled through
gateways to another part of the same VPN; hence the name tunneling.

Although the effects of the tunneling attack and the wormhole attack on routing
protocols are similar (essentially, routes are shortened and made more attractive in
both cases), there are some important differences between the two attacks. In order
to carry out the tunneling attack, the adversary needs to have corrupted nodes in the
network. Thus, the adversary is visible at the network layer, unlike in the wormhole
attack. In contrast, in the tunneling attack, there is no need for an out-of-band

146 Securing neighbor discovery

connection between the devices of the adversary, but they can communicate using the
network itself.

As we mentioned before, from an architectural point of view, the tunneling attack
can be considered as an attack at the routing layer, whereas the wormhole attack
is carried out at the physical layer. For this reason, we discuss the two attacks
in different chapters of the book. Specifically, the tunneling attack is addressed in
Chapter 7, where security of routing is discussed, and we address the wormhole attack
in the context of neighbor discovery in this chapter.

6.2 Wormhole detection mechanisms

In the rest of this chapter, we study how wormholes can be detected. Broadly, the dif-
ferent detection mechanisms fall into two classes: the centralized mechanisms and the
decentralized ones. In the centralized approach, data collected from the local neigh-
borhood of every node are sent to a central entity. The central entity uses the received
data to construct a model of the entire network, and tries to detect inconsistencies in
this model that are potential indicators of wormholes. In the decentralized approach,
each node constructs a model of its own neighborhood using locally collected data;
hence no central entity is needed, which is a big advantage of this approach. We
note, however, that in some applications, central entities are inherently present in the
network. One example is a sensor network, where the base stations are in a position
to collect data from the nodes, and thus they can play the role of the central entity. In
this kind of network, the centralized approach can be acceptable too. In the following,
we first present some techniques that use the centralized approach, and then we give
an overview on some of the mechanisms that use the decentralized approach.

6.2.1 Centralized approaches

The central entity tries to detect the wormholes by identifying inconsistencies in the
constructed model. The kinds of inconsistencies that might appear in the model, due
to the presence of wormholes, depend on the nature of the local information provided
by the nodes. We illustrate this with two examples.

In the first example, the nodes report only the list of their believed neighbors to
the central entity. In this case, the model constructed by the central entity consists
of the connectivity graph of the network. A crucial observation is that a wormhole
always increases the number of edges in the connectivity graph, as it introduces new
neighbor relationships. This increase in the number of edges changes the properties of
the connectivity graph in a detectable way with respect to some expectations that are
based on basic assumptions about the system (e.g., the distribution of node positions,

6.2 Wormhole detection mechanisms 147

the communication range of the nodes, etc). The main idea of the first mechanism is
to detect the changes in the connectivity graph using statistical methods.

In the second example, the nodes also estimate the distances from their believed
neighbors and send their neighbor list with the estimated distances to the central
entity. In this case, the model constructed by the central entity is a virtual layout of
the network. The crucial observation here is that a wormhole contracts the virtual
layout in certain regions, because it makes some nodes appear to be neighbors where
in reality these nodes are far away from each other. The main idea of the second
mechanism is to detect these contractions by visualizing the virtual layout.

Statistical wormhole detection

Let us assume that the network consists of n nodes placed in a flat area of size S
uniformly at random.! Let us further assume that the nodes are static (e.g., the
network is a static sensor network), and their communication range r is fixed and it
is the same for every node. Then, we can compute the probability that a node has
exactly k neighbors (0 < k < n) as

s = (") g (6.1)

where

7"2

q= CE (6-2>

Hence, although the random variables representing the node degree of the different
nodes in the network are not independent, in a dense network we expect that the
distribution of the node degrees is close to the binomial distribution with parameters
n — 1 and q.

Now, let us assume that an unsophisticated adversary establishes a wormhole in the
network that functions as a perfect repeater: Every bit overheard at one end of the
wormhole is transferred to the other end and re-transmitted there. Such a wormhole
allows every pair (z,y) of nodes such that x resides in the communication range of one
of the wormhole’s transceivers and y resides in the communication range of the other
transceiver to set up a neighbor relationship. Thus, assuming that the communication
range of the wormhole’s transceivers is the same as that of the nodes, the number
of believed neighbors of the nodes within the range of the wormhole will double on
average. Therefore, the degree distribution that the central entity can observe in the
connectivity graph that is constructed from the nodes’ neighborhood information will
be distorted with respect to the binomial distribution derived above.

1 In fact, the nodes are not necessarily placed randomly in the field. However, any known structure

would make the detection of the wormhole easier. Therefore, we discuss here the case where the
locations of the nodes are random.

148 Securing neighbor discovery

In order to illustrate this phenomenon, we performed a simple experiment. We
placed n = 300 nodes uniformly at random in a rectangular area of size 500 x 500
square units, and we set r = 54 units. In part (a) of Figure 6.2, we plotted in gray the
expected histogram of the node degree (induced by the binomial distribution), and in
black the observed histogram when a randomly placed wormhole was present in the
network. One can clearly observe the difference between the two histograms. As we
expected, the black histogram shows that if there is a (perfectly repeating) wormhole
in the network, then there are a few nodes with unexpectedly high node degrees in
the connectivity graph.

35 5000
4500
4000
3500

30
25

3000

2500
15

2000
10 1500

1000
5

' I 500 I
NN lornlpsel . L.
0 1

23 4 5 6 7 8 9 10111213 1415 16 17 18 19 20 1 345 6 7 8 9 10111213 14 15 16 17 18 19 20 2

node degree shortest path length

(@) (b)

number of nodes
number of shortest paths

—
-

Fig. 6.2. Results of two experiments, where n = 300 nodes we placed uniformly at random
in a rectangular area of size 500 x 500 square units, r is set to 54 units. In part (a), the gray
bars show the expected histogram of the node degree, and the black bars show the observed
histogram when a randomly placed, perfectly repeating wormhole is present in the network.
There is a clear difference between the two histograms. In particular, the black histogram
shows that there are several nodes with unexpectedly high node degrees, a sign that indicates
the presence of a wormhole. In part (b), the gray bars show the expected histogram of the
length of the shortest paths in the network, which we obtained by measuring the lengths of
the shortest paths in randomly generated networks with the same parameters as above. The
black bars show the observed histogram of the length of the shortest paths when there is a
randomly placed wormhole in the network, which created a single new link in the connectivity
graph. The difference between the histograms is clearly observable: The black histogram
shows that when the wormhole is present, shorter paths are more likely. From [69], with
kind permission of Springer Science and Business Media.

In order to defeat the detection mechanisms based on the verification of the node
degree distribution in the connectivity graph, a more sophisticated adversary would
not connect each pair of nodes within the range of the wormhole, but it would rather
allow for the creation of only a small number of false neighbor relationships. But even
if it creates just a few new links, the length of the shortest paths between many pairs of
nodes can decrease significantly, especially if the wormhole’s out-of-band connection
spans over a long distance. This is justified by the result of another experiment,

6.2 Wormhole detection mechanisms 149

which is shown in part (b) of Figure 6.2. In this experiment, the parameters were the
same as in the previous case, but the wormhole created only a single link between
two randomly selected nodes within its range. The black bars show the observed
histogram of the length of the shortest paths between all pairs of nodes when the
wormbhole is present. The gray bars show the expected histogram of the length of the
shortest paths in wormhole-free networks, which we obtained by measuring the lengths
of the shortest paths in randomly generated networks with the same parameters as
above. Again, the difference between the histograms is clearly observable. The black
histogram shows that shorter paths are more likely when the wormhole is present.

The notion of “clearly observable difference” between histograms is not precise
enough to build a wormhole detection algorithm on it. We need a mathematically
rigorous way of deciding if two data samples originate from the same distribution or
from different ones. Fortunately, there exist standard statistical tests, such as the
X2—test, for this purpose.

The main disadvantage of the statistical method that we described above is that,
although it detects the presence of wormholes with high confidence, it does not locate
them. In other words, it tells us that there are probably wormholes in the system,
but it does not tell us where they are set up and exactly which nodes are affected.
Therefore, to some extent, it only does half of the job. The method described in the
following subsection overcomes this problem.

Wormhole detection with multi-dimensional scaling

Another centralized wormhole detection approach is based on augmenting the connec-
tivity information with (possibly inaccurate) distance estimations between neighbor-
ing nodes. However, in return for the increased complexity introduced by the distance
estimation requirement, this technique allows for the localization of wormholes.

The main idea here is to reconstruct a virtual layout of the network and identify
inconsistencies in it. For this reason the connectivity information and the inaccurately
estimated distances between the neighbors are fed into a multi-dimensional scaling
(MDS) algorithm, that tries to determine a virtual position for every node in such
a way that the constraints induced by the connectivity and the distance estimation
data are respected. As the distances estimations can be inaccurate, the algorithm has
a certain level of freedom in “stretching” the nodes within some error bounds.

Now, let us suppose that an adversary has installed a wormhole in the network
and has created fake links in the connectivity graph between far away nodes. If the
estimated distances between the affected nodes are much larger than the nodes’ com-
munication range, then the wormhole is detected immediately. Hence, the adversary
must also falsify the distance estimation and arrange that the estimated distances
between the nodes affected by the wormhole become credible (i.e., smaller than the
communication range plus the maximum distance estimation error). This will result,

150 Securing neighbor discovery

however, in a distortion in the virtual layout constructed by the MDS algorithm; in
particular, the layout will be contracted between the affected nodes. By visualizing
the virtual layout or by computing appropriate indicator values, the distortion can
be detected and the wormhole can be located by identifying the affected nodes.

(a) (b)

Fig. 6.3. Wormhole detection by constructing a virtual layout of the network based on the
connectivity information and the inaccurate distance measurements between the nodes that
believe they are neighbors. For easier understanding, the main idea is illustrated on a one
dimensional network. Part (a) of the figure shows the real placement of the nodes. The
gray disc represents the communication range of node b. The lines represent the established
neighbor relationships. The dashed line between nodes b and f represents a fake neighbor
relationship created by an adversary with the help of a wormhole. Part (b) shows the
virtual layout of the network reconstructed from the inaccurate distance measurements of
the neighboring nodes. As nodes b and f are neighbors, their distance must be smaller than
the communication range. However, this constraint makes it impossible to fit the nodes on
a straight line. In other words, the virtual layout is contracted between nodes b and f with
respect to the real layout of the nodes. By visualizing the virtual layout, the contraction can
be identified and the wormhole can be detected.

Figure 6.3 illustrates how the wormhole contracts the virtual layout constructed by
the MDS algorithm. For simplicity, we illustrate the main idea in case of a one dimen-
sional network, but the same approach works in two or in three dimensions. Part (a)
of Figure 6.3 shows the real placement of the nodes. The gray disc represents the
communication range of node b. The dotted lines represent the established neighbor
relationships. The dashed line between nodes b and f represents a fake neighbor rela-
tionship created by an adversary with the help of a wormhole. Part (b) of the figure
shows the virtual layout of the network reconstructed from the inaccurate distance
measurements of the neighboring nodes. Since nodes b and f are neighbors, their
distance must be smaller than the communication range. However, this constraint
makes it impossible to fit the nodes on a straight line. In other words, the virtual
layout is contracted between nodes b and f with respect to the real layout of the
nodes. The distortion in the virtual layout can be detected by a human operator if

6.2 Wormhole detection mechanisms 151

the layout is visualized. The detection can also be automated; the interested reader
is referred to [365] for the details.

6.2.2 Decentralized approaches

The advantage of decentralized wormhole detection mechanisms is that they do not
require a central entity in the system, and therefore, they can be used in a wider range
of applications. In this subsection, we give a brief overview of the main approaches
proposed in the literature.

Wormhole detection based on distance estimation

A straightforward idea for wormhole detection is to estimate the real physical distance
between the nodes that are believed to be neighbors. If the estimated distance is larger
than the nodes’ communication range, then the nodes are likely connected through a
wormbhole, and they should not consider each other as neighbors. Distance estimation
can be done by the nodes themselves locally, so it can form the basis of decentralized
wormhole detection approaches.

One wormbhole detection approach based on the idea of distance estimation is called
packet leashes, and it consists of two mechanisms: geographical and temporal leashes.
The main idea of both mechanisms is to add some information to the packets that
restricts their maximum allowed transmission distance. Allegorically, the added in-
formation keeps the packet on a leash, hence the name of the mechanisms. A ge-
ographical leash is based on location information, and it allows the receiver of the
packet to determine an upper bound on its distance to the sender. A temporal leash
is based on timing information, and it ensures that the packet has an upper bound
on its lifetime. Indirectly, however, this also ensures an upper bound on the distance
between the sender and the receiver, because the packet cannot travel faster than the
speed of light.

Both types of leashes can be used for wormhole detection, because they allow the
receiver of the packet to detect whether the sender is further away than the nodes’
communication range. More precisely, the receiver can determine only an upper bound
on its distance to the sender. However, if this upper bound is greater than the nodes’
communication range, then the receiver should not accept the packet. In this way,
packets that arrive through a wormhole are always rejected.

Packet leashes can be added to the packets of the neighbor discovery protocol when
the nodes use such mechanisms explicitly for setting up their neighbor relationships.
In this case, the application of packet leashes prevents the establishment of fake
neighbor relationships. When no explicit neighbor discovery mechanism is used in
the system, packet leashes can still be added to the packets of the routing protocol, in

152 Securing neighbor discovery

order to prevent the undesirable effects of wormholes on routing, which we described
in Section 6.1.

Now, we describe the operating principles of geographical and temporal packet
leashes in more details.

As we mentioned above, geographical leashes are based on location information.
It is assumed that each node is aware of its own location, which can be determined
using GPS (Global Positioning System) or some other positioning mechanism (e.g.,
[83, 247, 85, 86]). It is further assumed that the nodes maintain loosely synchronized
clocks. When sending a packet, the sender includes its location ps in the packet and
the time ¢; of sending. When receiving a packet, the receiver compares these values
to its own location p;. and the reception time ¢,.. Given a maximum positioning error
Ap, a maximum clock synchronization error A;, and an upper bound v;q, on the
speed of the nodes, the receiver can compute an upper bound on the real distance d’
between the sender and itself at the time of receiving the packet as follows:

d < d+ 20, + 2005 (t — ts + Ay) (6.3)

where d = ||p, — Ps|| is the distance between the locations p, and ps. Because both
nodes could have some positioning error, d’ could be larger than d. However, if the
nodes are static, then d’ must be smaller than d 4+ 2A,, as illustrated in Figure 6.4.
This explains the second term in (6.3). In addition, if the nodes are not static, then
they could diverge during the packet transmission time. Given that the maximum
clock synchronization error is A;, when the sender’s clock shows t,, the time at the
receiver can only be t; — A;. Therefore, the time that elapses between sending and
receiving the packet is upper bounded by ¢, — (ts — A¢). During this time, the nodes
can diverge at most 2vp,q, (¢, — ts + A¢). This explains the third term in (6.3).

Fig. 6.4. Computation of the upper bound on the real distance d’ between the sender and
the receiver when using geographical leashes and assuming that the nodes are static. Due to
the inaccuracy of positioning, the real locations ps’ and p,’ of the sender and the receiver,
respectively, can be anywhere within a range of A, around the locations ps and p, that
are determined by the positioning system. Let d = ||p. — ps||, s = ||Ps' — Ps||, and &, =
[|7-" — Dr||- Then, we have that d’ < d+ &s + 6 < d + 2A,,.

Temporal leashes require that the nodes have tightly synchronized clocks, such

6.2 Wormhole detection mechanisms 153

that the maximum difference A; between any two nodes’ clocks is in the order of
a few hundred nanoseconds. This precision can be achieved with some of today’s
technologies such as LORAN-C [271], WWVB [272], or GPS. When sending a packet,
the sender includes in the packet the time ¢, of sending the first bit of the packet.
When receiving a packet, ¢4 is compared to the time ¢, of receiving the first bit of the
packet at the receiver. More precisely, the receiver computes an upper bound on its
distance d’ to the sender as

d, < Vlight (tr —ts + At) (64)

where vygne is the speed of light. In order for this upper bound to be useful, vign: Ay
must be much smaller than the communication range of the nodes. That is the reason
the nodes’ clocks must be tightly synchronized (i.e., A; must be very small).

A potential problem with the temporal leash mechanism described above is that
when using a contention based medium access control protocol, the sender cannot
know exactly when the first bit of the packet will be sent. For instance, if the
IEEE 802.11 protocol is used, then the sender cannot know the starting time of the
transmission until approximately one slot time (20 us) before the transmission really
begins. This might be too short for timestamping the packet, especially if the times-
tamps are authenticated with digital signatures (see next paragraph). We can try to
solve this problem by using more efficient authentication mechanisms (e.g., Schnorr
signatures, or symmetric key MACs) or by increasing the minimum packet length
such that the computation of the signature can be completed during the transmission
of the packet payload.

Both geographical and temporal leashes require that the packets carrying the
leashes are authenticated and their integrity is protected, because otherwise an ad-
versary can modify or forge a leash and jeopardize the distance estimation. Origin
authentication and integrity protection can be based on digital signatures or on sym-
metric key MACs. The advantage of digital signatures is that they provide broadcast
authentication, and therefore they can be used efficiently for protecting neighbor
discovery beacons, route discovery messages, or link state updates; all of which are
usually broadcast messages. The disadvantage of digital signatures is that they are
several orders of magnitude slower than symmetric key MAC computations, and speed
is critical, especially in the case of temporal leashes. Although MACs can be computed
faster, they cannot be used efficiently to protect broadcast messages (see Appendix A
for more details).

One way to solve this problem is to use TESLA [309] with Instant Key-disclosure
(TIK) to authenticate temporal leashes in packets. TESLA combines the advantages
of digital signatures and MACs. Its description can be found in Appendix A, and
therefore, we will not detail it here. Instead, we briefly present the main idea of the
TIK protocol.

154 Securing neighbor discovery

The TIK protocol is based on the observation that the authentication delay of
TESLA can be removed in an environment where the nodes’ clocks are tightly syn-
chronized. TESLA requires that the MAC value of the packet is received earlier by the
receiver than the time at which the TESLA key used for computing the MAC is dis-
closed by the sender. This can be achieved by sending the MAC value at the beginning
of the transmission and disclosing the TESLA key at the end of the same transmis-
sion, as shown in Figure 6.5. The receiver’s clock shows ¢, + 7,4 When it received
the entire MAC. The sender’s clock shows tg + Tymae + Tpie When it starts disclosing
the key; at the same moment, the time at the receiver can be ts — Ay + Tae + Tpit
at the least. Hence, if the receiver finds that ¢, + Tpmae < ts — At + Timac + Tpit, Where
ts is known to the receiver from the temporal leash in the packet, then the TESLA
condition is satisfied (i.e., the full MAC is received before any bit of the key with
which it was computed is released), and the receiver can start the verification of the
MAC essentially without any delay. Clearly, in order for this to work, very precise
timings are needed and, in particular, A; must be very small (or otherwise packets
need to be extremely long).

| MAC packet | K |
" i
[T !
time at sender = mac | Pkt i
2N s T Tnae T Tpke
S 1
~ !
S ~ I
. . AN Lt T VE-AT Tinac T Tkt
time at receiver LVl i |
[mac 1
1
L
MAC packet | K |

Fig. 6.5. Illustration of the main idea of the TIK protocol (i.e., TESLA with Instant Key-
disclosure). The sender sends the MAC of the packet at the beginning of the transmission
and discloses the TESLA key with which the MAC was computed at the end of the same
transmission. The TESLA condition is satisfied if the receiver receives the MAC value earlier
than the time at which the sender starts disclosing the TESLA key. The receiver can verify
this by checking if ¢, < t; — A¢ + Tpie holds. Note that the receiver knows ¢s from the
timestamp placed in the packet by the sender. From [178], © IEEE, 2003.

Although packet leashes provide an effective solution to the wormhole detection
problem, they have some disadvantages that prevent their usage in certain environ-
ments. The main disadvantage of the geographical leash mechanism is that it requires
the nodes to be equipped with GPS receivers or to be able to determine their location
in some other way. Integrating a GPS receiver in every node can be prohibitively ex-
pensive in some applications, for instance, in sensor networks. In addition, GPS has
known problems in an indoor environment. Other positioning mechanisms could be

6.2 Wormhole detection mechanisms 155

used, but their security must be also ensured. The main disadvantage of the temporal
leash mechanism is that it requires very tight clock synchronization, which might not
be possible to achieve in some environments.

Another approach that is also based on distance estimation between the nodes, but
does not require any clock synchronization or localization mechanisms, is based on
the concept of distance-bounding. The main idea of distance-bounding is simple but
very powerful. It is based on the facts that electro-magnetic waves propagate nearly
with the speed of light and with current technology it is easy to measure local timings
with nanosecond precision. The distance bounding technique essentially consists of
a series of rapid bit exchanges between the two nodes. Each bit sent by the first
node is considered to be a challenge for which the other node is required to send a
one bit response immediately. By locally measuring the time between sending out
the challenges and receiving the responses, the first node can estimate its distance to
the other node, assuming that the messages travel with the speed of light and the
processing delay at the other node is negligible.

Note that the estimated distance is only an upper bound on the real distance
between the nodes, because the second node could be closer, but it can delay the
responses in order to appear to be further. Even if the nodes are trusted for not
delaying their responses, an active adversary can delay the messages between the
parties, and hence the estimated distance will still be just an upper bound on the real
distance. However, in the case of a wormhole attack, the adversary’s goal is not to
make the two nodes believe that they are far away from each other. On the contrary,
the adversary wants the two nodes to believe that they are within each other’s range,
when in reality they are not. In order to achieve that the estimated distance is smaller
than the nodes’ real distance, the adversary should arrange that the messages travel
faster than the speed of light, which is impossible. Thus, distance-bounding can be
used for wormhole detection.

We slightly modify the above described distance-bounding technique such that it
allows both nodes to measure the distance between them simultaneously and it uses
symmetric key cryptographic primitives for authentication purposes. In order for this
to work, it is assumed that each pair of nodes share a symmetric key. We call the
resulting protocol Mutual Authenticated Distance-bounding, or shortly MAD.

