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Preface

We have entered the era of wireless networks. By now, the number of wireless phones
has superseded that of wired ones. Wireless LANs are routinely used by millions of
nomadic users. Wireless devices have become commonplace in private homes, facto-
ries, and hospitals. And technologists promise us a world of ubiquitous computing, in
which myriads of tiny, untethered sensors and actuators will communicate with each
other, promptly taking care of our various needs and wishes.

In addition to this pervasiveness, we are witnessing a change of paradigm: initially,
wireless devices had limited or no programmability and were managed (and secured)
in a highly centralized fashion. Today, high-tier wireless end-systems are full-fledged
personal computers and take an increasingly active role in the networking mechanisms.
In the extreme case of multi-hop ad hoc networks, the end systems are the network.

Unfortunately, this evolution is creating new vulnerabilities. Even existing wireless
networks (and especially wireless LANs) exhibit a number of security weaknesses,
some of which have been painstakingly fixed a posteriori. It is now clear that the
security solutions devised for wired networks cannot be used as such to protect the
wireless ones. An additional problem is that the frenzy to commercialize quickly new
products and new services is in contradiction with the design of a well-thought (and
possibly standardized) secure architecture.

This textbook aims at preventing ubiquitous computing from becoming a pervasive
nightmare. It contains a thorough description of existing and envisioned mechanisms
devised to thwart misdeeds against wireless networks. Indeed, we believe that the
protection of wireless networks now requires more attention and a more systematic a
priori approach.

In addition to the usual security concerns of networking, we need to address selfish
behavior. The reason is that each wireless communication makes use of a fraction of
the spectrum that has been and will remain a scarce resource. Moreover, most wireless
devices are battery-powered, and for them energy is scarce as well. Consequently, the
behavior of a wireless device can affect the service enjoyed by a another, neighboring
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device. Likewise, the behavior of a wireless network can affect the performance of
another wireless network, especially if both networks operate in the same frequency
band. These are the reasons we mention “cooperation” in the title of this book;
wherever appropriate, we will make use of game theory in order to formalize the
problems.

We believe this textbook to be the first of its kind regarding the treatment of
security and cooperation in wireless networks. Due to the constant evolution of the
field, one of the major challenges of writing such a book is ensuring that it will have
a reasonably long shelf life (and that the material learned from this book has long
lasting value). The strategy we have adopted is to focus on the principles and to keep
examples as generic as possible.

What this book is not

This book covers a substantial amount of material, but it obviously does not aim
at covering everything. In particular, it is not an introduction to security or cryp-
tography, nor is it a tutorial on game theory (but we do provide an appendix on
each of these topics for the convenience of the reader). It is not an introduction to
wireless networks. It is not a book on wired networks security. It is not a handbook
on jamming and anti-jamming techniques. It is also not a book on wireless security
standards (the reader is referred to the numerous books recently published on this
topic). Finally, the book is not about the computing aspects of security, such as the
protection against viruses.
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What this book is about

The book provides a thorough analysis of the major trends in wireless networks and
explains the implications in terms of security and cooperation. It provides a detailed
description of the problems and a precise explanation of mainstream solutions wher-
ever they exist, and of potential solutions otherwise. The structure of the book is
captured by the following figure.

Security Cooperation
12. Behavior enforcement

8. Privacy protection 11. Operators in shared spectrum

7. Secure routing 10. Selfishness in PKT FWing

6. Secure neighbor discovery

5. Security associations

9. Selfishness at MAC layer

4. Naming and addressing

Appendix A:
Security and crypto

3. Trust
Appendix B:
Game theory

2. Upcoming networks

1. Existing networks

The twelve chapters are organized in three parts. Part I is an introduction,
providing some background information. Chapter 1 describes how existing wireless
networks are secured. Chapter 2 contains a description of upcoming wireless networks,
such as mesh, vehicular, sensor and RFID networks. It identifies general trends,
such as increasing decentralization and growing programmability of the devices and
discusses their implications in terms of security and cooperation. Chapter 3 is devoted
to the difficult issue of trust in wireless networks; it explains the relationships between
trust, security, and cooperation, and discusses the adversary model.

Part II describes the techniques aiming at thwarting malicious behavior;1 as
such, it makes use primarily of security techniques. Chapter 4 addresses the problem
1 As we will see, malicious behavior encompasses many misdeeds, including the willingness to access

to unauthorized information or to deliberately affect the availability of the network for other users.
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of naming and addressing; it explains how the Sybil and the replication attacks can be
thwarted in such networks. Chapter 5 explains how security associations can be set up
between wireless devices, notably by exploiting their physical proximity. Chapter 6
addresses secure neighbor discovery and explains the wormhole along with techniques
to thwart it. Chapter 7 provides techniques to secure the fundamental operation of
routing in wireless multi-hop networks. Finally, Chapter 8 addresses the crucial issue
of privacy in upcoming wireless networks.

Part III focuses on the techniques intended to prevent selfish behavior;2 therefore,
it heavily relies on game theory. Chapter 9 focuses on the MAC layer. It first explains
the techniques by which a WiFi selfish user can increase its share of the bandwidth,
at the expense of well-behaved users; then it provides a detailed study of selfish
behavior in pure ad hoc networks. Chapter 10 discusses the problem of selfishness in
packet forwarding, and explains why incentives to cooperate are needed. Chapter 11
addresses the difficult question of the coexistence of operators in the same part of the
spectrum. Finally, Chapter 12 describes examples of protocols that encourage selfish
devices to adopt a desirable behavior.

Appendix A contains a detailed description of those topics of security and cryp-
tography that are needed to understand the book. Likewise, Appendix B provides
a tutorial on game theory for wireless networks.

In order to make the book more concrete, we make use of several running examples
to illustrate the various concepts we have introduced; these examples belong to the
families of upcoming networks identified in Chapter 2: personal communication net-
works (including community, mesh, and mobile ad hoc networks), vehicular networks,
and sensor as well as RFID networks.

Some of the chapters are specific to a given protocol layer: chapters 6 and 9 are
focused on the MAC layer, whereas chapters 7, 10, and 12 are related to the network
layer.

Intended audience

This textbook is intended for Master’s and PhD students as well as for researchers.
It should also be of interest for the practitioners who want to get a broader view of
the field.

Some familiarity with networking and security principles is useful for a proper
understanding of this book.
2 Selfish behavior, as we will see, means the overuse a common resource.
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About the title

The title of this book, “Security and Cooperation in Wireless Networks”, is well suited
for the security aspects. But the word “cooperation” can be misleading, because it
can be confused with the notion that wireless devices cooperate with each other at
the physical layer (e.g., for beamforming). The usual term in networking is “non-
cooperative behavior”, but it is not particularly appropriate for the title of a book.

How to use this book

This book is designed to be covered in one semester course. If the students have little
background on security, it is appropriate to start the course by covering Appendix A.
Covering Part I should then be straightforward. At the end of Part I, the students
could be encouraged to read the description of the security scheme of a wireless system
not covered in the book (e.g., WiMAX) and check if they can understand it.

In Part II, each chapter can be addressed relatively independently, but the proposed
order should make the understanding easier.

In current engineering and computer science curricula, game theory is usually not
taught. Hence, with all likelihood, it will be necessary to first cover Appendix B
before tackling Part III. Each of the four chapters of that part is fairly self-contained
and can therefore be studied independently of the other. However, the beginning of
the first of them (Chapter 9) is particularly intuitive because it addresses the concrete
reality of WiFi systems. The last chapter (Chapter 12) is especially important as it
combines the concepts of security and cooperation.

In case only few hours per week are available, another approach consists in covering
Part I and Part II in one semester, and then Part III in a follow-up (maybe optional)
course in the following semester. Indeed, the two first parts of the book constitute a
self-contained introduction to wireless security.

Additional material

The URL of the Web site of this book is http://secowinet.epfl.ch/. Additional mate-
rial, such as slide shows (in pdf or PowerPoint3 formats) will be progressively posted
there.

Lausanne - Budapest, 2004 - 2007

3 Trademark of Microsoft Inc.
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whose research influenced Chapter 7; Naouel Ben Salem, whose research in mesh
networks and in protocols for behavior enforcement was very helpful for Chapters 2
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Srdjan Čapkun deserves a specific acknowledgement for having been the first to
teach a class based on a very early version of this book.

Several researchers provided very useful insights and a great support to this project;
this was particularly important, considering the relative novelty of the topic. In
particular, we would like to express our gratitude to Tansu Alpcan, David Basin, Jean
Bolot, Daniel Figueiredo, Virgil Gligor, Matthias Grossglauser, Markus Jakobsson,
Phil Janson, Frank Kargl, Edward Knightly, P. R. Kumar, Jean-Yves Le Boudec,
Li Erran Li, Peter Marbach, James Massey, Cristina Nita-Rotaru, Charles Perkins,
Adrian Perrig, Patrick Thiran, Don Towsley, David Tse, Nitin Vaidya, Jean Walrand,
Dirk Westoff, Heather Zheng, and Sheng Zhong. Many thanks also to Victor Bahl for
having suggested the idea of this book several years ago.

ix



We would like to thank the Swiss National Science Foundation for funding the
National Competence Center in Research Mobile Information and Communication
Systems (NCCR/MICS, sometimes nicknamed the “Terminodes project”); many of
the ideas developed in this book have matured in the framework of this research
program. We are indebted to those of our colleagues who have spent long hours to
run the center, in particular Martin Vetterli, Thomas Gross, Karl Aberer, and Lothar
Thiele. Martin deserves a special note: without his extreme dedication and visionary
capabilities, the NCCR/MICS would not have taken off and, as a consequence, this
book would have never existed.

We are indebted to Rafik Chaabouni who was instrumental in the formatting of the
book and demonstrated a remarkable mastery of Latex idiosyncracies, and to Thomas
Thurnherr who edited several figures. We would like also to extend our gratitude to
Holly Cogliati who provided us with many recommendations to improve our English
expressions.

Anna Littlewood and Phil Meyler, both from Cambridge University Press, deserve
our gratitude for having assisted the whole editorial process; Phil selected the cover
figure and helped us formulating the title of the book in the most concise way.

LB is indebted to JPH for initiating the writing of this book. Without the enthusi-
asm and dedication of JP, this book would not exist today. LB is also grateful to his
colleagues, István Vajda and Boldizsár Bencsáth, and to his students, Gergely Ács,
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Introduction
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The security of existing wireless networks

Before discussing wireless networks, it is necessary to take a broad look at networking
in general and to see why malicious and selfish behavior is such a relevant issue. For
this purpose, we will consider the Internet.

The Internet is probably the most impressive achievement ever in networking: A
simple set of brilliant engineering rules has led to the deployment of the most pervasive
network that, in spite of its size (or rather, thanks to it), supports a growing number
of services and applications. At the core of these rules stands of course the principle
of universal connectivity.

Unfortunately, the Internet is plagued by several major problems, fuelled by this
very principle. Viruses and spam have become a daily issue for most users around the
world, many people fall prey to phishing attacks, and denial of service (DoS) attacks
are routinely perpetrated against the servers of major corporations. An additional
problem is that some network providers tend to establish walled gardens, by which
they offer specific capabilities exclusively to their customers. Finally, some providers
are tempted to interconnect their network in a way that is beneficial to themselves, but
can be detrimental to the rest of the community [207]. The situation is so critical that
many prominent specialists, including some of the founding fathers of the Internet,
call for a profound revamping of the network [99].

All these problems have a common cause: they are due to human intention, not to
technical problems. They also have common implications: They consume other users’
time and nerves. They also represent a formidable tax on the usage of the network,
in terms of firewalls, filters, anti-spam software, anti-DoS systems, and the related
workforce in charge of deploying and operating these tools.

It is clear that the problem is very complicated. One of the reasons is that most of
the vulnerabilities we have mentioned do not revolve exclusively around the commu-
nication protocols: They can also be related to the operating system and (especially
for viruses) to the programming techniques and they can depend on human factors.
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4 The security of existing wireless networks

Nevertheless, in this book we focus as much as possible on the issues primarily related
to networking.

Another reason for this complexity is that it is extremely difficult to anticipate
the kind of misbehavior that will affect a network while not yet deployed. In addi-
tion, competition encourages rapid deployment of new networking technologies and
of new services, thus leaving little time to devise and implement (let alone standard-
ize) protection mechanisms. Consequently, very often the protection mechanisms are
designed a posteriori and constitute as many patches to the network. This leads to a
growing complexity of the deployed systems (and complexity is often detrimental to
security).

We believe that the widespread adoption of upcoming wireless networks creates
even more formidable challenges in terms of misbehavior prevention. As malice and
selfishness are the core problems addressed in this book, we make a distinction between
these two kinds of misbehavior: malice aims at doing harm to known or unknown
individuals or organizations, whereas selfishness consists in overusing the network
resources (possibly at the expense of the other users). With this terminology, a virus
designer is malicious, whereas a spammer is selfish. We will refine these concepts in
Chapter 3.

Having discussed the lessons that can be drawn from the Internet, we will now
see the peculiarities of wireless networks that are relevant to malice and selfishness.
We will first discuss existing wireless networks, leaving the treatment of upcoming
wireless networks to the next chapter.

1.1 Vulnerabilities of wireless networks

Existing wireless networks are primarily personal communication networks, meaning
that the end systems are meant to be used by human beings to communicate either
with other human beings or with servers. In the next chapter, we will see that
some of the upcoming wireless networks have a different purpose, in the sense that
communications, in a growing number of cases, will not involve human beings. As
we will see, this has profound implications in terms of how these networks need to be
protected.

The most obvious characteristic of wireless networks is that communication takes
place over a wireless channel (which is usually a radio channel, but can also be an
infrared channel). Such a channel suffers from a number of vulnerabilities, mentioned
hereafter.

• The channel can be eavesdropped: By placing an antenna at an appropriate
location, an attacker can overhear the information that the victim transmits or
receives. Eavesdropping is often used to carry out attacks, notably passive attacks.
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Passive attacks consist in listening to the network and analyzing the captured data
without interacting with the network. Such an attack can be illustrated with the
weakness of WEP (described later in this chapter). Usually, the protection against
such misdeeds is achieved by encrypting that information.
• The data can be altered: an attacker can try to modify the content of the mes-

sage exchanged between (wireless) parties. These attacks are called active attacks.
We will see later several cases of active attacks such as man-in-the-middle attacks
perpetrated on GSM.
• The absence of wired link makes it much easier to cheat on identities: Being

untethered, the attacker can more easily impersonate a legitimate user.
• The radio channel can be overused: The radio spectrum being a shared resource,

there is a risk that a wireless operator or a user makes an excessive use of it. To solve
the problem between cellular operators, the solution consists in allocating to each
of them a licensed piece of the spectrum; but it can happen that several operators
have to share the same spectrum, as it is the case today in WiFi. The problem
of overuse by mobile users has not been an issue in cellular networks, because the
bitrates were upper-bounded by the protocols, under the supervision of the base
stations; but it can be an issue in WiFi because the stations can be programmed
in a selfish way. We will come back to this problem in Chapter 9.
• The channel can be jammed, notably in order to perpetrate a DoS attack: By

transmitting at the same time the victim transmits or receives data, an attacker
can make it impossible for the victim to communicate. This problem has been
studied in detail over the last decades. Typical solutions include spread spectrum
and frequency hopping (and very often a combination of the two). We will not focus
on anti-jamming techniques in this book, as they are more related to the physical
layer; yet, in Chapter 9 we will see that the threat of jamming can actually thwart
selfish behavior.

A second characteristic is that the users are usually mobile1, which has several
implications.

• As the user roves with her mobile device, the device becomes a way to permanently
trace his whereabouts, hence jeopardizing her privacy.2 We will devote a full
chapter to this crucial topic of privacy; In Section 1.3, we will see how this problem
is (very partially) solved in existing wireless networks.

1 The term “mobile” can designate a terminal that either communicates, moves, and then commu-
nicates again, or that communicates while moving (achieving the latter is of course technically
more challenging). The precise meaning of this adjective will depend on the context in which it
is used.

2 The passive attacks mentioned above can be mounted against another component of privacy,
namely the privacy of data.
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• Mobility also means that a given device must be able to roam across wireless
networks controlled by different operators. This requires that appropriate roaming
agreements are made between operators, notably to define the pricing and billing
policies.
• To be mobile the device must be small, meaning that it has limited storage, com-

puting power, and energy. The last of these limitations is the most significant,
as technological progress on batteries is much slower than on electronics. Usually,
the problem is solved by minimizing the number of computational operations to be
performed by the mobile station. This can however lead to poor engineering of the
security protocols.
• A mobile station can easily be stolen, with the risk that it is misused or reverse

engineered and that the data that it contains are accessed. The solution to this
problem typically consists in encrypting the data it contains and embedding a
tamper-resistant component in order to protect the cryptographic keys.

1.2 Security requirements

Based on the characteristics that we have just described, we are now in a position
to discuss the requirements usually expected to be met by secure systems. This will
help us to better understand how (and to what extent) they are fulfilled in existing
wireless networks.

• The most obvious requirement is authentication: For example, an operator must
be able to know who is trying to obtain connectivity through his network; likewise,
the user wants to make sure that he is indeed connected to the wireless operator
she chooses. Hence authentication is a fundamental mechanism to support access
control.
• Access control is the ability of an organization (e.g., a network operator) to grant

appropriate access to resources (connectivity, data,...) based on the user’s identity
and the organization’s policy.
• We have mentioned that the radio channel is particularly vulnerable to eavesdrop-

ping. Hence confidentiality of the exchanged information is also an important
requirement.
• As the radio channel is also highly vulnerable to active attacks, the integrity of

data must be appropriately protected. The data to be protected are not only the
users’ data, but also the data related to the control of the network.
• Another requirement we have already mentioned, is privacy. The network should

not reveal the location of the user, nor the party with which she communicates (yet
it is generally admitted that law enforcement agencies must have access to these
two families of information, at least under some well defined conditions).
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• Non-repudiation is also an important requirement: for example, it should not
be possible for a user, who has made use of a given service provided by a given
operator, to pretend that she did not. In other words, it must be possible for an
operator to prove that a given user really made use of the service that it provides,
typically in case of a billing dispute.
• Last but not least, the network must provide a certain level of availability. This

means in particular that it should provide higher priority to very important commu-
nications, such as an emergency call from a cellular phone; it should also guarantee
a fair share of the radio resource to mobile users located in the same radio domain.

1.3 How existing wireless networks are secured

Let us now examine how the security requirements listed above are satisfied – or not –
in existing wireless networks. The examples that we will consider here cover a wide
range of network types beginning from wide area wireless networks and ending with
personal area networks. More specifically, we briefly describe how security is provided
in cellular networks, in WiFi LANs, and in Bluetooth. We do not intend to give a
very detailed description of the security architectures of these systems; instead, and
in line with the spirit of this book, we describe only the principles underlying those
security architectures.

1.3.1 Cellular networks

Cellular networks have been deployed at a lively pace in the last decade, and prolif-
erated throughout the world. Today, cellular networks are so popular that in some
countries, the number of mobile subscribers already exceeds the number of fixed tele-
phone lines. Originally, cellular networks provided only voice communication services
and they could also be used to send and receive short text messages. Today, the
range of applications is much wider, including data communications, Internet access,
multimedia applications (e.g., video telephony), and mobile payment services, just to
name a few.

For political and historical reasons, cellular networks in different parts of the world
are based on different standards. In this subsection, we focus on the European ini-
tiatives: GSM (Global System for Mobile Communications) and UMTS (Universal
Mobile Telecommunications System). We note, however, that the principles are sim-
ilar in other cellular networks (notably in the US, in China, and in Japan).

GSM

Cellular networks are infrastructure-based networks. The infrastructure consists of
base stations and a wired backbone network that connects the base stations together,
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as well as to the wired telephone system and to the Internet. Each base station serves
only a limited physical area, called a cell, hence the name cellular. However, all the
base stations of a given network operator together can cover a large area (typically a
whole country in Europe). In addition, by connecting their backbones together and
setting up appropriate roaming agreements, different network operators can jointly
provide ubiquitous coverage and enable continent wide and ever worldwide mobility
for users.

The terminal equipment in cellular networks is typically a mobile phone. Mobile
phones in a given cell are logically connected to the base station of the cell via wireless
channels. They can initiate and receive calls to and from other mobile phones and
fixed telephones via the base station (and the backbone infrastructure). In fact, the
only wireless part in the system is the link between the mobile phone and the base
station; the rest is a wired network.3

Setting up and running a cellular network is very expensive. A large share of the
costs stems from the fact that cellular networks operate in licensed bands, meaning
that the network operator must pay a licence fee for the use of the spectrum. The
other part of the costs can be attributed to installing the base stations and deploying
the backbone network, as well as to setting up the billing and the customer care
infrastructure. At the end of the day, these costs are borne by the subscribers, who
must pay for the services (including the access to the network) provided by the network
operator.

This leads us to the main security requirement of GSM (at least from the operators’
point of view): subscriber authentication. Subscriber authentication is needed in
order to support billing (i.e., to identify who must be charged for using the network).4

In addition to subscriber authentication, GSM also provides some countermeasures
for the inherent weaknesses of the wireless channel. More specifically, GSM provides
confidentiality for voice communications and signalling over the wireless interface, and
it protects the privacy of the subscribers by hiding their identity from eavesdroppers.
Being a wide area system, GSM supports the roaming of subscribers across networks
operated by different network operators. This means that the above mentioned GSM
security services operate in a multi-party environment.

A fundamental assumption in the GSM security architecture is that there exists a
long-term contractual relationship between a subscriber and a network operator; the
latter is called the home network operator of the given subscriber. When setting up
this relationship, the home network operator verifies the identity of the subscriber, and
obtains further information about her, including the billing address. This contractual
3 Base stations can also be connected to the backbone infrastructure via wireless links. However,

those links are static and can be easily secured by the network operator.
4 This guarantees only a weak form of non-repudiation, because a malicious operator could forge

faked evidence of communications.
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relationship is represented by a long-term secret key that is shared by the subscriber
and the home network operator, and serves as the basis for the authentication of the
subscriber.

In GSM, the secret key and other identity related information of the subscriber are
not stored in the mobile phone, but in a separate security unit, which is called the
SIM (Subscriber Identity Module). The SIM is implemented as a smart card with a
small form factor, which can be inserted in and removed from the mobile phone. In
effect, the key could have been stored in the non-volatile memory of the mobile phone
itself, encrypted with a password. However, storing the key in a removable module
has proved to be an excellent design choice, because it allows for the portability of
the subscriber identity across different devices: The subscriber can remove the SIM
from one mobile phone, insert it into another (e.g., when she buys a new device), and
she still has the same phone number and receives a single bill.

Subscriber authentication in GSM is based on the so-called challenge-response prin-
ciple. The subscriber receives an unpredictable random number as a challenge, and
she must compute a correct response in order to be authenticated. The correct re-
sponse is computed from the challenge and the long-term secret key of the subscriber.
As the secret key is known exclusively to the subscriber and to the home network
operator, no one else can compute the correct response. Thus, if the network opera-
tor receives the correct response, it believes that the response was produced by the
subscriber; hence she must be present. The unpredictability of the challenge ensures
the freshness of the response: The network operator knows that the response must
have been computed after it sent the challenge, because no one (not even the sub-
scriber) could predict what the challenge would be. Clearly, the computations needed
for authentication are not performed by the subscriber herself, but they are carried
out by her mobile phone and the SIM without any user intervention.

We will now describe the steps of the GSM subscriber authentication protocol. For
the sake of generality, we assume that the subscriber roams into a foreign network,
usually referred to as the visited network. As the first step, the mobile phone reads
the IMSI (International Mobile Subscriber Identity) from the SIM, and sends it to
the visited network. Based on the IMSI, the visited network determines the identity
of the home network of the subscriber. Then, the visited network forwards the IMSI
to the home network via the backbone. The home network looks up the secret key
K that corresponds to the subscriber identified by the IMSI. It then creates a triplet
(RAND ,SRES ,CK ), where RAND is an unpredictable random number used as the
challenge, SRES is the correct response to the challenge, and CK is a key to be used
for encrypting communications over the wireless interface between the mobile phone
and the base station of the visited network. RAND is generated by a Pseudo-Random
Number Generator (PRNG). SRES and CK are computed from RAND and K using
the algorithms denoted by A3 and A8, respectively, in the GSM specifications. The



10 The security of existing wireless networks

triplet (RAND ,SRES ,CK ) is sent to the visited network, which challenges the mobile
phone with RAND . The mobile phone passes RAND to the SIM, which computes
and outputs the response SRES ′ and the encryption key CK ′. The mobile phone
sends SRES ′ to the visited network, which compares it to SRES . If SRES ′ = SRES ,
then the subscriber is authenticated. In this case CK ′ = CK also holds. After the
successful authentication of the subscriber, the communications between the mobile
phone and the base station of the visited network are encrypted and decrypted with
CK by using the stream cipher denoted by A5 in the GSM specifications. The steps
of the protocol are summarized in Figure 1.1.

A3 A8

RAND K

SRES' CK'

A3 A8

RAND

K

SRES CK

PRNG

RAND

SRES = SRES'
?

mobile phone 
+ SIM card

visited
network

home
network

IMSI
IMSI

(RAND, SRES, CK)
RAND

SRES'

Fig. 1.1. Illustration of the GSM authentication protocol

Note that the protocol ensures that the visited network can authenticate the sub-
scriber without possessing the subscriber’s long-term secret key. This is achieved with
the help of the home network that provides a matching challenge-response pair to the
visited network as part of the triplet. Similarly, the establishment of the encryption
key between the mobile phone and the base station of the visited network is carried
out with the help of the home network and the triplet mechanism. This requires
some trust in the home network operator by the visited network operator, which is
established by signing roaming agreements between the two operators. In practice,
the home network can transfer several triplets to the visited network when the sub-
scriber first authenticates herself (e.g., when she switches on her phone). In this way,
there is no need to contact the home network every time the subscriber needs to be
authenticated.