Let z and y denote the two nodes in the protocol, and let their shared key be
kyy. We will denote the message authentication function controlled by the key kz, by
macg,, . The operation of the protocol is summarized in Figure 6.6, and it is explained
as follows:

e Initialization phase:
Both x and y generate uniformly at random two numbers. The numbers of z are
denoted by r and r’, and the numbers of y are denoted by s and s’. Numbers r and

156 Securing neighbor discovery

s are £ bits long, and ' and s are ¢ bits long (i.e., 7, s € {0,1}¢ and ', 5" € {0,1}*)
Both x and y compute a commitment to the generated numbers by using a collision
resistant one-way hash function H: ¢, = H(r||r') and ¢, = H(s||s’). Finally, =
sends c; to y and y sends ¢, to x. Note that the random numbers can be generated
and the commitments can be computed well before running the protocol.
¢ Distance-bounding phase:

Let the bits of r and s be denoted by r; and s; (i = 1,2,...,/), respectively. The
following two steps are repeated ¢ times, for i = 1,2,...,¢:

— x sends bit «; to y immediately after it received 3;_1 from y (except for oy which
is sent without receiving any bit from y), where oy = r1 and «; = 7; ® §;_1 for
1> 1;

— y sends bit §; = s; ® ; to x immediately after it received «; from =x.

x measures the times between sending «; and receiving 3;, and y measures the

times between sending (; and receiving ;1. From the measured times, they both

estimate their distance.

e Authentication phase:
Node = computes the bits s; = «; ® §;, and the MAC

pa = mack,, (@[[yllrillsi] .. - [|relse)

Similarly, y computes the bits 1y = a3 and r; = «; @ B;_1 for i > 1, and the MAC

pry = macy,, (yllz||si|[ra]] .- [[sel[re)

Finally, « sends '||u, to y and y sends s'||u, to . Node z verifies that the
commitment ¢, and the MAC p,, of y are correct, and y verifies that the commitment
¢, and the MAC p, of x are correct.

In the above protocol, the MAC ensures the authenticity of the exchange: both z
and y can believe that they ran the distance-bounding phase with the other, and thus
the distance that they estimate is really the distance between z and y. Committing
to r and s in the initialization phase ensures that the protocol is successful only if
exactly the bits of r and s are exchanged. As r and s are random, an adversary
cannot try to cheat x by predicting the bits of s and responding earlier than y, and
similarly it cannot cheat y either. More precisely, the probability that such an attack
succeeds is 27 and hence decreases exponentially in £.

The advantage of MAD is that it does not require the localization of the nodes or
the synchronization of their clocks. MAD still requires, however, special hardware
in the nodes in order to quickly switch the radio from receive mode into send mode.
In addition, it needs a special medium access control protocol that allows for the
transmission of bits without any delay.

6.2 Wormhole detection mechanisms 157

T Yy
generate random numbers generate random numbers
re{0,1}¢, ' € {0,1}¢ s€{0,1}¢, ' € {0,1}¢
compute commitment c; = H(r||r’) compute commitment ¢, = H(s||s")
Cx
Cy
v
— start of distance-bounding phase —
the bits of r are r1,7r2,...,7p the bits of s are s1,82,...,5¢
ar =1 &,
&2 Bi=siow
a; =71; D Bi—1 24 measure delay between ;1 and «;
measure delay between «; and (3; <B—Z Bi = 8 B oy
ay =1 D LBr_1 e, measure delay between 8y_1 and ayp

measure delay between oy and [y B Be = s¢ P ay
— end of distance-bounding phase —

compute MAC compute MAC
si=a;®B; (i=1,...,0) ri=aiandr; =a; ®Bi—1 (i=2,...,0)
pa = mack,, (@||yllrillsil]. .. [lrellse) ty = mack,, (yllz|[s1|lrill. .. |Isellre)
||
—
8[|y
phllat
verify ¢y and py verify ¢y and pg

Fig. 6.6. The Mutual Authenticated Distance-bounding (MAD) protocol. From [81], ©
ACM, 2003.

Wormhole detection using position information of anchors

In the previous subsection, we saw a straightforward way of using the location infor-
mation of the nodes for wormhole detection. To be more precise, we described the
concept of geographical packet leashes and an implementation that uses the nodes’
location data for estimating the real distances between them. We argue, however,
that obtaining the location data of every node is not feasible in many applications,
because it requires either a GPS receiver in every node or complex positioning mech-
anisms that need to be secured. In this subsection, we describe a wormhole detection
mechanism that requires only a few specialized nodes to be aware of their locations.
These specialized nodes can be viewed as anchors that help other nodes to set up
their neighbor relationships in a secure way.

We assume that the nodes are randomly deployed in some area and they are static.
The random deployment with node density A can be modeled as a spatial homogeneous
Poisson point process [105] with rate A. In this model, the probability that there are

158 Securing neighbor discovery

exactly k nodes within a region of size S is

(S)FF s
k!

We assume that a small fraction of the nodes are specialized and they are aware
of their own locations. These nodes are the anchors. We further assume that the
transmission range R of the anchors is larger than the transmission range of the
regular nodes. The anchors are also deployed randomly, but their density A* is much

(6.5)

smaller than the density of the regular nodes.

As we said before, the role of the anchors is to assist the establishment of the
neighbor relationships. More precisely, we want to ensure that two nodes consider
each other to be neighbors only if they hear each other and in addition, they hear more
than 7" common anchors. For simplicity, we assume that threshold T is a publicly
known system parameter.

The neighbor relationships are represented by local broadcast keys, hence ultimately
the anchors are used to assist the establishment of these cryptographic keys. Each
node has a single local broadcast key that it wants to share with all of its neighbors.
For this purpose, the nodes run a three-step protocol. In the first step, each anchor
generates a random fractional key and broadcasts it within its range. Several frac-
tional keys will be combined into a single pairwise key, hence the name fractional. In
order to protect the secrecy of the fractional keys, the anchors’ messages are encrypted
with a key globally shared by all nodes and all anchors. In addition, the authenticity
of the messages and the protection against message replay must also be ensured. In
the second step, every regular node broadcasts the key identifiers of the fractional
keys that it hears. If two nodes that hear each other share more than T fractional
keys, then they use those keys to generate a pairwise key. Finally, in the third step,
every node uses its pairwise keys to securely unicast its local broadcast key to each
neighbor.

Note that it can be possible that two nodes are close to each other but they hear less
than 7" common anchors, and therefore they cannot establish a neighbor relationship.
The probability Pf,y; of such an event can be computed as follows. Let us consider
Figure 6.7. The two nodes are x and y, and their distance is d. The anchors heard by
node z are located in a disc of radius R around z, and similarly for y. The common
anchors are those in the intersection of the two disks, which is represented by the
shaded area Ay, in the figure. The probability that we are interested in is the
probability that there are no more than 7" anchors in A .,,:

T

A*S LI
Ploir =) A" Semn)®];"m) e~ Semn (6.6)
k=0 ’

where S, is the size of Ay, -

6.2 Wormhole detection mechanisms 159

Fig. 6.7. Two nodes = and y can become neighbors only if they hear each other and they
hear more than a threshold number of common anchors. The anchors heard by node x are
located on a disk A, of radius R around z, and similarly for y. The common anchors are
those in the intersection of the two disks, which is represented by the shaded area Acpmy in
the figure. From [248], © IEEE, 2005.

Figure 6.8 shows P, as a function of the relative distance d/R between = and y.
The different curves belong to different values of *. T is set to [%)*RQW], which
means that the threshold number of common anchors required to establish a neighbor
relationship is one third of the number of the anchors heard by the nodes on average.
d/R = 1 means that the distance of the nodes equals the range R of the anchors.
Recall, however, that the communication range of the regular nodes is smaller than
R. Therefore, if the nodes hear each other directly, then their distance is smaller than
R, and the probability of not being able to set up a neighbor relationship is small, as
illustrated by Figure 6.8.

T

A =0.0004

— - *=0.0006
A*=0.0008
A*=0.001

probability P,

0.4

L L e i n L L S
0 0.1 0.2 03 0.4 05 06
relative distance d/R

Fig. 6.8. The probability P of two nodes not being able to set up a neighbor relationship
as a function of their relative distance d/R. Pj is defined in (6.6). The different curves
belong to different values of A*. T is set to {%)*R%ﬂ.

The careful reader might have noticed that the local broadcast key establishment
protocol presented above does not prevent wormhole attacks yet. Indeed, an attacker
can tunnel the messages of some node and some anchors through a wormhole, and

160 Securing neighbor discovery

in this way, it can achieve that far away nodes hear each other and more than T
common anchors. In order to prevent this, each anchor also puts its location data in
the message in which it broadcasts its fractional key. The nodes can use the location
data in the messages that they receive from the anchors to detect wormhole attacks
based on the following two principles:

(a) A node cannot hear two anchors that are 2R apart from each other because
any anchor heard by a node must lie within a range of radius R around the
node.

(b) A node cannot receive the same message twice from the same anchor, because
the messages sent by the anchors are encrypted, and each anchor includes a
one-time password in every message that it sends.

Let us now explain why these principles can be used to detect wormholes. First,
consider part (a) of Figure 6.9, where we illustrated a wormhole with transceivers O
and D, and a node x that is located in such a way that it directly hears transceiver
D. The anchors directly heard by node x are those that lie in the disk A, of radius
R around z. In addition, z also hears the anchors in the disk Ao of radius R around
O due to the wormbhole. If there are two anchors in A, and Ap that are further than
2R away from each other, then the wormhole is detected based on Principle 1. The
probability P; of detection is not easy to compute but we can give a lower bound of
it as follows. Consider the shaded areas A/ and Ay, which have a distance of 2R
from each other. If there is at least one anchor in each of these shaded areas, then
the attack is detected. Note that this event does not include all possible cases when
there are two anchors in A, and Ao that are further than 2R away from each other,
thus, it yields only a lower bound on P;. The probability that at least one anchor
lies in A’ is 1 — e="5: where S’ is the size of A/.. Similarly, the probability that at
least one anchor lies in Af, is 1 — =250 where Sy is the size of Ay,. Hence, we get
that

P> (1—e N5 (1—e N 50) (6.7)

Assuming a fix distance between x and O, it can be shown that this lower bound is
maximized when S/, = S(,. The left side of Figure 6.10 shows the lower bound on P,
when A/, and A, are selected such that S, = S, holds. The different curves belong
to different values of *. We can observe, on the one hand, that the probability of
detection is very close to 1 when the distance between = and O is larger then 1.5 R.
On the other hand, below this distance the detection probability drops abruptly.

However, when the distance between x and O is smaller than 2R, we can use
Principle 2. Consider part (b) of Figure 6.9. When z and O are closer than 2R,
the disks A, and Ap overlap. If there is an anchor in the intersection Ao, and the
adversary transfers every message blindly from one end of the wormhole to the other

6.2 Wormhole detection mechanisms 161

N
n 5

(a) (b)

Fig. 6.9. Part (a) of the figure illustrates a wormhole with transceivers O and D, and a node
z that is located in such a way that it directly hears transceiver D. The anchors directly
heard by node x are those that lie in the disk A, of radius R around z. In addition, x also
hears the anchors in the disk Ao of radius R around O due to the wormhole. The shaded
areas A, and Ap have a distance of 2R from each other. If there is at least one anchor in each
of these shaded areas, then the attack is detected based on Principle 1. Part (b) illustrates
the case when x and O are closer than 2R, and the disks A, and Ao are overlapping. If

there is an anchor in the intersection A,o, then the wormhole can be detected based on
Principle 2. From [248], © IEEE, 2005.

\
v
)
L
I
T
|
\
\
[
[l
4

probabilfy of detection P,
o o o o o o o
w & o o S @ e
T T T T T
/

lower bound on the probabilty of detection P,

°
~

%
, —\"=0.0004 N =0.0004
01k /// — - X*=0.0006 || I - - A*=0.0006
e A*=0.0008 A*=0.0008
»=

°

\
0.001 — A*=0001

;
1 15 2 0 02 04 06 08 1 12
relative distance [[x-O[I/R relative distance [[x-O[|/R

Fig. 6.10. The lower bound on the probability P of detecting a wormhole based on Prin-
ciple 1 (left side) and the probability P> of detection based on Principle 2 (right side) as

a function of the relative distance d/R between z and O. The different curves belong to
different values of A*.

end, then the message carrying the fractional key of that anchor is heard twice by
x: first directly and then from transceiver D who receives it from O through the
wormhole. Thus, the wormhole can be detected based on Principle 2.

The probability P, of detection is equal to the probability that there is at least one
anchor in A,o that can be computed as follows

Py=1—e %o (6.8)

where S, is the size of A,o. The right side of Figure 6.10 shows P as a function of

162 Securing neighbor discovery

the relative distance d/R between x and O. The different curves belong to different
values of *. We can observe that the detection probability is close to 1 when the
distance between x and O is not larger than 1.5 R.

As the wormhole can be detected based on any of the two principles, the overall
detection probability is very close to 1 irrespectively of the distance between x and

0.

Wormhole detection with directional antennas

Let us assume that each node in the network is equipped with a directional antenna.
Every antenna has n, non-overlapping zones, and each zone has a spanning angle
of 27 /n; hence the zones collectively cover the entire area around a node. When a
node is idle, it listens to the carrier in omni-directional mode. When it receives a
message, it determines the zone in which the received signal strength is maximal and
uses that zone to communicate with the sender. An important assumption is that the
orientation of the zones is always established with respect to the Earth’s median, and
therefore all nodes use the same orientation irrespectively of their physical locations
and their own orientations. This can be achieved in modern antennas with the help
of a magnetic needle that always remains collinear to the Earth’s magnetic field.

Fig. 6.11. When two nodes are within each other’s communication range, they must hear
each other’s transmission from opposite directions. For instance, if n = 6 and a node x hears
a node y in zone 1, then y hears x in zone 4.

The main idea is that when two nodes are within each other’s communication range,
they must hear each other’s transmission from opposite directions. For instance, if
n = 6 and a node z hears a node y in zone 1, then y hears = in zone 4, as illustrated
in Figure 6.11. In the following, we will denote the zone in which x hears y by Z,y,
and the opposite zone by Zzy. Hence, if z and y are within each other’s range, then
Lye = ny holds. However, if nodes x and y communicate through a wormhole, then

6.2 Wormhole detection mechanisms 163

this condition is not always satisfied. This is illustrated in Figure 6.12(a), where
node x hears node y (through the wormhole) in zone 1, but y hears = (through the
wormbhole) in zone 3.

I

Fig. 6.12. If two nodes communicate (unknowingly) through a wormhole, then they may or
may not hear each other in opposite zones. Part (a) of the figure illustrates the case when
they do not hear each other in opposite zones. Part (b) illustrates the case when they hear
each other in opposite zones despite the presence of the wormhole. From [173], © 2004.

Based on this observation, one could use the following neighbor discovery protocol
for establishing neighbor relationships between the nodes. We assume that z and y
already share a key. First, the initiator = of the neighbor discovery broadcasts a hello
message that contains its identifier. This is done by sweeping through the zones and
transmitting the hello message in every direction. When a node y receives a hello
message in zone Z,,, it sends a response to x in the same zone, where the response
contains the identifiers of y and z, the zone identifier Z,;, and a random number R.
Apart from the identifier of y, the response is encrypted with a key shared by x and vy,
and hence only = can decrypt it. When x receives a response in zone Z,, it decrypts
it and verifies whether Z,, = Zyx. If this equality holds, then it sends R back to y
as a confirmation that the verification was successful. Two nodes consider each other
neighbors only if they have successfully run this protocol.

Note that the above protocol does not always detect that x and y are communicating
through a wormhole. In order to see this, consider Figure 6.12(b), where node z hears
node y (through the wormhole) in zone 1 and y hears = (through the wormhole) in
zone 4. Thus, they successfully execute the neighbor discovery protocol and wrongly
conclude that they are neighbors. Indeed (on average) one sixth of the node pairs
(z,y), such that x is in the range of one of the transceivers of the wormhole and y
is in the range of its other transceiver, can execute the protocol successfully and will
establish a fake neighbor relationship. Therefore, though it decreases the number of
fake links, the protocol does not really eliminate the effects of the wormhole, because
even a single fake link can make the routes through the wormhole appear shorter than
other routes in the network.

In order to overcome this problem, the nodes can cooperate and help each other

164 Securing neighbor discovery

detect the wormhole. The idea is based on the observation that if two nodes x and y
are real neighbors, then every node that both z and y can communicate with must be
able to run the protocol successfully with both z and y. On the other hand, if x and y
are not real neighbors, then there could be a node v that they both can communicate
with (possibly via a wormbhole), but v cannot run the neighbor discovery protocol
successfully with either x or y. Thus, v can play a verifier role and help establish the
legitimacy of the neighbor relationship between = and y.

There are certain conditions that must be met to be a valid verifier. First, we
observe that if y hears v in the same zone in which it hears x (ie., Z,, = Z,),
then y could hear both = and v through the wormhole (see Figure 6.13(a)). This
means that = and v could be real neighbors, and therefore the wormhole cannot be
detected using v as a verifier. Hence, we require that for a valid verifier Zy, # Zya
holds. Moreover, we can also observe that even if Z,, # Z,,, if v hears x in the
same zone in which y hears (i.e., Z,; = Zy;), then they could both hear x through
the wormhole’s transceiver (see Figure 6.13(b)). If, in addition, = happens to hear
the other transceiver of the wormhole in zone Zym, then x can establish neighbor
relationships with both y and v. Thus, we require that for a valid verifier Z,, # Zy.
holds too.

.
i
\

(2) (b)

Fig. 6.13. The conditions for being a valid verifier. Part (a) illustrates that if node y hears v
in the same zone in which it hears z, then y could hear both z and v through the wormhole.
Hence, we require that for a valid verifier Zy, # Z,, holds. Part (b) illustrates that if v
hears z in the same zone in which y hears = (i.e., Zys = Zyz), then they could both hear x
through the wormhole’s transceiver. If, in addition, x happens to hear the other transceiver
of the wormhole in zone Z,, then = can establish neighbor relationships with both y and v.
Thus, we require that for a valid verifier Z,, # Zy, holds too.

We extend the neighbor discovery protocol with the use of verifier nodes as follows.
The first three steps of the verified neighbor discovery protocol are the same as the
steps of the simple protocol we described above. So let us assume that x and y
successfully ran the first three steps. Then, y broadcasts a verification request in all
of the zones except for Z,, (as nodes in that zone cannot be verifiers in any case due
to the first condition of being a valid verifier). The verification request includes the
identifier of Z,,, so prospective verifiers can check whether they satisfy the second

6.2 Wormhole detection mechanisms 165

condition of being a valid verifier. Nodes that receive the verification request and
satisfy the conditions of valid verifiers respond with an encrypted message. This
message confirms that the verifier heard z in a zone different from Z,, and successfully
ran the first three steps of the protocol with = (which means that Z,, = Z,,). Finally,
if at least one verifier responds to y, then y accepts x as a neighbor and sends a
confirmation message to x, who can then accept y as a neighbor.

Let us assume that v is a valid verifier. The first condition of being a valid verifier
(i.e., Zy, # Zyz) ensures that if y hears = through the wormhole, then it hears v
directly (as it hears it from another zone). In addition, the second condition (i.e.,
Zyy # Zyy) ensures that if y hears « through the wormhole, then « cannot run the
first three steps of the protocol successfully with both y and v. This would require
that Z,, = Zﬂ and Z,, = Z,, hold, which cannot be the case for the following
reasons: Because x is at the other end of the wormhole, it hears both y and v in the
same zone, S0 Zy, = Zy,. Lhis means that if both Z,, = Zyz and Zy, = Zy, holds,
then Zym = Z,, should be true. But this is impossible due to the second condition
that says that Z,, # Z,,. All this means that if y hears = through the wormbhole,
then no valid verifier will respond to the verification query, and therefore x and y will
not become neighbors.

However, there is still a problem with this neighbor discovery protocol, which man-
ifests itself if « and y are just beyond the communication range (so they should not
be neighbors) but there is a valid verifier that they can both hear directly. Such a
situation is illustrated in Figure 6.14(a). In this case, an adversary can place a re-
peater W between x and y and relay the messages of the neighbor discovery protocol
between them. Node y can use v as a verifier, because v satisfies the conditions. In
addition, v responds to y’s verification request, because by being in the range of z, it
could have run the first three steps of the protocol with = successfully. Thus, x and
y will believe each other neighbors.

In order to prevent also this kind of attack, we must further strengthen the con-
ditions for valid verifiers, and we must require that if Z,, is adjacent to Z,,, then
Zyv is not adjacent to Z,,,, and vice versa, if Z,, is adjacent to Z,,, then Z,, is not
adjacent to Z,,. Figure 6.14(b) illustrates the region where valid verifiers are located
when x and y are close to each other.

We must note that it can happen that two nodes are within each other’s commu-
nication range, but there are no potential verifier nodes that they can use (i.e., the
shaded areas in Figure 6.14(b) are empty). In this case, the nodes cannot set up a
neighbor relationship and we lose a potential link. Clearly, the probability of losing a
link between nodes x and y depends on the density of the network. Simulation results
in [173] show that when the nodes have around 10 other nodes within the range of
their directional antennas, around 58% of all potential links are lost, and 5.3% of the
nodes become completely disconnected due to the strict constraints on verifier nodes.

166 Securing neighbor discovery

Fig. 6.14. Part (a) of the figure illustrates a case when the verified neighbor discovery proto-
col does not detect the wormhole. Here, and y are just beyond the communication range
(so they should not be neighbors) but there is a valid verifier v that they can both hear
directly. An adversary can place a repeater W between z and y and relay the messages of
the neighbor discovery protocol between them. In order to prevent this attack, we must
further strengthen the conditions for valid verifiers. Part (b) of the figure illustrates the
region where valid verifiers are located according to the strengthened conditions when x and
y are close to each other. From [173], © 2004.

Even for a more dense network, when nodes have on average 32 other nodes within
the range of their directional antennas, around 40% of the potential links are still lost
and 0.03% of the nodes become disconnected.

Losing links is not desirable, because it reduces the robustness of the network in
case of link failures, and increases the average length of the routes in the network.
Another disadvantage of this approach is that it requires the nodes to be equipped
with directional antennas. This is an assumption that, in some cases, cannot be
satisfied in many applications. Moreover, the protocol proposed above detects only
a single wormhole; when there are several of them, then y and v can hear z through
different wormholes, and the protocol can be executed successfully. We leave the
construction of an example, as an exercise, for the reader.

6.3 Summary

Neighbor discovery is a basic mechanism that is essential to the operation of many
wireless networks. In this chapter, we identified two attacks on neighbor discovery: (i)
preventing the creation of a neighbor relationship between two nodes that are within
each other’s power range, and (2) making two nodes that are not within each other’s
power range believe that they are neighbors. The first attack can be implemented
by jamming. However, a large scale jamming adversary can be easily detected. The
second attack can be implemented by setting up wormholes in the system. Wormhole
attacks do not seem to be easily detectable at first sight, but in this chapter, we
described some techniques that can be used to detect them.