The identity of the subscriber is hidden from eavesdroppers on the wireless interface
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as follows. After each successful authentication, the subscriber receives a temporary
identifier called TMSI (Temporary Mobile Subscriber Identifer) from the visited net-
work. The TMSI is encrypted with the freshly established key CK , therefore, it
cannot be eavesdropped. In the next authentication request, the mobile phone uses
the TMSI, instead of the IMSI, to identify the subscriber. The TMSI is mapped to the
IMSI by the visited network, and then the protocol proceeds as we described above.

When the subscriber moves into another visited network, the new network contacts
the previous one and sends it the TMSI received from the mobile phone. The previous
network looks up the data associated with the TMSI and transfers the IMSI of the
subscriber and the remaining triplets (if any) to the new network, so that the new
network can continue serving the subscriber. It can happen that the data associated
with the TMSI are no longer available in the previous network (e.g., if the mobile
phone has been switched off for a long time). In this case, the new network requests
the mobile phone to send the IMSI in order to bootstrap the TMSI mechanism again.

To summarize, the GSM security architecture provides the following security ser-
vices:

• Subscriber authentication is based on a challenge-response protocol and a long-term
secret key shared by the subscriber and the home network operator. Data needed
to authenticate the subscriber is transferred from the home network to the visited
network in form of triplets, such that the long-term secret key is not revealed to
the visited network.
• Confidentiality of communications and signalling over the wireless interface is en-

sured by encryption with a session key established between the subscriber’s mobile
phone and the base station of the visited network, during the subscriber authenti-
cation procedure, with the help of the home network operator.
• Protection of the subscriber’s identity from eavesdroppers on the wireless interface

is ensured by using short-term temporary identifiers instead of the real identifier of
the subscriber during subscriber authentication. In some cases, the real identifier
must be used; however, this happens rarely, and so it is difficult for eavesdroppers
to track subscribers.

UMTS

The GSM security architecture provides a reasonable level of protection, but it has
some deficiencies; hence the design of a new security architecture for UMTS, the next
generation cellular network in Europe.

One main problem with the GSM security architecture is that it provides only uni-
lateral authentication, where the subscriber is authenticated and the visited network
operator is not. This means that someone can set up a fake base station and imple-
ment a man-in-the-middle attack. This probably seemed to be too far fetched in the
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80’s when GSM was designed. But today, there are commercially available devices,
called “IMSI catchers”, that were originally intended for protocol testing purposes,
but can also be used (or misused) to implement a fake base station attack.

The fake base station issue is further aggravated by the fact that GSM authenti-
cation triplets can be re-used indefinitely. Indeed, the subscriber cannot verify the
freshness of the challenge that she receives in the subscriber authentication protocol.
Thus, a fake base station can coerce the subscriber’s mobile phone to re-establish an
old, possibly compromised, encryption key with the fake base station.

Another problem is that the GSM security architecture does not provide integrity
protection services for communications and signalling over the wireless interface. Al-
though it is true that modifying messages on-the-fly in a wireless channel is quite
challenging (if not impossible in practice), if the communication between the mobile
phone and the visited network takes place through a fake base station, then the at-
tacker does not need to carry out the modifications in the wireless channel, but it can
implement the attack within the fake base station. In addition, as a stream cipher is
used for encryption, the attacker can easily manipulate individual bits in encrypted
messages without decrypting them. Of course, if the messages carry parts of a voice
communication, then the attacker can only achieve some distortion, but it is very
unlikely that it can alter the true content of the communication in an unnoticeable
way. It can still, however, attack the signalling information. Moreover, besides voice
communications, cellular networks are increasingly used for data communications,
where flipping a single bit in a message can have devastating consequences.

Additional reasons for a new design include the short length of the encryption
key (practically 54 bits only), and the weaknesses discovered in the commonly used
implementation of the A3 and A8 algorithms, which, under specific conditions, allow
an attacker to compromise the long-term secret key of the subscriber and clone her
SIM card [64].

The UMTS security architecture addresses the weaknesses listed above. The de-
sign approach was to keep the general principles of the GSM security architecture,
and to extend it with the necessary mechanisms for authenticating the network to
the subscriber and providing integrity protection over the wireless interface. For
this reason, the GSM triplets are replaced by authentication vectors that have five
elements: (RAND ,XRES ,CK , IK ,AUTN ). As before, RAND is an unpredictable
random number, generated by a PRNG, and used as a challenge in the subscriber
authentication protocol, XRES is the expected response to RAND , and CK is an en-
cryption key to be used between the mobile phone and the base station of the visited
network. Both XRES and CK are computed from RAND and the long-term secret
key K of the subscriber. In addition, IK is an integrity protection key and AUTN is
a token that authenticates the home network to the subscriber and proves the fresh-
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ness of RAND . AUTN consists of three fields: AUTN = (SQN ⊕AK, AMF, MAC),
where

• SQN is a sequence number maintained synchronously by both the subscriber and
the home network;

• AK is called the anonymity key, and it is used to hide the value of SQN from
eavesdroppers. AK is generated from RAND and K;
• AMF is an authentication and key management field used to pass parameters from

the home network to the subscriber, but it is not fully specified in the UMTS
standard;
• MAC is a message authentication code computed over RAND , SQN , and AMF

using the long-term key K.

The construction of AUTN and the authentication vector is illustrated in Figure 1.2.
Functions f1, f2, f3, f4, and f5 are appropriate one-way functions defined in the
UMTS standard.

f1f2 f3 f4 f5

MAC

XRES CK IK

AK

PRNG SQN

SQN⊕AK AMF

AMF

RAND AUTN

K

RAND

Fig. 1.2. Construction of AUTN and the authentication vector in UMTS

The subscriber authentication protocol is modified in such a way that, upon re-
quest, the visited network receives an authentication vector from the home network
and it passes not only the challenge RAND to the subscriber, but also the authentica-
tion token AUTN . The subscriber first generates the anonymity key AK and decodes
the sequence number SQN received in AUTN . SQN is encoded with AK to protect
the privacy of the subscriber. Otherwise, an eavesdropper could associate different
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executions of the authentication protocol with consecutive sequence numbers to the
same subscriber. Once SQN is obtained, the subscriber verifies the MAC . If this
verification is successful, then she knows that RAND originates from her home net-
work. Then, the subscriber verifies if SQN is greater than the last sequence number
stored by the subscriber. If this does not hold, then the protocol fails. This prevents
the subscriber from accepting an old challenge. Finally, the subscriber computes a
response RES to RAND and sends it back to the visited network. The subscriber
also computes CK and IK . Naturally, these computations are not performed by the
subscriber herself, but her mobile phone and its security unit, which in this case is
called USIM.

The visited network compares RES to XRES , and if they are equal, then the
authentication of the subscriber succeeds. After that, the mobile phone and the base
station of the visited network protect the integrity and the confidentiality of their
communications with IK and CK , respectively.

There is one weakness in the UMTS subscriber authentication protocol identified in
[391]: the visited network is not authenticated to the subscriber. Although the visited
network can authenticate itself to the home network, the home network does not pass
any confirmation regarding the identity of the visited network to the subscriber in
the authentication token AUTN . This allows a malicious network operator X to
masquerade as network Y to the subscriber. It would still authenticate itself as X to
the home network, but the subscriber would not know this, and she would believe that
she is served by Y . This can be a problem, as X and Y could use different tariffs, and
the subscriber would learn that she actually used a more expensive network when she
receives her bill at the end of the month. One solution to this problem is to include
the identifier of the visited network in the AMF field of AUTN .

1.3.2 WiFi LANs

Security has always been considered an important issue in WiFi networks. Conse-
quently, early versions of the IEEE 802.11 wireless LAN standard [185] already fea-
tured a security architecture, called WEP (Wired Equivalent Privacy). As its name
indicates, the objective of WEP is to render wireless LANs at least as secure as wired
LANs (without particular security extensions). For instance, if an attacker wants to
connect to a wired Ethernet network, she needs physical access to the Ethernet hub.
However, this is usually made difficult by placing the hub in a locked room. In case
of an unprotected wireless LAN, the attacker has an easier job because she does not
need to have physical access to any equipment in order to connect to the network.
WEP is intended to transform this easy job into a difficult one. More precisely, WEP
is intended to increase the level of difficulty of attacking wireless LANs such that it
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becomes comparable to the difficulty of attacking wired LANs (e.g., breaking into
locked rooms).

Unfortunately, WEP did not make attacks as difficult as its designers hoped. This
would not have been a problem if the weaknesses had been discovered in due time. But
things happened differently: WEP has already been deployed when cryptographers
and security experts discovered its flaws. It became evident that WEP did not provide
adequate protection. Soon after this discovery, tools that automate the cracking of
WEP keys appeared on the Web.

In response to these developments, the IEEE came up with a new security archi-
tecture for wireless LANs, described in an extension to the 802.11 standard. This
extension is called IEEE 802.11i. In this subsection, we discuss both WEP and IEEE
802.11i. The reason for discussing 802.11i is clear: this is the current approach to
protect WiFi LANs. We discuss WEP because, despite its known weaknesses, many
systems still support it (for backward compatibility), and thus probably many people
and organizations still use it. Also, the design flaws in WEP illustrate many subtleties
in security protocol design that are interesting in general.

WEP

There are two basic security problems in wireless LANs: First, due to the broadcast
nature of radio communications, wireless transmissions can be easily eavesdropped.
Second, and more important, connecting to the network does not require physical
access to the network Access Point (AP), thus any device can try to illegitimately use
the services provided by the network. WEP attempts to solve the first problem by
encrypting messages. The second problem is addressed by requiring the authentication
of the mobile stations (STAs) before allowing their connection to the network.

The authentication of the STA is based on a simple challenge-response protocol,
similar to that used in GSM systems. Once authenticated, the STA communicates
with the AP by encrypted messages. The key used for encryption is the same as the
one used for authentication. The encryption algorithm specified by WEP is based
on the RC4 stream cipher (for the description of the operation of RC4 see e.g., page
397–398 of [335]). Stream ciphers produce a long pseudo-random byte sequence out
of a short secret seed value; this pseudo-random sequence is then XORed to the clear
message (byte by byte) in order to generate the encrypted message. WEP works in
the same way. The sender (the STA or the AP) of a message M initializes the RC4
algorithm with the secret key and XORs the pseudo-random sequence K produced
by RC4 to M . The receiver of the encrypted message M ⊕K uses the same secret
key to initialize the RC4 algorithm that will then produce the same pseudo-random
sequence K. Then K is XORed to the encrypted message to obtain the clear message:
(M ⊕K)⊕K = M .

But the description above is not precise enough: There is one more thing that



16 The security of existing wireless networks

WEP does when encrypting messages. It is easy to see that if encryption worked as we
described in the previous paragraph, then every message would be encrypted with the
same pseudo-random sequence K, as RC4 is initialized with the same secret key before
encrypting every message. This would be bad for several reasons. Let us assume, for
instance, that an attacker eavesdrops two encrypted messages M1⊕K and M2⊕K. By
XORing these two messages together, she gets (M1⊕K)⊕(M2⊕K) = M1⊕M2. This
is equivalent to one message being encrypted with the other, but clear messages are
far from being pseudo-random sequences. Thus, M1 ⊕M2 is a very weak encryption,
and the attacker is likely to be able to break it using the statistical properties of the
clear messages.5

In order to address this problem, WEP appends an IV (Initialization Vector) to
the secret key before initializing the RC4 algorithm, where the IV changes for every
message. This ensures that the RC4 algorithm produces a different pseudo-random
sequence for every message. The receiver should also know the IV in order to be able
to decrypt the messages received. For this reason, the IV is sent in clear together
with the encrypted message. In principle, this is not a problem, as the knowledge of
the IV is not enough to decrypt the message: the secret key is also needed for the
proper initialization of the RC4 algorithm. As for the sizes, we note that the IV is 24
bits long and the secret key is usually 104 bits long6, although some vendors provide
products that allow for longer keys. Figure 1.3 illustrates the WEP encryption and
decryption procedure.

Figure 1.3 also shows that before encryption, the sender attaches an integrity check
value (ICV) to the clear message. The purpose of this value is to enable the receiver to
detect any malicious modifications of the message by an attacker. In the case of WEP,
the ICV is a CRC value computed for the clear message. As a CRC value alone cannot
enable the detection of malicious modifications (because the attacker can compute the
new CRC value for the modified message), the CRC value is also encrypted in WEP.
The rationale is that in order to modify the message in an unnoticeable way, now
the attacker must encrypt the new CRC value, but she cannot do this without the
knowledge of the secret key. This reasoning is not quite solid, as we will see below.

We must also mention how keys are handled in WEP. The standard states that each
STA has its own key, known only to that STA and the AP. However, this makes key
management on the AP’s side complicated, since the AP must store a key for every
STA. For this reason, most implementations do not actually support this option. The
standard also specifies a default key, known to every STA and the AP. Originally,
5 It is also possible that the attacker (partially) knows the content of one of the messages (e.g., the

value of the header fields), in which case she can easily compute the (partial) content of the other
message.

6 In various marketing materials, this is interpreted as “128-bit security”. This is of course mislead-
ing (as marketing materials in general), because out of 128 bits, 24 bits are transferred in clear,
hence known by the attacker.
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Fig. 1.3. Encryption and decryption in WEP

this key was intended to be used for the encryption of broadcast messages originated
by the AP. But most WEP implementations support only this default key. Hence, in
practice, in most wireless LANs there is a single common key. This key is installed in
every mobile device and in the AP manually. Clearly, this solution can only be used to
protect the communications from an outside attacker, but the devices that belong to
the network can (in principle) decrypt each other’s messages (and impersonate each
other).

As it will be clear from the brief overview below, WEP does not actually achieve
any of its original design goals. The discovered flaws are instructive; they demonstrate
the many pitfalls of security protocol design.

• Authentication: Authentication in WEP has several problems. First of all, au-
thentication is not mutual, meaning that the AP does not authenticate itself to the
STA. Second, the authentication and the encryption mechanism use the same secret
key. This is not desirable, as an attacker can exploit the weaknesses of both the
authentication and the encryption method to break the secret key. Having different
keys for different functions is a better security engineering practice.

The third problem is that the STA is authenticated only at the time when it tries
to connect to the network. Once the STA is associated with the AP, anyone can
send messages in the name of that STA by spoofing its MAC7 address. Apparently,
this is not a real problem, because the attacker does not know the secret key
that is needed to construct well-formed encrypted messages. Hence, the attacker’s

7 When followed by “address”, “protocol”, or “layer”, “MAC” means Medium Access Control, and
not Message Authentication Code.
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messages are dropped by the AP anyway. But as we mentioned before, often each
STA uses the same secret key. This means that the attacker can fabricate messages
in the name of one STA by using encrypted messages of another STA recorded
earlier. This is not detected by the AP.

The fourth problem stems from the fact that WEP uses RC4 in the authenti-
cation protocol for encrypting the random challenge. Thus, an attacker can easily
obtain the challenge C and the encrypted challenge R = C ⊕ K by overhearing
the exchange, and from these, she can compute the pseudo-random sequence K.
However, knowledge of K allows the attacker to impersonate the STA later on, as
she can now compute the response R′ = C ′ ⊕K for any other challenge C ′. The
IV mechanism of WEP does not mitigate this problem, since the IV is selected by
the sender of the encrypted message; in our case, the sender is the attacker, who
will always select the IV that was appended to R. Moreover, as in practice, every
STA uses the same key, the attacker can connect to the network in the name of
any STA. Obviously, a successful association with the AP is only the first part of
the attack; in order to send and receive messages in the name of a legitimate STA,
the attacker needs to know the secret key. However, other flaws in WEP described
below allow the attacker to retrieve the secret key.
• Integrity protection: The integrity protection of WEP messages is based on at-

taching an ICV to the message, where the ICV is a CRC value computed for the
message and encrypted with the secret key. Formally, the encrypted message can
be written as (M ||CRC (M))⊕K, where M is the clear message, K is the pseudo-
random sequence produced by the RC4 algorithm from the IV and the secret key,
CRC (.) denotes the CRC function, and || denotes concatenation. It is well known
that the CRC function is linear with respect to the XOR operation, which means
that CRC (X ⊕ Y ) = CRC (X)⊕CRC (Y ). Based on this observation, an attacker
can manipulate protected WEP messages by flipping any of their bits unnoticeably,
although she does not get access to the contents of the messages. Let us denote the
changes that the attacker wants to make in the message by ∆M . Then the attacker
wants to obtain ((M⊕∆M)||CRC (M⊕∆M))⊕K from the original protected mes-
sage (M ||CRC (M))⊕K that she eavesdropped. For this purpose, it is sufficient to
compute CRC (∆M), and then to XOR ∆M ||CRC (∆M) to the original protected
message. The following derivation shows why this works:

((M ||CRC (M))⊕K)⊕ (∆M ||CRC (∆M))

= ((M ⊕∆M)||(CRC (M)⊕ CRC (∆M)))⊕K

= ((M ⊕∆M)||CRC (M ⊕∆M))⊕K

where in the last step we used the linearity of the CRC function. Since CRC (∆M)
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can be computed without the secret key, the attacker can succeed despite the en-
cryption and the ICV mechanism.

Another related integrity requirement is the detection of replayed messages. Un-
fortunately, WEP does not use any replay detection mechanism, therefore, an at-
tacker can replay any previously recorded message that will be accepted by the
AP.
• Confidentiality: As we said before, when using a stream cipher, it is essential that

each message is encrypted with a different pseudo-random sequence. In WEP, this
is ensured by the IV mechanism, but this has some problems too. The origin
of the problem is that the IV is only 24 bits long, which means that there are
only approximately 17 million possible IV values. A WiFi device can transmit
approximately 500 full length frames in a second, thus, the whole IV space is used
up in a few hours. Once all IVs have been used, they start to repeat, and repeating
IVs mean repeating pseudo-random sequences used for encryption. The problem is
aggravated by the fact that in many networks, there is a single secret key used by
every device with potentially different IVs. Hence the IV space will be used up even
faster. Another practical problem is that in many WEP implementations, the IV is
initialized with 0 at startup, and then incremented by one after each message sent.
This means that if there are several devices switched on nearly at the same time,
then they all use the same sequence of IVs; if they use the same secret key too, then
the pseudo-random sequences used for encryption will be the same. In this case,
the attacker would not even need to wait, but it would get messages encrypted with
the same pseudo-random sequence immediately.

The total collapse of WEP is caused by the inappropriate use of the RC4 cipher.
It is known that there exist so-called weak RC4 keys [138]. A weak key is a seed
value from which the RC4 algorithm produces an output that does not look random.
More precisely, when a weak key is used to seed RC4, one can infer the bits of the
seed from the first few bytes produced by the algorithm. For this reason, security
experts suggest always throwing away the first 256 bytes of the RC4 output. This
simple solution would have solved the problem of weak keys, but WEP did not adopt
it. Also, due to the ever changing IV value (which is part of the seed), a weak key
can be encountered sooner or later, and the attacker can easily know that a weak key
is being used, because the IV is transmitted in clear. Based on these observations,
some cryptographers constructed a method that breaks the full 104-bit secret key
by eavesdropping on only a few hundred thousands messages. Compared to the
previously described flaws, this one is the far most serious, because it allows the
attacker to crack the secret key itself: And once she has the secret key, she can do
everything. Moreover, the attack is not only powerful, but easy to automate, and
thanks to some “helpful” people, automated attacking tools are readily available
on the Web for public use (e.g., Aircrack, Weplab).
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IEEE 802.11i

When the flaws in WEP became apparent, the IEEE began to develop a new security
architecture for WiFi networks, described in the 802.11i specification [187]. The new
concept is called RSN (Robust Security Network) in order to distinguish it from WEP.
RSN was designed more carefully than WEP. It includes a new method for authentica-
tion and access control, which is based on the model defined in the 802.1X standard.
The mechanisms for integrity protection and confidentiality are also changed, and
they use the AES (Advanced Encryption Standard) [5] cipher instead of RC4.

However, it is not possible to switch from WEP to RSN overnight. The reason is
that for efficiency reasons, many WiFi devices (mainly WLAN adapter cards) support
the encryption algorithm in their hardware. Thus, old devices support RC4 and not
AES. This problem cannot be solved by a simple firmware update; the hardware needs
to be changed, which slows the deployment of RSN.

This has been recognized by the IEEE too, and they included an optional protocol
in the 802.11i specification, which still uses the RC4 cipher but fixes the flaws in
WEP. This protocol is called TKIP (Temporal Key Integrity Protocol).

Manufacturers immediately adopted TKIP, as it provides a solution to the prob-
lems of WEP, and it can be deployed immediately without changing the hardware.
They did not wait until the 802.11i architecture was finalized by the lengthy stan-
dardization procedure, but they issued their own specification, called WPA (WiFi
Protected Access), based on TKIP. In other words, WPA is a specification supported
by WiFi manufacturers, and it contains a subset of RSN that can also run on old
devices that support only the RC4 cipher. Authentication and access control, as well
as key management, are the same in WPA and in RSN. The difference between the
two concepts lies in the mechanisms used for integrity protection and confidentiality.
We must also mention that RSN is also called WPA2 by many manufacturers.

Below, we first give an overview of the authentication, access control, and key
management procedures of 802.11i. Then, we briefly summarize the operation of
TKIP (used in WPA) and AES-CCMP (used in RSN).

Authentication and access control: The model of authentication and access con-
trol in 802.11i was borrowed from the 802.1X standard [186]. IEEE 802.1X was
originally intended for wired LANs, but it turned out that the same concepts can be
used in wireless LANs too (with a few extensions).

The 802.1X model distinguishes three entities in the authentication procedure: the
supplicant, the authenticator, and the authentication server. The supplicant wants to
access the network, and for this reason it wants to authenticate itself. The authenti-
cator controls access to the network. In the model, this is represented by controlling
the state of a port. The default state of the port is “closed”, which means that data
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traffic is disabled. The authenticator can “open” the port if this is authorized by the
authentication server. Actually, the supplicant authenticates itself to the authenti-
cation server, and if this authentication is successful, then the authentication server
grants access to the network by instructing the authenticator to open the port.

In the case of WiFi networks, the supplicant is the mobile device and the authen-
ticator is the AP. The authentication server is a process that can run on the AP in
the case of smaller networks, or on a dedicated server machine in the case of larger
networks. In WiFi, the port is not a physical connector, but a logical control imple-
mented in software running on the AP.

In a wired LAN, a device authenticates itself once, when it is physically connected
to the network. There is no need for further authentication (at least for network
access control purposes), because the port used by the device cannot be used by
someone else. This would require first disconnecting the device that currently uses
the port, which would be detected by the hardware of the authenticator, and the port
would be disabled. The situation is different in WiFi networks, because there is no
physical connection between the STA and the AP. Hence, once the STA authenticates
itself and associates with the AP, someone else can try to steal its session by spoofing
its MAC address. For this reason, 802.11i extends 802.1X with the requirement of
setting up a session key between the STA and the AP when the STA first requests
access to the network; this session key can then be used to authenticate any further
communications between the STA and the AP.

The authentication procedure in 802.11i uses EAP (Extensible Authentication Pro-
tocol) [9] to carry the messages that need to be exchanged between the STA and the
authentication server (see Figure 1.4 for illustration). Note that EAP is only a carrier
protocol: It does not provide authentication services itself, but it can carry the mes-
sages of any higher layer authentication protocol. That is why it is called “extensible”.
How the higher layer protocol messages are embedded into EAP messages must be
specified for each and every higher layer protocol. Such specifications already exist for
many widely used protocols such as the TLS (Transport Layer Security) Handshake
and the GSM authentication protocols.

There are four message types in EAP: request, response, success, and failure. EAP
request and response messages carry the messages of the embedded authentication
protocol from the STA to the server, and from the server to the STA, respectively. The
EAP success and failure messages are used to signal the result of the authentication
to the supplicant.

As we indicated before, in 802.1X, the supplicant authenticates itself to the au-
thentication server. This means that in WiFi networks, the EAP protocol and the
embedded higher layer authentication protocol are executed by the mobile device
requesting access and the authentication server. The AP relays messages without
interpreting them. The AP understands only the EAP success and failure messages.
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EAPOL (802.1X) EAP over RADIUS (RFC 3579)

EAP (RFC 3748)

EAP-TLS (RFC 2716)

TLS Handshake (RFC 2246)

STA AP Auth Server

Fig. 1.4. Authentication protocol architecture of 802.11i.

When it sees an EAP success message passing, it enables the port and lets the mobile
device connect to the network.

EAP messages between the mobile device and the AP are carried by the EAPOL
(EAP over LAN) protocol defined in 802.1X. EAP messages between the AP and the
authentication server can be carried by various protocols. WPA mandates the use
of RADIUS [10] for this purpose, whereas RSN specifies RADIUS only as an option.
In any case, RADIUS is already quite widely deployed, therefore it is expected to be
often used in RSN, too.

As we mentioned before, the result of the authentication process in WiFi is not only
the authorization for the mobile device to access the network but also a session key to
protect further communications between the mobile device and the AP. However, as
authentication takes place between the mobile device and the authentication server,
the session key is also established between them, and it must be securely transferred
to the AP. The RADIUS protocol makes this possible by means of the MS-MPPE-
Recv-Key RADIUS attribute that has been specified for key transfer purposes. The
session key is transferred in encrypted form, where the encryption uses a long-term key
shared by the AP and the authentication server. This latter key is usually installed
manually in the AP and in the RADIUS server by a system administrator.