We classified wormhole detection techniques into two groups: centralized and de-

6.4 To probe further 167

centralized approaches. In the centralized approach, data collected from the local
neighborhood of every node are sent to a central entity. The central entity uses the
received data to construct a model of the entire network and tries to detect inconsis-
tencies in this model that are potential indicators of wormholes. In the decentralized
approach, each node constructs a model of its own neighborhood using locally col-
lected data; hence no central entity is needed.

We discussed two centralized wormhole detection mechanisms: one based on statis-
tical hypothesis testing and another based on multidimensional scaling and visualiza-
tion. Moreover, we discussed several decentralized mechanisms for wormhole detec-
tion, including techniques based on distance estimation, the availability of position
information, and the use of directional antennas. We also discussed the advantages
and the disadvantages of all these techniques.

6.4 To probe further

The centralized wormhole detection mechanism based on statistical hypothesis testing
was proposed by Buttydn, Déra, and Vajda in [69]. In their paper, more details
about this method can be found, including simulation results that demonstrate its
effectiveness.

The application of multidimensional scaling for wormhole detection was proposed
by Wang and Bhargava in [365]. They described how this mechanism works in two
dimensions. Multidimensional scaling itself is a technique that was originally devel-
oped in social sciences, but later it was also adopted to solve positioning problems in
wireless networks (see e.g., [345]).

Packet leashes are proposed by Hu, Perrig, and Johnson in [178]. As we men-
tioned, geographical packet leashes rely on position information. Secure positioning
is discussed in several papers, including [247, 85, 86].

Wormbhole detection based on distance bounding and the MAD protocol are pro-
posed by Capkun, Buttyan, and Hubaux in [81]. The idea of distance bounding itself
originates from Brands and Chaum [63], who developed it to prevent the mafia fraud,
a sophisticated attack aimed at stealing money from innocent people using a fake
ATM (Automated Teller Machine).

The wormhole detection technique based on position information of anchor nodes
is proposed by Lazos et al. in [248]. In their paper, the anchors are called guards.

Directional antennas have been recognized as a powerful way of increasing the
capacity and the connectivity of wireless networks. Their application for wormhole
detection is proposed by Hu and Evens in [173].

168

Securing neighbor discovery

6.5 Questions

(a)

()

(d)

The main disadvantage of the statistical wormhole detection method described
in Subsection 6.2.1 is that, although it detects the presence of a wormhole with
high confidence, it does not locate it. How could the statistical approach be
used to identify the nodes that are affected by the wormhole?

Let us consider the TIK protocol described in Subsection 6.2.2. Let us assume
that the maximum clock synchronization error is 180 ns and the maximum
communication range of the nodes is 250 m. Compute the minimum packet
length required by the TIK protocol in order for the TESLA condition to be
satisfied.

A disadvantage of the MAD protocol described in Subsection 6.2.2 is that it
needs several rounds of rapid bit exchanges. Can you think of a way to perform
distance bounding by a single exchange of multiple bit messages?

What is the purpose of combining the next bit to be sent to the other party
with the last received bit in the MAD protocol? Can you construct an attack
against a modified version of the protocol where the bits are sent independently
from the received bits?

Consider the wormhole detection method based on directional antennas that we
presented in Subsection 6.2.2. Try to construct an example with two wormholes
that are not detected by the described method.

7

Secure routing in multi-hop wireless
networks

As we have described in Chapter 2, some of the upcoming wireless networks use multi-
hop wireless communications. In those networks, the nodes have two roles: they act
as end-systems and they also perform routing functions. This means that routing
control messages are sent over wireless channels. Moreover, due to the lack of their
physical protection, some of the routers could be corrupted and not follow the routing
protocol faithfully. This can have undesirable effects on the operation of the network.
In extreme cases, the operation of the entire network can be disabled by attacking
the routers and manipulating the messages of the routing protocol. This chapter
is devoted to this problem. More precisely, we study the problem of securing the
routing protocol in two kinds of multi-hop wireless networks: mobile ad hoc networks
and wireless sensor networks.

7.1 Routing protocols for mobile ad hoc networks

A large amount of work on routing in mobile ad hoc networks has been carried out
in the research community, which has resulted in a multitude of routing protocols.
One way to classify ad hoc network routing protocols is illustrated in Figure 7.1.
As we can see, there exist topology-based routing protocols and position-based routing
protocols. Topology-based protocols are based on traditional routing concepts, such as
maintaining routing tables or distributing link state information, but they are adapted
to the special requirements of mobile ad hoc networks. Position-based protocols use
information about the physical locations of the nodes to route data packets to their
destinations.

Topology based protocols can be further classified into two groups: proactive and
reactive protocols. Proactive routing protocols try to maintain consistent, up-to-
date routing information within the system so that at any time, every node knows
how to route packets to all other nodes in the network. In contrast to this, in the
case of reactive routing protocols, a route is established between a source and a

169

170 Secure routing in multi-hop wireless networks

ad hoc network
routing protocols

P

topology-based position-based

7N\

proactive reactive
(on-demand)

Fig. 7.1. Classification of ad hoc network routing protocols. Topology-based protocols are
based on traditional routing concepts, such as maintaining routing tables or distributing
link state information, but they are adapted to the special requirements of mobile ad hoc
networks. Position-based protocols use information about the physical locations of the nodes
to route data packets to their destinations. Topology-based protocols can be proactive or
reactive. Proactive protocols try to maintain consistent, up-to-date routing information
within the system. In contrast to this, reactive protocols establish a route between a source
and a destination only when it is needed. For this reason, reactive protocols are also called
on-demand protocols.

destination only when it is needed (i.e., when the source wants to send something
to the destination). For this reason, reactive protocols are also called on-demand
protocols.

Proactive protocols usually require periodic exchanges of routing information
among the nodes. If only a few pairs of nodes communicate with each other, then
most of the periodically exchanged information is useless (in the sense that it is never
used), and hence proactive protocols can waste a lot of resources unnecessarily. But
as routing information is always (nearly) up-to-date and available, packets can be sent
to any destination virtually with no delay. In contrast to this, in case of reactive or
on-demand protocols, the nodes use their resources for setting up routes only when
they are really needed. At the same time, it may well happen that when a node wants
to communicate with another node, no working route to that other node is available,
and the communication must be delayed until such a route is discovered. There exist
some hybrid protocols that try to combine the advantages of the proactive and the re-
active approaches. Typically, hybrid protocols use the proactive approach to maintain
up-to-date routing information at each node regarding the node’s local neighborhood
(e.g., up to a certain number of hops), and they use the reactive approach when routes
to far away destinations are needed.

As we mentioned above, position-based ad hoc network routing protocols use in-
formation about the physical locations of the nodes to route data packets to their

7.1 Routing protocols for mobile ad hoc networks 171

destinations. In general, each node is aware of its own location (by means of GPS or
some other positioning service) and obtains the location information of other nodes
via a location service that is provided by the nodes themselves in a distributed man-
ner. When sending a data packet, the source obtains the location of the destination
from the location service, and it includes this information in the header of the packet.
Then, each intermediate node makes routing decisions based on its own location and
the location of the destination obtained from the packet header.

The advantage of position-based routing is that the nodes do not need to maintain
routing information or to discover routes explicitly, and therefore the control overhead
of these protocols tends to be smaller. However, there is still some overhead associ-
ated with the operation of the location service and with the retrieval of the location
information of the destinations. The disadvantage of position-based routing is that
they rely on additional hardware in each node or some other mechanisms by which the
nodes can determine their own location. Another disadvantage is that position-based
routing protocols must cope with voids (i.e., geographic areas where no node can be
found), which complicate their operation.

Providing a comprehensive description of all existing ad hoc network routing pro-
tocols is obviously out of the scope of this book. Our goal is rather to highlight the
basic operating principles of some mainstream routing protocols in order to allow the
understanding of the security implications and the secure routing protocols presented
later.

7.1.1 On-demand source routing

As an illustrative example of on-demand source routing protocols, we briefly describe
the operation of the Dynamic Source Routing (DSR) protocol. DSR was among the
very first routing protocols proposed for mobile ad hoc networks, and its design has
been highly influential to other similar protocols proposed later. A detailed descrip-
tion of DSR can be found in [208].

DSR is a source routing protocol which means that every data packet carries the
list of those nodes in its header that the packet should traverse in order to reach
its destination. When a node receives such a data packet, it first verifies if it is the
destination of the packet. If not, then the node verifies if its identifier is in the list
carried by the packet, and if so, it forwards the packet to the next node in the list,
which must be its direct neighbor (strict source routing). Otherwise the packet is
dropped.

One main advantage of source routing is that it is trivial to detect routing loops
just by identifying repeating values in the list of node identifiers in the packet header.
Another advantage is that forwarding nodes do not need to maintain up-to-date rout-
ing information in order to be able to forward the packet towards the destination,

172 Secure routing in multi-hop wireless networks

because that information is available directly from the packet header. Finally, a third
advantage of source routing is that every node that receives or overhears a packet can
learn routing information from the packet header and cache it locally for future use.
The disadvantage of source routing is the communication overhead resulting from
carrying the whole route in the packet header, which limits the applicability of this
approach in highly resource constrained environments, such as sensor networks, and
in large networks where routes can be very long.

When using source routing, the source of a packet must know a full route to the
destination before actually sending the packet. In DSR, such a route can be available
to the source from its local route cache. If an appropriate route is not found in the
cache, then the source uses the route discovery mechanism of DSR to dynamically
discover a route to the destination. In addition to route discovery, DSR has a route
maintenance mechanism that allows the source to detect if a route that it is trying
to use is broken.

Basic DSR route discovery

DSR route discovery is based on flooding the entire network with a route request and
returning some route replies. A route request message contains the identifiers of the
source and the destination, and a record listing the identifiers of every intermediate
node that forwarded this particular request message. Each request also has a request
identifier, which, together with the identifier of the source, uniquely identifies the
request and allows the intermediate nodes to detect and discard duplicates.

The source generates a route request message with a new request identifier and an
empty list of forwarding nodes and broadcasts it to its neighbors. Each intermediate
node that receives a copy of the request verifies that it has not received that request
before. If the request has already been received, then it is dropped. Otherwise, the
intermediate node appends its identifier to the list of identifiers in the request and re-
broadcasts the request to its neighbors. This procedure is repeated until the request
reaches the destination.

The destination generates a route reply by copying the recorded list of identifiers
from the route request into the route reply. The route reply is then unicast back to the
source. For this, the destination needs a route to the source. It could have such a route
already in its route cache. Otherwise, if bi-directional links can be assumed, then the
destination can obtain such a route by reversing the list of identifiers received in the
route request. If links cannot be assumed to be bi-directional, then the destination
must use DSR route discovery to obtain a route to the source; but in this case, it
piggybacks the route reply on the route request in order to avoid an infinite recursion.
When the source receives the route reply, it extracts the route from it and caches it
locally in its route cache. Then it uses the route to send the data packets that were
buffered during the execution of the route discovery procedure.

7.1 Routing protocols for mobile ad hoc networks 173

Basic DSR route maintenance

DSR requires each intermediate node to make sure that the data packet that it is
forwarding reaches the next hop. This requirement can be satisfied in several ways.
Firstly, the data link layer protocol can provide an acknowledgement for each delivered
data packet. Secondly, the intermediate node can overhear the transmission of the
packet by the next intermediate node, which serves as a passive acknowledgement.
Finally, if none of these options are available, then the intermediate node can request
the next intermediate node to send an acknowledgement packet (which can take a
multi-hop route if the link between the two nodes is not bi-directional).

If no acknowledgement arrives for a given packet, then the intermediate node tries
to re-transmit it for some time. If all attempts are unsuccessful, then the intermediate
node generates a route error message, indicating that the link to the next intermediate
node is not functioning, and sends this error back towards the source of the packet.
The source and each of the intermediate nodes that forward the error invalidate the
routes that contain this broken link in their route caches. Then, the source can try
to send the data packet via an alternative route if it has some in its cache, otherwise
it initiates a new route discovery.

DSR optimizations

The basic operation of DSR, as described above, can be extended with many optimiza-
tions to further improve the performance of the protocol. Such optimizations include:
the caching of overheard routing information; replying to route requests by interme-
diate nodes using their cached routes; effectively expanding the local cache with the
caches of neighboring nodes by sending a non-propagating route request (with hop
limit equals to 0) and allowing neighboring nodes to reply from their caches; packet
salvaging; automatic route shortening; increased spreading of route error messages
to reduce the number of invalid route reply packets generated by intermediate nodes
that are not aware of a broken link; and caching negative information (e.g., a bro-
ken link) in the route caches. We must note, however, that such optimizations often
greatly increase the complexity of the protocol, and thus make it more vulnerable to
different attacks. For this reason, secure routing protocols that are based on the same
principles as DSR usually do not apply them.

7.1.2 On-demand distance vector routing

Another group of on-demand protocols do not use source routes in packets, but make
routing decisions based on traditional routing tables. However, those tables are up-
dated only in an on-demand manner. In particular, routing information for destina-
tions that are not in active communications is not maintained. A well-known example

174 Secure routing in multi-hop wireless networks

of such an on-demand, routing table based protocol is the Ad hoc On-demand Dis-
tance Vector (AODV) protocol. A detailed description of AODV can be found in
[307]; here we give only a brief overview.

In AODV, each node maintains a routing table where each entry of the table con-
tains information related to a particular destination, including the following: the
identifier of the destination, the number of hops needed to reach that destination,
the identifier of the next hop on the route towards the destination, the list of precur-
sor nodes that can forward packets to the destination via the node maintaining this
routing table, and a destination sequence number(which helps to identify and discard
out-of-date routing information and ensures the loop-freedom of the protocol). When
an intermediate node receives a packet to be forwarded to a given destination, it
looks into its routing table to see who is the next hop towards that destination and
then forwards the packet to that next hop node. This procedure is repeated until the
packet reaches its destination.

Obviously, this works only if the routing tables of the source and the intermediate
nodes contain a valid entry for the destination of the packet. In AODV, this is ensured
through a route discovery procedure similar to that of the DSR protocol. In other
words, a route request is flooded in the network, and a route reply is sent back to the
source; the difference is that instead of updating route caches, here the nodes update
routing tables upon processing route request and route reply messages.

AODYV route discovery

When a source wants to send a data packet to a destination, and it does not have a
valid entry for that destination in its routing table, then it generates and broadcasts a
route request message. This route request contains the identifiers of the source and the
destination, a hop count, and two sequence numbers, the first of which is the current
sequence number of the source, and the second is the last known sequence number of
the destination. Each node has a single sequence number, which is incremented after
each detected change in the node’s neighbor set. The route request also contains a
broadcast identifier, which plays a role similar to the role of the request identifier in
DSR (i.e., it helps intermediate nodes to detect and discard duplicates of the same
request).

When an intermediate node receives a route request, it first determines if it is a
duplicate or not. Duplicates are silently discarded. If the request is not a duplicate,
then the node checks if it has a valid entry in its routing table for the destination
indicated in the request. If it does not have a valid entry, or it has a valid entry with a
sequence number smaller than the destination sequence number in the request, then
the node rebroadcasts the request after incrementing the hop count in it. On the
other hand, if the intermediate node does have a valid entry for the destination with
a sequence number at least as large as the destination sequence number in the request,

7.1 Routing protocols for mobile ad hoc networks 175

then it generates a route reply. Obviously, if the request reaches the destination, then
it will also generate a route reply.

Besides the processing described in the previous paragraph, upon receipt of a route
request message, an intermediate node creates or updates the entry in its routing
table that corresponds to the source of the request. In fact, if such an entry already
exists, it is updated only if its sequence number is smaller than the sequence number
of the source received in the request, or if the two sequence numbers are equal, but
the length of the new route indicated by the hop count in the request is smaller.
When an entry is created or updated, the destination identifier of the entry is set to
the identifier of the source of the request, the length of the route in the entry is set
to the hop count in the request, the next hop is set to the identifier of the node from
which the request was received, and the sequence number of the entry is set to the
sequence number of the source in the request. This entry will be needed, if eventually
the intermediate node receives a route reply that should be forwarded back to the
source.

As we mentioned above, a route reply can be generated by either the destination
or an intermediate node that has a valid entry in its routing table for the destination.
The route reply contains a destination sequence number and a hop count. If the reply
is generated by the destination, then the sequence number in the reply is set to the
current sequence number of the destination and the hop count is set to zero. If the
reply is generated by an intermediate node, then the sequence number and the hop
count in the reply are set to the sequence number and the hop count in the entry
that corresponds to the destination in the routing table of the intermediate node. In
addition, the intermediate node generates a so-called gratuitous route reply, which
it sends to the destination. This route reply message will set up the necessary state
in the routing tables of the intermediate nodes between the intermediate node that
generated the reply and the destination, so that these nodes will be able to forward
data packets from the destination back to the source.

The route reply message intended for the source is then forwarded back on the
reverse path taken by the route request. The processing of the route reply by the
intermediate nodes is very similar to the processing of the route request. In particular,
the hop count in the reply is incremented before the reply is passed on. Moreover,
each intermediate node creates or updates the routing table entry corresponding to
the destination by setting the hop count in the entry to the hop count in the reply,
the next hop field in the entry to the node from which it received the reply, and the
sequence number in the entry to the destination sequence number in the reply. In
addition, the precursor list of the entry corresponding to the destination is extended
with the node to which the route reply is forwarded, and the precursor list of the
entry corresponding to the source is extended with the node from which the route
reply was received. These updates are made only if the destination sequence number

176 Secure routing in multi-hop wireless networks

in the reply is greater than the sequence number in the entry corresponding to the
destination, or if the two sequence numbers are the same, but the length of the route
indicated by the hop count in the reply is smaller than that currently stored in the
entry.

AODYV route maintenance

AQODYV also has a route maintenance mechanism that uses route error messages such
as the ones used in DSR. When a node detects a broken link to the next hop while
attempting to forward a data packet, it invalidates the routing table entries corre-
sponding to those destinations that were reachable through this failed next hop. Then
it generates a route error message that contains the list of those destinations that be-
came unreachable and sends it to the nodes in the precursor lists of the invalidated
entries. A node receiving a route error verifies if it uses the sender of the message
as the next hop towards the destinations listed as unreachable in the error message.
If this is the case for some destinations, then the node invalidates the corresponding
routing table entries and sends a similar error message to the nodes in the precursor
lists of the invalidated entries.

7.1.3 Proactive routing

Proactive routing protocols maintain up-to-date routing information for all possible
destinations in the network. These protocols are usually based on a periodic exchange
of routing information, and they have two types: link state protocols and distance
vector based protocols.

In link state protocols, each node periodically floods the network with a message
that contains the state of the links of that node. As these messages are propagated in
the entire network, each node learns the link state information of every other node,
and thus each node has a full view of the network topology. Then, centralized shortest
path algorithms can be used locally by each node to determine the best route to all
other nodes in the network.

In contrast to this, in distance vector based protocols, the nodes execute a dis-
tributed shortest path algorithm to determine the best route to every other node in
the network. For this purpose, each node periodically sends its current routing table
to the neighboring nodes. Thus, each node obtains the routing information known by
its neighbors. By inspecting the routing tables of its neighbors, a node can discover
that there is a better route to some destination than the route that has been known
so far by the node. In this case, the node updates its routing table to incorporate
the new information. By repeating the routing table exchange and routing table up-
date steps, the system converges to a stable state, where each routing table contains
correct routing information.

7.1 Routing protocols for mobile ad hoc networks 177

At first sight, it seems that due to their periodic nature, proactive routing protocols
have too much overhead to be applicable in mobile ad hoc networks. It turns out,
however, that some optimized versions of them can work pretty well under certain
circumstances. In particular, if a large and frequently changing set of random pairs
are communicating, then maintaining routes to all possible destinations is not so much
of an overhead anymore, and the proactive approach can even outperform the reactive
one.

OLSR

An example of a proactive routing protocol proposed for mobile ad hoc networks is
the Optimized Link State Routing (OLSR) protocol. Its full description can be found
in [100]; here we summarize only its main characteristics.

OLSR is a link state protocol and, as such, it periodically floods the entire network
with control messages containing link state information. However, OLSR minimizes
the control overhead induced by flooding by using only selected nodes, called multi-
point relays (MPRs), to retransmit control messages. The set of MPRs of a given node
is a subset of its neighbors that are selected in such a way that they cover (in terms
of radio range) all strict two-hop neighbors (i.e., those nodes that can be reached in
two hops and that are not neighbors themselves) of the node. The nice thing about
MPRs is that requiring only them to participate in the flooding significantly reduces
the number of retransmissions of a given control message, while the way they are
selected ensures that all nodes in the network will receive the message.

A second optimization used by OLSR is that it floods only partial link state infor-
mation. Indeed, it can be shown that in order to compute the shortest paths between
any pair of nodes, it is sufficient that each MPR declares only the links to its MPR
selectors (i.e., those neighbors that selected it as MPR).

There are two basic types of messages in OLSR: HELLO messages and TC (topology
control) messages. HELLO messages are local broadcast messages that are received
by the neighbors of the sender, but they are not retransmitted. TC messages are
global broadcast messages that are flooded in the network by MPR nodes.

The HELLO message sent by a given node A contains the list of its believed neigh-
bors. For each neighbor in the list, the state of the link to that neighbor is indicated.
In addition, the neighbors that are selected as MPRs by A are marked as such.

When a node B receives such a HELLO message, it learns a whole lot of information
from it. First of all, it learns that A is its neighbor (if it has not known that yet).
If B is listed as a neighbor in the HELLO message, then B learns that A considers
it as a neighbor, and thus there must be a symmetric link between them; otherwise
the link is asymmetric because B hears A, but not vice versa. Assuming that B is
listed in the HELLO message, B learns the state of the link between A and B. If
in addition, B is marked as an MPR, then now it knows that A selected it as MPR,

178 Secure routing in multi-hop wireless networks

and hence, A4 is in B’s MPR selector set. Finally, by looking at the list of neighbors
of A, B learns about its two-hop neighborhood. To summarize, HELLO messages in
OLSR are used for link state sensing, neighbor detection, two-hop neighbor detection,
and MPR signalling. Indirectly, HELLO messages are also used in MPR selection,
because the nodes can determine their MPR set based on the neighborhood and two-
hop neighborhood information that they obtained from the HELLO messages.

TC messages are sent in the network to advertise links. They contain a list of
advertised neighbors. Only MPR nodes send and retransmit TC messages, and a
TC message must contain at least those neighbors that have selected the sender
node as an MPR. Based on the advertised links in TC messages, each node in the
network reconstructs a (partial) topology of the network and builds a routing table
that contains forwarding information for all possible destinations in the network. This
routing table is then used for routing data packets towards their destinations.

DSDV

Another proactive ad hoc network routing protocol is the Destination-Sequenced Dis-
tance Vector (DSDV) protocol [308]. The main novelty of DSDV with respect to other
distance vector based protocols is the application of sequence numbers that prevents
routing loops.

DSDV is a predecessor of AODV, and thus, it has a similar sequence number
mechanism. In DSDV too, each entry of a routing table is tagged with the most recent
sequence number known for the destination to which the entry belongs. Similarly,
periodic routing updates also contain sequence numbers for each destination in the
update. When a node receives a routing update, for each destination in the update,
the node prefers the newly advertised route if the sequence number in the update
is greater than the sequence number known by the node for that destination, or if
the two sequence numbers are equal, but the routing metric in the update indicates
that the newly advertised route is shorter than the one known by the node. If none
of these conditions is satisfied, then the update for the given destination is ignored.
Like in AODV, sequence numbers are increased, when a change in the state of a link
of the node is detected.

Another optimization in DSDV is that besides full updates listing all destinations,
a node can also send incremental updates that list only destinations for which the
route has changed since the last full update sent by the given node.

7.1.4 Position-based routing

In position-based routing protocols, the source of a data packet includes in the packet
header the location of the destination. This information is used by intermediate nodes

7.1 Routing protocols for mobile ad hoc networks 179

to route the packet towards the destination. Based on the packet forwarding strat-
egy used by the intermediate nodes, three types of approaches can be distinguished:
greedy forwarding, restricted directional flooding, and hierarchical protocols.

Greedy forwarding

In greedy forwarding, it is assumed that each node is aware of its own location and the
locations of its neighboring nodes. The former is obtained by means of GPS or some
GPS-free localization service. The location information of the neighbors can be learnt
by using periodic, local, one-hop broadcast messages, called beacons, in which each
node announces its own location. In addition, recall that each data packet carries the
approximate position of its destination.

Greedy forwarding means that, upon receipt of a data packet by an intermediate
node, the packet is forwarded to a neighbor that is closer to the destination than the
forwarding node itself. However, there can be several such neighbors, and there are
different strategies to choose the next hop from them. These strategies are illustrated
in Figure 7.2 and explained below.

destination Q
e

Fig. 7.2. Tllustration of the operation of greedy forwarding strategies. MFR (Most Forward
within Radius) selects the neighbor that is the closest to the destination and, in this way,
minimizes the number of hops taken by the packet. NFP (Nearest with Forward Progress)
selects the nearest neighbor that is still closer to the destination; when the nodes can control
their transmission power, this strategy can minimize the probability of packet collisions.
Compass routing selects the neighbor that is the closest to the straight line between the
forwarding node and the destination, and it minimizes the spatial distance that the packet
travels. Finally, the next hop can be selected randomly; this can be a good strategy if the
location information of the neighbors is inaccurate. From [265], © IEEE, 2001.

One intuitively appealing strategy is to forward the packet to the neighbor that
makes the largest progress towards the destination (i.e., the node which is the closest

180 Secure routing in multi-hop wireless networks

to the destination). This strategy is called MFR (Most Forward within Radius) [358],
and it tries to minimize the number of hops taken by the packet on its way to the
destination.

Another, less intuitive strategy is to forward the packet to the nearest neighbor
that is still closer to the destination than the forwarding node. This strategy is called
NFP (Nearest with Forward Progress) [168]. NFP only makes sense when the nodes
can control their transmission power; in this case, NFP minimizes the probability of
packet collisions, and thus the average progress of packets can be higher for NFP than
for MFR.

Yet another strategy is to forward the packet to the neighbor that is the closest
to the straight line between the forwarding node and the destination. This strategy
is called compass routing [232], and it tries to minimize the spatial distance that the
packet travels.

Finally, the forwarding node could select the next hop randomly from the set of
neighbors that are closer to the destination than the forwarding node itself [282]. This
strategy minimizes the number of operations required to forward the packet, and it
can be advantageous when the location information of the neighbors is inaccurate.

No matter what forwarding strategy is used, routing protocols based on greedy for-
warding must cope with the problem of dead-ends: it can happen that an intermediate
node receiving the data packet has no neighbor that is closer to the destination than
the node itself, therefore it cannot pass on the packet. To recover from this situation,
the protocol can try to construct a planar sub-graph of the graph that represents the
ad hoc network and then use a planar-graph traversal algorithm to find a path to the
destination. An example of this approach is the face routing algorithm [59] which has
many variants including GFG (Greedy-Face-Greedy) [60], GPSR (Greedy Perimeter
Stateless Routing) [216], and the GOAFR+ (Greedy Other Adaptive Face Routing)
family of algorithms [237, 238].

Restricted directional flooding

The idea of restricted directional flooding algorithms is that an intermediate node
re-broadcasts a data packet only if it lies “in the direction of the destination”. In
order for the intermediate node to decide if it lies in the good direction, it is sufficient
to know (besides its own location) the location of the destination and the location
of the previous intermediate node. This information can be included in the packet
header by the source and the previous intermediate node, respectively, thus, there is
no need for periodic beacons to learn the location information of all neighbors.

One approach to determine if a node lies in the direction of the destination is called
DREAM (Distance Routing Effect Algorithm for Mobility) [41], and it is illustrated in
part (a) of Figure 7.3. DREAM first calculates an expected region of the destination
of the packet. This is a disc, the center of which is the approximate location of

7.1 Routing protocols for mobile ad hoc networks 181

the destination obtained from the packet header, and the radius is a function of the
maximum speed of the nodes and the time elapsed since the generation of the packet
by the source (known from a timestamp in the packet header). Then, the direction to
the destination is defined by the line between the forwarding node and the center of
the destination’s expected region, and the angle ¢. Each neighbor of the forwarding
node that lies within this angle is in the good direction, and must re-broadcast the
packet. Note that ¢ increases as the packet gets closer to the destination, which helps
to cope with the problem that the location information of the destination inserted in
the packet header by the source becomes less accurate as time elapses (assuming that
the nodes move).

source

(a) (b)

Fig. 7.3. Illustration of the operation of the restricted directional flooding algorithms
DREAM (a) and LAR (b). In DREAM, first an expected region of the destination is calcu-
lated. Then, the direction to the destination is defined by the line between the forwarding
node and the center of the destination’s expected region, and the angle ¢. Each neighbor
of the forwarding node that lies within this angle must re-broadcast the packet. These cal-
culations are repeated by each intermediate node that receives the packet until it reaches
the destination. In LAR, the source of the data packet calculates an expected region of the
destination, and then the packet is flooded within the rectangular region illustrated in the
figure. From [265], © IEEE, 2001.

Another approach is called LAR (Location Aided Routing) [220]. In LAR the
source of the data packet calculates an expected region of the destination, and then
the packet is flooded within the rectangular region illustrated in part (b) of Figure 7.3.
In other words, each node in this region that hears the packet will re-broadcast it,
while the nodes outside this region will drop it.

182 Secure routing in multi-hop wireless networks

Hierarchical approaches

Position-based routing can be combined with topology-based routing in order to in-
crease the scalability and the efficiency of the routing protocol [53]. The typical way
to do this is to use a position-based approach to route the packet into the estimated
geographical region of the destination, and to use a topology-based protocol locally
within that region to actually find the destination. This hybrid approach counters
the disadvantages of the pure position-based and the pure topology-based approaches:
The scalability problems of topology-based protocols are mitigated by using them only
locally, within a limited geographical area, whereas the problem of inaccurate location
information in position-based routing is mitigated by using a topology-based protocol
to finally route the packet to the destination. Another advantage of hierarchical ap-
proaches is that they can be used in applications where not every node can determine
its own location: those location unaware nodes can route packets to location aware
nodes, so-called location proxies, by using topology-based routing.

Location services

As we have seen above, in position-based routing protocols, the source of a data
packet must be able to obtain the location information of the destination. This
information is usually provided by a location service. Although some position-based
routing protocols specify it explicitly, the location service does not actually need to be
part of the routing protocol, but it can be provided as a separate mechanism that is
used by the routing protocol as an external service. Due to its rather loose connection
to routing itself, we do not describe the operation of location services here.

7.2 Attacks on ad hoc network routing protocols

Routing is a fundamental service in any kind of network; hence an ideal target for
attacks. In this section, we describe why and how ad hoc network routing protocols
can be attacked. The general discussion will be followed by some illustrative examples.

7.2.1 Setting the scene

Before indulging into the attacks themselves, it is useful to elaborate on the general
objectives and capabilities of an adversary in the context of ad hoc network routing
protocols. That is what we do in this subsection.

General objectives of attacking routing

Attacks against routing protocols can have the following three objectives:

e increase adversarial control over the communications between some nodes;

7.2 Attacks on ad hoc network routing protocols 183

e degrade the quality of the service provided by the network;
e increase the resource consumption of some nodes (e.g., CPU, memory, or energy).

We must note that these objectives are not fully independent from each other.
Firstly, the ultimate goal of increasing the resource consumption of some nodes is
typically to degrade the quality of the service provided by the network. For instance,
the result of overloading some nodes with excessive traffic could be that they start
dropping legitimate traffic, or they deplete their batteries and the network becomes
disconnected and dysfunctional. Nevertheless, it makes sense to distinguish these two
objectives, because some attacks, as we will see, aim at increasing resource consump-
tion in a brute force manner without any particular projection on how this would
degrade the quality of service; it is intuitively simpler to think of these attacks as
pure resource-consumption attacks. In addition, there are attacks that degrade the
quality of service without actually increasing the resource consumption of the nodes.
Secondly, the ultimate goal of increasing adversarial control over the communications
between some nodes can also be the degradation of the quality of service, although
this is not always the case.

We must also note that achieving any of the three objectives listed above can
result in achieving another objective as a side effect. For instance, one way to achieve
increased adversarial control over the communications between some nodes is to divert
some traffic through particular routes, but in this case, the resource consumption of
the nodes on those routes is also increased, because those nodes must now support
some extra traffic.

Outsider vs. insider adversary

The adversary can interfere with the routing protocol in two ways: from outside and
from inside. An outsider adversary can attack the communications of some nodes,
which is made easy by the usage of wireless channels. This usually means eavesdrop-
ping, jamming, and injecting fabricated or replayed messages into the network. In
addition to all these, an insider adversary controls some nodes in the network. We re-
fer to these nodes as adversarial nodes. Adversarial nodes can exhibit any Byzantine
behavior.

It is quite reasonable to assume that ad hoc networks are subject to both outsider
and insider attacks. First of all, the nodes are usually not physically protected, so they
can be captured and compromised by the adversary. In addition, in civilian scenarios,
the adversary can acquire some nodes in a legitimate way (e.g., she can buy them).
Indeed, in civilian scenarios, the term adversary refers to a set of misbehaving users
that are otherwise legitimate. Hence, in the following section, we assume that the
adversary is part of the network and that she launches attacks from adversarial nodes.

184 Secure routing in multi-hop wireless networks

Attack mechanisms

An attack against routing is a specific combination of some attacking mechanisms
aiming at achieving one or more of the objectives introduced above. Those attacking
mechanisms include classical mechanisms such as eavesdropping, replaying, modify-
ing and deleting control packets (i.e., packets containing routing information). In
addition, an adversary can try to fabricate control packets containing fake routing in-
formation, or it can create control packets under a fake identity: the former is called
packet forgery, and the latter is usually referred to as spoofing.

Data packets can also be eavesdropped, replayed, or modified, but these misdeeds
are typically not considered to be routing security issues; they must be prevented or
detected at higher (end-to-end) or lower (hop-by-hop) layers. Dropping data packets
maliciously, however, is considered to be an attacking tool, which targets the packet
forwarding function of routing.

Besides the classical attack mechanisms, there are mechanisms that can even be
useful in some applications, but they can be misused in the context of routing to
implement various attacks. Such a mechanism is tunneling. Tunneling means that
two, potentially remote adversarial nodes pass control packets back and forth between
each other by encapsulating them into normal data packets and using the multi-hop
routing service offered by the network to transfer those data packets. Recall that
in our terminology, a tunnel is not a wormhole (see also Chapter 6 on wormbholes),
although both have similar effects on routing. However, a wormhole operates in the
physical layer, and it does not require the adversary to control nodes in the network; a
wormhole can be implemented with two simple radio transceivers connected through
an out-of-band channel. By definition, tunneling means that an adversary can send
data packets between its nodes, therefore, these nodes must be addressable, and hence
present at the routing layer.

7.2.2 Types of attacks

Using the attack mechanisms mentioned in the previous subsection, the adversary can
mount the following types of attacks against routing protocols:

route disruption;

route diversion;

creation of incorrect routing state;
generation of extra control traffic; and

creation of a gray hole.

Below, we describe each of these attacks in more details.

7.2 Attacks on ad hoc network routing protocols 185

Route disruption

In a route disruption attack, the adversary prevents a route from being discovered
between two nodes that are otherwise connected. In other words, there exists a route
between the two victim nodes, but due to the adversary, the routing protocol is unable
to discover it. The primary objective of this attack is to degrade the quality of service
provided by the network. In particular, the two victims cannot communicate, and
other nodes can also suffer and be coerced to use suboptimal routes.

There are various ways to implement a route disruption attack. In case of topology-
based routing protocols, if the adversary controls a set of nodes that form a vertex cut
in the network, then it is fairly easy to prevent the discovery of any routes between the
two parts of the network by dropping all control packets sent from one part into the
other. Another way to mount a route disruption attack is to forge error messages that
would invalidate the correct routing state in some victim nodes, thereby effectively
preventing them from being able to communicate with some other nodes.

A subtle way of implementing a route disruption attack against some on-demand
routing protocols is to combine tunneling and the deletion of control packets. Let us
assume, for instance, that the protocol works in the following way: When a source
wants to discover a route to the destination, it floods the network with a route re-
quest. When the destination receives the first copy of the request, it does not respond
immediately, but it waits until it receives a copy of the request from each of its neigh-
bors. Then, it selects the neighbor with the best routing metric (e.g., the neighbor
from which it received the request with the smallest hop count or shortest list of
identifiers), and sends a single route reply back to the source through that neighbor.
In this case, the adversary can set up a tunnel somewhere between the source and
the destination and make the route through this tunnel appear to the destination as
the route with the best routing metric.! Subsequently, when the single route reply
passes through the tunnel on its way back to the source, the adversary drops it. In
this way, the source will never be able to discover a route to the destination.

In the case of on-demand protocols that drop duplicates of a given route request
and use predictable request identifiers (e.g., a sequence number), route disruption can
be achieved by predicting the next request identifier of a victim node and flooding the
network with a spoofed route request containing that identifier. As a result, when the
victim wants to discover a new route, its route request will be perceived as a duplicate
and dropped even by legitimate nodes. This can prevent the discovery of any routes
by the victim.

I Note that a tunnel appears to be a single link in the network topology for the routing protocol.
In particular, the intermediate nodes that implement the tunnel do not increase the hop count
(in distance vector based protocols) or extend the identifier list (in source routing protocols) in
the route request, as it is encapsulated into a regular data packet, and handled as such by the

intermediate nodes. Therefore, route request messages that passed through the tunnel carry better
metrics than those that traveled in the normal way.

186 Secure routing in multi-hop wireless networks

Similarly, link state protocols also use duplicate detection to control flooding, which
can be exploited in a route disruption attack. For instance, an adversarial node that
re-broadcasts the link state update of a victim node can change the state of all links
of the victim to asymmetric, pointing from the victim to its neighbors. As a result
some nodes that receive this modified link state update message will not be able to
find a route to the victim. In addition, even if these nodes also receive the correct
link state update on an alternative path later, they will drop it as a duplicate.

In position-based routing protocols, there is no explicit route discovery, but the
adversary can still prevent a source from being able to communicate with a destination
by falsifying the location information of the destination. This can be achieved by
spoofing location update messages and coercing the location service to respond to
location queries with false information, or it can be achieved by forging or modifying
a response from the location service.

Route diversion

In a route diversion attack, the adversary does not prevent the establishment of routes,
but it achieves that some established routes are diverted. This means that due to
the presence of the adversary, the protocol establishes routes that are different from
those that it would establish, if the adversary did not interfere with the execution of
the protocol.

The objective of route diversion can be to increase adversarial control over the
communications between some victim nodes. In this case, the adversary tries to
achieve that the diverted routes contain one of the nodes that it controls or a link
that it can observe. Then, the adversary can eavesdrop or modify data sent between
the victim nodes easier. A particularly efficient way to divert routes through nodes
under adversarial control is to setup a tunnel. As routes through the tunnel appear
to be shorter, many pairs of communicating nodes can choose the tunneled routes,
thereby allowing the adversary to access their communications easier.

Another objective of route diversion can be to increase the resource consumption
of some nodes. For instance, if routes are diverted through a tunnel, as described
above, then the nodes close to the two ends of the tunnel will receive a higher amount
of transit traffic, and so they must use more resources to forward that traffic. Alter-
natively, by modifying or forging routing messages, the adversary can divert many
routes directly through a victim node.

Finally, route diversion can aim at increasing the length of discovered routes, and
thus increasing the end-to-end delay between some nodes, which can be viewed as a
degradation of quality of service.

In topology-based routing protocols, route diversion can be implemented by forg-
ing or manipulating control packets. For instance, in source routing protocols, the
adversary can change the list of identifiers in route reply messages. In distance vector

7.2 Attacks on ad hoc network routing protocols 187

based protocols, the adversary can decrease hop count values in control messages,
whereas in link state protocols, she can change the state of a link in a link state
update message from symmetric to asymmetric. All these modifications will result in
the establishment of diverted routes by some nodes.

Even the simple dropping of control packets can cause the diversion of routes. For
instance, assume that there are only two routes between a source and a destination,
a long one and a short one, and the latter goes through an adversarial node. Fur-
thermore, assume that an on-demand routing protocol is used. Then, by simply not
re-broadcasting the route request, the adversary can prevent the discovery of the
shorter route and divert the traffic between the source and the destination through
the longer one.

In position-based routing protocols, an adversary can lie about its position and
appear to be closer to a given destination than other nearby nodes. In this way, some
routes can be diverted, and the adversary can increase its control over the commu-
nications of some nodes. Larger detours can be created by pretending that the data
packet encountered a dead-end and forcing the protocol to enter into recovery mode.
Besides diverting the packet, this will also lead to increased resource consumption
associated with the execution of the recovery algorithm.

Creation of incorrect routing state

Another type of attack aims at jeopardizing the routing state in some nodes so that
the state appears to be correct but in fact it is not, and thus data packets routed using
that state will never reach their destinations. One example of this attack is when the
route discovery procedure of a source routing protocol returns a non-existent route
to the source; as a consequence, data packets using this non-existent route will be
dropped when they reach the first non-existent link in the route. Another example is
the creation of a routing loop. In this case, some packets will be forwarded in a cycle
until their hop count reaches the maximum allowed value, and at the end, they are
discarded. Distance vector based protocols are particularly vulnerable to this kind
of attack, because the nodes do not have a full view of the whole network (unlike in
case of link state protocols) or of the entire route (unlike in case of source routing
protocols). Yet another example is when the network is disconnected, but the routing
state in some nodes falsely indicates that each destination is reachable. Again, data
packets are started to be forwarded, but they are eventually dropped, because some
destinations are indeed unreachable.

We must note that routing information can become incorrect due to mobility even
if no adversary tries to interfere with the protocol. For instance, links can be broken,
which results in source routes becoming non-functional. All protocols proposed for
mobile ad hoc networks have a mechanism to cope with this situation (usually based
on sending route error messages), meaning that some inherent protection against the

188 Secure routing in multi-hop wireless networks

attack consisting in creating incorrect routing state already exists in those protocols.
The problem is that these mechanisms are not designed with malicious attacks in
mind, but they assume random errors due to mobility and node failures. In particular,
the reaction time of these mechanisms is quite poor, and a considerable amount of
resources could be wasted before the attack is detected.

Hence, one objective of creating incorrect routing state is exactly to increase the
resource consumption of some nodes: the victims will use their incorrect state to
forward data packets, until they learn that something goes wrong. Obviously, another
objective is to degrade the quality of service.

Incorrect routing state can be created by spoofing, forging, modifying, or dropping
control packets. For instance, in source routing protocols, an adversarial node can
simply overwrite the list of identifiers accumulated in route request messages, returned
in route reply messages, or included in the header of data packets. In distance vector
based protocols, routing loops can be created by manipulating or forging routing
messages in such a way that the resulting routing tables of some nodes contain a
loop. In link state protocols, a link state update message can be modified so that a
non-functional link appears to be functional for some nodes, who can then select routes
that contain that link. Position-based routing protocols seem to be more resistant to
this kind of attack, because intermediate nodes do not store routing states.

Generation of extra control traffic

As we have seen, many routing protocols flood the entire network with control packets.
An attack aiming at increasing resource consumption can exploit this fact by injecting
spoofed control packets into the network. In on-demand protocols, a spoofed route re-
quest can be flooded in this way; similarly, in link state protocols, a spoofed link state
update can be flooded in the network. In distance vector based protocols, a spoofed
routing update message can cause a sequence of “triggered” updates propagating in
the entire network.

Position-based routing protocols again seem to be more resistant to this attack,
because they do not use control packets. However, the attacker can send forged or
spoofed location update messages to the location service. The new location informa-
tion will be distributed among some nodes in the network, and this generates some
extra control traffic. Similarly, the adversary can initiate excessive location informa-
tion retrieval, which will also generate some extra control traffic.

Setting up a gray hole
All the attacks that we have discussed so far target the route establishment function

of routing. Whereas the gray hole attack is concerned with the packet forwarding
function. In a gray hole attack, an adversarial node selectively drops data packets

7.2 Attacks on ad hoc network routing protocols 189

that it should forward. If all data packets are dropped, then the gray hole degenerates
into a black hole.

The primary objective of the gray hole attack is to degrade the quality of service.
In particular, the packet delivery ratio between some nodes can decrease considerably.
The gray hole can be detected by protocols above routing (e.g., at the transport layer),
and the source can try to use an alternative route, however this can incur some delay
if no alternative route is currently available and a new route must be established. In
addition to degrading the quality of service, a gray hole will also waste the resources of
those nodes that forward the data packets that are finally dropped by the adversarial
node.