Key management: The session key established between the mobile device and the
AP as the result of the authentication procedure is called the pairwise master key
(PMK). It is a pairwise key, because it is known only to that mobile device and the
AP (and the authentication server, but it is considered to be a trusted entity); and it
is a master key, because it is not used directly for encryption or integrity protection of
messages, but it is used to derive encryption and integrity keys. More precisely, both
the mobile device and the AP derive four keys from the PMK: a data-encryption key,
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a data-integrity key, a key-encryption key, and a key-integrity key. These four keys
together are called the pairwise transient key (PTK). We must note that AES-CCMP
uses the same key for encryption and for integrity protection of data, therefore, in
the case of AES-CCMP, the PTK consists of three keys only. Besides the PMK, the
derivation of the PTK also uses as input the MAC addresses of the parties (the mobile
device and the AP) and two random numbers generated by the parties.

The mobile device and the AP exchange their random numbers using the so-called
four-way handshake protocol. This protocol also provides evidence to each party that
the other party possesses the PMK. Messages of the four-way handshake protocol are
carried by the EAPOL protocol in EAPOL messages of type Key. The contents of
the messages and the operation of the four-way handshake protocol are described as
follows:

(a) The AP sends its random number to the mobile device. When the random
number is received by the mobile device, it has everything needed for the
derivation of the PTK. Hence, the mobile device computes the PTK.

(b) The mobile device sends its random number to the AP. This message also car-
ries a Message Integrity Code (MIC), computed by the mobile device using the
key-integrity key just derived from the PMK. Upon reception of this message,
the AP has everything needed for the derivation of the PTK. Hence, the AP
computes the PTK and then uses the key-integrity key to verify the MIC. If the
verification is successful, then the AP believes that the mobile device possesses
the PMK.

(c) The AP sends a message that contains a MIC to the mobile device. The MIC
is computed using the key-integrity key of the PTK. If the mobile device can
successfully verify the MIC, then it believes that the AP possesses the PMK
too. This message contains the starting value of a sequence number that will
be used to number further data packets, and hence to detect replay attacks. In
addition, this message signals to the mobile device that the AP has installed
the keys and it is ready for encrypting all subsequent data packets.

(d) The mobile device acknowledges the reception of the third message. This
acknowledgement also means that the mobile device is ready for encrypting all
subsequent data packets.

Once the PTK is derived and the keys are installed, subsequent data packets be-
tween the mobile device and the AP are protected by the data-encryption and data-
integrity keys. However, these keys cannot be used to protect broadcast messages sent
by the AP. Those broadcast messages should be protected with keys that are known
to all mobile devices and the AP. Therefore, the AP generates additional key material,
called the group transient key (GTK). The GTK contains a group encryption key and
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a group integrity key and it is sent to each mobile device separately encrypted with
the key-encryption key of the given mobile device.

TKIP and AES-CCMP: Both TKIP (Temporal Key Integrity Protocol) and AES-
CCMP (AES CTR Mode and CBC MAC Protocol) are based on the key hierarchy
described in the previous paragraph. In particular, they use the data-encryption and
data-integrity keys (of the PTK) to protect the confidentiality and the integrity of the
data packets sent between the mobile device and the AP. However, they use different
cryptographic algorithms. TKIP, just like WEP, uses RC4, but unlike WEP, provides
more security. The advantage of TKIP is that it runs on old WEP hardware after
some firmware upgrade. AES-CCMP needs new hardware that supports the AES
algorithm, but it provides a clearer, more elegant and robust solution than TKIP
does.

TKIP fixes the flaws in WEP as follows:

• Integrity: TKIP introduces a new integrity protection mechanism, called Michael.
Michael operates at the Service Data Unit (SDU) level (i.e., it operates on data
received by the MAC layer from higher layers before those data are fragmented).
This makes it possible to implement Michael in the device driver, which in turn
allows the introduction of Michael as a software upgrade.

In order to detect replay attacks, TKIP uses the IV as a sequence number.
Thus, the IV is initialized with some initial value and then incremented after the
transmission of every message. The receiver keeps track of the IVs of the recently
received messages. If the IV of a freshly received message is smaller than the
smallest stored IV value, then the receiver drops the message; whereas if the IV is
larger than the largest stored IV value, then it keeps the message and updates its
stored IVs. If the IV of an incoming message falls between the smallest and the
largest stored IV value, then the receiver checks if that IV is already stored; if so,
then it drops the message, otherwise it keeps the message and stores the new IV.
• Confidentiality: Recall that the main problem with WEP encryption was that the

IV size was too small and that the existence of RC4 weak keys was not taken
into consideration. In order to overcome the first problem, in TKIP, the IV size is
increased from 24 bits to 48 bits. This seems like an easy solution, but the difficulty
is that the WEP hardware still expects a 128-bit long RC4 seed value. Thus, the
48-bit IV and the 104-bit key must somehow be compressed into 128 bits.

As for the problem of weak keys, in TKIP, each message is encrypted with a
different key. Thus, the attacker cannot observe a sufficient number of messages
that are encrypted with the same (potentially weak) key. The message keys are
generated from the data-encryption key of the PTK.

TKIP’s new IV mechanism and the generation of the message keys are illustrated
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in Figure 1.5. The 48-bit IV is divided into a 32-bit upper part and a 16-bit lower
part. The upper part of the IV is combined with the 128-bit data-encryption key of
the PTK and the MAC address of the device. The result of this computation is then
combined with the lower part of the IV in order to obtain the 104-bit message-key.
The RC4 seed value for TKIP is obtained by concatenating the message-key to the
lower part of the IV and a dummy byte (designed to avoid weak RC4 keys).
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Fig. 1.5. Generation of the RC4 seed value in TKIP

The designers of AES-CCMP had an easier job than the designers of TKIP, because
they were not constrained by the peculiarities of the old WEP hardware. Thus, they
simply replaced RC4 and based their design on the AES block cipher [5]. They
defined a new mode for AES, called CCM, which is the combination of two previously
known mechanisms: CTR (Counter) mode encryption and CBC MAC (Cipher Block
Chaining - Message Authentication Code) (see Appendix A for more details on these
mechanisms). In the CCM mode, the sender of a message computes the CBC MAC
value of the message, attaches it to the message, and then encrypts the whole lot
in CTR mode. The CBC MAC computation covers the header of the message too,
while the encryption is applied only to the message body. The CCM mode ensures
both confidentiality and integrity of the message. Replay detection is ensured by
sequence numbering the messages. The sequence number is integrated into the CBC
MAC value of the message by placing it in the initialization block of the CBC MAC
computation.
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Public WiFi hotspots

So far, we described how WiFi LANs are secured in a corporate environment. In
public WiFi hotspots, there are slightly different security issues and solutions. The
main differences between the corporate and the public settings are the following:

• The users of a public WiFi hotspot do not belong to a common group, hence they
do not necessarily trust each other and the operator of the hotspot. Similarly, the
hotspot operator does not trust the users. Therefore, any security solution based
on a common group key (e.g., WEP) is inappropriate for the public setting. Firstly,
using the group key, users can impersonate each other. Secondly, users can reveal
the group key to anyone allowing illegitimate access to the hotspot.
• In addition, in a public WiFi hotspot that can be used free of charge, the users

usually do not have a long-term relationship with the operator of the hotspot. This
means, in particular, that user authentication cannot be based on long-term secret
keys, like in corporate networks. Moreover, installing any type of key is a hassle
for users.
• Finally, in the case of public access, the network behind the WiFi LAN can be inse-

cure, unlike in a corporate environment, where the corporate intranet is considered
to be secure. Hence, not only the wireless channel needs protection, but it could
be more advantageous for users to use security services in a higher layer (e.g., in
the transport layer).

The main concern of the public hotspot operator is to get paid for the services
that it provides. But, as we saw above, the solution cannot be based on requiring
the users to install keys. Hence, a much more pragmatic solution is adopted in most
practical cases: password-based user authentication. The idea is the following: When
a user buys a subscription, she gets a username and a password. The access points
of the hotspot are run in open mode without any protection at the MAC layer. Thus
anyone can connect to the hotspot, get an IP address, and begin sending IP packets
to the Internet. However, the access points route every packet to a special gateway,
called the hotspot controller, which blocks all IP traffic. In fact, the controller will
let go through only those IP packets that carry an HTTP request to a special login
page. Thus, the only action a user can take is to go to that login page and type
her username and password. If this is done successfully, then the IP address of the
user is inserted in a white list, and no more packets originating from that IP address
are blocked by the hotspot controller. The hotspot controller can keep track of the
connection time and the amount of traffic associated with each user, and it blocks
the traffic again if the user exceeds her quota. To protect herself from other users of
the hotspot, the user can use transport layer security solutions (e.g., TLS) at her own
risk.
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1.3.3 Bluetooth

Bluetooth is a wireless technology that uses short range digital radio communications
and offers fast and reliable transmission of both voice and data. The main objective
of Bluetooth is to eliminate wires between nearby devices such as a mobile phone and
a headset, a laptop and a mouse, or a computer and a printer. Unlike wireless LANs,
where there are wireless stations and access points, in the case of Bluetooth, there
are only wireless stations. However, the operation of Bluetooth networks (so called
piconets) is based on the master-slave principle, where one of the stations takes the
role of the master and the other stations (up to 7) become the slaves.

The Bluetooth specifications define a security architecture that aims at providing
authentication and confidentiality services for communicating Bluetooth devices. Be-
fore presenting this security architecture, we should note that Bluetooth has some
inherent characteristics that make the job of an attacker slightly more difficult than
in the case of wireless LANs. First, Bluetooth devices use frequency hopping in order
to avoid interference with other devices that operate in the same unlicensed ISM band.
The frequency hopping scheme uses 79 different channels and changes frequency 1600
times per second in a pseudo-random manner. This makes eavesdropping slightly
more difficult, because the attacker must listen on practically all 79 channels in par-
allel. Second, as we mentioned above, Bluetooth is a short-range radio technology
enabling communications over a few meters only. This means that an attacker must
be physically close to the victims in order to eavesdrop on their communications,
which further reduces the likelihood of attacks. Nevertheless, none of the inherent
characteristics of the Bluetooth technology would stop a determined attacker, hence
the need for security mechanisms in Bluetooth.

The Bluetooth security architecture is concerned with the establishment of a secured
wireless link between two Bluetooth devices. This involves the authentication of the
devices to each other and the setting up of a confidential channel between them. Both
are based on a secret link key shared by the two devices. To generate the link key, a
pairing procedure is used when the two devices communicate for the first time. We
will first explain how the link key is established and then describe how it is used for
the authentication of the devices and for the derivation of the encryption key. The
presented mechanisms use the cryptographic functions E1, E21, E22, and E3, each of
which is based on the SAFER+ block cipher [264].

There are two ways to establish a link key. The first method is used when one of
the devices has memory limitations and can store only one key, otherwise the second
method is used. However, both methods start by setting up a temporary initialization
key Kinit . This is illustrated in Figure 1.6 and explained as follows: First, one device
selects a random number IN RAND and sends it to the other device. Then, both
devices compute Kinit as a function of IN RAND , a shared PIN , and the length L
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of the PIN . The length of the PIN can vary between 1 and 16 bytes. Typically,
the PIN is a 4-digit number with a default value of 0000. The PIN can be shared
between the devices in several ways. If both devices have some input facility, then the
user can choose a random PIN and enter it into both devices. If only one device has
an input facility, then the user can enter the pre-configured PIN of the other device
into the first device. Otherwise, pairing is not possible.

PRNG

E22
PIN
L

Kinit

IN_RAND

E22
PIN
L

Kinit

IN_RAND

A B

Fig. 1.6. Setting up the temporary initialization key between two Bluetooth devices

Let us now consider how the link key is established when one of the devices, say A,
has memory limitations. In this case, A sends its long-term unit key KA to the other
device B encrypted with the initialization key Kinit that they have just established.
B obtains KA by decrypting A’s message, and KA becomes the link key.

When none of the devices has memory limitations, the link key is established in the
following way: Both A and B choose a random number RANDA and RANDB , respec-
tively. A computes LK KA as a function of RANDA and its unique device address
BD ADDRA. Similarly, B computes LK KB . Then, they exchange RANDA and
RANDB encrypted with Kinit . When A receives RANDB , it can compute LK KB .
Similarly, when B receives RANDA, it can compute LK KA. Then, both can com-
pute LK KA ⊕ LK KB , which becomes the link key. The computation of the link
key is illustrated in Figure 1.7.

When two devices share a link key (that they have just established or kept from
a previous session), they authenticate each other using a simple challenge-response
protocol, which is illustrated in Figure 1.8. One of the devices, referred to as the “ver-
ifier”, generates a random number AU RAND and sends it to the other device, called
the “claimant”. They both compute an authentication response from AU RAND , the
device address BD ADDR of the claimant, and the link key Klink . The claimant then
sends the obtained value SRES ′ to the verifier, which then compares it to the value
SRES that it computed. If SRES ′ = SRES , then the authentication is successful.
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Fig. 1.7. Setting up the link key between two Bluetooth devices

After that, the two devices run the same protocol with the roles swapped to achieve
mutual authentication.
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Fig. 1.8. The authentication protocol in Bluetooth

If the protocol above fails, then the verifier device will wait some time before a new
attempt can be made. This waiting time increases exponentially with every failed
attempt in order to make it impractical for an attacker to defeat authentication by
trying different keys in rapid succession.

The encryption key Kenc is computed by both devices as a function of three ele-
ments: the link key Klink , the authenticated cipher offset ACO generated during the
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authentication protocol, and a random number EN RAND generated by the master
device. Encryption is performed with a stream cipher called E0 in the Bluetooth
specifications. Besides the encryption key Kenc , E0 also inputs the unique address
BD ADDRmaster of the master device, and the clock value CLOCKmaster of the mas-
ter. The algorithm E0 produces a key stream that is XORed to the data sent between
the devices. The generation of the encryption key and the key stream is illustrated
in Figure 1.9.
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Fig. 1.9. Generation of the encryption key and the key stream in Bluetooth

Security experts have identified some weaknesses in the Bluetooth security archi-
tecture [202, 347]. One problem is that the strength of the whole system is entirely
based on the strength of the PIN . As the PIN is typically a 4-digit number, it is
fairly easy to try all 10000 possible values. To do this, it is sufficient for the attacker
to eavesdrop on a single run of the above described protocols. Then, for each guessed
value PIN ′, the attacker can compute the corresponding initialization key K ′

init , and
then the corresponding link key K ′

link , by using the eavesdropped random numbers.
Each guessed link key K ′

link can be tested using the challenge-response pair available
from the eavesdropped execution of the authentication protocol. This means that
the PIN can be cracked off-line, hence the mechanism of exponentially increasing the
waiting times between failed authentication attempts is ineffective; there will be only
one (successful) attempt once the PIN is cracked off-line. Moreover, many devices
just use the default PIN (i.e., 0000).

Another problem is that for memory constrained devices, the link key is the long-
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term unit key of the device. Hence, an attacker can easily obtain the unit key of a
memory constrained device A by establishing a link key with it. Once the unit key is
obtained, the attacker can impersonate device A. The attacker can also decrypt the
communication between A and any other device B, because the link key between A

and B is also the unit key of A.
There is also a privacy problem that stems from the use of fixed and unique device

addresses. As Bluetooth devices are often personal gadgets, a device address can
be associated with a person. Then, the attacker can track the whereabouts of that
person by tracking the use of the given device address.

Finally, cryptographers have discovered weaknesses in the E0 stream cipher used in
Bluetooth. Apparently, the encryption key can be broken with much less effort than
the cost of a brute force attack (which is 2128, as the encryption key is 128 bits long).
The details of the attack are out of the scope of this overview; the interested reader
is referred to [165] for more information.

1.4 Summary

In this first chapter, we were concerned with the security of existing wireless networks.
First, we identified two important characteristics of wireless networks that have a
strong effect on their security. The first characteristic is that communication takes
place over wireless channels that are easy to eavesdrop on, jam, and overuse. The
second characteristic is that users of wireless networks are usually mobile. This has
some implications both in terms of security requirements and solutions. Besides
the classical security requirements of authentication, confidentiality, integrity, and
availability, we identified location privacy as a security requirement that is unique
to mobile networks. We also argued that security architectures designed for wireless
mobile networks must take into account the limited resources of portable mobile
devices, and the lack of their physical protection. In addition, the security architecture
should support the roaming of users across networks operated by different network
operators.

In the second part of this chapter, we gave an overview of some existing wireless
security architectures. More specifically, we described how cellular networks (GSM
and UMTS), WiFi LANs, and Bluetooth is secured. These examples can serve as
a reference to which security solutions developed in the rest of the book can be
compared.

1.5 To probe further

The description of the security architectures in Section 1.3 was deliberately kept
concise, because the focus of the book is not on how existing wireless networks are
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secured but more on how upcoming wireless networks should be secured. The in-
terested reader can find more information on the presented security architectures in
many articles and books (see e.g., [267] for GSM security, [285] for UMTS security,
[121] for WiFi security, and [145] for Bluetooth security).

Details about the flaws in WEP can be found in [364, 58, 26]. At the time of this
writing, the most prominent tools to crack WEP are Aircrack and Weplab8. These
tools are based on statistical analysis attacks originating from an unknown person
nicknamed Korek. Rafik Chaabouni improved these attacks and found a new one
during a semester project at EPFL (see [92] for the details).

Attacks against Bluetooth security are described in [202, 342], while privacy issues
in Bluetooth are discussed in [202, 354].

Although the examples that we considered in Section 1.3 cover a broad spectrum,
there are other examples of existing wireless security architectures. An early version of
the WiMAX security architecture and a brief analysis of its weaknesses are presented
in [209]. An updated version of the WiMAX security architecture is published as
part of the IEEE 802.16e specification [188]. But, the WiMAX standard was still not
stable at the time of this writing therefore we did not address it. Some security issues
in underwater wireless networks are discussed in [106].

1.6 Questions

(a) What are the main vulnerabilities of wireless networks?
(b) What security services are provided by the GSM security architecture? What

important security services it does not provide?
(c) Let is consider the authentication vector in UMTS. What is the purpose of the

AUTN field? Does the MAC in AUTN authenticates the keys CK and IK ?
How is the freshness of CK and IK ensured?

(d) What are the main weaknesses of the WEP protocol?
(e) How does the authentication scheme of 802.11i differ from that of 802.1X?
(f) Why do you think the MAC address of the device is included in the computa-

tion of the message keys in TKIP (see Figure 1.5)?

8 Both can be downloaded from htp://www.sourceforge.org/
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Upcoming wireless networks and new
challenges

2.1 Introduction

As we have seen in the previous chapter, the development of wireless networks has
followed a centralized pattern: The network infrastructure (meaning all pieces of
equipment except the terminal) has remained under the full supervision of the network
operator, who traditionally used to be a large organization, very careful at respecting
the legislation (and at nurturing the value of its own brand). As a result, the users
generally tend to trust the operator, but do not generally trust the other users.

As we have also seen, current technology such as WiFi makes infrastructure equip-
ment (and in particular access points) affordable to very small operators or even
individuals, thus allowing the emergence of community networks and similar initia-
tives.

In this chapter, we will show that we are only at the beginning of this evolution,
and that not only WiFi, but also other wireless technologies are about to dramati-
cally transform the deployment and operation philosophy of wireless networks. As a
consequence, the notions of authority and of trust need to be completely revisited,
and this is exactly one of the reasons for writing this book: the novel organization of
the wireless networks calls for a thorough study of the possible malicious and selfish
behaviors, and of the techniques to thwart them.

In order to be as concrete as possible, we will first provide a certain number of
examples of emerging wireless networks, spanning personal networks, vehicular net-
works, sensors, and RFID (Radio Frequency IDentification, described later in this
chapter). Then, in spite of the substantial and deliberate diversity of these examples,
we identify relevant trends common to all or to most of them. By the same token,
from these trends we identify the most significant challenges that underpin Part II
and Part III of this book.

33
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2.2 Upcoming wireless networks

For each wireless network presented in this section, we provide a brief description
and a set of security and cooperation challenges. If these challenges can be taken
up by well-established techniques, we mention possible solutions right away. If, on
the contrary, more sophisticated mechanisms are required, we refer the reader to the
related chapters of Part II and Part III.

2.2.1 Personal communications

Personal communications have been and are likely to remain the most relevant and
diverse kind of wireless communication systems. In the previous chapter, we have
discussed their security requirements. In this subsection, we will describe the most
relevant upcoming types of these networks; we start with those most similar to the
existing cellular and WiFi networks and progressively relax the assumptions of one-
hop radio connectivity between the mobile station and the base station and of a strong
trust relationship between the user and the operator.

Small operators, operators in shared spectrum

The first type of networks resembles existing cellular and wireless data networks: a
radio access device (a base station or a WiFi access point), installed and managed by
an operator, provides mobile devices with one-hop access to the backbone. Yet, even
this relatively classical type of networks will go through substantial modifications in
the coming years, and this will have strong implications.

First of all, the increased programmability of the devices opens the door to selfish
behavior with respect to the shared radio channel. In Chapter 9, we will see how
a selfish user can modify the behavior of her wireless adapter to achieve this selfish
goal, and how such a misdeed can be detected by the Access Point.

Moreover, the number of operators is likely to dramatically increase (especially in
unlicensed frequency bands), because of the low cost of the access points. This means
that the level of trust that can be associated with operators’ brands can significantly
decline. We will address this issue of trust in the next chapter.

Another important change is that the very notion of licensed band could be ques-
tioned. Indeed, the current practice consisting in allocating a different chunk of the
spectrum to each operator is highly inefficient and can become an obsolete approach
as soon as more sophisticated technology such as cognitive radios [135, 273] becomes
available. The implications of such a change can be overwhelming: In this new set-
ting, operators will have to cope with each others’ presence, and program their base
stations accordingly. In Chapter 11, we will show how to model this kind of situation.
Note that this scenario already happens on a small scale, when several WiFi operators
deploy their access points in the same area.
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Mesh networks

As shown in Figure 2.1, a typical mesh network is comprised of one Wireless Hot
Spot (WHS), connected to the Internet, and of several Transit Access Points (TAPs)
which relay traffic between the mobile stations and the WHS in a multi-hop fashion.
A nice property of the mesh networks is that they are (in principle) relatively easy to
deploy, as they require a single connection point to the Internet.

WHS

TAP: Transit Access Point

MS: Mobile Station

WHS: Wireless Hot Spot

Legend:

Internet

Fig. 2.1. A Wireless Mesh Network: the (wireless) Transit Access Points (TAPs) relay the
traffic between the Wireless Hot Spot and the mobile stations

Wireless Mesh Networks (WMNs) represent a good solution to providing wireless
Internet connectivity in a sizable geographic area; this new and promising paradigm
allows for network deployment at a much lower cost than with classic WiFi networks.

WMNs are particularly interesting for us, because they contain some features (and
vulnerabilities) typical of future networks such as wireless multi-hopping and are
already in the standardization and early deployment phase. And, as we will see, they
nicely illustrate the fact that performance (in this specific case fairness) and security
are closely related. For these reasons, we will describe these networks in some detail.

WMNs, however, are not yet ready for wide-scale deployment for two main reasons.
First of all, the communications being wireless and multi-hop (and therefore prone
to interference), WMNs present severe capacity and delay constraints. Nevertheless,
there are reasons to believe that technology will be able to overcome this problem,
for example by using multi-radio and multi-channel TAPs. The second reason for the
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slow deployment of WMNs is the lack of security guarantees. The reader interested
in the security peculiarities of mesh networks should refer to Subsection 2.2.6.

Hybrid ad hoc networks

In mesh networks, the relay stations (the TAPs) between the mobile station and the
backbone are specialized devices under the control of one or several operators. A bold
design decision consists in removing these relay stations and assigning the relaying
task to other mobile stations. Such a network is usually called a “hybrid ad hoc
network” or, in some cases, a “multi-hop cellular network”.

The proper operation of these networks raises a number of formidable technical
challenges and it is unclear, at the time of this writing, whether such networks will ever
be implemented. These challenges include notably the problem of power management,
as (by definition) a priori planning is not possible. With respect to the focus of this
book, the routing protocol of such a network can be secured by making use of the
protocols described in Chapter 7; the packet forwarding operation can benefit of
stimulation mechanisms described in Chapter 10.

An example of hybrid ad hoc network is provided on Figure 2.2.

Internet

Fig. 2.2. A hybrid ad hoc network: mobile wireless stations relay packets to and from the
Internet

Mobile ad hoc networks

A step further towards decentralization consists in removing completely the (on-line)
infrastructure: the network then consists only of (mobile) nodes that relay each others’
traffic (see Figure 2.3. These networks are usually called mobile ad hoc networks (often
abbreviated as “MANET” or wireless ad hoc networks.1 Such networks have been a
1 The first investigations and implementations of these networks took place in the seventies and

were intended for military applications; at that time, these networks were known as “Packet
Radio Networks.”
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strong stimulus to the research community, who has devoted to it hundreds of papers,
essentially during the last ten years or so. It is very important to distinguish between
the following two kinds of such networks.

Fig. 2.3. A mobile ad hoc network: mobile wireless stations relay packets mutually

a. Mobile ad hoc networks in hostile environments designate a set of mobile nodes
that are expected to carry out a mission in an environment where the presence of a
“strong” attacker is expected. This is typically the case of military networks (some-
times lamentably camouflaged as “rescue operation networks” in the literature). The
need for security is of course particularly acute in this category. In this case, the
authority would typically pre-load appropriate cryptographic keys in the devices, in
compliance with the role of each of the users; these keys would then protect the com-
munication between the devices during the unfolding of the mission. As long as a node
is not compromised, it is reasonable to assume that it will have a highly cooperative
behavior with respect to the other nodes of the network.