A gray hole attack is trivial to implement: The adversarial node just needs to
participate in the route establishment and then, when it receives data packets for
forwarding, it drops them. However, with a bit of more sophistication, much more
harm can be caused. In particular, the adversary can first setup a tunnel and divert
traffic towards itself; then it drops packets.

All routing protocols that use a single path to route a packet to its destination are
vulnerable to this attack. Yet, the restricted directional flooding protocols that we
discussed in the context of position-based routing are inherently resistant to gray hole
attacks.

7.2.3 Some examples

In the previous subsection, we described the major types of attacks against ad hoc
network routing protocols. In this subsection, we present specific examples that illus-
trate how these attacks can be mounted against the DSR and the AODV protocols.
All examples assume the network topology depicted in Figure 7.4.

Route disruption. Let us consider the DSR protocol first. The source S initiates a
route discovery towards destination D by flooding the network with a route request.
Let us assume that the route caches of all nodes are empty. The adversarial node
A can always prevent route S, H, A, E, G, D from being discovered by dropping the
route request received from S or by dropping the route reply that contains this route.
However, the adversary can also prevent the discovery of route S, B, E,G,D. For
this, A must arrange that E receives the route request from A earlier than from B,
as in that case, E drops the request received from B as a duplicate. Node A can,
for instance, keep the channel constantly busy to prevent E from receiving anything
from B. In this way, the adversary can achieve that none of the existing two routes
between S and D are discovered by DSR.

In the case of AODV, the adversary can prevent the discovery of the routes between
S and D by manipulating the hop count value in the route request message. In

190 Secure routing in multi-hop wireless networks

Fig. 7.4. The network topology used in our examples that illustrate attacks against DSR and
AODV. The network contains a single adversarial node A which is represented by the black
node in the figure. The interconnection of the nodes represent the neighbor relationships;
two nodes are considered to be neighbors if they can hear each other’s transmission.

particular, the adversarial node A can set the hop count value in the route request
message received from H to 0. In this way, E will believe that the next node on the
shortest route to S is A, and therefore, E will forward route reply messages destined
to S to A. By dropping these messages, A can prevent the discovery of any existing
routes between S and D.

Route diversion. In the DSR protocol, route diversion can be performed as follows.
Let us assume again that S initiates a route discovery towards D. When A receives
the route request from H, it responds with a fake route reply that contains the
route S, H, A, D. This fake reply is sent to S. Since the fake route reply contains
a shorter route than the one discovered by the protocol (i.e., S, B, E,G, D), S may
decide to use the route S, H, A, D. Thus, the adversary can successfully divert the
communication between A and D. In order to stay invisible, A must modify the
source route S, H, A, D to S, A, E,G, D in each subsequent data packet that is sent
by S to D.

Route diversion in AODV can be achieved by manipulating the hop count value
in routing control messages as described above in the route disruption attack against
AODV. In particular, if in the above route disruption attack, the adversarial node A
does not drop the route reply message originating from D, then route S, H, A, E, G, D
is discovered by the protocol, which can be viewed as diverted route, as the route
S, B, E,G, D would be shorter.

Creation of incorrect routing states. In the case of DSR, creating incorrect rout-
ing state means that the adversary coerces the source of a route discovery to accept
and cache a non-existent route to the destination. For instance, when node S initiates

7.8 Securing ad hoc network routing protocols 191

a route discovery in order to communicate with D, A does not re-broadcast the route
request received from H, but it waits until it hears another copy of the same request
from E. This copy of the request contains the route S, B, E. Afterwards, A generates
a route reply containing the route S, B, E, A, D, and sends it to E. The reply is
routed back to S via node B, and S caches the non-existent route S, B, E, A, D.

In the AODV protocol, the adversary can create incorrect routing state in some
nodes by manipulating the destination sequence number or the hop count in routing
control messages. S initiates a route discovery by flooding the network with a route
request. A receives the route request from H, and increments the destination sequence
number before re-broadcasting it in the name of F'. As a result, F sets F' as its next-
hop towards S, since F' is a neighbor of F, and the falsified route request appears to
be fresher than the correct one coming from B. Thus, FE gets into an incorrect state,
as there is no route to S via F.

7.3 Securing ad hoc network routing protocols

In the previous section, we saw what kind of attacks are possible against ad hoc
network routing protocols. In this section, we elaborate on techniques that can be
used to defend against some of those attacks. In terms of presentation, we follow
the strategy of the previous section: We first introduce applicable countermeasures in
general, explain why they are needed, and then we illustrate how these countermea-
sures can be used by presenting some specific ad hoc network routing protocols that
are designed with security in mind. A benefit for the reader is that this latter part
on specific protocols can also be used as an independent quick reference on secure
routing protocols proposed for mobile ad hoc networks.

7.3.1 Countermeasures
Origin authentication of control packets

As we have seen in the previous section, many of the attacks against routing protocols
are based on spoofing or modifying control packets. The usual way to thwart these
types of misdeeds is to authenticate packets. But there are two questions that arise
here: First, who should authenticate the control packets? Second, who should be able
to verify the authenticity of control packets?

Regarding the first question, it seems to be natural to require that control packets
are authenticated by their originators. This would make it possible to detect spoofing.
In addition, as message authentication mechanisms usually provide integrity protec-
tion functions, it would also make it possible to detect the modification of control
packets.

192 Secure routing in multi-hop wireless networks

However, the effectiveness of control packet origin authentication can also depend
on the way we handle the second question. In order to see this, let us consider an
on-demand routing protocol and assume that each control packet is authenticated by
its originator (i.e., by the source, in case of route requests, or the destination, in case
of route replies). Let us further assume that only the target (i.e., the destination
or the source) of the control packet can verify its authenticity.? What we achieve
with this is that spoofed or modified route requests will not be responded to by
the destination, and spoofed or modified route replies will not be accepted by the
source. In other words, we prevent the creation of an incorrect routing state (e.g.,
inserting a non-existent route in the route cache) in the source and the destination.
However, the adversary can still increase the resource consumption of the nodes,
because spoofed or modified route requests and route replies are still processed and
forwarded by intermediate nodes (because they cannot detect that they are spoofed
or modified); in addition, this work is superfluous, because those spoofed or modified
control packets will be discarded by their targets anyway. Spoofed route requests are
especially harmful, because the entire network will be flooded with them. In addition,
if the intermediate nodes update their routing state based on the control packets that
they forward (e.g., they cache routes observed in forwarded route replies), then the
adversary can successfully create incorrect routing state in intermediate nodes despite
the fact that control packets are authenticated.

Thus, a useful design principle can be the following:

e cach control packet should be authenticated by its originator;

e in order to prevent the creation of incorrect routing state in the nodes, each node
that updates its routing state as a result of processing a control packet should be
able to verify the authenticity of the packet;

e in order to prevent the generation of extra (and superfluous) control traffic, each
node that processes, and re-broadcasts or forwards a control packet should be able
to verify its authenticity.

Since typically, a routing control packet is processed by several nodes in the net-
work, the authentication mechanism should enable broadcast authentication. In other
words, the originator should authenticate the control packet in such a way that all
the nodes that will process and act upon it will be able to verify its authenticity.
However, the originator usually does not know in advance which other nodes will pro-
cess the packet. Hence, in practice, authenticity should be verifiable by every node.
An authentication mechanism that makes this possible is the digital signature; the
symmetric key equivalent of this is TESLA [309].

We must note here that verifying digital signatures (or MACs, in the case of

2 This is the case when authentication is based on a shared symmetric key between the source and
the destination.

7.8 Securing ad hoc network routing protocols 193

TESLA) also consumes resources. So an adversary can attempt to take advantage of
this by injecting fake control packets in the network; these packets will be dropped,
but trying to verify the signatures on them will increase the resource consumption
of the nodes. The good thing is that these forged packets are not propagated in the
network, but they are caught immediately by the first legitimate node that verifies
their signature. Hence, the effect of the attack is localized: Although some limited
number of nodes might suffer, the rest of the network is saved from processing use-
less control traffic. We must also mention that computation consumes less energy
than communication, therefore it makes sense to trade-off increased computational
overhead for decreased communication load.

Control packet origin authentication using digital signatures or TESLA is an effec-
tive way to secure link state protocols, because in those protocols, control packets do
not change while being broadcast in the network. However, proactive distance vector
protocols and on-demand routing protocols need additional protection mechanisms,
as we will see below.

Protection of mutable information in control packets

In many routing protocols, notably in on-demand protocols, the intermediate nodes
add information to the control packets before forwarding or re-broadcasting them. For
instance, in on-demand source routing protocols, the intermediate nodes extend the
list of identifiers in route request packets with their own identifiers. Likewise, in on-
demand distance vector protocols, the hop count field in the control packets is updated
by each intermediate node. Since other nodes will act upon this added information,
it must also be protected somehow from being forged and modified. However, control
packet origin authentication will not solve this problem, because the information that
we are talking about is added after the originator sends the control packet.

So what can we do? Well, we can apply the same principles as before, and require
that each node that adds information to a control packet should authenticate the
added information in such a way that each other node that acts upon this information
is able to verify its authenticity. This sounds simple, but it becomes complicated when
we take a closer look.

First of all, there are traceable additions and untraceable additions. Extending the
list of identifiers accumulated in the route request is a traceable addition, because
each modification preserves the previous state of the packet, therefore anyone can
see who added information to it. In contrast to this, incrementing the hop count in
control packets is an untraceable addition of information, because it is impossible to
tell just from the hop count value who contributed to it. Needless to say, traceable
and untraceable additions require different protection mechanisms; it should also be
clear, that protecting untraceable additions is much harder.

A seemingly simple solution for authenticating traceable additions to a control

194 Secure routing in multi-hop wireless networks

packet is that each intermediate node that adds information re-signs the entire up-
dated packet. However, there are (at least) three problems with this approach. Firstly,
the signature and the added information can be removed. For instance, imagine that
when a node adds its identifier to the list of identifiers in a route request, it signs the
entire request to authenticate its added information and to link it to the rest of the
packet. An adversarial node can still remove identifiers and corresponding signatures
from the end of the list and, in this way, can manipulate the routing information.
In addition, such removal will be undetected, because all the remaining signatures
verify correctly. Indeed, recall that being traceable means that the packet preserves
its previous states, and the adversary can exploit this by enforcing a previous correct
state.

There are no easy ways to work around this problem. Some proposals (e.g., Ariadne,
described later in this chapter) use a hash value in the packet, which is re-hashed by
each intermediate node, thereby introducing an untraceable element in the packet,
which prevents the adversary to revert a previous correct state. However, this per
hop hash approach does not provide a perfect solution, as we will see later. Another
interesting countermeasure against removing signatures from the end of a signature
list is to replace the signature list with aggregate signatures that makes it possible to
compact multiple signatures from different parties into a single signature in such a
way that anybody can still verify who signed the message.

A second problem of authenticating traceable additions by re-signing the entire
control packet is that it increases the resource consumption of the nodes considerably.
Let us consider, for instance, a route request of an on-demand source routing protocol.
As it is flooded in the network, not only each node has to sign it, but potentially (if
intermediate nodes cache the routes learned from route requests, or simply to prevent
the propagation of a modified request), each node has to verify every signature in the
request, and the number of signatures grows by each hop taken by the request.

In order to overcome this problem some protocols (e.g., SDSR [214] and endairA
[12]) avoid signing the route request. In some other protocols (e.g., in SRP [294]
and in Ariadne [180]), the intermediate nodes are actually not required to verify the
authenticity of the information added by other intermediate nodes to control packets.
This has some disadvantages. For instance, in this case, an adversary can increase
the resource consumption of the intermediate nodes by modifying a control packet,
as this modification will not be detected by the intermediate nodes. In addition,
in this case, intermediate nodes should not be allowed to update their routing state
as a result of processing control packets, because updating the routing state based
on unauthenticated information can lead to an incorrect state. However, by not
allowing state update in intermediate nodes, the effectiveness of the routing protocol
is somewhat decreased. The advantage, however, is that intermediate nodes do not
perform any verifications, apart from performing control packet origin authentication

7.8 Securing ad hoc network routing protocols 195

and, instead of digital signatures, they can authenticate the information that they
add to control packets by using more efficient MACs that are verifiable by the target
of the control packets (assuming that the target shares a key with every intermediate
node that processed the packet). Note that the target typically acts upon the control
packet (e.g., updates its route cache), therefore it needs to authenticate all information
in it. This approach is followed by Ariadne with MACs.

We must mention here that using symmetric key MACs requires the establishment
of shared keys between the nodes. We can use traditional session key establishment
protocols for this purpose (e.g., protocols based on a key distribution center), but
there is an interesting problem that arises here: key distribution messages must also
be routed somehow, but at the same time they are needed for setting up the routing
infrastructure securely. Thus, there seems to be a vicious circle of requirements here.
One way to solve this problem is to use another approach to route key distribution
messages, such as broadcasting them blindly in the network. Another approach is to
distribute some of the keys out-of-band (e.g., manually, or using some of the tech-
niques described in Chapter 5), and then use these available keys for authenticating
routing messages and setting up the remaining keys at the same time. This can be
achieved by piggybacking key establishment information on routing control packets
that are secured with the already established keys; an example of this approach is
BISS (Building secure routing out of an Incomplete Set of Security associations) [84].

The third problem with authenticating traceable additions by re-signing the control
packet is that, in fact, authentication will not solve every problem. In particular,
adversarial nodes can add incorrect information to control packets, and then sign
them. Recall that the adversary is an insider, who can possess some signing keys. As
a result, the packet will be verified as authentic, but the information inside can still
be incorrect, leading to the creation of incorrect routing state in some nodes. This is
a tough problem. An approach to mitigate it would be to verify the consistency of
the information received in a control packet by cross-checking it with other control
packets. Unfortunately, this solution might not be applicable in general.

Let us now investigate how to deal with untraceable additions to control packets.
Typically, untraceable additions are used by distance vector protocols (both proactive
and reactive). In reactive distance vector protocols, intermediate nodes increase the
hop count in control packets (i.e., in route requests and route replies). In proactive
distance vector protocols, control packets are not forwarded or re-broadcast explicitly,
but still nodes broadcast their routing tables, which can cause some changes in the
routing tables of their neighbors who will then broadcast their routing tables, and
so on. Thus, the principle is the same and, in both cases, the same problem arises:
the nodes update their routing state based on untraceable information (received in
control packets or accumulated in the routing tables of their neighbors).

In essence, this is a problem related to trust. Let us explain why through an

196 Secure routing in multi-hop wireless networks

example: Assume that a node A receives a control packet from one of its neighbors
B indicating that the hop count to a given destination is x. In order to accept the
packet, A must believe that B behaved correctly and it received the control packet
from one of its neighbors C with a hop count z — 1. However, this is not enough; A
must also believe that C' behaved correctly and it received the control packet from
some other node D with a hop count x — 2, and so on. Thus, A must trust the whole
chain of nodes that processed the control packet, however, due to the untraceability
condition, it does not even know who those nodes are. In other words, the whole
thing works only if A can trust every node in the network, but it cannot, because it
knows that the adversary is an insider who controls some of the nodes. Note that
exactly the same problem arises in proactive distance vector protocols.

There is no bullet-proof solution to this problem. Some protocols (e.g., SAODV
[386] and SEAD [175]) use per hop hashing. The idea is the following: Control packets
(in the case of SAODV) or routing table entries (in the case of SEAD) contain not
only a hop count, but also a hash value that is initialized by the originator of the given
control packet or the destination corresponding to the given routing table entry. In
the case of SAODV, each intermediate node that forwards or re-broadcasts a control
packet, increments the hop count and computes the one-way hash of the hash value
that it received in the control packet. Likewise in SEAD, when a node updates an
entry in its routing table, it increments the hop count and hashes the hash value that
it received in the corresponding entry of the routing table of its neighbor. As a result,
adversarial nodes cannot decrease the hop count in control packets (in SAODV) and
in routing table entries (in SEAD) that they process, because they cannot invert the
hash function. However, they can always increase the hop count, and this can also
lead to creating incorrect routing state in other nodes.

Another approach is to eliminate hop counts as a routing metric. One interesting
solution is to replace the hop count with the packet propagation delay. For instance,
the originator of a control packet can put a timestamp in the packet when sending it.
Each intermediate node that receives the packet can compute the time that the packet
traveled until it arrived at the given node (assuming synchronized clocks). Then, a
routing table entry can be updated if a faster route is discovered, and the routing
metric in the entry would be set to the computed delay. An example of a protocol
that follows this approach is ARAN (described later in this chapter). Actually, using
the delay as a routing metric is a good idea, because the adversary cannot transfer
data faster than the speed of light, therefore attacks (at least those attempting to
shorten routes) are inherently limited. The disadvantage is that this approach needs
synchronized clocks. In addition, the packet propagation delay between two nodes
can vary in time, and it might not be the same in both directions.

To summarize, there is no perfect solution to protect mutable information in rout-
ing control packets, and hence different protocols choose different tradeoffs. Link

7.8 Securing ad hoc network routing protocols 197

state protocols are very advantageous from this point of view, because they have no
mutable information in their control packets. Similarly, position-based protocols are
also advantageous, because they have no control packets at all.

Detecting tunnels

Recall that tunneling means that two adversarial nodes pass routing control packets
back and forth between each other by encapsulating them into normal data packets.
The result of this is that the two adversarial nodes appear to be neighbors in the
routing topology, while in reality, they may be far away from each other. The effect
of the tunneling attack on routing is therefore similar to the effect of wormholes. In
particular, routes through the tunnel appear to be shorter and may be preferred by
some nodes, which increases the adversarial control over the communications of those
nodes. Note, however, that tunneling is a network layer attack, because it requires at
least two adversarial nodes that are addressable and that can communicate with each
other using the network itself. In contrast to this, wormholes do not require presence
at the network layer, and they use out-of-band channels to connect the transceivers
of the adversary.

A first interesting observation with respect to tunnels is that they rely on the very
same mechanism that they try to subvert (i.e., routing). The problem is that due to
the tunnel, some nodes store incorrect routing state. This may also be true for the
nodes that participate in the forwarding of the tunneled traffic. At the end, the incor-
rect routing state in these nodes may result in the disruption of the communication
through the tunnel. In other words, the tunnel may collapse upon itself.

Let us assume, for instance, that node F' is the first node that should forward the
tunneled traffic from adversarial node A to another adversarial node A’. Since A and
A’ report themselves neighbors, F' may conclude that the shortest route from itself to
A’ is the route through A. Thus, when A sends tunneled messages towards A’ via F,
F will send those messages back to A. However, the adversary may solve this problem
by introducing a third adversarial node midway between A and A’, and sending all
tunneled traffic between A and A’ through this third node.

Let us now consider how tunneling could be detected. First of all, since worm-
holes and tunnels are similar, some wormhole detection approaches may be success-
fully adopted to detect tunnels. In particular, some centralized wormhole detection
approaches that we described in Subsection 6.2.1 can be easily adopted to detect
tunneling attacks against link state routing protocols. In this case, the tunneling ad-
versarial nodes report each other as neighbors in their link state update messages. A
central entity that can collect all link state update messages is able to re-construct the
believed topology of the network, and it can detect inconsistencies in this topology.
For instance, if the adversarial nodes are far away from each other, then they will not

198 Secure routing in multi-hop wireless networks

have common neighbors in the re-constructed network topology. This is suspicious,
as in a typical network topology, neighboring nodes likely have common neighbors.

Some decentralized wormhole detection approaches can also be adopted to detect
tunnels. Let us consider, for instance, on-demand source routing protocols where
the routing control packets carry the list of nodes that constitute a route or a route
segment. If each node is aware of its own geographic position, then, besides its
identifier, each intermediate node can also place its position in the control packets.
Thus, by inspecting the position information in a control packet, non-corrupted nodes
can detect shortcuts in the route or route segment carried by the packet. Clearly,
this approach needs other countermeasures as well to prevent the adversary from
modifying the position information in the routing control packets.

Another approach is based on the observation that a virtual link in the topology
created by a tunnel is actually a multi-hop route, and therefore, the delay on this
virtual link must be much higher than the delay on a real link. Now, there are
two strategies. First, each node could measure the round trip time to its three-hop
neighbors® explicitly. From the measured timings, the node can deduce whether its
three hop neighbors are reachable through a tunnel or not, and if so, which link
may be the tunneled one. Alternatively, the routing protocol could use the end-
to-end delay between a source and a destination as a routing metric instead of the
hop count. In this way, the tunnel may not be detected explicitly, but its effect
is greatly reduced, because sending routing control packets through the multi-hop
tunnel cannot be significantly faster than sending them through similar alternative
routes. An example of a distance vector routing protocol that uses this principle is
ARAN [333], which we discuss later in Subsection 7.3.2.

Finally, when a control packet is tunneled from one adversarial node to another, it
is placed in the payload part of a data packet. Hence, the control packet “disappears”
at one end of the tunnel and “re-appears” at the other end. Such a disappearing and
re-appearing packet may be detected by the neighbors of the two end of the tunnel. In
particular, if the nodes monitor the incoming and outgoing traffic of their neighbors,
then an overheard control packet which is not re-transmitted by a neighbor may be
an indication for a tunneling attack. Similarly, if a node overhears the transmission
of a control packet, but no one in the neighborhood heard this control packet before,
then the packet may have arrived through a tunnel. Unfortunately, this kind of
monitoring is not very reliable as we will see soon in the next subsection where we
discuss countermeasures against gray holes. Another disadvantage is that continuous
monitoring requires the nodes to run in promiscuous mode and listen to the channel
all the time, which consumes a lot of energy.

3 Note that measuring round trip times to direct neighbors or to two-hop neighbors would not help
to detect the virtual link.

7.8 Securing ad hoc network routing protocols 199

Combating gray holes

Gray holes are attacks against the packet forwarding function of routing. Conse-
quently, countermeasures must aim at the protection of data packets rather than
control packets. There are two main approaches to combat against gray holes. The
first one consists in using multiple, preferably disjoint routes between the source and
the destination to send data packets. The idea is that even if forwarding is disrupted
by the adversary on some of these routes, the packet can still be delivered through
the remaining routes. This is a robust approach, but it induces increased resource
consumption in intermediate nodes, as they have to forward multiple copies of the
same data packet. This overhead can be reduced by using special coding schemes by
which the packet can be split into smaller pieces in such a way that a threshold num-
ber of pieces (but not all) is sufficient to reconstruct the entire packet. In this case,
not the packet itself, but its smaller pieces must be sent through multiple routes to
the destination. The adversary can drop some of the pieces, but if enough of them are
received by the destination, then the packet is successfully delivered. This approach
still has some overhead, as the pieces must be redundant to be able to tolerate the
loss of some of them. However, what we lose on redundancy, we gain in terms of
robustness and, at the end, the nodes waste more resources (by forwarding packets
that are never delivered) in the single path approach than in case of using multiple
routes. As an example of multi-path forwarding, we present the SMT protocol [297]
later in this section.

One can also use a “detect and react” approach to mitigate the effect of gray hole
attacks. In this case, the idea is to first detect if a node does not forward data
packets, and then, to select routes that avoid the misbehaving node. Gray holes can
be detected by requiring each node to monitor the activities of its neighbors. By
doing so, a correctly behaving node can detect that one of its neighbors has received
a packet that it should forward, but it does not. This kind of monitoring can be
implemented by putting the network interface of the nodes in the promiscuous mode
(most interface cards allow this) and by listening to everything in the wireless channel.
If a node does not overhear the retransmission of a packet by its neighbor, then that
neighbor can be suspected to misbehave. This sounds simple, but the devil is always
in the details. First of all, this approach requires the nodes to run in the promiscuous
mode, which consumes much more energy than allowing the nodes to go into the
sleep mode when they have nothing else to do. Secondly, it turns out that this kind
of monitoring is not very reliable. Below, we list some cases where either a correctly
behaving node is falsely identified as misbehaving or a misbehavior is not detected.

For illustration purposes, let us assume that a packet should be forwarded by nodes
A, B, and C - in this order. For the first example, let us further assume that A
forwarded the packet. When B forwards the packet, A can receive something at the

200 Secure routing in multi-hop wireless networks

same time from another node X that B does not hear. Thus, the transmissions of X
and B will collide at A, and A will not hear that B forwarded the packet. Hence, A
will falsely believe that B is misbehaving. For this reason, the nodes should not decide
definitely about their neighbors’ behavior after just one experience, but they should
monitor their neighbors for an extended period of time. Typically, a node would be
identified as misbehaving node (i.e., a gray hole) only if it is perceived as dropping
packets with a rate higher than a predefined threshold. This, however, allows the
adversary to drop packets with a rate below that threshold.

For the second example, let us assume again that A forwarded the packet. When
B also forwards it, the transmission can collide with some other transmission at C.
Hence, A will believe that B forwarded the packet, but in fact, C' did not receive it.
Then, B can skip the re-transmission, because A will not accuse it for misbehavior.

For the third example, suppose that the nodes can control their transmission power,
and that A is closer to B, than B to C'. Then, B can forward the packet with a power
that allows A to overhear B’s transmission, but does not allow C' to receive the packet.
Again, A will falsely believe that B behaves correctly.

Finally, let us assume that B and C are colluding, and B does not report when C
drops a packet. Again, neither B nor C will be identified as a misbehaving node.

Instead of local neighbor monitoring, misbehaving nodes can also be detected in an
end-to-end manner by requiring the destination and the intermediate nodes on the
route of a packet to send acknowledgements to the source. This approach requires
that the nodes use source routing, and therefore, the source knows the entire route
to the destination. The idea is the following: The destination is required to return
an acknowledgement for every packet that it receives successfully. Based on these
acknowledgements, the source keeps track of the loss rate in a time window of a given
size. If the loss rate exceeds a threshold, the source starts a binary search on the route
to identify the misbehaving node, or more precisely, the link that causes the delivery
failure of the packets. For this, the source adaptively specifies a list of intermediate
nodes in the subsequent packets that should also return an acknowledgment for the
packets that they successfully processed. These nodes are called probe nodes. First,
one probe node is selected in the middle of the path between the source and the desti-
nation. If the acknowledgements arrive from this node but not from the destination,
then the bad link must be between the probe node and the destination. Otherwise,
if the acknowledgements do not arrive from the probe node either, then the bad link
must be between the source and the probe node. Once the sub-path that contains the
bad link is identified, a new probe node is specified in the middle of that sub-path.
This procedure is continued until the sub-path that contains the bad link is narrowed
down to a single link, which must be the bad link. The misbehaving node can be
either end of the identified bad link.

We must note that the approach described above requires the lifetime of the routes

7.8 Securing ad hoc network routing protocols 201

to be sufficiently long so that there is enough time to identify the bad link. In
addition, the source must be able to authenticate the acknowledgements sent by the
probe nodes.

Now, let us assume that the gray hole is detected with a reasonable level of accuracy.
The next step is to invoke some reaction mechanism. This typically involves the
distribution of information about misbehaving nodes to other nodes in the network,
so that the nodes can avoid the gray holes when setting up routes. Warnings about
a gray hole can be distributed in the entire network. In this case, it is assumed that
the nodes maintain reputation values for all other nodes in the network, and when
they receive notifications about gray holes they update these values by lowering the
reputation of the misbehaving nodes. The reputation values are then used in the
route establishment process (i.e., routes traversing nodes with good reputation are
preferred).

Building up reputation can be a lengthy process, but it is possible to expedite it by
letting the nodes exchange their reputation values. In this case, if A trusts B, and B
says that C is not very trustworthy in terms of packet forwarding, then A can try to
avoid routes containing C, even if it has no previous experience with C' at all. This
principle of “recommendations” is very intuitive and well-known from real life, but it
is quite difficult to implement it in ad hoc networks correctly. The main problem is
that the adversarial nodes can try to frame some other nodes by disseminating bad
reputation reports about them. Hence some kind of a trust model must be used to
govern the maintenance of reputation values, which carefully combines each node’s
own experience with reports from other nodes.

Later in this section, we describe two examples of the “detect and react” approach:
Watchdog and Pathrater [263], and the ODSBR protocol [34]. The former uses neigh-
bor monitoring, whereas the latter is based on the adaptive acknowledgement scheme
that we described above.

7.3.2 Specific examples of secure routing protocols
SRP

SRP (Secure Routing Protocol) was proposed in [294] as a secure on-demand source
routing protocol for mobile ad hoc networks based on symmetric key cryptography.
The design of SRP was driven by the observation that due to the mobility of the
nodes, and hence the volatility of the routes, it would be impractical to require that
the source or the destination shares keys with all intermediate nodes on a route.
Therefore, in SRP only the source and the destination share a key, which simpli-
fies the key management considerably. This results in a strict end-to-end exchange
of routing control information between the source and the destination, and end-to-

202 Secure routing in multi-hop wireless networks

end authentication of routing control packets. SRP introduces another useful design
principle as well: the avoidance of optimizations. This means that in SRP, the in-
termediate nodes do not send replies to route discovery messages (only on behalf of
the destination) and they do not cache information from overheard routing control
packets.

S — % (rreq, S, D, id, sn, macs, [])
Fi — % (rreq, S, D, id, sn, macs, [Fi])
Fo — % . (rreq, S, D, id, sn, macs, [F1, F2])
D—F, (rrep, S, D, id, sn, [Fi, F2], macp)
F» — F; (rrep, S, D, id, sn, [F1, F2], macp)
F1 —S (rrep, S, D, id, sn, [Fi, Fa2], macp)

Fig. 7.5. Operation example of SRP and format of the SRP messages. The identifier of the
source is S, the identifier of the destination is D, and the identifiers of the intermediate nodes
are F; and F,. id is a randomly generated query identifier, sn is a query sequence number
maintained by S and D, macs is the MAC generated by S that covers the fields rreq, S, D,
id, and sn, and macp is the MAC generated by D that covers the fields rrep, S, D, id, sn,
and (F]7 Fz)

The operation of SRP and the format of SRP messages are illustrated in Figure 7.5.
The source generates a route request message and broadcasts it to its neighbors.
The integrity of this route request is protected by a MAC that is computed with
a key shared between the source and the destination. Each intermediate node that
receives the route request for the first time appends its identifier to the request and
re-broadcasts it. The MAC in the request is not checked by the intermediate nodes
(as they do not know the key with which it was computed), and the nodes do not
append their own MACs either (i.e., they do not authenticate the route request).
When the route request reaches the destination, it contains the list of identifiers of
the intermediate nodes that passed the request on. This list is considered as a route
found between the source and the destination.

The destination verifies the MAC of the source in the request. If the verification
is successful, then it generates a route reply and sends it back to the source via
the reverse* of the route obtained from the route request. The route reply contains
the route obtained from the route request, and its integrity is protected by another
MAC generated by the destination with a key shared between the destination and
the source. Each intermediate node passes the route reply to the next node in the
route (towards the source) without modifying it. When the source receives the reply
it verifies the MAC of the destination, and if this verification is successful, then it
accepts the route returned in the reply.

The destination can receive several route requests that belong to the same route

4 SRP assumes that links are bidirectional.

7.8 Securing ad hoc network routing protocols 203

discovery process®, and it sends a reply to each of these requests. It is assumed that
the source waits for some time (defined by a timeout parameter), and then it outputs
the set of routes collected from all the replies it received.

SRP is a very efficient protocol, as route request and route reply messages contain
only a single MAC value; moreover these MAC values are not processed by the inter-
mediate nodes. At the same time, if it is combined with a secure neighbor discovery
protocol, then SRP provides protection against attacks aiming at route disruption,
route diversion, and the creation of incorrect routing state. To be more precise, SRP
resists against attacks mounted by an adversary from a single adversarial node, or
from multiple non-colluding nodes, but not against attacks mounted by colluding
adversarial nodes (see questions at the end of this chapter).

Ariadne

Ariadne is proposed in [180] as a secure on-demand source routing protocol for ad hoc
networks. Ariadne comes in three different flavors corresponding to three different
techniques used for data authentication. More specifically, authentication of routing
messages in Ariadne can be based on TESLA [309], on digital signatures, or on stan-
dard MACs. Ariadne with digital signatures is conceptually the simplest among these
three versions, therefore we begin the presentation with that variant.

S i hs = MACsp(rreq, S, D, id)

S — % ¢ (rreq, S, D, id, hs, [], [])

F1 . he, = H(F1, hs)

Fios : (weq, S, D, id, hey, [Fi), [sigr,)

F) . he, = H(Fa, he,)

Fo — x . (rreq, S, D, id, he,, [F1, Fal, [sige,, sigg,])
D—F; (rrep’ D, S, [F17 F2]7 [SigFlv Sing]’ SigD)
Fo —F : (rrep7 D, S, [F17 F2]7 [SigFlv Sing]v SigD)
Fi—5S (rrep, D, S, [Fla F2]7 [SigFla SigFg]a sigp)

Fig. 7.6. Operation example of Ariadne with signatures and format of the Ariadne messages.
The source is S, the destination is D, and the intermediate nodes are F; and F,. id is a
randomly generated query identifier, H is a publicly known one-way hash function, and
MACSsp is a MAC function used with the key shared between S and D. sigg, sigg,, and
sigp are digital signatures of Fi, F2, and D, respectively. Each signature is computed over
the message fields that precede the signature.

The operation of Ariadne with digital signatures is illustrated in Figure 7.6. As we
can see, there are two main differences between Ariadne and SRP. First, in Ariadne not
only the source and the destination authenticate the messages, but the intermediate
nodes also insert their own digital signatures in route requests. Second, Ariadne uses

5 As the neighbors of the destination re-broadcast the request at most once, the destination can
receive at most as many requests as the number of its neighbors.

204 Secure routing in multi-hop wireless networks

per-hop hashing to prevent removal of identifiers from the accumulated route in the
route request.

The source generates a route request message and broadcasts it to its neighbors.
The route request message contains the identifiers of the source and the destination,
a randomly generated request identifier, and a MAC computed over these elements
with a key shared by the source and the destination. This MAC is hashed iteratively
by each intermediate node together with its own identifier using a publicly known
one-way hash function. The hash values computed in this way are called per-hop
hash values. Each intermediate node that receives the request for the first time
re-computes the per-hop hash value, appends its identifier to the list of identifiers
accumulated in the request, and generates a digital signature on the updated request.
Finally, the signature is appended to a signature list in the request, and the request
is re-broadcast.

When the destination receives the request, it verifies the per-hop hash by re-
computing the MAC of the source and the per-hop hash value of each intermediate
node. Then, it verifies all the digital signatures in the request. If all these verifications
are successful, then the destination generates a route reply and sends it back to the
source via the reverse of the route obtained from the route request®. The route reply
contains the identifiers of the destination and the source, the route and the list of
digital signatures obtained from the request, and the digital signature of the desti-
nation on all these elements. Each intermediate node passes the reply to the next
node on the route (towards the source) without any modifications. When the source
receives the reply, it verifies the digital signature of the destination and the digital
signatures of the intermediate nodes (for this it needs to reconstruct the requests that
the intermediate nodes signed). If the verifications are successful, then it accepts the
route returned in the reply.

Ariadne with TESLA is similar to Ariadne with digital signatures, but instead of
signatures, the intermediate nodes compute MACs on the route request with their
current TESLA key (see Appendix A for details on the operation of TESLA). The
advantage of this is that MACs can be computed more efficiently than digital signa-
tures. However, the disadvantage is that the application of TESLA introduces some
delay in the route discovery process, which may not be desirable in dynamic networks.
When the destination receives the route request, it verifies that the TESLA keys that
were used in the request have not been disclosed yet (i.e., their indicated discloser time
is still in the future). The destination also verifies the per-hop hash value received in
the request by iteratively computing all the per-hop hash values of the intermediate
nodes. If these verifications are successful, then the destination returns a route reply,
which includes the MACs of the intermediate nodes obtained from the request.

6 Here it is again assumed that links are bidirectional.

7.8 Securing ad hoc network routing protocols 205

Each intermediate node that receives the route reply waits until it can disclose the
TESLA key that it used to compute the MAC for the corresponding route request.
Then, it appends this TESLA key to the reply before passing it on to the next
intermediate node. In this way, when the route reply arrives to the source, it contains
all the TESLA keys needed to verify the MACs of the intermediate nodes (obtained
from the request and inserted also in the reply). The source can thus authenticate all
intermediate nodes.

S i hs = MACsp(rreq, S, D, id)

S — : (rreq, S, D, id, hs, []7 [])

F1 . he, = H(F1, hs)

Fi — x : (rreq, S, D, id, hg, [Fi], [mace])

F» . he, = H(F2, hey)

Fo—x : (rreq, S, D, id, hr,, [F1, F2], [macF,, macr,])
D—F, : (rrep, D, S, [F1, F2], macp)

Fo—F1 : (rrep, D, S, [F1, F2], macp)

F1 —S (rrep, D, S, [F1, F2], macp)

Fig. 7.7. Operation example of Ariadne with standard MACs. It is assumed that each
intermediate node shares a key with the destination D. macr, and macr, are MACs computed
by F1 and F,, respectively, with the keys that they share with D. Each MAC is computed
over the message fields that precede the MAC.

Finally, when Ariadne is used with standard MACs, then it is assumed that each
intermediate node shares a key with the destination. Figure 7.7 illustrates the op-
eration and the messages of Ariadne with standard MACs. The source generates a
route request and broadcasts it in the network. Each intermediate node computes a
MAC on the request with the key that it shares with the destination. Hence, all these
MACs can be verified by the destination when it receives the request. In addition,
the per-hop hash mechanism is used too, in order to prevent the removal of MACs
from the end of the MAC list in the request. If the verification of the MACs and the
per-hop hash value by the destination are successful, then the destination generates
a reply, which contains the discovered route, and it is protected by a MAC computed
by the destination with a key that it shares with the source. Each intermediate node
passes the reply to the next node on the route without any modification. When the
reply arrives at the source, it verifies the MAC of the destination. Note that in this
case, the source cannot authenticate the intermediate nodes, but it must trust the
destination to perform this authentication correctly. In addition, the intermediate
nodes can authenticate neither the route request nor the route reply.

In [180], an optimized version of Ariadne is proposed, which does not use a per-hop
hash value and a MAC list in the route request, but it uses instead a single MAC
that is updated by the intermediate nodes iteratively. In this optimized version of
Ariadne, the route request re-broadcast by the i-th intermediate node F; has the

206 Secure routing in multi-hop wireless networks
following format:
(rreq, S, D, id, [F1,...,Fi—1,F;], macg,)

where macg, is a MAC computed by F; with the key that it shares with D on the
route request that it received from F;_q:

(rreq, S, D, id, [Fy,...,Fi_1], macr,_,)

This optimized version is more efficient than the basic protocol in terms of compu-
tational and communication overhead. First, there is no need for the per-hop hash
mechanism anymore, because the MACs computed by the intermediate nodes can
play the same role as the per-hop hash values in the original protocol. Second, route
requests are shorter, because they do not contain a per-hop hash value and they con-
tain only a single MAC instead of a MAC list. Finally, this optimized version seems to
be more secure than the original version that uses a MAC list, because the adversary
cannot access the individual MACs of the intermediate nodes in the same way as it
can in case of a MAC list, and therefore, MACs cannot be removed from the route
request at the adversary’s will.

In the basic Ariadne protocol, a route request is not authenticated until it reaches
the destination. Thus, an adversary can initiate malicious route request flooding in
the network aiming at increasing the resource consumption of the nodes. In order to
protect against this, Ariadne is extended with a rate limiting mechanism based on
one-way hash chains (for a detailed description of hash chains, see also Appendix A).
The idea is the following: Each node generates a hash chain and releases its element
in reverse order, one element with each route request message that it originates. Since
route requests are flooded in the entire network, all nodes learn the most recent hash
chain element of all other nodes. When a node receives a route request message,
it verifies if the hash chain element in the message is fresher than the most recent
hash chain element that belongs to the source of the route request. This can be done
by hashing the value received in the route request and comparing the result to the
stored hash chain element. The route request is re-broadcast only if this verification
is successful. Due to the one-way property of the hash chains, the adversary cannot
predict the next element of the chain to be released, and therefore, cannot initiate
the flooding of malicious route requests.

endairA

endairA is another secure on-demand source routing protocol proposed in [12]. The
design of endairA has been inspired by Ariadne, hence, the two protocols are quite
similar. The difference is that instead of signing the route request, in endairA, in-
termediate nodes sign the route reply. This explains the name endairA, which is the
reverse of Ariadne. A remarkable feature of endairA is that it can be proven to be

7.8 Securing ad hoc network routing protocols 207

secure in a formal model. We will elaborate on this in the next section. Here, we
describe the operation of the protocol.

The operation and the messages of endairA are illustrated in Figure 7.8. In endairA,
the source generates a route request that contains the identifiers of the source and the
destination, and a randomly generated request identifier. Each intermediate node that
receives the request for the first time appends its identifier to the route accumulated
so far in the request and re-broadcasts the request. When the request arrives at
the destination, it generates a route reply. The route reply contains the identifiers
of the source and the destination, the accumulated route obtained from the request,
and a digital signature of the destination on these elements. The reply is sent back
to the source on the reverse of the route found in the request. Each intermediate
node F; that receives the reply verifies that its identifier is in the node list carried by
the reply, and that the preceding identifier F;_; (or that of the source if there is no
preceding identifier in the node list) and the following identifier F;; (or that of the
destination if there is no following identifier in the node list) belong to neighboring
nodes. Each intermediate node also verifies that the digital signatures in the reply
are valid and that they correspond to the following identifiers in the node list and to
the destination. If these verifications fail, then the reply is dropped. Otherwise, it is
signed by the intermediate node and passed to the next node on the route (towards
the source). When the source receives the route reply, it verifies if the first identifier
in the route carried by the reply belongs to a neighbor. If so, then it verifies all the
signatures in the reply. If all these verifications are successful, then the source accepts

the route.
S = x (rreq, S, D, id, [])
Fi — x (rreq, S, D, id, [F1])
Fr — % : (rreq, S, D, id, [Fi, Fz])
D—F; (rrep7 57 Da Zd: Fla F2]a [sng])
Fo— Fy (rrep, Sa Da ida F17 F2]7 [SigDa SigF2])
Fi—S (rrep7 57 D, id, [FlaFZ]a [SigDv Singv SigFl])

Fig. 7.8. An example of the operation and the messages of endairA. The source is S, the
destination is D, and the intermediate nodes are F; and F». id is a randomly generated
request identifier. sigp, sige,, and sigg, denotes the digital signature of D, Fi1, and F2,

respectively. Each signature is computed over the message fields (including the signatures)
that precede the signature.

endairA has a significant advantage over Ariadne (and similar protocols): It is more
efficient, because it requires less cryptographic computation overall. This is because
in endairA only the processing of the route reply message involves cryptographic op-
erations meaning that only those nodes need to perform cryptographic computations
that are in the node list carried in the route reply. In contrast with this, in Ariadne,

208 Secure routing in multi-hop wireless networks

the route request messages need to be digitally signed by all intermediate nodes; how-
ever, due to the way a route request is propagated, this means that each node in the
network must sign each and every route request.

One problem with the basic endairA protocol is that it is vulnerable to malicious
route request flooding attacks. This is because the route request messages are not au-
thenticated, and hence an adversary can initiate route discovery processes by spoofing
route request messages. These spoofed route requests would be flooded in the net-
work, because only the impersonated source can detect that they are spoofed. In
order to prevent this, the route request can be digitally signed by the source, and
rate limiting techniques similar to the one used by Ariadne can be applied to endairA
too. Naturally, such extensions put more burden on the nodes, as now they also need
to verify the signature of the source in each route request message and to maintain
information that is required by the rate limiting mechanism.

Finally, we note that endairA can be optimized with respect to communication
overhead by replacing the signature list in the route reply with a single aggregate sig-
nature (e.g., using the scheme described in [57]). This aggregate signature is computed
by the intermediate nodes iteratively similarly to the iterated MAC computation in
the optimized version of Ariadne.

SAODV

SAODV [386] is a secure variant of AODV. Its operation is similar to that of AODV,
but it uses cryptographic extensions to provide authenticity and integrity of routing
messages, and to prevent the manipulation of the hop count information.

Conceptually, SAODV routing messages (i.e., route requests and route replies) have
a non-mutable and a mutable part. The non-mutable part includes, among other
fields, the node sequence numbers, the addresses of the source and the destination,
and a request identifier, whereas the mutable part contains the hop count information.
Different mechanisms are used to protect the different parts.

The non-mutable part is protected by the digital signature of the originator of the
routing message (i.e., the source, in the case of a route request, and the destination, in
the case of a route reply). This ensures that the non-mutable fields cannot be changed
by an adversary without the change being detected by non-compromised nodes.