The security challenges typically encountered in this kind of networks include se-
cure routing, prevention of traffic analysis2, and resistance of a captured device to
reverse engineering and key retrieval. Secure routing is addressed in Chapter 7, and
the other two are not addressed in this book; the interested reader can check the spe-
cialized literature, for example the proceedings of the IEEE Conference on Military
Communications (MILCOM).

2 Traffic analysis consists in establishing who is communicating with whom, typically in a network
where all payloads are encrypted. It can also be used to locate a specific transmitter.
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b. In self-organized3 mobile ad hoc networks, there is no authority whatsoever to
take care of the network, not even in the initialization phase. This means that the
network is purely peer-to-peer, and that the nodes have to figure out how to secure
the communications by themselves. We will see in Chapter 5 how two nodes can
establish a security association between themselves. We will also show that selfishness
can be a serious issue in such networks; more specifically, we will show that, without
appropriate mechanisms, such a network can collapse, either because nodes selfishly
refuse to forward packets (Chapter 10) or greedily overuse the common radio channel
(Chapter 9). In both cases, we will explain how these problems can be solved.

It is unlikely that personal communication networks of this kind be deployed on a
large scale any time soon, because their operation is very difficult to ensure (power
management, for example, is extremely complicated). In addition, all-wireless net-
works exhibit intrinsic scalability problems [154], although the mobility of the nodes
can mitigate the problem, but at the expense of a higher packet delay [153]. Yet
some small scale applications can certainly be envisioned: a group of people can get
together, each equipped with a laptop or a PDA; they can be willing to establish
a network between their devices, without having to rely on an infrastructure. To-
day’s technology already allows doing this with laptops and PDAs, albeit somewhat
painstakingly.

Other personal communication networks As mentioned in the previous chapter,
there exist many other wireless personal communication networks, including Blue-
tooth and WiMAX. We do not discuss them here, however, as their characteristics in
terms of security and cooperation are already covered by the network types we have
just described.

2.2.2 Vehicular networks

Initiatives to create safer and more efficient driving conditions have recently begun
to draw strong support. Vehicular communications (VC) will play a central role
in this effort, enabling a variety of applications for safety, traffic efficiency, driver
assistance, and infotainment. For example, in order to improve safety, warnings for
environmental hazards (e.g., ice on the pavement) or abrupt vehicle kinetic changes
(e.g., emergency braking) will be provided by these systems.

Vehicular networking protocols will allow nodes, that is, vehicles or road-side in-
frastructure units, to communicate with each other over single or multiple hops. In
other words, nodes will act both as end points and routers, with vehicular networks
3 By self-organization, we refer in this book to the organization of security and not of other mech-

anisms such as routing.
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emerging potentially as the largest instantiation of the mobile ad hoc networking tech-
nology. By their very nature, vehicular networks stand somewhere in between the two
extreme cases of mobile ad hoc networks that we have just described: they cannot be
fully self-organized, but they also cannot be placed under the strict control of a single
authority.

The unique features of VC are a double-edged sword: a rich set of tools are offered
to drivers and authorities, but a formidable set of abuses and attacks becomes pos-
sible. Hence, the security of vehicular networks is indispensable, because otherwise
these systems could make anti-social and criminal behavior easier, in ways that would
actually jeopardize the benefits of their deployment. What makes VC security hard
to achieve is the tight coupling between applications, with rigid requirements, and
the networking fabric, as well as the societal, legal, and economical considerations.
Solutions to this problem involve the industry, governments, and the academia.

The reader interested in more details about the security of vehicular communica-
tions should refer to Subsection 2.2.7.

2.2.3 Sensor networks

Sensor networks are wireless networks that consist of a large number of sensor nodes
and a few base stations or sinks (see Figure 2.4 for illustration). The sensor nodes
are tiny devices that are equipped with sensing circuits that collect data about some
physical phenomena, such as light, sound, vibration, humidity, temperature, etc. In
addition, the sensor nodes have computing and wireless communication capabilities.
The base stations are much more powerful than the sensor nodes, and their role is
to collect the data gathered by the sensor nodes and to send those data to some
application unit for further processing. For this reason, the base stations are often
called sinks in the context of sensor networks.

The sensor nodes are usually battery powered, which has a profound effect on the
design of sensor networks. Since recharging the batteries is often impractical, or even
impossible in deployment scenarios, the main design criteria for sensor networks is to
reduce the energy consumption of the sensor nodes and increase network lifetime as
much as possible. All networking mechanisms are designed with this requirement in
mind.

In order to reduce their energy consumption, the sensor nodes cooperatively perform
many functions. For instance, sensor nodes communicate with the base station using
multi-hop wireless communications, where the nodes forward packets towards the
base stations on behalf of other nodes. This reduces energy consumption in two
ways: First, it is known that the energy needed for wireless transmission grows super-
linearly with the distance of the transmission. Thus, the overall energy consumption
can be reduced, if packets are sent in several smaller hops to the base station instead
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Fig. 2.4. A sensor network: sensor nodes forward packets towards the base stations on behalf
of other nodes in order to mitigate the overall energy consumption and interference.

of sending them directly in a single large hop. Second, communication via multiple
smaller hops reduces the interference between the devices, which means that fewer
re-transmissions are needed due to collisions.

In addition to packet forwarding, the sensor nodes can cooperate in the processing
of the gathered data. The idea is that instead of relaying raw sensor readings to the
base stations, the sensor nodes can perform in-network processing and aggregate data
on their way to the base stations. This can greatly reduce the number of packets that
need to be sent, and hence, reduce the energy consumption.

Sensor networks have many useful applications both in military and in civilian en-
vironments. In the military setting, they can be used in monitoring, surveillance,
and reconnaissance applications. In the civilian setting, they can be used for environ-
mental monitoring purposes (such as forest fire detection and earthquake prediction)
and in health applications (such as telemonitoring of physiological data of elderly or
chronically ill people, and drug administration). More civilian applications of sensor
networks include building automation, smart environments, monitoring the status of
structures, such as bridges, increasing the effectiveness of agricultural processes, water
management, etc.

In terms of security requirements, sensor networks must ensure the integrity (and
in some cases, the confidentiality) of the data delivered to the base stations. Similarly,
the integrity (and the confidentiality) of control messages sent by the base stations
to the sensors must be guaranteed. Availability is also an important security require-
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ment, especially when the sensor network is used in life critical applications, such as
earthquake prediction and telemonitoring of people’s health conditions.

These are more or less standard security requirements that can also be found in
traditional wired and wireless networks. However, the challenge is to satisfy these
requirements under the special operating conditions of sensor networks. First of
all, any security solution must take into account the requirement of reducing the
energy consumption of the sensor nodes. In addition, as we mentioned before, sensor
nodes are tiny devices, which means that their computing and storage capacity is
severely limited. Thus, cryptographic algorithms and protocols that require intensive
computation, communication, or storage cannot be used in sensor networks.

Furthermore, as sensor nodes are expected to be deployed in mass, they must be
cheap, which makes their physical protection against tampering difficult. Moreover,
sensor nodes are often deployed in areas where the access to them cannot be moni-
tored. This means that an adversary can corrupt some of the sensor nodes. By doing
that, the adversary can learn the content of the memory, including cryptographic se-
crets, of the corrupted nodes, and she can also modify the behavior of the corrupted
nodes. These constraints greatly increase the difficulty of providing security for sensor
networks.

As an illustrative example, in Chapter 5, we will elaborate on the problem of
establishing shared keys in sensor nodes. As we will see, traditional approaches for
key establishment are inappropriate for sensor networks. Hence, we must develop
new solutions that take into account the special characteristics described above. In
addition, in Chapter 7, we study how routing in sensor networks can be secured.

2.2.4 RFID

RFID (Radio Frequency Identification) is a wireless technology that enables the iden-
tification of objects and people by computers. Humans usually solve the task of
identification remarkably well by visual means. A huge amount of work in artificial
intelligence and computer vision has been carried out by researchers to endow com-
puters with similar capabilities. However, to a large extent, those efforts have failed:
computers still cannot recognize objects and people visually in a reliable manner.
RFID offers an alternative approach. The idea is to tag objects (and maybe even
people) with smart labels (so called RFID tags) that emit identifying information in
the form of a bit string, which can be easily interpreted by computers.

RFID systems have three types of components (see Figure 2.5 for illustration):
RFID tags, RFID readers, and back-end databases. RFID tags store identifying
information (typically a few hundred bits) about the objects or persons to which they
are attached. RFID readers can read this identifying information out from nearby
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tags. The identifier obtained from a tag is used as an index into a back-end database
where virtually unlimited information can be stored about the given object or person.R F I D t a g R F I D r e a d e r b a c k 
 e n d d a t a b a s eo b j e c t I D o b j e c t i n f o r m a t i o no b j e c t I D
Fig. 2.5. RFID systems have three types of components: RFID tags, RFID readers, and
back-end databases. The reader looks up in the database the detailed object information,
using the identifier obtained from the tag.

An RFID tag consists of a microchip and an antenna. The microchip stores the
identifying information, and the antenna is used for communicating with the RFID
reader. In addition, RFID tags can be active or passive. Active tags have their own
batteries, while passive tags harvest energy from the reader’s RF signal to power
themselves up. Passive tags communicate with the reader by reflecting the reader’s
RF signal, and modulating the reflected signal with the identifying information stored
in the microchip. This has the interesting side effect that the reader’s signal is much
stronger than that of the tag, and therefore, the reader can be eavesdropped from a
larger distance. Passive tags cost only a few tens of cents, and therefore, they can
be deployed in mass. Active tags are obviously more expensive, and hence, they are
usually used to label valuable objects (e.g., an entire container of goods).

RFID today

RFID technology is already used today in many applications, including access control
to buildings, toll-payment on highways, management of library books, and identifi-
cation of pets, just to list a few.4 Essentially, the operating principles in all these
applications are the same.

In case of access control to buildings, the users carry plastic cards that contain
RFID tags. When a user draws her card near to the card reader at a door, her
identifying information is transmitted from the card to the reader. The computer
attached to the reader then looks up her access rights in a central database, and if
she is authorized to enter through that door, then it is opened.

In case of electronic toll-payment systems, the RFID tags are sticken to the wind-
shields of the vehicles, and the RFID readers are installed at the toll gates. When a
4 In addition, contactless credit cards and public transport cards also use RFID technology for the

communication with payment terminals and ticket validating terminals, respectively.
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user drives through a gate, her identifying information is read from the tag, and her
account held in a central database is updated.

Many libraries use RFID to facilitate the management of books. In this application,
the RFID tags are inserted into the books. When a book is checked out, the RFID
reader at the check-out desk reads the identifying information from the tag, and
updates the book’s status in a central database. When the book is returned, the tag
is read and the status information in the database is updated again.

The idea of tagging pets is to help the identification of lost animals, that allows
them to be returned to their owners. Similarly, there exists human implantable RFID
tags too. An intended application of those tags is to help finding the medical records
of patients in a hospital, but they could equally be used for access control purposes
too.

RFID tomorrow

As we saw above, RFID is already used today in many applications, but an even more
widespread use of this technology is expected in the future. There are plans to embed
RFID tags in bank notes to make forgery more difficult and to combat against money
laundering. Passports and ID cards will be based on RFID technology too in the near
future.5 Note that in contrast to access control cards and library books that can be
carried by some people, but probably not every one, virtually every person carries
banknotes or some ID documents with her.

However, this is still not the end of the story. Many people believe that the “killer”
application for RFID will be the replacement of optical bar codes printed on consumer
products. Today, RFID tags are still too expensive to make this feasible, but in the
near future their price could drop below the threshold that allows item level tagging.
If this happens, virtually all objects will have RFID tags embedded in or attached
to them. There is even a standardization effort that aims to prepare the grounds for
this massive takeover. The organization behind this effort is called EPCglobal Inc.,
and it promotes the specifications for the so called EPC (Electronic Product Code)
tag.

RFID has two main advantages compared to optical bar codes: First, optical bar
codes usually indicate only the type of an object, whereas an RFID tag can store a
unique identifier that identifies not only the type, but also distinguishes the object
among many other objects of the same type. Second, reading of bar codes requires
line-of-sight contact with the reader, whereas RFID tags can be read without line-of-
sight contact and from a larger distance. This makes it possible to read RFID tags
in large quantities rapidly and remotely.

The advantages of RFID for the manufacturers and for the merchants are clear:
5 Indeed, at the time of this writing, the US and some European countries have already started to

issue electronic passports based on RFID technology.
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it enables automated, and hence, more efficient control and management of products
throughout their whole life cycle, from the production line through the stock houses
to the shelves in the stores. The advantages for the consumers, however, are less
obvious. One advantage could be the possibility for fast check-out at point-of-sale
(POS) terminals. The idea is that an RFID reader at the POS terminal can read
all the tags of the goods in the shopping cart in a few seconds without the need to
take the goods out from the cart. This could considerably speed up the check-out
process and hence consumers would not need to stand in long queues when they do
their shopping for the week-end. Another advantage would be that items could be
returned by consumers without the need to keep the receipt received at the purchase,
because based on the unique identifier in the tag of a given item, the merchant can look
up in its database where and when that item has been purchased. Pilot experiments
are already carried out in large retail shops.

Yet another possibility would be to pull together product databases and purchase
records, and identify consumers (assuming that they are identifiable, for instance, they
paid with their credit cards) that purchased a given product in a given period of time.
This could be advantageous when a product turns out to be faulty or contaminated,
and all the consumers that bought it must be quickly notified. At the same time,
such an application would be dangerous, because it could be misused for profiling
consumers.

A more futuristic application of RFID with some advantages for the consumers
would be to make household appliances capable for interacting with items. One can
imagine for instance that a smart washing machine automatically determines what
program it should run by reading out the appropriate information from the RFID tags
embedded in the clothes put into the machine. Or, one can image a smart refrigerator
that would warn the user if some goods are about to expire or to run out; smarter
ones can even order goods on-line on behalf of the user.

Although such smart appliances seem to be a far fetched idea, interacting with
objects is not a fantasy anymore. Large mobile phone manufacturers have started
to integrate RFID readers in their handsets by means of a technology called Near
Field Communications (NFC). Such an NFC enabled mobile phone allows its user
to read identifying information out from RFID tags attached to nearby objects. In
addition, the mobile phone is also able to immediately obtain (and display) related
data from on-line databases through available GPRS or 3G data connections. One
can imagine many useful applications of this technology. An example would be the
following: Let us assume that a user sees a movie poster on the street. Using her
NFC enabled mobile phone, she can scan the RFID tag embedded into the poster,
and immediately find more information about the movie on the Web (such as the
trailer), including where and when it is played. Finally, she can even buy a ticket for
the next performance using her mobile phone.
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As we have seen above, RFID based automated identification enables many inter-
esting applications. However, the widespread deployment of RFID technology can
also lead to serious privacy problems. Imagine a world where virtually everything
is tagged with RFID tags. In that world, the monitoring of the movement and the
activities of people can be easily automated, meaning that tracking people could be
cheap and continuous in space and time. Without privacy protecting measures, such
a world could easily degenerate into a world described by Orwell in his book 1984
[290]. We believe that this is a very important problem, and we describe possible
technical solutions to it in Chapter 8.

2.2.5 Mobility in the Internet

The need to cope with the emergence of networks such as the ones described above
and with the growing mobility of hosts has led the Internet community to profoundly
reconsider the overall organization of the network. We summarize here the efforts
related to Mobile IPv6, insisting on the security challenges. The operating principles
of Mobile IPv6 are described in RFC 3775 “Mobility Support in IPv6”, of June 2004.6

This discussion will help us establishing a link between the security concerns of the
wireless and the wired parts of the network.

When a (wired or wireless) node changes location, in many cases it also changes
links, thus affecting its address. The consequence of this address change can be very
unpleasant to the user, as it can break all the existing connections of the mobile node
that are using the address assigned when it was on the previous link. Mobile IP
aims at solving this problem at the IP layer, thus making the mobility of the node
completely transparent to upper layer protocols such as TCP.

Mobile IP is a flexible standard, supporting many modes of operation. We provide
here only a brief description of the operating principles of Mobile IPv6, in order to
introduce the subsequent discussion of security.

The various components are represented in Figure 2.6.
The home link is the link to which the Mobile Node (MN) is “usually” attached.
The home address is an address assigned to the mobile node when it is attached to

the home link; the mobile node is always reachable through this address, regardless
of its current real location. The home agent is a router on the home link permanently
aware of the current location of the nodes that are away from home.

The foreign link is a link different from the home agent’s link, to which the mobile
node is temporarily attached (either by wire or wireless). A care-of address is an ad-
dress used by the mobile node while it is attached to a foreign link. The association
6 The reader interested in the operating principles of Mobile IPv4 can refer to RFCs 3220 and 3344

(both from 2002) “IP Mobility Support for IPv4”.
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Fig. 2.6. Components of Mobile IPv6

of a care-of address with a home address for a mobile node is called a binding ; corre-
spondent nodes and home agents store bindings in a binding cache. A correspondent
node is an IPv6 node communicating with a mobile node.

Two modes for mobility are supported by Mobile IPv6 for communication between
a mobile node and a corresponding node.

a) Bidirectional tunneling In this mode, the mobile node tunnels the packets in-
tended for the correspondent node through its home agent. Reciprocally, the
home agent intercepts packets addressed to the mobile node’s home agent
and tunnels those packets to the mobile node via its care-of address.

b) Route optimization This mode allows the optimal route between the mobile
node and the correspondent node. The mobile node registers its current ad-
dress binding with the correspondent node. In this way, the correspondent
node can send packets directly to the mobile node’s care-of address. In addi-
tion to optimizing the path between nodes, this option also reduces the risk
of congestion at the mobile node’s home agent (as the latter is not involved
in the packet forwarding process).

Route optimization is of course the most satisfactory solution in the long run and
we will therefore focus on it in our brief discussion of security. The reader interested
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in more details can refer to RFC 4225 “Mobile IP Version 6 Route Optimization
Security Design background”, December 2005.

Security principles and goal The security of Mobile IPv6 obeys two main princi-
ples. The first consists in complying with the end-to-end principle of Internet proto-
cols: In this specific context, this means minimizing the involvement of the routers;
In Mobile IPv6, only the home agent and the communicating nodes need to create
state.

The second principle is related to trust7: It is assumed that the mobile node and
the home agent know each other through a prior arrangement, whereas the mobile
node and the correspondent node do not need to have any prior arrangement.

The security goal of Mobile IPv6 consists in being “as secure as the (non-mobile)
IPv4 Internet”. This means in particular that there is little protection against at-
tackers that are able to attach themselves between a correspondent node and a home
agent.

Attacks The target of an attack can be any node or network on the Internet (station-
ary or mobile). An attacker can either aim at diverting (stealing) the traffic destined
to or sourced at the target node or cause a denial-of-service at the target node or
network. It is important to notice that IPv6 uses the same class of IP addresses for
both kinds of nodes (namely home and care-of addresses on one hand and stationary
nodes on the other hand). This means that attacks that in principle would concern
only mobile nodes are a threat to all IPv6 nodes.

Address stealing If binding updates were not authenticated, an attacker could send
spoofed binding updates from anywhere in the Internet, and realize the attack illus-
trated in Figure 2.7.

The attacker might define the care-of address to be either its own current address,
another address in its local network, or any other IP address. By selecting a care-of
address allowing it to receive packets, the attacker would be able to send replies to
the correspondent node, thus delaying the uncovering of the attack.

We have described only the basic address stealing attack. A number of attacks can
be derived from it; in particular, as it breaks the communication paths, it can be used
to mount denial-of-service attacks.

DoS attacks exploiting binding update protocols An attacker can try to exhaust the
resources of a target (mobile node or correspondent) by sending spoofed IP packets
that trigger a large number of binding update protocol instances.
7 The notion of trust will be discussed in detail in the next chapter.
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Fig. 2.7. Address Stealing attack (RFC 4225): assume a packet flow from node A to node
B. The attacker redirects the packets to a different address, C, by sending a Binding Update
to A (hence node A believes that node B has moved to address C).

Protection mechanisms A robust countermeasure against the address stealing and
flooding attacks consists in a mutual authentication of the nodes involved in a bind-
ing update protocol, typically based on IPsec (described in the previous chapter).
However, to be usable between two arbitrary nodes, IPsec requires a global key man-
agement infrastructure (to be used typically by the Internet Key Exchange protocol,
see RFC 2409), which does not exist, and is unlikely to come into existence any time
soon.

Because of this major problem, a non-cryptographic solution was designed, which
relies on the assumption of an uncorrupted routing infrastructure. The cornerstone of
the solution is Return Routability (RR). The principles are illustrated in Figure 2.8.

It is intuitive that the presence of this test makes attacks much more difficult to
carry out. Yet the detailed description and the security analysis of this protocol are
beyond the scope of this book, and the interested reader is invited to refer to the
related RFCs. Return Routability can of course fall prey to a compromised routing
infrastructure or to an attacker located between the verifier and the address to be
verified.

Finally, we should mention that a possible protection against the mentioned DoS
attacks exploiting binding update protocols can be realized by each node setting
a limit on the amount of resources (processing time, memory, and communication
bandwidth) that it devotes for processing binding updates. However, this can lead to
a self-denying of some of the mobility mechanisms.

Privacy in Mobile IPv6 In this discussion of Mobile IPv6 security, we have con-
sidered only active attackers. However, it is clear that, simply by examining packets,
eavesdroppers can track the movements of individual nodes and therefore of users.
Mobile IPv6 is even more vulnerable to this kind of misdeed, as it adds potentially
sensitive information into the packet, such as Binding Updates. The interested reader
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Fig. 2.8. Return Routability (RFC 4225): The Mobile Node MN checks the routability to
the Correspondent Node CN (a) via the Home Agent HA (message Home Test Init or HoTI)
and (b) directly (message Care-of Test Init or CoTI); the correspondent node replies to both
of them independently by sending a Home Test (HoT) in response to the Home Test Init
and a Care-of Test (CoT) in response to the Care-of Test Init. It is only once the mobile
node has received both Home Test and Care-of Test packets that it sends a Binding Update
to the correspondent node. In addition, the bindings are short-lived, in order to mitigate
the effect of a possible malicious binding update (“time shifting attack”).

can refer to RFC 3041 “Privacy Extensions for Stateless Address Autoconfiguration
in IPv6”, of January 2001.

2.2.6 More on wireless mesh networks

Having provided an overview of the major trends as well as of the security and coop-
eration issues in the most significant types of upcoming wireless networks, we will now
detail two of the examples that we have already mentioned: we will address wireless
mesh networks in this subsection and vehicular networks in the following one. We
have chosen to detail these two examples, because their features provide a very nice
motivation of many of the mechanisms described in Part II and Part III of this book.

WMNs represent a new network concept and therefore introduce new security
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specifics. We describe these specifics by providing an overview of the fundamental dif-
ferences between WMNs and two well-established infrastructure-based technologies:
cellular networks and the Internet.

Difference between WMNs and Cellular Networks The major difference between
WMNs and cellular networks - besides the use of different frequency bands (WMNs
usually make use of unlicensed frequencies) - concerns the network configuration: In
cellular networks, a given area is divided into cells and each cell is under the control
of a base station. Each base station handles a certain number of mobile stations that
are in its immediate vicinity (i.e., communication between the mobile stations and
the base station is single-hop) and it plays an important role in the functioning of
the cellular network; the entity that plays an equivalent role in WMNs would be the
WHS.

Whereas all the security aspects can be successfully handled by the base station
(with appropriate assistance from an on-line authentication server) in cellular net-
works, it is risky to rely only on the WHS to secure a WMN, given that the com-
munications in WMNs are multi-hop. Indeed, centralizing all security operations at
the WHS would delay attack detection and countermeasure and therefore would give
the adversary an undeniable advantage. Furthermore, multi-hopping makes routing
in WMNs a very important and necessary functionality of the network; and like all
critical operations, an adversary can be tempted to attack it. The routing mechanism
must thus be secured.

Multi-hopping has also an important effect on the network utilization and perfor-
mance. Indeed, if the WMN is not well-designed, a TAP that is several hops away
from the WHS would receive a much lower bandwidth share than a TAP that is next
to it. This leads to severe unfairness problems, and even potentially to starvation.

Difference between WMNs and the Internet In WMNs, the wireless TAPs play the
role that is played, in the classic (wired) Internet, by the routers. Given that wireless
communications are vulnerable to passive attacks such as eavesdropping, as well as to
active attacks such as Denial of Service (DoS), WMNs are subject to all these attacks,
whose effects are amplified by the multi-hop aspect of the communications.

Another fundamental difference between the Internet and WMNs is that, unlike
Internet routers, the TAPs are not physically protected. Indeed, they are most often
in locations that are accessible to potential adversaries, e.g., deployed on rooftops or
attached to street lights. The absence of physical protection of the devices makes
WMNs vulnerable to some serious attacks. Indeed, one very important requirement
regarding the TAPs - for the concept of mesh networks to remain economically viable
- is their low cost that excludes the possibility of strong hardware protection of the
devices (e.g., detection of pressure, voltage, or temperature changes). Therefore,
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attacks such as tampering, capture or replication of TAPs are possible and even easy
to perform.

This brief analysis of the characteristics of WMNs shows that, compared with other
networking technologies, the new security challenges are mainly due to the multi-hop
wireless communications and by the fact that the TAPs are not physically protected.
Multi-hopping delays the detection and treatment of the attacks, makes routing a
critical network service and can lead to severe unfairness between the TAPs, and the
physical exposure of the TAPs allows an adversary to capture, clone or tamper with
these devices.

Security principles of WMNs Before discussing the details of the security chal-
lenges in WMNs, let us consider a simple example: Figure 2.9 shows a branch of
a WMN where a mobile station MS is within the transmission range of TAP3 and
therefore relies on it to get Internet connectivity; the data generated and received by
the MS goes through TAP1, TAP2 and WHS.

WHS
TAP3MS

TAP1TAP2

Fig. 2.9. A typical communication in WMNs: The mobile station MS is within the transmission
range of TAP3 and relies on TAP1 and TAP2 to relay its traffic to and from WHS. From [47], c©
IEEE, 2006.

Let us consider an upstream message, i.e., a message generated by the MS and sent
to the Internet. Before this message reaches the infrastructure, several verifications
need to be performed:

• Given that Internet connectivity is a service that (usually) the MS has to pay for,
the TAPs and the WHS have to authenticate the MS.

• The MS has also to authenticate the TAPs to make sure that they belong to a valid
operational WMN. It has at least to authenticate TAP3, the TAP to which it is
directly connected.
• The TAPs have to authenticate the other TAPs in the WMN to prevent TAP

forgery and to detect intruders.
• Finally, the data sent or received by MS has to be protected (e.g., to ensure data

integrity, non-repudiation and/or confidentiality).

Performing these verifications has to be efficient and lightweight, especially for the
MS; we thus want to avoid, if possible, the use of asymmetric cryptographic operations
by the MS. In fact, the MS being battery operated, the use of public key cryptography
primitives unsuitable as these primitives have a high computational overhead and are
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prone to DoS attacks. Indeed, if the authentication protocol requires the computation
or the verification of a signature, this feature can be misused by an adversary that
can continuously ask the MS to compute or verify signatures; this attack can drain
MS’s battery.

In Figure 2.10, we represent a simple way to perform the four aforementioned
verifications in the WMN branch represented in Figure 2.9.

WHS
TAP3MS TAP1TAP2

EK
3
(SReq)

EK
2
(SReq)

EK
1
(SReq)

EK
WHS

(SReq)

SRep
EK

3
(SRep)

EK
2
(SRep)

EK
1
(SRep)

Fig. 2.10. Session establishment: The mobile station MS generates a session request SReq and
encrypts it using TAP3’s public key K3. Then, TAP3 decrypts SReq, encrypts it using TAP2’s
public key and sends it to TAP2, and so on until the message reaches the WHS. The session reply
message SRep is then generated by the WHS and sent back to the MS. It is protected in the same
way as SReq and it contains the information about the session key. From [47], c© IEEE, 2006.

We assume, without loss of generality, that each node in the branch (i.e., TAP1,
TAP2, TAP3 and the WHS) has a public/private key pair that is assigned to it by
the network operator. These keys can be used to establish a session key kS between
MS and the WHS. This session key permits to secure the data sent and received by
the MS while limiting the use of public key cryptography to the session establishment
phase, which is occasional. Note that the session establishment is initiated by the MS
which reduces the risk to an attacker performing the DoS attacks described above.

In Figure 2.10, we represent an example of such session establishment: First, the
mobile station MS generates a session request message SReq and encrypts it using
TAP3’s public key K3. Upon receipt of SReq, TAP3 decrypts it using its private key
K−1

3 , encrypts it using TAP2’s public key and sends it to TAP2, and so on until the
message reaches the WHS.

To exemplify, SReq can be as follows:

SReq = EKWHS (ReqID , roamingInfo, k,N)

where ReqID represents the request identifier (to prevent replay attacks), roamingInfo
represents the information needed by WHS to authenticate MS, k is the key that
WHS will use to encrypt the future session reply (SRep), and N is a nonce. SReq is
encrypted using WHS’s public key KWHS .

The WHS uses roamingInfo to authenticate the MS. This authentication can be
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done in different ways, depending on the content sent by the MS: For example, using a
temporary billing account (e.g., credit card based authentication), a predefined shared
secret (if the MS is a client of the operator managing the WMN), or a roaming system
similar to the one used in cellular networks (if it is not a client of that operator); the
latter has the advantage of preserving the anonymity of the MS with respect to the
operator of the visited network.

Note that the fact for the WHS to receive a valid SReq message proves that all the
TAPs in the route between the MS and the WHS are valid TAPs. Indeed, assume
that an attacker replaced TAP2 by a rogue device TAP ′2. When TAP ′2 receives SReq,
the message is encrypted using the public key of TAP2 and therefore TAP ′2 is not
able to decrypt it correctly; the message TAP ′2 sends to TAP1 is thus corrupted. If
TAP1 is able to check the integrity of the message, it detects the attack and discards
SReq, otherwise the attack will be detected by the WHS as the data in SReq would
be meaningless; the WHS will then discard SReq.

If the session request SReq is valid, then the WHS generates a session reply message
SRep and sends it back to the MS. SRep contains information that allows the MS
(and, if needed, the TAPs in the route) to generate the session key kS and is protected
in the same way as SReq (i.e., encrypted and then decrypted successively using the
public keys of the TAPs in the route). It is also protected against eavesdropping as
the MS has to be the only mobile station that can interpret correctly the data in
SRep; The WHS uses the key k generated by the MS to encrypt the data sent in
SRep.

Once the session key kS is defined, it is used to check the integrity of the exchanged
messages, e.g., by computing Message Authentication Codes (MACs). The verifica-
tion of the MACs can be done end-to-end (i.e., when the session key is known only
to the WHS and the MS) or by each intermediate TAP (i.e., if the TAPs in the
route also know kS). The session key kS can even be used to encrypt the exchanged
messages if data confidentiality is a requirement. It is also possible to use MACs to
authenticate the TAPs involved in the communication and to detect intruders during
the session. Indeed, each two neighboring TAPs can establish (e.g., during session
key establishment) or have a predefined symmetric key that they will use typically
to compute Message Authentication Codes (MACs) on the exchanged messages8 and
therefore to authenticate the nodes involved in the communication hop by hop.
8 MACs are usually used to verify the integrity of a message, but they can also be used to authen-

ticate the sender of the message. Indeed, assume that two parties A and B share a symmetric
key k. A can generate a message m, use k to compute a MAC on it and then send both m and
the corresponding MAC to B. Upon receipt of these data, B can use k to compute the MAC
on m and compare it to the MAC it received; if the two MACs are identical, and given that A
and B are the only two parties that know k, B can conclude that m was indeed generated by A.
This authentication technique is weaker than the one using asymmetric key cryptography, but it
is efficient.
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Three fundamental security operations Our study of WMNs’ specifics has pin-
pointed three critical security operations: (i) securing the routing mechanism, (ii)
enforcement of fairness, and (iii) detection of corrupt TAPs. These challenges are
not the only ones: other network functionalities such as MAC protocols and nodes
locations also need to be protected. In addition, WMNs are vulnerable to the same
kind of selfish behavior as WiFi (see Chapter 9). Yet, we choose to focus on these
three operations because they are, in our opinion, the most critical for WMNs.

Secure multi-hop routing By attacking the routing mechanism, an adversary can mod-
ify the network topology and therefore affect the proper functioning of the network.
For example, the adversary can want to partition the network or to isolate a given
TAP or a given geographic region, or to force the traffic through a specific TAP in
the network (e.g., through a TAP that it has compromised) in order to monitor the
traffic of a given mobile station or a region. Another example would be for the adver-
sary to artificially lengthen the routes between the WHS and the TAPs, which would
seriously affect the performance of the network.

To attack the routing mechanism, the adversary can tamper with the routing mes-
sages or perform DoS attacks:

(i) To prevent attacks against the routing messages, the operator can use one of
the proposed secure routing protocols for wireless multi-hop networks, which
we will describe in Chapter 7.

(ii) DoS attacks represent a simple and efficient way to attack routing. These
attacks can be very harmful, are simple to perpetrate, and are very difficult
to prevent. The adversary can disturb the communications between the TAPs
in a given area and force the reconfiguration of the network. In order to
solve this problem, the operator has to identify the source of the attack and,
if possible, counter it; of course, thwarting this attack will generally require
human involvement.

Fairness In WMNs, all the TAPs use the same WHS as a relay to and from the
infrastructure and therefore the throughput obtained by the TAPs can vary signifi-
cantly depending on their position in the WMN: The TAPs that are more than two
hops away from WHS could starve (i.e., their clients are not able to send or receive
significant traffic), which is highly unfair. The study conducted in [142] identifies the
problem and proposes a solution that guarantees a TAP-fair share of the bandwidth.
However, a TAP-based fairness is not necessarily the best solution for WMNs. Con-
sider as an example the one-dimensional WMN presented in Figure 2.11: A per-TAP
fairness policy leads to flows 1, 2 and 3 having each the same share of the bandwidth,
without taking into consideration the number of clients that are served by each of
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these TAPs. The bandwidth sharing should be fair client-wise, because the purpose
of a mesh network is to offer a service (typically Internet connectivity) to the mobile
stations that are usually paying the same flat rate. That is why, in the example of
Figure 2.11, flow 2 should have half as much as what flow 1 and flow 3 have, as
TAP2 is serving only one client, whereas TAPs 1 and 3 are serving two clients each
(assuming all clients have equivalent needs).

WHSTAP3 TAP1TAP2

Flow 1

Flow 2

Flow 3

Fig. 2.11. The fairness problem. In order to define the bandwidth sharing, it is important to take
into consideration the number of mobile stations served by each of the TAPs. Flow 2 should thus
have half as much as what flow 1 and flow 3 have, as TAP 2 is serving only one client, whereas TAPs
1 and 3 are serving two clients each. From [47], c© IEEE, 2006.

The fairness issue is closely related to the number of hops between the TAPs and
the WHS. This means that if the adversary manages to increase the number of hops
between a given TAP and the WHS, it can decrease dramatically the bandwidth share
of this TAP. A possible solution against this attack can be a periodic reconfiguration
of the WMN. Given that the WHS and the TAPs are static, the operator can define
- based on the traffic in the WMN - the optimal configuration of the WMN and force
the routes at the TAPs to the optimal routes. Once the network has an optimal
configuration, it is possible to use appropriate scheduling techniques to ensure per-
client fairness and to optimize the bandwidth utilization in the WMN; see Section 2.5
for references on this topic.

Detection of corrupt TAPs As explained previously, mesh networks typically employ
low-cost devices that cannot be protected against removal, tampering or replication.
An adversary can thus capture a TAP and tamper with it. Note that if the device
can be remotely managed, the adversary does not even need to physically capture the
TAP: A distant hacking into the device would work perfectly. The WHS plays a special
role in the WMN and can handle or store critical cryptographic data (e.g., temporary
symmetric keys shared with the mobile stations, long-term symmetric keys shared
with the TAPs, etc.). Therefore, we assume that the WHS is physically protected.
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We identify four main attacks that can be performed on a compromised TAP,
depending on the goals the adversary wants to achieve.

The first attack consists in the simple removal or replacement of the TAP in
order to modify the network topology to the benefit of the adversary. This attack can
be detected by the WHS or by the neighboring TAPs when a sudden and permanent
topology change is observed in the network.

The second attack consists in accessing the internal state of the compromised
TAP without changing it. The detection of this attack is difficult, given that no
state change is operated on the TAP. Disconnecting the device from the WMN might
not be required for the adversary to successfully perform the attack; and even if
a disconnection were required, the “absence” of the device might not be detected,
as it can be assimilated to some congestion problem. If this attack is successful, it
guarantees to the adversary the control of the corrupt TAP and a perfect analysis of
the traffic going through it. This attack is more serious than simple eavesdropping on
the radio channel because the adversary, by capturing the TAP, can retrieve its secret
data (e.g., its public/private key pair, the symmetric key shared with the neighboring
TAPs or with the WHS, etc.) and can use these data to compromise, at least locally,
the security of the WMN, especially data confidentiality and integrity, and client
anonymity. Unfortunately, there is no obvious way to detect this attack. However, a
possible solution that mitigates its effect is a periodic erasure and reprogramming of
the TAPs; the adversary is then obliged to compromise the device again.

In the third attack, the adversary modifies the internal state of the TAP such
as the configuration parameters, the secret data, etc. The purpose of this attack can
be, for example, to modify the routing algorithm at the compromised node in order
to change the network topology. This attack can be detected by the WHS using a
software attestation mechanism, see Section 2.5.

Finally, the fourth attack consists in cloning a given TAP and installing the replicas
at some strategically chosen locations in the mesh network, which allows the adversary
to inject false data or to disconnect parts of the WMN. This attack can seriously
disrupt the routing mechanism, but it can be detected using appropriate techniques
for the identification of replicated nodes, see Chapter 4.

Two attack examples In order to illustrate the attacks described so far, we give
two attack examples that an adversary can perpetrate against the WMN (see Fig-
ure 2.12 (a)). In the first attack, the adversary corrupts TAP2, whereas in the second
attack, it performs a DoS attack - based on jamming - on the communication link
between TAP5 and TAP6. Note that we assume the two attacks to be performed by
the same adversary, which represents the worst case (as it gives more power to the
adversary).

The goal of these attacks can be the following: First, by corrupting TAP2, the
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adversary can retrieve its secret data and therefore can compromise the integrity and
confidentiality of the data going through it, as well as the anonymity of the mobile
stations attached to TAP2, TAP3 and TAP4. Second, the DOS attack is a very simple
and efficient way to partition the WMN and trigger a network reconfiguration, which
will force more of the traffic to flow through the compromised TAP2.

It is imperative to detect these attacks in order to react accordingly. A possible
reaction to the corrupt TAP attack can be the replacement, by the network operator,
of the compromised TAP2 (see Figure 2.12 (b)). The detection and disabling of the
jamming station can be more delicate: Finding the exact location of this station can be
difficult and, even if it is found, the network operator might not have the authority
to disable it (especially in the likely case where both the WMN and the jamming
station are operating in unlicensed band); in this case, a network reconfiguration is
required. This connectivity change affects the routing and can increase the number of
hops from a given TAP to the WHS (for example, in Figure 2.12, TAP6 was 2-hops
away from the WHS but after the network reconfiguration, it is 7-hops away), which,
as shown previously, can dramatically affect the performance of the WMN. Note that
the operator can decide to abandon a given TAP location if it is particularly exposed
(the TAP located there is repeatedly corrupted), in which case it would be necessary
to deploy additional devices to make up for the coverage gap.

Multi-operator WMNs So far, we have assumed the WMN to be managed by
a single operator, but a mesh network can also designate a set of wireless devices
belonging to different networks and controlled by different operators. Ensuring se-
curity is more delicate in this case: In addition to the security challenges that we
have already identified, one has to add challenges such as the mutual authentication
of nodes belonging to different “operating domains” or the application of different
charging policies for each of these domains (which can affect fairness).

Another important security challenge results from the utilization of the same spec-
trum by the different operators. If we assume that a mobile station can freely roam
across TAPs that are managed by different operators and that it attaches to the neigh-
boring TAP with the strongest signal, each operator can be tempted to configure its
TAPs to always transmit at the maximum authorized level (and thus make sure that
it is heard by the maximum number of mobile stations). This situation can lead to
a bad performance of the WMN, but can be solved using Multi-radio/Multi-Channel
(MR-MC) TAPs in the WMN (we will discuss this issue in Chapter 11). Note that
the use of MR-MC TAPs can also mitigate the effect of the DoS attack; instead of
jamming a single channel, the adversary has to jam all the channels used by a given
node to completely disable it.
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Fig. 2.12. Two attacks and the related countermeasures: In (a), the adversary corrupted TAP2

and placed a jamming station between TAP5 and TAP6. As shown in (b), the detection of these
attacks leads to the reconfiguration of the WMN: the operator replaced the compromised TAP2 by
an uncorrupted equipment and updated the routing. In this example, the reconfiguration leads to
much longer routes for some TAPs (e.g., TAP6 was 2-hops away from the WHS and is now 7-hops
away). From [47], c© IEEE, 2006.
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2.2.7 More on vehicular networks

Having described mesh networks, we now will provide a description of the challenges
of vehicular networks, and sketch a “reasonable” solution. The problem is much more
involved than in the case of mesh networks and the progress towards the solution in
the academic and industry communities has proved to be much slower.

Vulnerabilities

Any wireless-enabled device that runs a rogue version of the vehicular communication
protocol stack poses a threat. We denote such rogue devices deviating from the defined
protocols as adversaries or attackers.

The adoption of a variant of the widely deployed IEEE 802.11 protocol9 by the vehi-
cle manufacturers makes the attacker’s task easier. And even possession of credentials
cannot ensure alone the correct operation of the nodes. The nature of the attacker
(internal or external, rational or malicious, independent or colluding, persistent or
random) has an overwhelming influence on the amount of damage she can generate.
Here, rather than analyzing specific protocols, we are after a general exploration of
VC (vehicular communications) vulnerabilities.

Forgery The correctness and timely receipt of application data is a major vul-
nerability. Figure 2.13 illustrates the rapid “contamination” of large portions of the
vehicular network coverage area with false information where a single attacker forges
and transmits false hazard warnings (e.g., ice formation on the pavement), which are
taken up by all vehicles in both traffic streams of vehicles.

In-transit traffic tampering Any node acting as a relay can disrupt commu-
nications of other nodes: it can drop or corrupt messages, or meaningfully modify
messages. In this way, the reception of valuable or even critical traffic notifications or
safety messages can be manipulated. Moreover, attackers can replay messages, e.g., to
illegitimately obtain services such as traversing a toll check point. In fact, tampering
with in-transit messages can be simpler and more powerful than forgery attacks.

Impersonation Message fabrication, alteration, and replay can also be used to-
wards impersonation. Arguably, the source of messages, identified at each layer of the
protocol stack, could be of secondary importance. Often, it is not the source but the
content (e.g., hazard warning) and the attributes of the message (freshness, locality,
relevance to the receiver) that count the most. However, an impersonator can be
a threat: consider, for example, an attacker masquerading as an emergency vehicle
to mislead other vehicles to slow down and yield. Or, an adversary impersonating
roadside units, spoofing service advertisements or safety messages.

Privacy Violation With vehicular networks deployed, the collection of vehicle-
specific information from overheard vehicular communications will become particu-
9 http://grouper.ieee.org/groups/scc32/dsrc/
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Fig. 2.13. Message forgery: the attacker disseminates false alarms, e.g. in order to induce
the drivers to brake abruptly. From [321], c© IEEE, 2006.

larly easy. Then, inferences on the drivers’ personal data could be made, and thus
violate her privacy. The vulnerability lies in the periodic or frequent messages gener-
ated by a vehicle: safety and traffic management messages, context-aware data access
(e.g., maps, ferryboat schedules), transaction-based communications (e.g., automated
payments, car diagnostics), or other control messages (e.g., over-the-air registration
with local highway authorities). In all such occasions, messages will include, by de-
fault, information (e.g., time, location, vehicle identifier, technical description, trip
details) that could precisely identify the originating node (vehicle) as well as the
drivers’ actions and preferences (Figure 2.14).

On-board Tampering Beyond abuse of the communication protocols, the at-
tacker can select to tinker with data (e.g., velocity, location, status of vehicle parts)
at their source, tampering with the on-board sensing and other hardware. In fact,
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Fig. 2.14. Vehicle tracking: the attacker has deployed three rogue antennas and takes ad-
vantage of the messages transmitted by the victim vehicle (A) in order to track her. From
[321], c© IEEE, 2006.

it can be simpler to replace or by-pass the real-time clock or the wiring of a sensor,
rather than modifying the binary code implementation of the data collection and
communication protocols. Any VC security architecture should achieve a trade-off
between robustness and cost due to tamper-proof hardware.

Jamming The jammer deliberately generates interfering transmissions that pre-
vent communication within their reception range. As the network coverage area, e.g.,
along a highway, can be well-defined, at least locally, jamming is a low-effort exploit
opportunity. As Figure 2.15 illustrates, an attacker can relatively easily, without com-
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Fig. 2.15. Spectrum jamming: communications are disrupted in the neighborhood of the
jammer. From [321], c© IEEE, 2006.

promising cryptographic mechanisms and with limited transmission power, partition
the vehicular network.

Challenges

The operational conditions, the constraints, and the user requirements for VC systems
make security a hard problem. We now discuss the most significant challenges specific
to VC.

Network Volatility The connectivity among nodes can often be highly transient
and a one-time event. For example, two vehicles (nodes) passing by each other will re-
main, in general, only for a few seconds within their transceiver range. In other words,
vehicular networks lack the relatively long-lived context and, possibly, the personal
contact of the device users of a connection to a hot-spot or the recurrent connection to
an on-line service across the Internet. Hence password-based establishment of secure
channels, gradual development of trust by enlarging a circle of trusted acquaintances,
or secure communication only with a handful of endpoints are impractical for securing
VC.

Liability vs. Privacy To make the problem harder, accountability, and eventu-
ally liability, of the vehicles and their drivers is required. Vehicular communication is
envisioned as an excellent opportunity to obtain hard-to-refute data that can assist
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legal investigations (e.g., in the case of accidents). This implies that, to begin with,
unambiguous identification of the vehicles as sources of messages should be possible.
Moreover, context-specific information, such as coordinates, time intervals, and asso-
ciated vehicles, should be possible to extract or reconstruct. But such requirements
raise even stronger privacy concerns. This is even more so when drivers’ biometrics
are considered: Biometrics, useful for enhancing vehicle access and control methods,
are highly private and unique data cannot be reset or reassigned.

Delay-Sensitive Applications Many of the envisioned safety and driver-assistance
applications pose strict deadlines for message delivery or are time-sensitive. Security
mechanisms must take these constraints into consideration and impose low processing
and messaging overhead. Not only must protocols be lightweight, they must also resist
to denial-of-service attacks. Otherwise, it would suffice for an adversary to generate
a high volume of bogus messages and consume resources so that message delivery is
delayed beyond the application requirements, and thus, in practice, denied.

Network Scale The scale of the network, with roughly a billion vehicles around
the globe, is another challenge. This, combined with the multitude of authorities
governing transportation systems, makes the design of a facility to provide crypto-
graphic keys a challenge per se. A technically and socially convincing solution is a
prerequisite for any security architecture.

Heterogeneity The heterogeneity in VC technologies and the supported applica-
tions are additional challenges, especially taking into account the gradual deployment.
With nodes possibly equipped with cellular transceivers, digital audio and Geograph-
ical Positioning Service (GPS) or Galileo receivers, reliance on such infrastructure
should not be the weakest link in achieving security. For example, if GPS signaling
can be spoofed, can the correctness of node coordinates and time accuracy be as-
sumed? In addition, with a range of applications with differing requirements, security
solutions must retain flexibility, yet, remain efficient and interoperable.

Slow penetration The adoption of wireless communications will be a very pro-
gressive process, spanning at least over two decades before all vehicles are equipped.
This means that any deployed architecture must be able to cope with the presence of
not (yet) equipped vehicles.

Security architecture

In this section, we present the components needed to protect VC against the wide
range of threats that we have just discussed. This provides an AAA (authentication,
authorization, accounting) framework for VC. We present in Figure 2.16 a “reason-
able” possible architecture, the components of which are described next. As the field
is still pretty immature at the time of this writing, this architecture should be consid-
ered as an “educated guess” (based on the many discussions that we had with several
representatives of the automotive industry) rather than the ultimate solution.
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Fig. 2.16. Overview of the security architecture. The represented scenario depicts an au-
thenticated safety message generated from a vehicle involved in a collision. The message is
relayed hop by hop in the direction opposite to the one of the vehicles, by a secured rout-
ing protocol. Each vehicle checks the correctness of the signature and the plausibility of
the reported event. Secure positioning, also sketched in the figure, is an advanced (if not
futuristic) feature by which each vehicle will be able to prove that it is really located at the
position where it claims to be. From [321], c© IEEE, 2006.

Security hardware Among the vehicle onboard equipment, two logical blocks are
needed for security, namely the Event Data Recorder (EDR) and the Tamper-Proof
Device (TPD).10

The EDR will be responsible for recording the vehicle’s critical data, such as posi-
10 In some proposals, both modules are implemented in the same hardware module.
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tion, speed, time, etc., during emergency events, similarly to an airplane’s black box.
These data will help in accident reconstruction and in attribution of liability. EDRs
are already installed in many road vehicles, especially trucks. These can be extended
to record also the safety messages received during critical events.

The car electronics, especially the data bus system, are easily accessible by the
owner or by a mechanic. Hence the cryptographic keys of a vehicle need proper
hardware protection, namely a TPD. The TPD will take care of storing all the cryp-
tographic material and performing cryptographic operations, especially signing and
verifying safety messages. By binding a set of cryptographic keys to a given vehicle,
the TPD guarantees the accountability property as long as it remains inside the ve-
hicle. The TPD has to be as independent as possible from its external environment,
hence it should include its own clock and have a battery that is periodically recharged
from the vehicle’s electric circuits. Yet, despite all these “features”, the TPD will still
suffer from the fact that it cannot control the correctness of the data it receives. This
can result in the TPD signing messages with bogus data. A solution to this problem
is to cross-check (among several neighboring vehicles) the plausibility and consistency
of the reported data.

A major obstacle to the adoption of TPDs is their high cost. But current products
are mainly intended for computation-hungry financial applications. Hence there are
several factors that can facilitate the introduction of TPDs in vehicles: (i) the creation
of a “lighter” version of TPDs, (ii) the leverage on the building-up expertise for
vehicular EDRs, and (iii) the economy of scale that will drive costs significantly lower.

Vehicular Public Key Infrastructure The large number of vehicles registered
in different countries and traveling long distances, well beyond their registration re-
gions, requires a robust and scalable key management scheme. Communication via
base stations (as in cellular networks) is not enough for VC, mainly because vehi-
cles need to authenticate themselves not only to base stations but also to each other
(without invoking any server), which creates a problem of scalability. In addition,
symmetric cryptography does not provide the non-repudiation property that allows
the accountability of drivers’ actions (e.g., for accident reconstruction or in order to
find the originators of forgery attacks). Hence, the use of public key cryptography is
a more, if not the only, suitable option for deploying VC security.