SAODV uses hash chains in order to prevent the manipulation of the hop count
information. There are four specific fields in the routing messages that are used by
the hop count protection mechanism: HopCount, MaxHopCount, Hash, and TopHash.
When a node originates a routing message (i.e., a route request or a route reply), it
first sets the HopCount field to 0, and the MaxHopCount field to the TTL (Time-
to-Live) value. Then, it initializes the Hash field of the routing message with a
random value. After that, it calculates the TopHash field by hashing the seed it-
eratively MaxHopCount times. The MaxHopCount and the TopHash fields belong to

7.8 Securing ad hoc network routing protocols 209

the non-mutable part of the message, whereas the HopCount and the Hash fields are
mutable. Every node receiving a routing message hashes the value of the Hash field
(MaxHopCount — HopCount) times, and verifies whether the result matches the value
of the TopHash field. Then, before re-broadcasting a route request or forwarding a
route reply, the node increases the value of the HopCount field by one, and updates
the Hash field by hashing its value once.

The rationale behind using the above hash chaining mechanism is that given the
values of the Hash, the TopHash, and the MaxHopCount fields, anyone can verify the
value of the HopCount field. Preceding hash values, however, cannot be computed
starting from the value in the Hash field due to the one-way property of the hash
function. This is intended to ensure that an adversary cannot decrease the hop count,
and thus cannot make a route appear shorter than it really is. This is not true in
general, because an adversarial node that happens to be in the route between the
source and the destination can pass on the routing message without increasing the
value of the HopCount field and updating the value of the Hash field. In this way, she
can make the route seemingly shorter. In addition, as we have already pointed out,
the adversary can always increase the hop count.

ARAN

ARAN (Authenticated Routing for Ad hoc Networks) is another secure, on-demand
distance vector routing protocol for ad hoc networks proposed in [333]. Just like
SAODV, ARAN uses public key cryptography to ensure the integrity of routing mes-
sages. Its operation and message format are illustrated in Figure 7.9.

S — % (rreq, D, certs, n, t, sigs)
F1 — % (rreq, D, certs, n, t, sigs, sigg,, certr)
Fo — % : (rreq, D, certs, n, t, sigs, sigg,, certr,)
D—F, : (rrep, S, certp, n, t, sigp)
F, — F; (rrep, S, certp, n, t, sigp, sigg,, certr,)
F1 —S (rrep, S, certp, n, t, sigp, sigg,, certr,)

Fig. 7.9. Operation example of ARAN. S and D are the identifiers of the source and the
destination, respectively, and F; and F, are the identifiers of the intermediate nodes. n is a
nonce generated by S, and ¢ is the current time-stamp when generating the route request.
certx and sigy are the public key certificate and the digital signature of X, respectively.
All signatures are generated on the message fields that precede the signature.

The source node begins the route discovery process by broadcasting a route request
message. This route request contains the identifier of the destination, the public key
certificate of the source, a nonce generated by the source, the current time-stamp, and
the digital signature of the source on all these elements. The nonce, the time-stamp,
and the identifier of the source together uniquely identify the message, and they are
used to detect and discard duplicates of the same request (and reply).

210 Secure routing in multi-hop wireless networks

Later, when the request is propagated in the network, intermediate nodes also
sign it. Hence, in general, the request contains two signatures: that of the source
and that of the last intermediate node that processed it. Intermediate nodes process
the request as follows: When an intermediate node F;;; receives the request from
another intermediate node F;, it verifies the signatures of the source S and F;, and
the freshness of the nonce. If these verifications are successful, then F;;; sets an entry
in its routing table with S as destination, and F; as next hop. Then, F;;1 removes
the certificate and the signature of F;, signs the request, appends its own certificate,
and re-broadcasts the updated request.

When the destination receives the first route request that belongs to this route
discovery, it performs the verifications and updates its routing table in a similar
manner by the intermediate nodes. Then, it sends a route reply message to the
source. The route reply is propagated back on the reverse of the discovered route as
a unicast message. The route reply is signed by the destination; in addition, like in
the case of the route request, it is also signed by the intermediate node that has just
passed it on. The processing of the route reply by the intermediate nodes is analogous
to the processing of the route request.

As it can be seen from the description, ARAN does not use hop counts as a routing
metric. Instead, the nodes update their routing tables using the information obtained
from the routing messages that arrive first; any later message that belongs to the same
route discovery is discarded. This means that ARAN does not necessarily discover
the shortest paths in the network, but rather it discovers the quickest ones. In effect,
ARAN uses the message propagation delay (i.e., physical time) as a routing metric.
This results in a robust protocol: indeed, ARAN is proven to be secure in [11].
However, a major drawback of ARAN is that it needs extensive signature generation
and verification during the route request flooding phase.

SEAD

SEAD (Secure Efficient Ad hoc Distance vector routing) is a proactive distance vector
based routing protocol for mobile ad hoc networks proposed in [175]. It can be viewed
as a secure variant of the DSDV protocol where the destination sequence numbers
and the hop count values are protected using one-way hash chains. More precisely,
SEAD tries to ensure that sequence numbers cannot be increased, and hop count
values cannot be decreased by an adversary, but no attempt is made to prevent the
modification of these values in the other direction (i.e., decreasing sequence numbers
and increasing hop count values).

When using SEAD, each node generates a one-way hash chain of length n+ 1 using
a publicly known hash function H, where n is a multiple of the maximum diameter
m of the network. Hence, the hash chain of a node can be denoted by hg, h1,..., hy,

7.8 Securing ad hoc network routing protocols 211

where n = k - m, hg is a random value, and h; = H(h;_1). It is assumed that h,, is
securely distributed to all other nodes in the network.

When a node S sends out a route update message about itself with sequence number
i and hop count value 0, it reveals h(;_;),, in the same message. A neighboring node
will update its routing table entry that belongs to S by recording sequence number
i, hop count value 1, and hash value H(h(x—im) = h(k—iym+1- Then, it sends out a
route update message, and its neighboring nodes will record sequence number ¢, hop
count value 2, and hash value H(h(—iym+1) = hk—iym+2 for destination S, and so
on.

Each route update concerning S can be verified by the nodes using a previously
known hash value from the hash chain of S; indeed, the nodes update their routing
table entry for S only if this verification is successful. Let us assume, for instance,
that D knows sequence number 7, hop count value ¢, and hash value h = h(j_;yp . for
S, and now it receives a route update concerning S with sequence number j > i, hop
count ¢, and hash value h/. Then, D accepts this update only if HG=dm+e=¢"(py = p,
where H”* means that we invoke H iteratively « times (see Figure 7.10 for illustration).

sequence number k s sequence number j R sequence number i
hop count ! ! ! . o ! !
012... i i . E HUDmte-c : | i i
AN —
h0 hl I I I I ‘ I I h”

h'= h(kj/)n1 te! h= h(k—i)m +e

Fig. 7.10. Illustration of the hash chain used in SEAD. Each route update concerning S can
be verified by the nodes using a previously known hash value from the hash chain of S. For
instance, assume that D knows sequence number ¢, hop count value ¢, and hash value h =
h(k—i)ym+c for S, and now it receives a route update concerning S with sequence number j > 1,

hop count ¢, and hash value &’. Then, D accepts this update only if HU~Im+e=<(p/y = p,
where H” means that we invoke H iteratively x times.

The main idea is that if an adversarial node knows a hash value belonging to a
given sequence number and hop count, then, due to the one-way property of the hash
function, it cannot compute hash values that belong to larger sequence numbers, or
the same sequence number and smaller hop count values. Thus, the adversary cannot
advertise a fresher or a shorter route to S.

SMT

SMT (Secure Message Transmission) [297] is a secure data communication protocol
for ad hoc networks that thwarts gray hole attacks. SMT simultaneously uses a set of
diverse routes — preferably node disjoint — between a source and a destination. The

212 Secure routing in multi-hop wireless networks

source first invokes the route discovery function of some underlying routing protocol
in order to discover a set of routes to the destination. Then, it splits the message to
be sent to the destination into several pieces using a coding scheme [315] that ensures
that the original packet can be reconstructed from at least a given number of pieces.
After that, the pieces are sent to the destination through the set of routes established
earlier (one piece per route). At the destination, the message can be reconstructed
successfully if a sufficient number of pieces are received. In other words, even if some
pieces are lost due to a gray hole attack, or corrupted by other means, the destination
can still reconstruct the message if it receives enough number of pieces correctly.

SMT uses MACs to protect the integrity and to ensure the authenticity of the mes-
sage pieces. The MACs are computed with a key that is shared between the source
and the destination; hence only they can verify the correctness of the pieces. As
we have discussed in Subsection 7.3.1, this is a design trade-off, which ensures that
intermediate nodes do not need to perform cryptographic computations at the cost
of admitting increased resource consumption at intermediate nodes due to forward-
ing modified or spoofed message pieces. In any case, the destination can verify the
integrity and authenticity of the received pieces, and it acknowledges each correctly
received piece. The acknowledgement is sent back to the source using the same prin-
ciple of splitting into pieces. The pieces for which no acknowledgement arrives are
re-sent by the source through different routes in order to avoid repeating failures.
The destination waits for the re-transmission of the missing pieces, and once enough
correct pieces are received, it acknowledges the successful reception of the entire mes-
sage, meaning that no more re-transmissions are needed even if some pieces are still
missing.

Acknowledgements play an important role in SMT, as they allow the source to
learn which routes are working: a missing acknowledgement is a strong indication
that the corresponding route is either broken or under the control of the adversary.
The source maintains a rating for each route that it knows to the destination. The
rating of a route is increased or decreased depending on whether the message piece
that was sent through that route was delivered successfully or not. When the rating
of a route falls below a lower threshold, the route is discarded and not used again.

Watchdog and Pathrater

Watchdog and Pathrater [263] are two mechanisms that together implement a gray
hole mitigation tool based on the “detect and react” approach. Watchdog is in charge
of continuously monitoring neighbors and trying to identify gray holes (i.e., misbe-
having nodes that do not forward data packets that they should forward). Pathrater
is used to select routes that likely avoid those gray holes.

The operation of Watchdog is based on listening in the promiscuous mode and
trying to catch the transmission of the data packet by the neighbor to which it was

7.8 Securing ad hoc network routing protocols 213

forwarded. We have already elaborated on the issues related to the operation of this
approach in Subsection 7.3.1; the same can be said about Watchdog. Therefore, here
we focus on the operation of Pathrater.

Pathrater assumes that each node maintains a rating in the interval [0, 1] for all the
other nodes it knows in the network. Then, the reliability of a route is quantified by
the source of a data packet by averaging the ratings of the nodes in that route. The
nodes prefer routes with a higher average rating.

Nodes assign ratings to other nodes according to the following algorithm: When a
node B becomes known to another node A, then A assigns a neutral rating of 0.5 to
B. The ratings of the nodes in each active route are incremented by 0.01 at periodic
intervals. The maximum value a rating can reach is 0.8. At the same time, the rating
of a node is decreased by 0.05 when a link break is detected and that node becomes
unreachable. In addition, the highly negative rating of —100 is assigned to nodes that
are suspected of misbehaving by Watchdog. When the route metric is calculated,
negative average ratings indicate that the route has a gray hole in it, and the route
is not selected for data transmission. Of course, nodes that are incorrectly accused
by Watchdog should not be excluded from routing forever, but they should be able
to regain a normal rating. Therefore, all ratings are slowly increased in time or set
back to a non-negative value after a long time-out.

The specific values of the parameters used by Pathrater seem a bit arbitrary, but
the principle is clear, and the simulation results in [263] show that Watchdog and
Pathrater can considerably increase the throughput of the network even if a large
portion (e.g., 40%) of the nodes are misbehaving.

ODSBR

The ODSBR (On-Demand Source routing with Byzantine Robustness) protocol was
proposed in [34] as a source routing protocol for wireless ad hoc networks that tries
to detect gray holes (and other misbehavior causing packet delivery failure) with an
adaptive acknowledgement scheme and to discover routes that avoid those gray holes.

The protocol consists of three components: (i) Byzantine fault detection, (ii) link
weight management, and (iii) route discovery with fault avoidance. Component (i) is
responsible for identifying faulty links in the network over which the packet loss ratio
exceeds a pre-defined threshold. Each node uses component (ii) to maintain a weight
for every link in the network that it knows about. The default weight of a link is 1,
and the weight is increased if the link is detected to be faulty. Component (iii) is a
route discovery mechanism that takes into account the link weights assigned by the
source to the links of the network when selecting routes. In particular, component
(iii) is responsible for finding the least weight route from the source to the destination.
Since the link weights are related to the reliability of the links, the least weight route
should be the most reliable one.

214 Secure routing in multi-hop wireless networks

For the detection of faulty links, ODSBR uses the adaptive acknowledgement
scheme that we described in Subsection 7.3.1 as a gray hole detection mechanism.
This means that when the packet loss ratio exceeds a given threshold on a route, the
source specifies probe nodes on the route that should return acknowledgements for
subsequent packets. The selection of the probe nodes implements a binary search
on the route that results in the identification of the link where the packets are lost.
Either end of this link can be a misbehaving node. ODSBR does not attempt to
identify which node is misbehaving, instead, it tries to avoid links that are detected
to be faulty.

The mechanism for specifying the list of the probe nodes in a packet is essential for
the correct operation of the protocol. The list contains the probe nodes in the same
order as they appear on the route, and it is encrypted in an onion-like, layered manner.
Each layer corresponds to a probe node on the list, and besides information destined
to that probe node, it contains all subsequent layers. The layers are encrypted in
such a way that each layer can be decrypted by the probe node corresponding to the
previous (outer) layer. This induces a processing order. The first probe node removes
the information destined to it and then decrypts the rest of the list before forwarding
the packet further. All subsequent probe nodes do the same. This layered encryption
prevents the adversary from incriminating other links by removing specific nodes from
the probe list.

Acknowledgements must also be handled with care. If the adversary can drop indi-
vidual acknowledgements, then she can incriminate any arbitrary link along the route.
In order to prevent this, each probe node does not send its acknowledgement imme-
diately, but waits for the acknowledgement from the next probe node and combines
them into one acknowledgement. If no acknowledgement is received within a timeout,
then the probe node gives up waiting, and creates and sends its own acknowledgement
only.

The route discovery mechanism of ODSBR floods both the route request and the
route reply messages. The flood of the route request is required to guarantee that it
reaches the destination. However, route requests are digitally signed by the source in
order to avoid malicious route request flooding by an adversary. The route reply must
also be flooded because if it was unicast, a single adversary could prevent a route from
being established. If an adversary was able to prevent routes from being established,
the fault detection algorithm would be unable to detect and avoid the faulty link, since
it requires a route as input in order to operate. The route reply messages are signed
by the destination, in order to prevent malicious route reply flooding, and by the
intermediate nodes that pass on the route reply, in order to authenticate themselves
to the source.

As we mentioned above, the route discovery mechanism of ODSBR finds the least
weight route between the source and the destination. This is done in the following

7.4 Provable security for ad hoc network routing protocols 215

way. The source creates and signs a route request that includes the destination, the
source, a sequence number, and the weight list of the source (i.e., a list that contains
the weights assigned to the links of the network by the source”). This route request
is flooded in the network, until it reaches the destination. The destination generates
a route reply that contains the source, the destination, a sequence number, and the
weight list obtained from the route request. The route reply is also flooded in the
network. When receiving a route reply, an intermediate node computes the total
weight of the sub-route contained in the reply using the weight list included in the
reply, and compares it to the minimum weight that it has computed for previously
forwarded route replies. If the new route reply contains a route with a smaller weight,
then the node appends its identifier to the route reply, signs it, and re-broadcasts it;
otherwise, the route reply is dropped. In this way, the source obtains the least weight
working route from itself to the destination.

7.4 Provable security for ad hoc network routing protocols

As we have seen in the previous section, many secure routing protocols have been
proposed for mobile ad hoc networks. However, the security of those protocols have
been analyzed by informal means only. It is well-known that informal arguments
about security can be prone to errors, therefore there is a strong need for a more
rigorous analysis technique. In this section, we introduce such an analysis technique
based on the simulation paradigm that has already been used in other contexts to
prove the security of cryptographic algorithms and protocols.

7.4.1 Why do we need a more rigorous analysis technique?

Our main goal in this subsection is to demonstrate that attacks against ad hoc routing
protocols can be very subtle, and therefore, difficult to discover. Consequently, it is
also difficult to gain sufficient assurance that a protocol is free of flaws. The approach
of verifying the protocol for a few specific configurations can never be exhaustive,
thus it is far from satisfactory as a method for security analysis.

In order to support our claims above, we present an attack against Ariadne when
used with MACs. We note that a similar attack can also be carried out when TESLA
is used, or when digital signatures are used and, for efficiency reasons, intermediate
nodes do not verify the signature list in the route request (which is an assumption
that is compliant with the description of Ariadne in [180]).

Let us consider the network configuration illustrated in Figure 7.11. We assume

7 Note that it is sufficient to include in the weight list only those weights that have non-default
values.

216 Secure routing in multi-hop wireless networks
that the adversary controls two adversarial nodes (represented by the black nodes in

the figure), and it uses only a single compromised identifier A.

adversarial nodes

solgce '/d— _d\ dest/é]ation

= . wh =1
F 4 4 F

S G G, D

Fig. 7.11. Part of a configuration where an attack against Ariadne is possible. The adversary
controls two adversarial nodes, depicted in black, and it uses only a single compromised
identifier A. From [12], © IEEE, 2006.

S initiates a route discovery process toward D. The first adversarial node receives
the following route request:

msg, = (rreq, S, D, id, hp,, [F1],[macr,])

The adversary does not append the MAC of A to the request, instead, it puts hr, on
the MAC list, and re-broadcasts the following request:

msgg = (rreqv 57 Da Zdv hF17 [FlvAL[macFlthl])

Recall that the intermediate nodes cannot verify the MACs in the request. Note
also that MAC functions based on cryptographic hash functions (e.g., HMAC [234])
output a hash value as the MAC, and therefore, hp, looks like a MAC. Hence, G4
will not detect the attack, and the following request arrives to the second adversarial

node:
msgs = (rreq, S, D, id, H(Gs,...,H(G1,hF)),
[F1,A,Gy,...,Gs),[mack,, hp,, macg,, ..., macg,])
The adversary removes Gy, ..., Gy from the node list and the corresponding MACs

from the MAC list. The adversary can do this in the following way: By recognizing
identifier A in the accumulated route, the adversary knows that the request passed
through the first adversarial node. By looking at the position of identifier A in the
node list, the adversary will know where hp, is on the MAC list. From hp,, the ad-
versary computes hqa = H(A, hp,) and a MAC on (rreq, S, D, id, ha, [F1, A], macp,),
and re-broadcasts the following request:

msg, = (rreq, S, D, id, ha, [F1,A],[macF,, macal)

Since the per-hop hash value and both MACs are correct in msg,, D will receive a
correct request, and returns the following reply:

msgs = (rrep, D, S, [F1, A, F5], macp)

7.4 Provable security for ad hoc network routing protocols 217

When the reply reaches the second adversarial node, it will forward the following
message to Go:

mngZ (rrep7 Da Sa [F17A7G17~'~7G2aA7F2]a macD)

Note that G, ..., G2 cannot verify the MAC in msgq. In addition, their identifiers are
in the route carried by the reply, and the preceding and following identifiers belong to
their neighbors. Therefore, each of them forwards the reply. Finally, when the first
adversarial node receives the reply, it removes Gy, ..., G2 and one of the A’s from the
node list:

msg, = (rrep, D, S, [F1, A, Fs], macp)

In this way, S receives the route reply that D sent. This means that the MAC verifies
correctly and S accepts the route (S, Fy, A, F», D), which is non-existent.

It must be noted that in msgg, the compromised identifier A appears twice in the
node list. Note, however, that Ariadne does not specify that intermediate nodes
should check the node list in the reply for repeating identifiers. If each honest node
checks only that its own identifier is in the list and that the preceding and follow-
ing identifiers belong to its neighbors, then the attack works. Moreover, a slightly
modified version of the attack would work even if the intermediate nodes checked re-
peating identifiers in the reply. In that case, the second adversarial node would send
the following reply towards S:

msgg: (rrep, Da Sa [F13X7G17"'7G23A7F2]a macD)

where X can be any identifier that is different from the other identifiers in the node
list. With non-negligible probability®, X is a neighbor of G, and thus, G will pass
the reply on, so that the first adversarial node can overhear it. Then, the adversary
can remove the identifiers X, Gy, ..., G2, and send the reply containing the node list
(F1, A, Fy) to Fy. Fy will process the reply, because it contains no repeating identifiers
and A is its neighbor.

This is an attack aimed at creating an incorrect routing state in some nodes. In
particular, the source will accept a non-existent route and cache it in its route cache.
In addition, the attack is powerful, because despite the use of the per-hop hash mech-
anism the adversary manages to shorten an existing route, and therefore the source
will probably prefer this short route over others (assuming there are other alternative
routes between S and D that are not illustrated in Figure 7.11). As a consequence,
the source will probably start sending data packets through a non-existent route.

At this point, it must be clear that proving that a routing protocol is free from this
and similar kinds of attacks is virtually impossible by informal reasoning.

8 In fact, the probability that X is a neighbor of G1 is greater than ng, /n, where n is the number
of nodes in the network and ng, is the number of G1’s neighbors.

218 Secure routing in multi-hop wireless networks

7.4.2 A framework for security analysis

In this subsection, we shortly introduce a framework in which routing protocols can
be analyzed in a rigorous manner. For a detailed description of this framework, we
refer to [12]. The framework has been developed for topology-based protocols and,
in particular, for on-demand source routing and on-demand distance vector based
protocols. In addition, routing security is defined in terms of resistance against attacks
aimed at creating an incorrect routing state in the network. Thus, route disruption,
route diversion, generation of extra control traffic, and gray hole attacks are not
considered within the framework. In this sense, the framework is somewhat restricted;
but as we will see, dealing only with attacks aimed at creating an incorrect routing
state is already sufficiently complicated if we want to be really precise.

The framework consists of a static and a dynamic model of the system and a
formal definition of routing security based on these models. That is described in this
subsection. In the next subsection, we illustrate the use of the framework by using it
to prove the security of the endairA protocol.

Static representation of the system

Network model: We model the ad hoc network as an undirected labelled graph
G(V,E), where V is the set of vertices and E is the set of edges. Each vertex rep-
resents a node, and there is an edge between two vertices if the corresponding nodes
can hear each other (via either a radio link or perhaps a wormhole).