This implies the need for a Vehicular Public Key Infrastructure (VPKI) where
Certificate Authorities (CAs) will issue certified public/private key pairs to vehicles.
Similarly to current vehicle registration authorities, there will be several CAs, each
corresponding to a given region (e.g., country, state, metropolitan area, etc.). Other
candidates for taking the role of CAs are car manufacturers. In any of the two cases,
the different CAs will have to be cross-certified so that vehicles from different regions
or different manufacturers can authenticate each other. This will require each vehicle
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to store the public keys of all the CAs whose certificates it needs to verify. Alternately,
in the case where CAs are regional authorities, vehicles can request new public/private
key pairs delivered by the foreign region they enter.11

Authentication The fundamental security functions in VC will consist in authenti-
cating the origin of a data packet. Authentication and the inherent integrity property
counter the in-transit traffic tampering and impersonation vulnerabilities. In addi-
tion, authentication helps to control the authorization levels of vehicles.

To authenticate each other, vehicles will sign each message with their private key
and attach the corresponding certificate. Thus, when another vehicle receives this
message, it verifies the key used to sign the message and once this is done correctly, it
verifies the message. To reduce the security overhead, the common approach is to use
ECC (Elliptic Curve Cryptography) - the most compact public key cryptosystem so
far. But it is possible to reduce this overhead by signing only critical messages (e.g.,
with accident warnings) or one in every few messages (the frequency and redundancy
of messages can allow this). In addition, given the frequency of safety message broad-
casts (typically, every 100 ms according to the current draft standards), a vehicle can
ignore redundant messages.

Privacy To address the privacy vulnerability, a reasonable solution consists in using
a set of anonymous keys that change frequently (e.g., every couple of minutes) accord-
ing to the driving speed. Each key can be used only once and expires after its usage;
only one key can be used at a time. These keys are preloaded in the vehicle’s TPD
for a long duration, e.g., until the next yearly checkup; the TPD takes care of all the
operations related to key management and usage. Each key is certified by the issuing
CA and has a short lifetime (e.g., a specific week of the year). In addition, it can be
tracked back to the real identity of the vehicle - the Electronic License Plate (ELP) -
in case law enforcement necessitates this and only after obtaining a permission from
a judge. This conditional anonymity will help determine the liability of drivers in the
case of accidents. The downside of this approach is the necessity for storage space for
all the keys for one year, but these can fit in only a few Mbytes [318].

Link with the chapters of Part II and III

With respect to the mechanisms described in the rest of the book, the reader is in-
vited to identify the similarities with other networks, but also the peculiarities of
vehicular networks. The design of vehicular networks security can leverage, to some
extent, on the techniques related to identity management, described in Chapter 5.
Likewise, secure neighbor discovery and secure routing between vehicles can be based
11 In this context, “foreign” means a region different from a vehicle’s home region.
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on the mechanisms provided in Chapters 6 and 7. The difficult problem of key re-
vocation is described in Section 5.5. In addition, privacy can be designed according
to some of the techniques described in Chapter 8. Finally, the cooperative features
of vehicular networks (such as fine-grained traffic optimization) could be modeled by
means of game theory (see Part III for some examples of applications to other kinds
of networks), although this is still an open research topic.

2.3 Trends and security challenges in wireless networks

From the examples provided in the previous section, we can infer a certain number
of trends. For this purpose, let us consider again the classical cellular network: an
operator, alone in its licensed frequency band, operates a set of base stations; the
mobile stations, each duly equipped by the operator with a secret key, communicate
in one hop with those base stations. The analysis of the upcoming wireless networks
that we have just described shows that all the characteristics of this model will be
progressively relaxed.

Indeed, as we move from centralized networks to distributed or even self-organized
networks, security (and in particular key management) must be redesigned. As we
will see, even the apparently simple notions of naming and addressing require specific
attention, and we will devote a full chapter to them. In a subsequent chapter, we will
also show that the mobility of the nodes can be used to establish security associations
between nodes.

Multi-hopping increases the “security distance” between the device under the
control of the operator (base station, access point) and the mobile station. Conse-
quently, appropriate measures must be taken to prevent malicious or greedy behavior
from affecting the proper operation of the network.

The growing programmability of the devices provides the users with more flexi-
bility, in the sense that they can for example easily install new applications on their
devices. But at the same time, the devices can be misused to mount attacks of growing
sophistication; likewise, greedy behavior becomes a serious threat.

In addition, wireless devices are particularly vulnerable, in the sense that they
can be captured and potentially reverse engineered. An attacker can make clone a
captured device, typically to mount a Sybil or a replication attack.

Another dimension is the growing relevance that wireless personal devices is
taking: for example, mobile phones are used more and more to support payment
operations, which of course renders them even more attractive for potential attackers.

In a growing number of cases, these personal devices are also expected to deal with
heterogenous networks, for example by selecting the most advantageous connec-
tion offered in the neighborhood (e.g., WiFi Vs. cellular). As the various networks
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are protected by mechanisms that can substantially differ from each other, this het-
erogeneity can be exploited by badly intentioned people.

Arguably the most formidable change is due to the emergence of wireless commu-
nications between embedded devices such as vehicles and sensors: The communi-
cation does not directly involve human beings anymore, but as we have seen, this fact
does not (by any means) make security or cooperation easier.

The miniaturization of the devices means that they will always have to cope
with limited computing power, transmission capabilities, and energy reserves. Con-
sequently, the security mechanisms will need to take these limitations into account;
likewise, these limitations will fuel the temptation of selfish behavior.

As we have seen in the previous examples, many wireless devices are mobile, and
their study requires making use of appropriate mobility models. The most popular
one is certainly the random waypoint model, in which a given mobile chooses a random
destination in the eligible space and moves to it in straight line at a randomly chosen
speed (up to an imposed maximum speed). Once it reaches that location, it stays
there for an amount of time generated randomly (again upper bounded by a given
value) and then it starts the process again.

Another important evolution to take into account is cognitive or smart radios.
Radios of this kind are able to sense their environment in order, for example, to
switch to a less congested frequency. This can pave the way to underlay systems, in
which a chunk of the spectrum is reserved to a primary operator (e.g., a television
broadcast operator), but can also be used by secondary users, provided that the latter
bring minimal interference to the former. Software-defined radios will tremendously
facilitate this evolution.

Another possible underlay can be based on Ultra Wide Band (UWB) radios,
which transmit at very low power over an extremely wide band (in the order of several
GHz). Their proper operation is technically challenging and requires, in particular, a
very tight synchronization. An interesting additional feature of UWB technology is
that it can be used for distance estimation.

As it is well known, the pervasiveness of the wireless technology raises delicate
trade-offs between usability and privacy. This latter topic is so important that we
will devote a full chapter to it (Chapter 8).

2.4 Summary

In this chapter, we have seen that the evolution of wireless networks leads to a large
number of challenges in terms of security and cooperation. In Figure 2.4, we provide
the relationship between the types of networks that we have just described and the
mechanisms of security and cooperation that we will define and discuss in the chapters
of Part II and III.
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2.5 To probe further

Gambiroza, Sadeghi, and Knightly study the characteristics of wireless mesh net-
works in terms of capacity and delay constraints [142]. Ben Salem and Hubaux [46]
show how to ensure per-client fairness in such networks and how to optimize the
bandwidth utilization. Kodialam and Nandagopal [221] explain how WMNs capacity
can be increased by multi-radio and multi-channel TAPs.

As for mobile ad hoc networks, the routing protocols are discussed in [306]. An
outlook for self-organized mobile ad hoc networks can be found in [183]. The reader
interested in references on the security aspects of routing in mobile ad hoc networks
is referred to Chapter 7.

The research on vehicular communications security is just beginning, with few
pioneer papers so far. In [55], Blum and Eskandarian describe a security architecture
for VC intended mainly to counter the so-called “intelligent collisions” (meaning that
they are intentionally caused). But this is only one type of attacks and building
the security architecture requires awareness of as many potential threats as possible.
They propose the use of a PKI and a virtual infrastructure where cluster-heads are
responsible for reliably disseminating messages (by a sequential unicast instead of
broadcast) after digitally signing them. Gerlach [146] describes the security concepts
for vehicular networks. Hubaux, Capkun, and Luo [184] take a different perspective
of VC security and focus on privacy and secure positioning issues. They point out the
importance of the tradeoff between liability and anonymity and introduce Electronic
License Plates (ELP), unique electronic identities for vehicles. Parno and Perrig [302]
discuss the challenges, adversary types and some attacks; they also describe several
security mechanisms that can be useful in securing these networks. Raya and Hubaux
[318] describe a security and privacy architecture for VANETs with first evaluations
of the security overhead; along with Papadimitratos, they further refine the issue,
including revocation aspects in [321]. El Zarki et al. [387] describe an infrastructure
for VC and briefly mention some related security issues and possible solutions.

The reader interested in the privacy aspects of vehicular (and other) networks is
referred to Chapter 8.

The IEEE P1609.2 standard [195] is part of the DSRC standards for vehicular
communications supported by the US Vehicle Safety Communication Consortium
(VSCC). It proposes using asymmetric cryptography to sign safety messages with
frequently changing keys so that anonymity is preserved. There is no mechanism
proposed for certificate revocation. Instead, certificates have short lifetimes and are
periodically requested by vehicles through roadside base stations, implying the need
for a pervasive infrastructure.

In Europe, vehicular communications security is partially considered within the
projects NoW (Network on Wheels, http://www.network-on-wheels.de/) and GST
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(Global System for Telematics, http://www.gstproject.org/) as well as by the Car2Car
Communication Consortium (C2C-CC, http://www.car-to-car.org/). It is being
fully addressed by the European project SEVECOM (SEcure VEhicular COMmu-
nications, http://www.sevecom.org) that focuses on providing a full definition and
implementation of security requirements for vehicular communications.

Finally, a solution to provide privacy in vehicular networks is provided by the
CARAVAN scheme [331].

In terms of mobility models, the random waypoint is described in the work
by Johnson and Maltz [208]. Some limitations and recommended precautions have
been elaborated by Yoon, Liu, and Noble [384]. As for vehicular communications,
Choffnes and Bustamante [98] have explored the integration of road mobility and
traffic models, and stressed the substantial difference between vehicular mobility and
the random waypoint model. Finally, the reader interested in more advanced aspects
of mobility models can refer to the work by Le Boudec and Vojnovic [61], which
studies the properties of a broad family of mobility models.

Cognitive radios have attracted a tremendous amount of research interest over the
last years. For a survey, refer to Akyildiz et al. [17].

The detection of pressure, voltage, or temperature changes can be realized by appro-
priate techniques, but there is no absolute guarantee of perfect tamper-proofness, as
mentioned by Anderson and Kuhn [25]. Seshadri et al. [339] propose software-based
attestation techniques which can be used, as we have seen, to detect compromised
TAPs. Finally, the technique proposed by Parno, Perrig, and Gligor [303] can be used
for the distributed detection of node replication attacks.

Note: Intrusion detection techniques are now routinely used in (wired) networks.
We do not discuss them here, because they do not seem to exhibit significant pecu-
liarities in the case of wireless networks (beyond the protection techniques presented
in Part II). Another aspect that we do not develop in this book is the recent area of
secure positioning; the interested reader can refer to [86].

A comprehensive survey on sensor networks and applications can be found in [18]
written by Akyildiz et al. In addition, several projects have explored the research
field of sensor network security. A recent example from Europe is the UbiSec&Sens
Project (http://www.ist-ubisecsens.org).

Many details about the fundamentals of RFID technology can be found in [137]. A
historical overview of the evolution of RFID security from World War II until today
is presented in [325]. A comprehensive survey on the security and the privacy issues
in RFID systems, including an outlook to potential research problems in the field,
can be found in [211] written by Juels.
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2.6 Questions

(a) In your opinion, what are the three principal reasons why hybrid ad hoc net-
works are so difficult to implement?

(b) Why is cooperation between nodes a non-issue in the case of mobile ad hoc
networks in hostile environments?

(c) Assume a group of ten persons, each equipped with a laptop containing an
IEEE 802.11 adaptor. Is that enough to set up a self-organized mobile ad
hoc network? If yes, give a simple solution by which they could make their
communications confidential to non-members of the group? What if they want
peer-to-peer confidentiality within the group? What happens if a new member
joins the group? What happens if a member leaves the group?

(d) Why is it not possible to rely exclusively on symmetric cryptography in order
to secure vehicular networks?

(e) Why is privacy an issue in vehicular networks, considering that today’s vehicles
have licence plates?

(f) Would it be possible to get rid of the certification authority, and let each vehicle
generate its own signatures? Why?



3

Trust assumptions and adversary models

Before diving into the mechanisms of malice and selfishness prevention, which will be
the topic of the rest of this book, we will now focus on the notion of trust and we will
refine the definition of the adversary model.

3.1 About trust

As we have already hinted in the previous chapter, building and maintaining trust
will be much more difficult in upcoming wireless networks than in existing ones. Yet,
trust is absolutely fundamental for the future of (wireless) communications. Once
computing has become ubiquitous, it will probably be de facto mandatory, as are al-
ready today mobile phones and personal computers; but what if it is not trustworthy?
What if it is as unsafe as today’s Internet? Moreover, no business is possible without
trust, and wireless networks are essentially driven by business considerations.

Trust can be defined as the belief that another party (a person, an organization,
but also a device) will behave according to a set of well-established rules and will
thus meet one’s expectations. This notion is fundamental in all human societies (and
also in many animal groups); generally, a breach of trust is considered to be a major
offense.

But trust is a fuzzy notion, be it considered across persons or across areas of
competence: No matter how close they are to each other, different people may trust
very different things, even in front of the same evidence. Likewise, a person A may
trust a person B for the accomplishment of a certain task, but not another: most
people trust their mother in general, but rarely for piloting a helicopter; similarly,
a subscriber trusts a cellular operator to provide her with connectivity over a given
territory, but not necessarily for striking the most advantageous roaming deals (from
the subscriber’s point of view) with other operators. To make things worse, even in
a given area of competence, trust is neither symmetric nor transitive.

73
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It is important at this stage to position trust with respect to security and to coop-
eration.

Trust preexists security. As mentioned, initially trust is a “natural” phe-
nomenon, and it has existed for millennia, before any concept of security was in-
vented. Security is simply a technique to infer trust: if I trust something, security
can help me trusting something else. For example, if I trust that my personal com-
puter is not compromised, that the security protocol I use is not flawed, and that the
cryptographic algorithm running on both sides is not (yet) broken, then I can trust
that what I see on my screen is indeed a Web page corresponding to my bank and I
can carry out my e-banking transactions with the legitimate belief that I will not be
defrauded. It should be clear from this simple example that any security mechanism
requires some level of trust in its underlying components.

Cooperation reinforces trust. In the definition that we have provided, trust is
about the ability to predict the behavior of another party. People being what they
are, a reasonable assumption is to assume selfishness of the other parties. Therefore,
if a system is designed in such a way that the socially desirable behavior coincides
with a party’s vested interest, then it is likely that that party will indeed behave as
desired.1 Hence the possible emergence of a virtuous cycle: I observe the other party’s
cooperative behavior. This lets me believe that she will continue to be cooperative in
the future, and hence my trust in her. It also encourages me to be cooperative, which
will reinforce the trust that she has in me, etc.

Because of the complex characteristics of trust, and as it is very deeply rooted
in our human nature, trust is difficult to quantify and to model, in the same way
as the “quality of service” of a communication application is difficult to assess in a
fully objective way. It is in fact easier to describe the reasons to trust someone or
something, which are the following.

Moral values As mentioned, any society has its rules, and in many cases we will
consider that other parties obey these rules, typically because of their educa-
tion or because they fear bad publicity, should their misbehavior be disclosed.
So for example, we trust a large cellular operator to protect our privacy as
long as there is no strong reason (e.g., a legal enquiry) to depart from that
attitude.

Experience about a given party Previous interactions are of course revealing about
the trustworthiness of a given party; these interactions can be either first hand
or be reported by other parties, meaning that reputation is a fundamental
component of trust. Of course, the frequency of the interactions as well as

1 As explained in Appendix B, this situation corresponds to the case in which Pareto-optimality
coincides with a Nash equilibrium.
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the durability of the other parties (and of their identifiers) are very important
to make experience relevant.

Rule enforcement organization If the stakes are high (e.g., the risk of accident
when driving a car), the obedience to the rules is further “encouraged” by
a specialized agency. For example, the way cellular operators use the radio
spectrum is usually regulated by a governmental agency; the way mobile users
make use of the radio spectrum is usually controlled by the operator.

Rule enforcement mechanism As it is not possible to “put a cop behind each
wireless device”, technical mechanisms must be deployed to either make at-
tacks more difficult or to encourage the desired behavior.2

As an example of the former case, it is much more efficient to encrypt radio
communications rather than to deploy police force everywhere to check that
no one is eavesdropping. Several examples of the latter case are described in
Part III of this book.

Experience of collective behavior Although malicious behavior refers to poorly
understood psychological mechanisms, it is possible to consider that one be-
havior is much more frequent than another. For example, usually a driver
chooses an itinerary to reach her destination by taking into account exclu-
sively her own benefit and not the implications of this decision on the other
drivers; but it is (fortunately) very unusual that a driver throws a box of nails
on a highway, just for the dubious pleasure to generate an accident. Likewise,
network users will often keep trying to set up a communication in spite of the
fact that the network is congested; but very few will make the effort to jam
a given area simply to “enjoy” complicating other people’s life.

3.2 Trust in the era of ubiquitous computing

In the previous chapter, we have explained the major characteristics of upcoming
wireless networks. Our discussion of trust building will now be useful to explain why
this evolution has profound implications in terms of trust.

We have seen that the number and diversity of operators will increase, that the
wireless communication chain between the end device and the operated devices will
become longer, that the mobility of the devices will increase, and that the overall
number of devices will explode. Consequently, the two first items of the previous list
(moral values and experience about a given party) will lose relevance: the compliance
to the first becomes more difficult to observe and the increasing mobility of the devices
2 This encouragement can be realized by either providing rewards in case of good behavior (e.g., by

means of micropayments) or by punishing misbehavior (e.g., by reducing the provided quality of
service).
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and the shorter lifetime of organizations makes the second more difficult. Rule en-
forcement organizations will have to evolve, because some of the techniques they use
are not scalable (this is the case for example when sending engineers in various parts
of the country to make measurements about the power used by base stations). Hence
these organizations will have to rely more and more on rule enforcement mechanisms.

Rule enforcement mechanisms are indeed the way of the future. Whenever neces-
sary, they will take into account the experience of collective behavior. These mecha-
nisms can be classified in two categories. The first category aims at preventing bad
things from happening and is typically based on security and cryptographic tech-
niques. The second category aims at encouraging desirable behavior (or discouraging
undesirable behavior). It usually quantifies the benefit to the user and leverages
on game theory and mechanism design. Both categories can be complemented by
anomaly detection mechanisms.

3.3 Adversary

Considering the diversity of upcoming wireless networks, it would be foolish to try
to define a common adversary model: A threat on a vehicular network is not the
same as one on a sensor network, for example. In the previous chapters, we have
already described some possible misdeeds (hence giving some information about the
attacker); in each of the following chapters of this book, we will define what the
specific adversary is. Yet at this stage we will make several comments of general
interest.

Malice and selfishness

As mentioned in the first chapter, an intuitive distinction between malice and selfish-
ness consists in stating that the former refers to the willingness to do harm (which
includes the access to personal data), whereas the second corresponds to the overuse
of common resources such as a network or a radio spectrum.

In the classical security view, only the former is considered: for some reason there
is an attacker, and she is willing to perpetrate her attack no matter what. This makes
a lot of sense in the original application area, namely warfare: “we” are right, and we
must make all possible efforts to fight our enemy, even at the cost of defeating him
(breaking their cryptographic codes can be tremendously helpful to achieve that goal,
of course). But as we move from military to commercial settings, the motivation to
deploy security mechanisms becomes weaker, leading to the unpleasant situation of
today’s Internet, because (i) the attacker is much more difficult to identify, (ii) those
who deploy the security mechanisms are not necessarily those who benefit from them
(we will come back to this issue shortly), and (iii) the attempts to overuse the network
resources (as is the case with spam) can be very difficult to thwart.
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This shows that malice and selfishness must be considered jointly, if we want
to seriously protect the wireless networks of the future. For this reason, we believe
that the specialists in charge of these tasks must have an appropriate understanding
of both security and game theory. Indeed, security techniques are useful to thwart
malice whereas game theory can help modeling (and therefore preventing) selfishness.
But this segregation in two camps is a bit artificial, as we will see towards the end
of this book. Yet the distinction between malice and selfishness is useful, and we will
make use of the following definitions.

Definition 3.1
A misbehavior is the action of a party or group of parties consisting in deliberately

departing from the standardized or otherwise prescribed behavior in order to reach a
specific goal.

In this first definition, it is thus assumed that the standardized or prescribed be-
havior is of public knowledge.

Definition 3.2
A misbehavior is selfish (or greedy, or strategic) if it aims at obtaining an

advantage that can be quantitatively expressed in the units (bitrate, joules, or coverage)
of wireless networking; any other misbehavior is considered to be malicious.

From this last definition, we see that a technique aiming at increasing one’s share
of the bandwidth (in general at the expense of other users) is selfish. Likewise, an
operator who increases the power of its base stations (thus leading to an overall
degradation of the communication quality of the mobile users connected to the base
stations of other operators) is selfish as well. A Denial of Service attack is malicious,
but it can obviously rely on techniques borrowed from selfish attacks. Finally, an
attack aiming at obtaining information about or from another user of the network
(hence an attack against privacy) is malicious.

The distinction between Part II and Part III of this book is based on this defini-
tion; as we will see, Part II corresponds to what is usually considered to be security
concerns, whereas Part III focuses on cooperation issues. The last chapter of Part
III shows how mechanisms to enforce cooperation can be designed based on security
techniques.

An additional reason to consider both security and cooperation is that one of the
explanations for the lack of deployment of security mechanisms is the lack of incentives
to do so, especially when the failure to deploy a security mechanism falls on other
people. This topic is considered to be important enough to have triggered the creation
of a workshop devoted to it: the Workshop on the Economics of Information Security
(WEIS).
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Yet another reason why malice and selfishness should be jointly studied is that, in
a number of cases, the techniques to thwart them can (and in some instances, should)
be combined. Here are a few examples.

• A mechanism aiming at enforcing a given behavior (designed for example with the
help of game theory) needs to be secured in order to be effective. For example,
reputation-based systems make sense exclusively if the involved parties can verify
each others’ identities.

• A security mechanism can be modelled and studied as a game: the attacker is
modelled as being one of the players and the other players are the defendants;
see [243] for an application to intrusion detection. In another example, players are
peers running a protocol in which they progressively unveil information; see [73] for
an application to the modelling of a rational exchange protocol.

• More generally, there is always a trade-off between security and usability, meaning
that security should be properly calibrated with respect to the objective threat.
Game theory, by its ability to quantify the payoffs of the various parties, offers the
perspective of substantial progress on that front.

Adversary models

A popular adversary model used in security is defined by Dolev and Yao [116]. This
model notably assumes that the attacker can (i) be a legitimate party (e.g., a regis-
tered network user), (ii) send and receive messages to any party in the network, and
(iii) be a potential “man-in-the-middle” everywhere in the network (meaning that she
is able to read, modify, block, replay, or insert any message anywhere in the network).
Finally, the model assumes that the cryptographic primitives are unbreakable.

Nevertheless, in order to properly protect upcoming wireless networks, we need to
modify this model.

• First, we need to include selfish opponents, as we have just explained.
• The Dolev-Yao attacker model may be too strong for our purpose, in the sense

that the attacker of a wireless network does not necessarily have access to all com-
munication links between all devices: for example, the attacker’s pervasiveness is a
reasonable assumption against a specific mesh network, but not against a continent-
wide vehicular network.
• The notion of physical location of the (wireless) parties becomes very important,

as we will see in several of the following chapters.
• Likewise, the topology and the communication primitives of the network become

very relevant. For example, as we will see, an attacker can try to disrupt the
communication between legitimate parties by jamming a communication link or by
fiddling with the route establishment protocols.
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• The risk of capture and cloning must be taken into account, as we have already
seen for the case of mesh networks.
• The huge number of parties (e.g., several thousand sensors per human being; a

total of one billion road vehicles) makes key management a challenge per se.
• Finally, specific attention must be devoted to the assumption of unbreakability of

the cryptographic primitives: no matter how much progress is made in technology,
there will always be business opportunities for low tier devices, whose computing
and communication capabilities will be very limited, thus calling for the design of
ad hoc cryptographic primitives; in this case, the system model must take this
issue into account.

Considering all these peculiarities as well as the diversity of the wireless networks
that we have described in the previous chapter, it is clear that any attempt to define
a single attacker model in wireless networks is doomed to fail. Consequently, in the
following chapters we will describe the attacher’s model that we assume for each
considered problem.

Note: It would be naive to believe that, just because the opponent needs to be in
power range of the victim to perpetrate an attack, these attacks will be less frequent or
less harmful than against wired networks. Indeed, the wireless attack can be carried
out over the Internet, from a compromised device; or the attack can be perpetrated
by devices that the opponent has previously installed in a given area of interest, and
which she can monitor from a remote distance. Progress in technology will make this
easier and easier to accomplish, unfortunately.

3.4 Summary

In this chapter, we have seen that some level of trust is needed for the proper func-
tioning of a wireless communication system. We have also explained that the current
trends in wireless networks require a thorough re-examination of how trust can be
built and maintained in those networks. We have explained that malice and selfishness
must be considered jointly, and that this can lead to solutions based on security and
game theory considerations. Finally, we have refined the notion of adversary model
in a wireless setting.

3.5 To probe further

Trust has been investigated in the area of distributed systems. The notion of trust for
inter-realm authentication in large distributed systems is discussed in the contribution
by Gligor, Luan, and Pato [149]. Kohlas and Maurer provide a solution for confidence
valuation in a public-key infrastructure based on uncertain evidence [222]. A general
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reflection on reputation in future communication systems can be found in the work
by Mundinger and Le Boudec [278].

Only a few researchers have tackled the issue of trust in (wireless) networks. Stajano
and Anderson [352, 353] explore the role of physical contact between devices in order
to establish trust; we will further develop this issue in Chapter 5. Anderson, Chan, and
Perrig [24] argue that in order to bootstrap trust between sensors, it makes sense for
them to whisper their key in clear to their neighbors, thus departing from traditional
key establishment protocols; we will come back to this issue, again in Chapter 5. A
reputation-based system, aiming at reinforce mutual trust, is described in the work
by Buchegger and Le Boudec [66].

A trust evaluation framework and its application to mobile ad hoc networks are
described in a contribution by Sun et al. [357]. Alternative solutions are provided by
Theodorakopoulos and Baras [359], Jiang and Baras [204], and Zouridaki et al. [401].

Finally, Eschenauer, Gligor and Baras explain the peculiarities of trust establish-
ment in mobile ad hoc networks by making use of a military example [127].

In the area of computing, the most remarkable industrial effort so far is probably
the notion of Trusted Platform, developed by the Trusted Computing Group.3 Yet
this endeavor has been criticized, because it tremendously reinforces the power of the
hardware vendors.

3 https://www.trustedcomputinggroup.org
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This second part of this book is about malicious behavior in wireless networks. Each
of the chapters describes a fundamental aspect, by first introducing some possible
attacks, and then detailing the corresponding countermeasures.

Chapter 4 describes the question of how to designate an end station in a network.
It shows that the question is far from being solved, even in the Internet. It then
describes the related attacks, namely the Sybil and the replication attacks. Finally,
it explains how they can be thwarted.

Chapter 5 is about bootstrapping security between wireless devices located in radio
range of each other. An attacker can try to fool one of the parties by establishing
a second association with the attacker (herself) rather than with another intended
party. The described countermeasures take advantage of physical vicinity or of the
mobility of the nodes.

Chapter 6 focuses on the notion of (radio) neighbor. With the wormhole attack, it
is possible to let a given node believe that another node is its radio range, when in
reality it is not. This chapter explains why this attack is dangerous, and details the
several techniques to thwart it.

Chapter 7 addresses the problem of secure routing in multi-hop wireless networks.
It explains that, if unprotected, routing is vulnerable to a vast collection of devastating
attacks. It then explains the basic mechanisms to prevent them.

Finally, Chapter 8 details the formidable challenge of privacy raised by wireless
networks. The problem being particularly difficult to quantify and to comprehend, the
chapter is based on three highly complementary examples: RFID, vehicular networks,
and routing in ad hoc networks.

It is important to mention that most of the protection mechanisms described in
these chapters are not (yet) implemented in operational products, as they refer to
upcoming networks. Yet we strongly believe that a thorough understanding of these
networks is crucial to being able to properly design and implement protocols in this
complex field.

As this part heavily relies on security and cryptographic mechanisms, the reader
unfamiliar with these concepts is strongly encouraged to refer to Appendix A.



4

Naming and addressing

In any network, nodes need to be addressable, notably in order for the routing pro-
tocol to be able to convey traffic to them. As the node addresses usually have arcane
formats, it is common practice to also make use of names, which are easier to manip-
ulate by human beings; there are specific servers (such as the Domain Name System
(DNS) in the case of the Internet) that convert names into addresses.

In static networks, it is common practice to relate the address of a node to its
location in the network; in this way, routing can typically be organized in a hierarchical
fashion. This principle becomes problematic, however, as soon as some nodes start
moving.

Naming and addressing strategies have been heavily debated within the Internet
community, essentially because of mobility and security, as we have seen in Subsec-
tion 2.2.5; it is very difficult to predict how naming and addressing will evolve in
the coming years. But this topic is crucial for us, because naming and addressing
mechanisms are vulnerable to a number of attacks.

In this chapter, we will first describe an ambitious naming and addressing architec-
ture envisioned for the Internet. We will then focus on the network layer and describe
specific attacks related to the mobility and to the intrinsic vulnerability of the nodes.
Finally, we will describe the corresponding protection techniques.

4.1 The future of naming and addressing in the Internet

The Internet has two global namespaces, the DNS (Domain Name System) names
and IP addresses. Both are tied to pre-existing structures (administrative domains
and network topology, respectively). Unfortunately, this organization is not really fit
for mobility or for the addressing of myriads of tiny (wireless) devices. For example, if
a node moves, it will then be attached somewhere to the network; it is still the same
node, but its address has changed. Likewise, with such a solution it is impossible

84
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to designate an object (e.g., a Web page) without having to relate to the domain or
machine on which it is located.

This analysis has led a number of researchers to propose different approaches for
naming and addressing. At the time of this writing, there is no real consensus on
how this should be done in the future generations of the Internet, but several leading
ideas are emerging. In the following, we will discuss a proposal made by Balakrishnan
et al. [37], which is inspired by a number of ongoing research efforts, as pointed out
by the authors. The reason we address this proposal is that it contains extremely
useful concepts for our discussion. We will of course focus on the aspects of highest
relevance to ourselves, namely mobility and security. Balakrishnan et al. insist on the
tremendous difficulty of modifying the core of the Internet (its routers); consequently,
their solution works with the existing IPv4 addressing scheme and is IPv6 capable.

Their proposal is built on four principles.

Principle 1 “Names should bind protocols only to the relevant aspects of the under-
lying structure; binding protocols to irrelevant details unnecessarily limits flexibility
and functionality.”

This apparently trivial principle is in fact frequently violated in today’s Internet.
Consider for example a search of the Web site of this book. A search engine asked to
retrieve “Security and Cooperation in Wireless Networks” will typically return a URL
such as http://secowinet.epfl.ch/, which includes a domain name. In addition, that
information will be converted into an IP address visible to the web browser, instead
of being confined in a lower-layer software procedure.

Avoiding this kind of violation requires the definition of two new identification
layers. Principle 1 means that the applications must be able to refer to services
with persistent names, that are independent of the machine hosting the service. This
capability is supported by two new identification layers, the first of which relies on
service identifiers (SIDs). These SIDs are typically the output of mapping services
that take as input names called user-level descriptors (ULDs). User-level descriptors
correspond to strings of characters understandable to humans, such as email addresses
and search queries.

The second new identification layer is based on the following fact: Transport proto-
cols exchange data between two endpoints, and the network locations of the endpoints
are irrelevant to the transport layer mechanisms. Yet, in today’s Internet, hosts name
TCP connections by a quadruple that includes two IP addresses. The unfortunate
consequence is that a TCP connection breaks when the IP address of an endpoint
changes. Admittedly, there exist solutions to work around this problem (such as Mo-
bile IP, as we have seen in Chapter 2), but none of them addresses the architectural
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problem. Hence the second new naming layer contains topologically independent
endpoint identifiers (EIDs).

These two new identification layers require two additional name resolution mecha-
nisms: from SIDs to EIDs and from EIDs to IP addresses.

To illustrate this layering principle, consider again the case of Web browsing from a
client. A user types a ULD (in this case a search query) in a search engine running on
the client. As we have seen, the search engine returns an SID. The application then
resolves that SID, thus receiving one or more EIDs that identify the end-hosts that
run the service. The client will then establish one or more connections (e.g., TCP)
with the service EIDs. The transport layer then resolves the EID to the current set
of IP addresses to which the EID is attached.

The second principle focuses on the independence between the identifiers and the
underlying networks.

Principle 2 “Names, if they are to be persistent, should not impose arbitrary re-
strictions on the elements to which they refer.”

There exist different techniques to implement this principle. The most radical one
consists in making use of a completely flat namespace able to represent all present and
future identifiers. In a flat namespace, identifiers have no structure, which guarantees
compliance with Principle 2. It is the approach adopted here for both SIDs and EIDs.

The two principles mentioned so far focused on the role of names, identifiers, and
addresses. As we have seen, a ULD leads to an SID, which resolves into an EID,
which in turn can be converted into an IP address. Yet, in many cases (and we will
see some examples in this book), more flexibility is needed in the resolution process,
which is expressed by the following principle.

Principle 3 “A network entity should be able to direct resolutions of its name not
only to its own location, but also to the locations or names of chosen delegates.”

This principle allows a destination which is unwilling to handle a request directly to
direct the request to a chosen delegate. This principle can also provide some protection
against DoS attacks, as we will explain shortly.

As we will see in Chapter 7, some routing protocols in ad hoc networks allow source
routing : In the header of each packet to be sent, the source includes the whole list
of node identifiers through which the considered packet is expected to travel. An
extension of this mechanism is loose source routing, in which only a few nodes along
the route are imposed.
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A similar mechanism can be highly desirable in the namespaces that we have in-
troduced: a source should be able to indicate that its packets should traverse a series
of endpoints (specified by a series of EIDs), or that their communications traverse
a series of services (specified by a series of SIDs). This leads to the fourth and last
principle.

Principle 4 “Destinations, as specified by sources and also by the resolution of SIDs
and EIDs, should be generalizable to sequences of destinations.”

The described identifier layers are represented in Figure 4.1.

user-level descriptor (ULD lookup
(e.g., e-mail address, search string,...)

SID resolution

EID resolution

IP address "resolution" (routing)

Application obtains SIDs corresponding
to ULD using a lookup or search service

Application's session protocol (e.g., HTTP) resolves
SID to EIDs using SID resolution service

Transport protocol resolves EID to 
IP addresses using EID resolution service

Fig. 4.1. The naming layers in a possible future organization of the Internet. From [37], c©
ACM, 2004.

As mentioned, EIDs and SIDs can typically be organized as flat namespaces. This is
of course a major difference with existing naming techniques based on DNS, the scal-
ability of which is based on a hierarchical organization. Relatively recent research on
peer-to-peer systems has paved the way to scalable and highly distributed flat names-
paces, organized around the notion of distributed hash tables (DHTs) [8]. DHTs are
a vibrant research theme, and we refer the interested reader to the related literature.
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Here we just briefly discuss the challenges raised by the application of DHTs to the
name resolution process.

DHTs have emerged in the framework of peer-to-peer (P2P) systems, but it is
clear that a self-organized and untrusted P2P system would be inappropriate for a
crucial Internet mechanism. What has to be envisioned is a set of machines provid-
ing the name resolution service using a flat namespace resolution algorithm such as
DHTs. Recent advances in DHT research have shown that they can guarantee global
uniqueness of the names, as well as an acceptably low resolution time.

A difficulty of this approach, as compared with DNS, is the incentive for properly
running and managing the endpoints participating in the DHT mechanism; a related
question is why the end users would trust the infrastructure. A possible solution could
be based on Resolution Service Providers (RSPs), which would form a competitive yet
cooperative commercial market like current ISPs. The various ISPs would have peer
relationships to exchange updates, in a way similar to the tier-1 ISPs interconnect
today with each other.

4.1.1 Resistance to attacks of the described architecture

The architecture that we have just sketched can help to resist several attacks. This is
particularly important for mobile devices which, as they rove, are much more exposed
to attacks than when they are attached to their home network.

At the SID level, the delegation mechanism that we have seen allows the owners
of services and data items to invoke application-level proxies. For example, consider
a mobile user who wants to receive email from an SMTP mail server after having it
filtered for viruses and spam at a third-party site offering this kind of service. The
indirection by means of the SIDs makes it easy to specify that all messages addressed
to that specific mobile need to be first sent to the third party.

Phishing attacks are also relevant here, as they consist in luring a victim to
access a Web page controlled by the attacker. A URL such as http://www.ieee.org
gives some information about the organization running a given Web server (although
this information can be very misleading in certain cases). On the contrary, a name
from a flat name space provides the human user with no clue of this kind. A solution
to this naming opacity is to let specific third-parties offer directory services mapping
SIDs to human-readable names; this is not an easy task, however.

A last issue to be mentioned here is Denial of Service resistance: a given system
(a mobile node, typically) can protect itself from attackers by placing a forwarding
intermediary between itself and untrusted correspondents and by installing traffic
filters at the forwarding intermediary.
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4.1.2 Naming and addressing in the running examples

The proposal that we have described is very attractive, because it provides mecha-
nisms able to support mobility of personal communication devices. Hence it is in-
teresting to see whether the running examples that we have introduced in Chapter 1
could leverage on this approach.

Obviously, personal communications would benefit tremendously from the flexibil-
ity brought by these principles; in particular, the emergence of numerous wireless
operators as well as the progressive deployment of mesh networks could leverage on
the fact that services and endpoint identifiers are decoupled from user-level descriptors
on the one hand and from IP addresses on the other hand.

The situation is somewhat different in vehicular networks because, as we have seen,
these networks have very specific requirements. First, the identifiers of the vehicles
must be renewed at a high pace, in order to provide an appropriate level of privacy.
This means that in this case the identifier EID should be renewed at an equivalent
pace, in such a way that the vehicle is permanently addressable. But this can make
rather complicated the resolution from SID to EID and from EID to an IP address,
and it is not clear who would be in charge of the proper unfolding of this operation.
Second, safety operations are of course strongly related to the geographic location of
the vehicles. This means that it must be possible to address the vehicles located in
a given area, hence geocasting is likely to be a frequent operation. Ironically, this
brings back into the picture the temptation to address nodes by their topological
location in the network; however, the topology of the network evolves very fast in this
case. Finally, real-time constraints (especially for safety-related operations) are very
stringent in these networks, and this is of course at odds with any address resolution
mechanism (which generally involves access to remote servers).

Likewise, the architecture that we have described does not easily fulfill the pecu-
liarities of wireless sensor networks. One reason is that the resolution operations that
we have described involve additional communication overhead, which is of course un-
desirable for energy-limited devices. Another reason is that, as it is the case with
vehicular networks, the geographic location is extremely relevant (much more than
the identifier of a specific sensor). This means that naming and addressing in sen-
sor networks require very specific solutions. Consequently, the appropriate solution
probably consists in the use of proxy gateways, able to cope on the one hand with the
rules of the Internet and on the other hand with the constraints of sensor networks.

To conclude, the architecture that we have described is extremely appealing for
personal communications; but specific, additional mechanisms are needed to fit the
constraints and peculiarities of wireless embedded systems.

The purpose of this discussion was to show that the fundamental operations of
naming and addressing, which may seem straightforward at first sight, raise a num-
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ber of formidable challenges. It is very important to keep these challenges in mind
when studying the issues of security (including privacy, of course) and cooperation in
wireless networks.

We will now make our purpose more specific by focusing on the network and MAC
layers. We will first identify relevant attacks and then describe appropriate counter-
measures.

4.2 Attacks against naming and addressing

Numerous attacks can be envisioned against naming and addressing, and we refrain
here from giving an exhaustive list; in particular, we do not describe attacks against
DNS, which are well-known and somewhat remote from our scope. We rather focus
our discussion on attacks that are directly related to wireless networking.

4.2.1 Neighborhood attacks

A first family of attacks, we will denominate “neighborhood attacks”, consists in ex-
ploiting vulnerabilities of the neighbor discovery protocols. Indeed, in many networks,
nodes have to discover their local environment and to advertise their own presence.
The details vary of course substantially from standard to standard, and in compliance
with the philosophy of this book, we will refrain from diving into this level of details.
We will therefore consider a generic model, loosely inspired from IPv6, and explain
the threats. In Chapter 6, we will address a related problem: how an attacker can
pretend to be in radio range, when in reality she is not.

The considered model is depicted in Figure 4.2: several nodes are located in radio
range of each other (we will not discuss here the case in which some nodes are hidden to
some others, but this case can certainly open additional opportunities to an attacker).
One or several of these nodes can be routers, in which case they provide connectivity
to the backbone (the rest of the Internet, in practice); in this case, they will (generally)
also have a wireline interface.

As shown in the figure, we focus on the coexistence of two addressing schemes:
IP addresses, which as we have seen are of global relevance, and MAC addresses,
which are used at the local level. The protocol operates according to the following
principles: a node advertises its own presence by a Neighbor Advertisement message
and can request information about its neighbors by a Neighbor Solicitation. Likewise,
a router advertises its presence by a Router Advertisement message and information
about routers can be obtained by a Router Solicitation message.

The IP address can be either allocated by the local authority (typically by DHCP),
or by the node itself (this case is often called “address self-configuration” or “stateless
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Fig. 4.2. Scenario related to the attacks against neighbor discovery protocols

address allocation”). In this latter case, a mechanism called Duplicate Address De-
tection is generally used to make sure that no two nodes are using the same address.1

Assume an attacking node is present in the local network (or that an attacker
has compromised a legitimate node of the local network). This attacker can then
perpetrate redirect attacks (diverting the traffic from where it should go to another
destination) or DoS attacks (inhibiting communication). It can also try to combine
these two attacks to mount a flooding DoS attack: redirect as many traffic flows as
possible towards a given victim node, in such a way that the latter is overwhelmed.2

There are several ways by which an attacker can mount these attacks. Here are a
few examples.

An attacking node can spoof a Neighbor Advertisement or Router Advertisement
message. In this way, it can cause packets for legitimate nodes, both hosts and
1 In IPv6, the heavy weight bits of the IP address correspond to the “network prefix”, which is

dependent of the networking location of the considered subnet.
2 These attacks exhibit some similarity with the ones described in Section 2.2.5. However, here we

focus on the case in which the nodes are in power range of each other.
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routers, to be sent to some other link-layer address. The counter-measure consists
in having the mentioned messages be secured in some way. This can be based on
security associations between all nodes (if they exist), but this approach can require
much manual (hence undesirable) configuration. If such security associations do not
exist, a solution can consist in making use of Cryptographically Generated Addresses,
which we will describe shortly.

Another attack consists in disrupting the Duplicate Address Detection protocol: the
attacking node responds to every DAD attempt made by an entering node; in this
way, the entering node is unable to obtain an address. The countermeasures are
similar to those mentioned for the spoof attack.

4.2.2 Sybil and node replication attacks

The proper operation of any naming or addressing scheme usually requires that each
participant be assigned a unique name or address, in order to avoid ambiguities. This
property is often enforced by a central authority who assigns the names and addresses
and by authentication mechanisms that make it possible to verify the ownership of
names and addresses (in order to make the approach scalable, these mechanisms are
in fact usually supported by a hierarchy of authorities).

Yet, the trend is towards more decentralization, to such an extent, as we will see
later in this chapter, that in some cases nodes are expected to generate not only their
own address but also their own public / private key pair; in particular, this is of course
the case in self-organized mobile ad hoc networks.

An attacker can try to break the fundamental principle of address ownership and
uniqueness by mounting a so-called Sybil attack . This attack, initially described in
the framework of peer-to-peer systems, consists in creating an arbitrary number of
identities associated with the same entity. In a distributed system, the only reliable
way to thwart this attack is to have a central, trusted authority to vouch for a one-to-
one correspondence between entity and identity (techniques consisting in challenging
a set of entities, for example about their computational resources, are in practice
ineffective to detect Sybil attacks).

In the case of wireless networks, Sybil attacks are a major concern as well and they
call for appropriate countermeasures. For example, vehicular networks have strong
requirements in terms of liability. It is therefore mandatory to make sure that each
vehicle has a single identity, which means that it needs to be assigned and certified by
a trusted authority (the protection of privacy requires this identity to never be sent
over the communication channel).

A fundamental difference between peer-to-peer systems and wireless networks is
that in the latter, two entities (two nodes) can be in the vicinity of each other. As we
will see in Chapter 5, this property can be used in order to support the establishment
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of security associations, even if the identities of the nodes are not certified by any
central authority.

Another fundamental difference is that in wireless networks, an attacker can capture
a node. By doing so, it can notably perpetrate a replication attack, which is the
“dual” of a Sybil attack: instead of assigning different identities to the same entity,
the result of a replication attack is that several nodes share the same identity. By
doing so, an attacker can perpetrate a number of misdeeds, such as impersonating
legitimate parties, leading astray routing protocols, and breaking schemes based on
shared secrets.

Thwarting replication attacks is difficult even in the presence of a central authority.
In the next section, we will describe a countermeasure specific to the case of sensor
networks.

4.3 Protection techniques

4.3.1 Centralized solutions

As we have seen in Chapter 1, the most traditional protection technique (used typi-
cally in cellular networks) consists in having the network operator manually distribute
the identity along with a symmetric key to the subscriber; we have also described the
authentication protocols to be used when a subscriber roams in a foreign network.

In the Internet, a protocol called the Internet Key Exchange (IKE) [160] offers a
centralized solution. However, IKE requires the involved parties to be able to verify
each other’s certificates, a solution which would require a global key management
infrastructure in the general case. This latter requirement is usually considered to
be too demanding; for this reason, we will focus on the description of a distributed
solution.

4.3.2 Distributed solution: Cryptographically Generated Addresses

As we have seen, it is often the case that nodes generate their own address, for ex-
ample, this must be the case (by definition) in self-organized mobile ad hoc networks,
and as another example, the mobile nodes roving around mesh networks could also
benefit of this mechanism. But of course this flexibility opens the door to a number
of possible attacks, as an attacker can forge addresses.

A recently devised technique called “Cryptographically Generated Addresses”
(CGAs) [30] consists in binding the IP address of a given node to its public key.
We will first explain the principle, and then explain how to overcome specific limita-
tions. To simplify things, we will base our discussion on IPv6, but this principle can
be applied to any network in which a high number of bits (at least 50, say) represent-
ing the node address can take an arbitrary value. In IPv6, this part of the address is
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called the “interface identifier”. In contrast, the other main field (the subnet prefix)
contains information related to the overall organization of and routing in the global
Internet.

Public key

Hash function

Interface IDSubnet prefix

64 bits 64 bits

Fig. 4.3. Simplified principle of Cryptographically Generated Addresses

As shown in Figure 4.3, the node first has to generate its public key (along, of
course, with the corresponding private key). Then, by application of an appropriate
one-way hash function, the node generates the arbitrary sequence of bits to be inserted
in the interface identifier.

Therefore, it is possible to ask a given node to prove that it is the legitimate owner
of a given address: only the node that has generated the address knows the private
key and is thus able to properly respond to the challenge (assuming of course second
pre-image resistance of the hash function, see Appendix A).

It is important to notice that this mechanism does not prevent an attacker from
generating “legitimate” addresses, and therefore cannot prevent Sybil attacks. Conse-
quently, CGA-based authentication does not prove that a node with the authenticated
address exists. But it does prevent an attacker from stealing or spoofing an address
already chosen by another node. In this way, CGAs constitute a useful building block
to thwart the neighborhood attacks that we have previously described.

A vulnerability of this principle is that it can fall prey to a brute-force attack,
because of the limited number of bits of the address that can contain an arbitrary
string of bits (64, in our example). Indeed, this number is too small to guarantee
second pre-image resistance: An attacker could pre-compute a large database of in-
terface identifiers from public keys generated by himself, and use this database to find
matches to victims’ addresses.

It would be of course highly impractical to increase the size of the address field.
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Fig. 4.4. Detailed data flows in address generation of Cryptographically Generated Addresses
(from [30])

The solution consists in increasing the cost of both address generation and brute-
force attack by the same factor, while keeping constant the cost of address usage and
verification; this technique is known as hash extension. The operating principles are
depicted in Figure 4.4. The generation of a new CGA is based on three inputs: the
64-bits subnet prefix, the public key of the address owner, and a parameter called
“Sec”. This last parameter is an unsigned 3-bit integer, which qualifies the level of
expected security (0 being the weakest, and 7 being the strongest). As we will see,
increasing Sec by one adds 16 bits to the length of the hash that the attacker must
break.

As this last parameter must be conveyed in the address, the idea is to devote 3 bits
out of the 64 bits of the identifier address to it; as an additional 2 bits are reserved3,
we are left with 59 bits.

An important field is the Modifier: the address generator has to iteratively attempt
to modify it in order to fulfill the requirement of the hash extension. The idea is that
3 They appear in the figure and are called u and g. Their meaning is of no relevance to our

discussion.
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the attacker will be forced to do the same amount of work if it wants to spoof a
legitimate address.4

Both the Modifier and the Collision Count are public.
A CGA address is typically generated as follows.

(a) Set the modifier mechanism to a random 128-bit value.
(b) Concatenate the modifier, 64+8 zero bits, and the encoded public key. Execute

the SHA-1 algorithm on the concatenation. The leftmost 112 bits of the result
are Hash2.

(c) Compare the 16*Sec leftmost bits of Hash2 with zero. If they are all zero (or
if Sec=0), continue with Step (d). Otherwise, increment the modifier and go
back to Step (b).

(d) Set the collision count value to zero.
(e) Concatenate the modifier, subnet prefix, collision count and encoded public

key values. Execute the SHA-1 algorithm on the concatenation. The leftmost
64 bits of the result are Hash1.

(f) Form an interface identifier by setting the two reserved bits in Hash1 both to
1 and the three leftmost bits to the value Sec.

(g) Concatenate the subnet prefix and interface identifier to form a 128-bit IPv6
address.

(h) If an address collision with another node within the same subnet is detected,
increment the collision count and go back to step (e). However, after three
collisions, stop and report the error.