We assume that the nodes use authenticated identifiers (e.g., public keys) during
neighbor discovery and in the routing protocol. We denote the set of identifiers by L,
and we label each vertex v of G with the identifiers used by the node corresponding to
v. We assume that honest (non-adversarial) nodes use a single identifier that is unique
in the network, whereas adversarial nodes can use multiple compromised identifiers
(see attacker model below).

For the purpose of modelling distance vector routing protocols, we also assign cost
values to the nodes and to the radio links that can be interpreted as, respectively,
processing and transmission costs and can be used to compute routing metrics.
Adversary model: We assume that the adversary is not all powerful, but it launches
its attacks from adversarial nodes that it controls and that have communication capa-
bilities similar to regular nodes. We denote the vertices that correspond to adversarial
nodes by V*. In addition, we assume that the adversary compromises some identifiers,
by which we mean that the adversary compromises the cryptographic keys that are
used to authenticate those identifiers. We denote the set of compromised identifiers
by L*. We further assume that the adversary distributes all compromised identifiers
to all adversarial nodes. Using the notation introduced in [180], the adversary de-
scribed above is an Active-y-z adversary, where x = |V*| and y = |L*|. In addition,

7.4 Provable security for ad hoc network routing protocols 219

we assume that the adversary is static in the sense that it does not corrupt more
nodes and does not compromise more identifiers during the operation of the system.
As neighboring adversarial nodes can communicate with each other in an unre-
stricted manner (e.g., by sending encrypted messages), they can appear as a single
node (under all the compromised identifiers) to the other nodes. Hence, without
loss of generality, we assume that adversarial nodes are not neighbors in G; if they
were, we could merge them into a single adversarial node that would inherit all the
neighbors of the original nodes.
Configuration: A configuration is represented by the graph G, the set of adversarial
nodes V*, the labelling of the nodes with identifiers from L, and the assignment of
costs to the nodes and to the links. We make the simplifying assumption that the
configuration is static (at least during the time interval that is considered in the
analysis).

Correctness criteria

Source routing: From secure source routing protocols, we require that they return
only “existing” routes. However, we must take into account that the adversary can
always emulate the execution of the routing protocol using the compromised identifiers
locally within a single adversarial node. Hence, the adversary can always extend any
route that passes through an adversarial node with any sequence of compromised
identifiers. This is a fact that our definition of security must tolerate, otherwise we
cannot hope that any routing protocol will satisfy it. This observation leads to the
following definition of “existing” routes:

Definition 7.1 A sequence (1,0s,..., £, of identifiers is a plausible route with
respect to a configuration if each {; is different, and the sequence can be partitioned
into k sub-sequences in such a way that each of the resulting partitions is a subset of
the identifiers assigned to a vertex in V', and in addition, these vertices form a path
n G.

Distance vector routing: In distance vector routing, no explicit routes are returned
by the route discovery procedure, but rather the state of the system is represented
by the routing tables of the non-adversarial nodes. We assume that an entry of the
routing table of every node contains the following three fields: the identifier of the
target node, the identifier of the next hop towards the target, and the cost value that
represents the believed cost of the route to the given target via the given next hop.
Without loss of generality, we assume that the routing metric is such that routes with
lower cost values are preferred.
Then, we define a correct state as follows:

220 Secure routing in multi-hop wireless networks

Definition 7.2 The system is in a correct state if all the routing table entries of the
non-adversarial nodes are correct. If non-adversarial node v has an entry for target
Ligr with next hop £nze and cost ¢, then this entry is correct if there exists a Toute
in the network that starts from node v, ends at a node that uses the identifier Ciq,
passes through a neighbor of v that uses identifier £y, and has a cost that is smaller
than or equal to c.

Dynamic representation of the system

The dynamic behavior of the system is represented by two models, each consisting
of a set of interactive probabilistic Turing machines. One of the models is called
the real-world model, and it represents the behavior of the real system; the other is
called the ideal-world model, and it describes how the system should work ideally.
In both models, there is an adversary whose behavior is not constrained, apart from
requiring it to run in time polynomial in the security parameter (e.g., size of the
cryptographic keys used by the cryptographic primitives). This allows us to consider
any feasible attacks and makes the approach very general. Although the adversary
is not constrained, the construction of the ideal-world model ensures that all of its
attacks are unsuccessful against the ideal-world system. In other words, the ideal-
world system is secure by construction (e.g., non-plausible routes are never returned).

Formal definition of security

Once the models are defined, the goal is to prove that for any real-world adversary,
there exists an ideal-world adversary that can achieve essentially the same effects in
the ideal-world model as those achieved by the real-world adversary in the real-world
model (i.e., the ideal-world adversary can simulate the real-world adversary). The
existence of a proof means that no attacks can be successful in the real-world model (or
more precisely, attacks can be successful only with negligible probability), otherwise
an attack would be successful in the ideal-world model too, which is impossible by
definition. This leads to the following definition of routing security:

Definition 7.3 A routing protocol is said to be (statistically) secure if, for any
configuration and any real-world adversary, there exists an ideal-world adversary, such
that the output of the real-world model is (statistically) indistinguishable from the
output of the ideal-world model.

Hence, if a routing protocol is (statistically) secure, then any system using this
routing protocol returns a non-plausible route or gets into an incorrect state only
with negligible probability. This negligible probability is related to the fact that the
adversary can always forge the cryptographic primitives (e.g., generate a valid digital
signature) with a very small probability.

7.4 Provable security for ad hoc network routing protocols 221

7.4.3 An example — the security proof of endairA

In this subsection, we want to illustrate the use of the framework introduced above.
For this reason, we will prove the security of the endairA protocol. However, in order
to do this, we need to give some more details about the dynamic representation of
the system.

Recall that the dynamic representation of the system consists of an ideal-world
model and a real-world model, where the ideal-world model is defined in such a way
that attacks are not possible in it, whereas the real-world model allows all kinds of
misdeeds by the adversary. Specifically, in source routing protocols, the ideal-world
model is constructed in such a way that the Turing machine that is responsible for
passing messages between the Turing machines that represent the nodes marks route
reply messages that carry non-plausible routes. We can imagine this as route reply
messages with a fictive plausibility flag attached to them, and the value of this flag
is set by the Turing machine that handles the communication in the model. Then,
in the ideal-world model, it is ensured that the routes received in marked route reply
messages are not accepted by the honest nodes, whereas obviously, in the real-world
model, the plausibility flag of the messages are ignored (since in reality there is no
such a flag attached to the messages). Thus, the ideal-world model is ideal in the
sense that non-plausible routes are never returned to the honest nodes by definition.

Let us now prove the following theorem:

Theorem 7.1 The endairA protocol described in Subsection 7.3.2 is (statistically)
secure if the signature scheme used in the protocol is secure against chosen message
attacks.

Proof: We provide only a sketch of the proof. We want to show that for any con-
figuration and for any adversary, a route reply message in the ideal-world model is
discarded due to the value of its plausibility flag (meaning that the message carries
a non-plausible route) with negligible probability. Discarding a message due to its
plausibility flag leads to a simulation error, because the message is not discarded in
the real-world model where plausibility flags are ignored. By showing that messages
are discarded with negligible probability due to their plausibility flags in the ideal-
world model, we show that simulation errors occur with negligible probability, or in
other words, the effects of the real-world adversary can be simulated in the ideal-world
model with overwhelming probability, and this is the basis of our security definition.

In what follows, we will refer to non-adversarial nodes with their identifiers. Let us
suppose that the following route reply is received by a non-adversarial node £, in
the ideal-world model:

msg = (rrep, Lo, Cast, id, [l1,...,0p), [siggdbt,sigép,...,siggl])

222 Secure routing in multi-hop wireless networks

Let us suppose that msg passes all the verifications required by endairA at £, which
means that all signatures in msg are correct, and /4. has a neighbor that uses the
identifier ¢;. Let us further suppose that msg has been received with a plausibility
flag indicating that the message contains a non-plausible route. This means that
(Csres b1, .. €p, £gst) is a non-plausible route in the given configuration. Hence, msg
is dropped due to the value of its plausibility flag. We will show that this situation
is possible only if the adversary forged the digital signatures of some non-adversarial
nodes.

Recall that, by definition, adversarial nodes cannot be neighbors. In addition, each
non-adversarial node has a single and unique non-compromised identifier assigned to
it. It follows that every route, including (Ysrc, 41, . . ., €p, £ast), has a unique meaningful
partitioning, which is the following: Each non-compromised identifier, as well as each
sequence of consecutive compromised identifiers should form a partition.

Let Py, P»,..., Py be the unique meaningful partitioning of (s, f1,...,¢p, Cast).
The fact that this route is non-plausible implies that at least one of the following two
statements holds:

e Case 1: There exist two partitions P; = {¢;} and P, 1 = {{; 11} such that both ¢;
and ¢;41 are non-compromised identifiers, and the corresponding non-adversarial
nodes are not neighbors.

e Case 2: There exist three partitions P; = {{;}, Pit1 = {{j41,...,¢j4q}, and
Piyo = {lj1q4+1} such that ¢; and ¢4 441 are non-compromised and £;41,...,4j4q
are compromised identifiers, and the non-adversarial nodes that correspond to ¢;
and £j444+1 have no common adversarial neighbor.

As we will see, in both cases, the adversary must have forged the digital signature of
a non-adversarial node.

In Case 1, node £;;; does not sign the route reply, because it is non-adversarial
and it detects that the identifier that precedes its own identifer in the route does not
belong to a neighboring node. Hence, the adversary must have forged $igg,,, 0 msg.

In Case 2, the situation is more complicated. Let us assume that the adversary
has not forged the signature of any of the non-adversarial nodes. Node ¢; must have
received

msg' = (rrep, Lo, Last, id, [l1,..., 0], [sigy,.,, Sigg, ;- 5194,,,])

from an adversarial neighbor, say A, since ¢;4; is compromised, and thus, a non-
adversarial node would not send out a route reply message with sigy,,,- In order to
generate msg’, A must have received

msg” = (Frep, gsrca gdstv Zda [gla cee 7619]; [Sigzdst, Sigepv L) Sig£j+q+1])

because by assumption, the adversary has not forged the signature of £; 441, which

7.4 Provable security for ad hoc network routing protocols 223

is non-compromised. As A has no adversarial neighbor, it could have received msg”
only from a non-adversarial node. However, the only non-adversarial node that would
send out msg” is {;44+1. This would mean that A is a common adversarial neighbor
of £; and {j;44+1, which contradicts the assumption of Case 2. This means that
our assumption that the adversary has not forged the signature of any of the non-
adversarial nodes cannot be true.

It should be intuitively clear that if the signature scheme is secure, then the ad-
versary can forge a signature only with negligible probability, and thus, a route reply
message in the ideal-world model is dropped due to the value of its plausibility flag
only with negligible probability. Nevertheless, we sketch how this could be proven
formally. The proof is indirect. We assume that there exists a configuration and an
adversary such that a route reply message in the ideal-world model is dropped due to
its plausibility flag with probability ¢, and then, based on that, we construct a forger
F that can break the signature scheme with probability €/n, where n is the number
of non-adversarial nodes in the network. If e is non-negligible, then so is €/n, and
thus the existence of F' contradicts with the assumption about the security of the
signature scheme.

The construction of F' is the following. Let puk be an arbitrary public key of the
signature scheme. Let us assume that the corresponding private key prk is not known
to F, but F' has access to a signing oracle that produces signatures on submitted
messages using prk. F runs a simulation of the ideal-world model where all nodes
are initialized with the keys of the corresponding nodes, except that the public key
of a randomly selected non-adversarial node ¢; is replaced with puk. During the
simulation, whenever ¢; signs a message m, F' submits m to the oracle, and replaces
the signature of ¢; on m with the one produced by the oracle. This signature verifies
correctly at other nodes later, as the public verification key of ¢; is replaced with
puk. By assumption, with probability €, the simulation of the ideal-world model will
result in a route reply message msg such that all signatures in msg are correct and
msg contains a non-plausible route. As we saw above, this means that there exists a
non-adversarial node ¢; such that msg contains the signature sig, of £;, but ¢; has
never signed (the corresponding part of) msg. Let us assume that ¢ = j. In this case,
sigy; is a signature that verifies correctly with the public key puk. Since ¢; did not
sign (the corresponding part of) msg, F' did not call the oracle to generate S19y, - This
means that F' managed to produce a signature on a message that verifies correctly
with puk. Since F selected ¢; randomly, the probability of i = j is %, and hence, the
success probability of F'is ¢/n. O

224 Secure routing in multi-hop wireless networks

7.5 Secure routing in sensor networks

Wireless sensor networks are envisaged to use multi-hop communications in order
to reduce the interference between the nodes and the overall energy consumption of
the network. Ultimately, using multi-hop communications is expected to result in
an increased network life-time, which is crucial in many sensor network applications,
because recharging the batteries of the nodes may be impossible, or at least very
impractical. However, using multi-hop communications raises the problem of secure
routing in sensor networks too.

The types of attacks that an adversary can mount against the routing protocol in
a wireless sensor network are similar to those listed for mobile ad hoc networks with
a somewhat stronger emphasis on increased resource consumption as their objectives,
because sensor nodes are highly resource constrained. This similarity stems from the
similar assumptions that can be made about the capabilities and the attack mecha-
nisms of the adversary in both cases. Consequently, the applicable countermeasures
are similar too. One may even think that secure routing protocols developed for mo-
bile ad hoc networks could directly be used in wireless sensor networks. However, this
is not the case in general due to the following important differences between mobile
ad hoc networks and wireless sensor networks:

e First of all, in sensor networks, node-to-node communications are usually not re-
quired. Rather, the sensor nodes must be able to communicate with the base station
(e.g., to send sensor readings), and vice versa (e.g., to send control information or
specific queries). Thus, in sensor networks, the prevailing communication types
are many-to-one and one-to-many, in contrast to mobile ad hoc networks, where
most of the communications are one-to-one. As a consequence, secure ad hoc net-
work routing protocols designed to support one-to-one communications may not be
efficient for many-to-one and one-to-many communications.

e In the majority of the envisaged sensor network applications, the nodes are static,
and therefore, the topology changes are less dynamic in sensor networks than they
are in ad hoc networks. Some topology changes may still occur in sensor networks,
as sensor nodes may disappear temporarily due to some failure, or permanently due
to battery depletion, but the resulting dynamicity of the network is much lower than
that in ad hoc networks where the nodes are mobile. This means that secure ad hoc
network routing protocols designed to cope with the dynamic nature of the network
may contain features that are unnecessary in sensor networks, or at least, that can
be implemented in a more efficient way.

e Sensor nodes are assumed to be much more resource constrained than the nodes
in mobile ad hoc networks. Typically, in mobile ad hoc networks, the nodes are
hand-held devices, such as PDAs or mobile phones, or even laptop class computers.
These have orders of magnitude more resources than a typical sensor node. For

7.5 Secure routing in sensor networks 225

instance, a contemporary PDA is equipped with a memory of several hundreds of
megabytes, while a typical sensor node has only a few kilobytes of memory. In terms
of CPU speed, the differences are similarly large. We note that these differences will
likely persist in the future due to the objective of keeping the price of sensor nodes
at a very low level. In addition to the differences in memory size and CPU speed,
reduced energy consumption is even more critical in sensor networks than it is in
ad hoc networks. For all these reasons, secure ad hoc network routing protocols
that rely on public key cryptography (e.g., ARAN, SAODV, and endairA) cannot
be directly used in sensor networks.

In the rest of this section, we sketch three approaches to secure routing in wireless
sensor networks. The first approach extends a known topology based sensor network
routing protocol, TinyOS beaconing, with cryptographic protection to defend against
spoofing routing control messages. In this way, a reasonable level of security can
be achieved against an outsider adversary, but the protocol can still be successfully
attacked by an insider adversary. The second approach uses the principles of link state
routing. The advantage of link state routing is that the routing control messages do
not need to be modified by intermediate nodes, and hence, they can be protected in an
end-to-end manner, which simplifies the protocol. Finally, the third approach is based
on extending a position based routing protocol with security measures. The rationale
of starting from a position based routing protocol is that such protocols usually do not
maintain routing state in the nodes, and hence, the routing state cannot be corrupted.
For the same reason, position based routing protocols also incur less overhead, and
hence, they are more energy efficient than the topology based protocols.

7.5.1 Authenticated TinyOS beaconing

TinyOS beaconing is a simple (but insecure) sensor network routing protocol. This
protocol establishes a routing tree rooted at the base station. Once the tree is estab-
lished, sensor nodes forward data packets towards the base station by sending them
to their parent in the tree. The establishment of the tree is based on a network wide
flooding. The base station generates a route update message and broadcasts it to its
neighbors. Each node that receives the route update message for the first time sets the
node from which the route update was received as its parent, and then re-broadcasts
the route update message. Any copy of the route update that is received later by the
node is discarded.

Since route update messages are not authenticated, an adversary can spoof them.
As a result, the adversary can initiate the routing tree establishment process, and she
can become the root of the established tree. Then, every sensor node will send data
packets to the adversary, who can inspect and drop them. Thus, the adversary can

226 Secure routing in multi-hop wireless networks

easily obtain information from the entire system, which means increased control over
the communications. Moreover, the quality of the service provided by the system is
decreased, as the base station receives no sensor readings anymore, and the resource
consumption of the nodes is increased.

To protect against this attack, the base station can authenticate the route update
message. Since every node must be able to verify the authenticity of the route update,
the base station should use a broadcast authentication scheme. Taking into account
the resource constraints of the sensor nodes, a good candidate for this would be the
TESLA broadcast authentication protocol, which uses only symmetric key cryptogra-
phy. This would prevent the adversary from initiating the routing tree establishment
process, but there are still other attacks that she can perform. For instance, she can
spoof the node identifier of a far-away node when re-broadcasting the route update
message. All nodes that hear the spoofed route update message will set that far-away
node as their parent. Later, when these nodes want to forward data packets towards
the base station, they will send the packets into void. This results in decreased quality
of service and increased resource consumption by some nodes.

The above described attack will be discovered quickly if data packets are acknowl-
edged at the link layer. However, an even more subtle attack is possible against
the protocol and can only be detected in an end-to-end manner (meaning that much
more resources are wasted before successful detection). The attack is illustrated in
Figure 7.12. Let us assume that the adversary resides near a node w, and u has a
neighbor v, which is further away from the base station than u itself. When the adver-
sary receives the authenticated route update message, it re-broadcasts it in the name
of v, and therefore, u sets v as its parent. When u re-broadcasts the route update
message, v sets u as its parent. Thus, the adversary creates a routing loop between
and v by arranging that they both set each other as parent. The result is decreased
quality of service, because some data packets will never reach the base station, and
increased resource consumption for nodes u and v, and for all nodes downstream from
them.

To protect against the spoofing of node identifiers, the route update message should
also be authenticated in a hop-by-hop manner. This requires pairwise keys between
neighboring nodes, which can be set up as described in Section 5.1. While hop-by-
hop authentication results in a larger overhead, this can still be bearable because only
symmetric key cryptography is used, and the routing tree establishment procedure is
run rather infrequently due to the static nature of the network.

The authenticated TinyOS beaconing protocol provides a reasonable level of pro-
tection against an outsider adversary, but an insider adversary (i.e., one that com-
promised the cryptographic keys of some sensor nodes) can still mount some attacks.
Another disadvantage of the authenticated TinyOS beaconing protocol is that it sup-

7.5 Secure routing in sensor networks 227

m adversary
7
7

U . .~ route update

in the name of v
e,

d——»d
AN

Fig. 7.12. Illustration of an attack against the TinyOS beaconing protocol, where the ad-
versary creates a routing loop between two nodes u and v by arranging that they both set
the other as parent in the routing tree. In order to achieve this, the adversary re-broadcasts
the route update message in the name of v. The result of the attack is decreased quality of
service, because some data packets will never reach the base station, and increased resource
consumption for nodes u and v, and for all nodes downstream from them.

ports only tree topologies, only node to base station communication, and only single
path forwarding.

7.5.2 Centralized link state routing

In the TinyOS beaconing protocol, the routing state of every node is determined
by the identity of the neighbor from which it receives the routing update message.
Therefore, in order to prevent the creation of incorrect routing states in the nodes,
this identity information needs to be protected from spoofing. That is the reason for
hop-by-hop authentication of routing update messages.

Another approach could be to avoid that the routing state depends on information
contributed by intermediate nodes to routing control messages. One way to achieve
this is to use link state routing. In link state routing protocols, each node distributes
its neighborhood information in a link state update message. Since other nodes do
not need to add anything to this link state update message, it is sufficient if only the
source of the message authenticates it.

At first sight, link state routing does not seem to be a very good idea for sensor
networks, because in traditional link state routing protocols, each node floods the
entire network with link state updates, and the authentication of link state update
messages is based on digital signatures (so that every node can verify them). Note,
however, that traditional link state routing protocols are designed to support one-to-

228 Secure routing in multi-hop wireless networks

one communications. Since in sensor networks, the nodes do not need to communicate
with each other in an end-to-end manner, the requirement of flooding the entire
network with link state update messages can be relaxed. In addition, if link state
update messages are not flooded in the entire network, then there is no need to
ensure that every node can verify them, and hence, digital signatures can be replaced
with more efficient primitives.

Link state routing in wireless sensor networks could work in the following way: Each
node collects its neighborhood information locally, and sends the list of its neighbors
to the base station in a link state update message. Based on the received link state
update messages, the base station constructs the routing table for every node, and
distributes the computed routing tables to the nodes. A protocol based on these
principles would have many advantages:

e Each node needs a single symmetric key that it shares with the base station. This
key can be used to protect routing control messages (link state updates originating
from the node and routing tables destined to the node) using an efficient symmetric
key MAC.

e The computation of the routing topology is performed by the base station, which
is much more powerful than the sensor nodes, and it has no resource constraints.

e The routing tables are computed centrally using information obtained from the
entire network. This allows the construction of highly optimized routing topologies,
which may greatly reduce the overall energy consumption of the network.

e Related to the previous point, the base station can run centralized wormhole de-
tection algorithms such as those described in Subsection 6.2.1.

e There is no restriction on the form of the routing tables that are distributed to
the nodes. Hence various kinds of routing schemes can be easily supported in the
link state approach ranging from simple routing trees to more complex multi-path
routing.

One remaining problem is that the sensor nodes do not necessarily know how to
route link state update messages to the base station, since at that stage of the protocol,
they have not received their routing tables yet. Indeed, the very purpose of sending
the link state update messages to the base station is to let it compute the routing
tables.

This problem can be solved by a mechanism that is similar to TinyOS beaconing;:
The base station floods the network with