The value of the security parameter Sec determines the cost of generating a new
address. As mentioned, the weakest level of security is when Sec = 0, in which case
the hash extension is not used. This is appropriate for nodes with modest security
concerns, or for nodes that frequently change addresses.

For security parameter values greater than 0, the brute-force search in steps (b)-(c)
takes, on the average, O(216∗Sec). The idea is of course that an attacker would have
to make an equivalent effort, meaning that the ratio between the cost of a brute-force
attack and the cost of address generation remains at the constant value 259. The
system is engineered in such a way that the address generation process can be fully
carried out on a server (and not on the potentially anemic mobile device that will use
it).

The parameter collision count is used to modify the input to Hash1 if there is an
address collision. In practice, it is recommended to not allow collision counts higher
than 2, because it is extremely unlikely for three collisions to occur. Hence, the
4 A note for the cryptographic-inclined reader: this technique is similar to “salting” encrypted

passwords in order to make them resistant to dictionary attacks. The complexity of the salt is
controlled by the Sec parameter.
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collision must be due to a configuration or an implementation error (or that a DoS
attack is taking place, in case the CGA-based proof of ownership is not used).

The verification of the address ownership is realized by the execution of the following
steps.

(a) Check that the collision count value is 0, 1 or 2, and that the subnet prefix
value is equal to the subnet prefix (i.e. leftmost 64 bits) of the address. The
CGA verification fails if either check fails.

(b) Concatenate the modifier, subnet prefix, collision count and the public key.
Execute the SHA-1 algorithm on the concatenation. The 64 leftmost bits of
the result are Hash1.

(c) Compare Hash1 with the interface identifier (i.e. the rightmost 64 bits) of the
address. Differences in the two reserved bits and in the three leftmost bits are
ignored. If the 64-bit values differ (other than in the five ignored bits), the
CGA verification fails.

(d) Read the security parameter Sec from the three leftmost bits of the interface
identifier of the address.

(e) Concatenate the modifier, 64+8 zero bits and the public key. Execute the
SHA-1 algorithm on the concatenation. The leftmost 112 bits of the result are
Hash2.

(f) Compare the 16*Sec leftmost bits of Hash2 with zero. If any one of these is
nonzero, CGA verification fails. Otherwise, the verification succeeds. If Sec=0,
verification never fails at this step.

As mentioned, CGA is a building block that can be used to thwart some of the
attacks against neighbor discovery protocols. As mentioned by the author of this
proposal, it can also be used to secure Mobile IPv6, and to create IPsec security
associations.

4.3.3 Thwarting Sybil and node replication attacks

The protection against Sybil attacks very much depends on the deployment scenario.
As we have mentioned, if the system contains a central, trusted authority, the so-
lution is relatively straightforward. Otherwise, it is possible to take advantage of
some physical aspects related to the radio communication. Examples include radio
fingerprinting [156] or geographic location.

Preventing the node replication attack can be based on the physical protection of
nodes (to avoid them being captured, or to make them very difficult to replicate in case
they get captured). Again, these countermeasures are very much scenario-dependent.
In order to provide a concrete example, here we will describe how node replication
attacks can be detected in sensor networks [303]. The reason for this choice is that
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sensors nodes typically employ low-cost commodity hardware components with very
limited (if any) protection against tampering. Even if an adversary compromises a
single node, she can replicate it indefinitely, spreading her influence throughout the
network.

An intuitive solution to this problem would consist in requiring all the nodes to
transfer a list of their neighbors’ claimed locations to a central base station that can
identify potential conflicting location claims. The drawback of this approach is that
it creates a single point of failure: the adversary can compromise the base station,
or systematically interfere with its communications. In addition, some networks do
not even have a powerful, central base station. Hence the intention is to aim for a
decentralized solution.

The solution must take into account the limitations of sensor nodes; in particular,
it should minimize the amount of communications between nodes and require only
minimal memory storage at each of the nodes. The solution assumes that the adver-
sary cannot deploy nodes with arbitrary IDs; hence, the adversary needs to capture
at least one node. We will also assume that the nodes know their own geographic
position, for example by means of GPS receivers or appropriate connectivity infor-
mation. Likewise, we assume the nodes to be static and the network to utilize an
identity-based public key system5, such that each node α is deployed with a private
key, K−1

α , and that any other node can calculate α’s public key using α’s ID, namely
Kα = f(α). A last assumption is that any cloned node has at least one legitimate
node as a neighbor.

The basic idea is that each node α transmits its location to all its neighbors, thus
forwarding this information to a subset of nodes, called its witnesses. In the case of
a replication attack on node α, one of the witnesses can receive two different location
claims corresponding to the same ID of α. This information will provide evidence of a
replication attack on node α; consequently, the witness will broadcast this information
to the whole network and node α is revoked.

The selection of a set of neighbors is a crucial decision. If it is too small, the
probability of detection will be too low, and if it is too large, the communication
overhead could be unacceptable. In addition, this set must be unpredictable, otherwise
the attacker might compromise or jam all of the witnesses of the node on which she
is perpetrating the replication attack.

Let us now provide a precise description of the protocol. As a first step, each node
α broadcasts its location claim, along with a signature authenticating the claim. The
location claim has the format IDα, lα,HK−1

α
(IDα, lα), where lα represents α’s location

and H is a hash function. Each of the node’s neighbors verifies α’s signature and the
5 This system could be replaced by a more traditional PKI; this would require, however, transmitting

the certificates of the public keys of the nodes, which would lead to a substantial communication
overhead.
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plausibility of the claimed location lα. Then, with probability p, each neighbor selects
g random locations in the scope of the network and uses geographic routing to forward
α’s claims to the nodes closest to the chosen locations.

When a witness receives a location claim, it first verifies the signature. Then
it checks the ID against all location claims it has already received. If it receives
two location claims for the same ID α, it blacklists α from further communication
by immediately flooding the network with the pair of conflicting locations. Every
node receiving this pair can independently verify the signature and agree with the
revocation decision.

The probability of replication detection can be computed in the following way. Call
d the average number of neighbors of a node (d is thus the average degree in the
connectivity graph). The number of witnesses receiving a given location claim will
be6 E[NReceive] ≈ p · d · g.

Assume that the attacker inserts L replicas of α. We want to determine the proba-
bility that two conflicting location reports collide at at least one of the witness nodes.
Following the usual derivation of the birthday paradox, the probability Pnc1 that
p · d · g recipients of claim l1 do not receive any of the p · d · g copies of claim l2 is:

Pnc1 =
(

1− p · d · g
n

)p·d·g

Likewise, the probability Pnc2 that the 2 · p · d · g recipients of claims l1 and l2 do
not receive any of the p · d · g copies of claim l3 is given by:

Pnc2 =
(

1− 2 · p · d · g
n

)p·d·g

where n is the total number of nodes of the network.
In the same way, the probability Pnc of no collision at all is:

Pnc =
L−1∏

i=1

(
1− i · p · d · g

n

)p·d·g

The approximation that (1 + x) ≤ ex allows to simplify numeric computations:

Pnc ≤
L−1∏

i=1

e
−i·p2·d2·g2

n

6 This equality is only an approximation because the neighbors are assumed to choose the witnesses
independently from each other, which can lead to some redundant selection of witnesses.
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≤ e
−p2·d2·g2

n

PL−1
i=1 i

≤ e
−p2·d2·g2

n
L(L−1)

2

The probability of collision can be lowered bounded as:

Pc ≥ e
−p2·d2·g2

n
L(L−1)

2

Pc is actually the probability of detecting an attack consisting in inserting L replicas
of the same node.

This means for example that in a network of n = 10, 000 nodes, if each node has
g = 100 witnesses, and an average of d = 20 neighbors that forward the request
with a probability of p = 0.05, the system will detect a single replication of α with
a probability greater than 63%; if α is replicated twice it will be detected with a
probability greater than 95%.

Consequently, this mechanism provides a robust protection against replication at-
tacks. However, it is easy to see that it is quite demanding in terms of communica-
tions and memory. Each node generates p · d · g messages that must be evenly spread
throughout the network. If the network has a “reasonable” shape (such as a circle or
a square), the average distance between any two randomly chosen nodes is O(

√
n).

Moreover, as it aims at meeting the conditions of the birthday paradox, the value
p · d · g must also be O(

√
n). Assume that the nodes employ a duplicate suppres-

sion algorithm in which each node only broadcasts a given message once. Then the
two values obtained so far must further be multiplied by n, resulting in an overall
communication cost of O(n2). As for the storage, even if the size of each claim can
be reduced to the payload of a packet (around 36 Bytes), the network mentioned
previously (n = 10, 000, g = 100, d = 20, and p = 0.05) would require, on average,
each node to store 3,700 Bytes, a high demand at least for low-tier sensors.

A technique to reduce the communication overhead, proposed by the same authors,
consists in observing that the described solution does not take advantage of the fact
that the relaying nodes involved in the multicast are not involved in the security
process, in spite of the fact that they are provided with the location claims. Hence,
an alternative solution, called “Line-selected multicast”, consists in defining the set
of witnesses as the set of nodes located along an appropriately chosen segment. The
analysis of the solution then boils down to the computation of the probability of
intersection between segments.

To conclude, we should stress that an adversary able to perpetrate Sybil and repli-
cation attacks is a powerful one; consequently, in most cases the related countermea-
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sures will be less than perfect solutions. Hence, before any deployment, an appropriate
risk analysis must be carried out, in order to predict the implications of undetected
attacks.

4.4 Summary

In this chapter, we described an ambitious naming architecture for the Internet, and
discussed the extent to which it would fulfill the requirements of upcoming wireless
networks. We then described the attacks specific to naming and addressing, namely
the neighborhood, the Sybil, and the node replication attacks. We also described
several countermeasures, emphasizing those that are distributed; in particular, we
introduced Cryptographically Generated Addresses and detailed a technique to thwart
replication attacks in sensor networks.

4.5 To probe further

As mentioned, the layered naming architecture that we have presented is based on a
proposal by Balakrishnan et al. [37]. In this field, many investigations and proposals
have been made since the seminal work of Saltzer in 1982 [330]. The interested reader
may in particular look at the Host Identity Protocol (HIP) [277].

Cryptographically Generated Addresses are described in [30] and in the subsequent
RFC [31]. This work relies on the idea of binding the network address to the public
key of the host, and was investigated by Nikander [286], by O’Shea and Roe [292],
and by Montenegro and Castelluccia [275]. CGAs are used in particular in the Se-
cure Neighbor Discovery protocol (SEND) [27]. The discussion on the neighborhood
attacks was also inspired by an RFC devoted to trust models and threats [287].

The Sybil attack against peer-to-peer systems is described by Douceur [117]. Tech-
niques to prevent the Sybil attack in sensor networks have been proposed by Newsome
et al. [284]; some of these techniques are based on key predistribution schemes, which
we will address in Chapter 5. The solution to thwart replication attacks against sensor
networks is directly derived from the contribution by Parno, Perrig, and Gligor [303].

4.6 Questions

(a) Consider a vehicular network. In practice, what does it involve for an at-
tacker to mount a Sybil attack? How dangerous would it be? Referring to
Section 2.2.7, how do you think such an attack could be prevented?

(b) Same questions for a replication attack against a vehicular network.
(c) Is CGA useful to thwart the replication attack against a mesh network de-

scribed in Section 2.2.6?
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(d) In CGA (Figure 4.4), why are the 64 bits of the subnet prefix not involved in
the operation?

(e) In CGA (see Figure 4.3), why is it necessary that the hash function has the
property of second preimage resistance?
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Establishment of security associations

In the previous chapter, we have seen how a given device can be properly and unam-
biguously designated by a name or an address. In this chapter, we will explain how
two wireless devices can securely identify each other and get ready to communicate
securely with each other; in other words, we will see how they perform authentication
and key establishment.

Authentication and key establishment are strongly related to each other, because
of their mutual dependency: once two (or more) entities have authenticated each
other, they usually can establish a key, in order to secure their future communica-
tions; conversely, an already established key can be very useful to perform future
authentication.1

These two operations are considered to be among the most fundamental (if not the
two most fundamental) mechanisms of network security. As a result, a huge number
of protocols have been proposed (and a sizeable number of them have already been
standardized and implemented) in order to support authentication and key establish-
ment in (wired) networks [62]. The choice of a protocol depends notably on the role of
the trusted server (if any), on whether the key is established by one of the principals
(and then transported to the other(s)) or agreed among the principals, and on the
underlying cryptographic mechanisms (symmetric or asymmetric).

In Part I, we have already stressed that wireless links are particularly vulnerable to
eavesdropping, and that mobile devices can be captured (and the secrets they contain
can be compromised); an additional problem we have mentioned is the fact that, in
many upcoming wireless networks, nodes cannot rely on the presence of an online
trusted server (whereas most standardized authentication and key establishment pro-
tocols do rely on such a server). For example, two vehicles can be in power range of
each other, but not of a roadside unit; likewise, at a given point in time, a group of
sensors may be able to communicate with each other and yet have no connectivity
1 It is important to keep in mind that, rather often, the purpose of a key establishment protocol is

to establish a session key, which by definition is short lived.
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with the sink; finally, by definition, a self-organized mobile ad hoc network does not
rely on any trusted server.

A possible solution consists in using public key cryptography: each device carries
a certificate, delivered by the trusted authority. This of course requires assuming
that some organization accepts the burden of delivering the certificates, which is not
always realistic. But there is a more general problem: as the trusted server is off-
line, the verifying device cannot ask whether the certificate is still valid or whether
it corresponds to a key that has been compromised. A solution then consists in the
trusted server delivering short lived keys and certificates. But this requires a frequent
interaction between each device and the server, which of course is not desirable, as it
would require the server to become every time available online. Another solution is
that the server periodically broadcasts certificate revocation lists, but again, this leads
to a strong assumption about the connectivity between the devices and the server.

Fortunately, as we will see in this chapter, we can take advantage of the physical
proximity of the devices to solve the problem. This physical proximity can be either
of long duration (as is the case in a static sensor network) or sporadic, if nodes are
mobile. We will also see that the mobility of the nodes can be exploited in order to
disseminate cryptographic material, and in the next chapter, we will see how a node
can check whether another node claiming to be a neighbor is indeed located in power
range.

We will first address key establishment in sensor networks, then describe authenti-
cation and key establishment in peer-to-peer personal communication networks, and
finally present revocation in vehicular networks. The first section, devoted to sensor
networks, is meant to be a didactic overview, whereas the subsequent sections focus
on more detailed examples and are thus a bit more technical.

5.1 Key establishment in sensor networks

Securing the operation of sensor networks requires the cryptographic protection of
messages exchanged between the nodes. Typically, every message needs origin authen-
tication and integrity protection, and some messages (e.g., control packets containing
sensitive information) may also need confidentiality services. Due to the very limited
resources of the sensor nodes both in terms of CPU power and available energy, it is
preferable to base the protection on symmetric key cryptographic primitives2. This,
however, raises the problem of how to establish the necessary symmetric keys in the
network.
2 This seems to be commonly accepted today (at the time of this writing). We note, however, that

sensor nodes could be manufactured with custom hardware to support asymmetric key cryptog-
raphy (e.g., circuitry for modular arithmetics). If such nodes are produced in mass, then the
manufacturing cost would not be prohibitive; smart cards are a good example of mass produced,
low-cost devices capable of performing asymmetric key operations.
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5.1.1 Requirements

In fact, there are different types of keys that are needed in a sensor network. The
requirements are mainly determined by the typical communication patterns, which
are the following: unicast (i.e., addressing a message to a single node), local broadcast
(i.e., addressing a message to all the nodes in the local neighborhood), and global
broadcast (i.e., addressing a message to all the nodes in the entire network). Unicast
messages are typically used when the sensor nodes send their sensor readings to the
base station or to another sensor node performing some aggregation task, and when
the base station sends control information to a specific sensor node. Local broadcast is
often needed by networking mechanisms such as routing. Global broadcast messages
are typically originated by the base station and they are used to distribute control
information that concerns all the nodes in the network.

In addition, there is a requirement to support in-network processing . In-network
processing means that some sensor nodes aggregate the data received from their down-
stream nodes into a more compact report before relaying it further towards the base
station. This reduces the amount of bits transmitted, and therefore, increases the ef-
ficiency and the lifetime of the network. This kind of aggregation must be supported
by enabling the aggregating node to access the content of the messages sent by the
downstream nodes. This typically requires hop-by-hop protection of messages instead
of end-to-end protection between the sensor nodes and the base station.

Another form of in-network processing is passive participation, which means that
a node can take actions based on overheard messages. For instance, a node may
decide not to report a sensed event if it overhears a neighboring node reporting the
same event. Passive participation requires that the nodes can access the content of
overheard messages even if those messages are cryptographically protected and not
destined to them.

5.1.2 Key types

In order to support the different communication patterns and in-network processing,
the following types of keys are useful in sensor networks:

• Node keys: A node key is a key that is shared by a sensor node and the base
station. It is used to protect unicast messages exchanged between the sensor node
and the base station that do not need in-network processing.

• Link keys: A link key is a key shared by two neighboring nodes (i.e., two sensor
nodes or a sensor node and the base station). Link keys provide protection for
unicast messages exchanged between neighboring nodes. They can be used for
encryption, message authentication, and integrity protection. They allow for in-
network processing by hop-by-hop protection of data packets sent from the sensor
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nodes to the base station. They can also be used to setup other keys between
neighboring nodes, such as cluster keys.

• Cluster keys: A cluster key is a key shared by a node and all of its neighbors.
This key is used to encrypt (and decrypt) local broadcast messages. In addition,
hop-by-hop encryption of a data packet with local broadcast keys makes passive
participation possible, as it ensures that the neighbors of the transmitting nodes
can learn the content of the packet.

• Network key: The network key is a key that is shared by all the nodes in the
network. It is used to encrypt (and decrypt) global broadcast messages.

Note that cluster keys and the network key are broadcast keys, and they cannot be
used for message authentication. The reason is that a node receiving a message with
a message authentication code computed with a broadcast key cannot be sure who
the originator of the message is; indeed, any node that possesses the broadcast key
may have sent the message.

Broadcast authentication based on symmetric-key cryptography can be realized
with the TESLA protocol [309]. The operation of TESLA is described in Appendix A,
therefore, we do not present it here. We note, however, that TESLA requires the
distribution of the root element of a TESLA key chain in an authenticated manner to
the potential receivers of the broadcast messages. In the case of global broadcast, the
root element of the TESLA key chain of the base station can be pre-loaded in every
sensor node before its deployment. In the case of local broadcast, the root element
of the TESLA key chain of any node can be sent to each of its neighbor in a unicast
message authenticated with the link key shared with that neighbor. In addition, in
both cases, new root elements can be distributed and authenticated using TESLA
itself when the current key chain is about to run out of elements.

5.1.3 Setting up node keys, cluster keys, and the network key

Setting up a node key is easy, as the key can be pre-loaded in the sensor node before
its deployment. Also, setting up a cluster key with the help of link keys already
shared by a node and its neighbors is easy: The node can generate a cluster key
and encrypt it for each of its neighbors using the link key that it shares with that
neighbor. The link keys can also be used to authenticate the cluster key. Since the
number of neighbors is typically quite limited, sending the cluster key in separate
unicast messages to each neighbor results in an acceptable overhead.

The network key can also be preloaded into the sensor nodes before their deploy-
ment. However, sensor nodes may be compromised and the network key may be
leaked. Moreover, unlike the leakage of a node key, a link key, or a cluster key that
has only a localized effect, the leakage of the network key affects the entire network.
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For this reason, when node compromise is detected, there is a need to revoke the
compromised node and to update the network key.

The compromised node can be revoked by instructing its neighbors to delete the
keys that they share with the compromised node and to update their cluster keys.
The updated cluster keys are not distributed to the compromised node. Hence, the
compromised node is practically excluded from the network, as it will not be able to
send and receive encrypted messages to and from its neighbors.

Once the compromised node is revoked, the network key can be updated with the
help of the cluster keys in the following iterative way: The base station generates a new
network key and sends it to its immediate neighbors encrypted with the base station’s
cluster key. The neighbors of the base station decrypt the message, re-encrypt the
network key with their own cluster keys, and re-broadcast the encrypted network
key. This process is repeated until each node in the network receives the updated
network key. Note that the compromised node will not be able to obtain the new
network key as it is encrypted with the updated cluster keys of its neighbors that the
compromised node does not possess. Note also that the authenticity of the network
key can be ensured by a broadcast authentication mechanism such as TESLA.

What remains to solve is the problem of establishing link keys between neighboring
sensor nodes. One may think of pre-loading these keys as well into the sensor nodes
before deployment, but there are some problems with this approach. First, in many
applications, the post-deployment layout of the network may not be known a priori
(e.g., sensors are thrown out from airplanes), and therefore, it is not known which
nodes will be neighbors and need a link key. In addition, sensor nodes can later be
added to an already deployed network, for instance, in order to replace depleted or
faulty nodes. It is difficult to anticipate at the time of network deployment where
these new nodes will be added later, and thus, which nodes need to be pre-loaded
with additional keying material to be able to interact with the newcomers.

In the next two subsections, we present two approaches to solve the link key es-
tablishment problem between neighboring nodes. The first approach is based on a
short-term master key that is present in every node only for a limited amount of
time after its deployment. This master key is used to establish the link keys with the
neighbors and then it is deleted in order to prevent that the master key is leaked if
the node is later compromised. The second approach is based on pre-loading keying
material in the nodes before their deployment, but it is done in a clever way so that no
assumption on the post-deployment network topology is made and post-deployment
addition of new nodes is supported.
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5.1.4 Link key establishment using a short-term master key

The establishment of link keys can take advantage of the fact that sensor networks
are relatively static networks consisting of stationary nodes. This means that the
neighborhood of a node does not change frequently, but it remains more or less the
same as it was at the time of its initial deployment. Some nodes may be depleted
and die and new nodes may be added to the network occasionally, but this does not
result in large and dynamic topology changes. Therefore, it makes sense to discover
the neighborhood of the nodes and set up their link keys at the time of their initial
deployment.

The link key establishment protocol that we describe in this subsection uses a short-
term master key Kinit that is pre-loaded in every node before its deployment. When
the node is deployed, it establishes its link keys with its neighbors, and then it deletes
the master key. It is assumed that link keys are established relatively quickly, and the
adversary cannot compromise the node before its link keys are established. In other
words, by the time the node could be compromised, the master key is already deleted
from the node, and the adversary cannot obtain it.

The link key establishment protocol consists of the following four phases: master
key pre-loading, neighbor discovery, link key computation, and master key deletion.

The master key pre-loading phase is performed before deployment in a secure envi-
ronment. During this phase, the master key Kinit is loaded into the nodes, and each
node u computes a node master key Ku = fKinit (u), where f is some pseudo-random
function.

The neighbor discovery phase starts right after the deployment of a node. First,
the node initializes a timer to fire after some time Tmin . It then tries to discover its
neighbors by broadcasting a HELLO message that contains its identifier and waiting
for responses. A neighboring node v that hears the HELLO message of u responds
with an ACK message that contains the identifier of v. The ACK message of v is
authenticated with the node master key Kv of v. Since node u still possesses the
master key Kinit , it can compute Kv, and it can verify the message authentication
code attached to the ACK message.

Once the neighbors are discovered in this way, node u computes its link keys in the
link key computation phase. The link key Kuv between nodes u and v is computed as
Kuv = fKv (u). Note that the same key can also be computed by node v. In addition,
no messages need to be exchanged between u and its neighbors in this phase. Note
also that node u is not authenticated explicitly to node v. However, each further
message that u sends to v will be authenticated with Kuv, which proves the identity
of u.

Finally, when its timer expires, node u performs the master key deletion phase by
deleting from its memory Kinit and each node master key Kv that it computed in the
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previous phases. It does not delete, however, its own node master key Ku, as this is
needed to establish link keys with nodes that may be added later to the network.

Note that this link key establishment protocol can be used when several nodes are
deployed at the same time, as well as when a single node is added later to an already
deployed network. In the former case, neighboring nodes u and v may send HELLO
messages and wait for ACK messages in parallel, which results in the establishment
of two link keys Kuv and Kvu between them. They may decide to keep one of the
two keys and delete the other. Alternatively, if node u receives the ACK message of
node v before u sends its ACK message to v, then u can suppress its ACK message.

5.1.5 Link key establishment with random key pre-distribution

Now, we will describe a set of link key establishment schemes proposed for sensor
networks, called random key pre-distribution schemes. As their name suggests, these
schemes follow the key pre-distribution approach, but they trade effectiveness and
communication overhead for scalability and reduced memory use. In particular, in
random key pre-distribution schemes, not every pair of neighboring nodes share a
common key initially. This makes it possible to reduce the memory requirement
for pre-loaded keys, and thus, the approach becomes scalable and appropriate for
sensor networks. At the same time, it is ensured that any two neighboring nodes
that initially do not share a key can establish one, with high probability, with some
additional communications via intermediate nodes.

The general idea of random key pre-distribution can be traced back to the following
variant of the birthday paradox [268]: Given a set S of k elements, we randomly choose
two subsets S1 and S2 of m1 and m2 elements, respectively, from S. The probability
of S1 ∩ S2 6= ∅ is

Pr{S1 ∩ S2 6= ∅} = 1− (k −m1)!(k −m2)!
k!(k −m1 −m2)!

(5.1)

For illustration purposes, we plotted the value of expression (5.1) in Figure 5.1, where
we set k = 100 and m1 = m2 = m. As we can see, the probability of the two
subsets intersecting increases rapidly with m, and it reaches 1

2 when m is around 8.
In general, it can be shown that the value of (5.1) will be close to 1

2 when k is large
and m1 and m2 are both close to

√
k. The paradox is that we would not expect such

a high probability of collision when the size of the selected subsets is only the square
root of the original set.

This result can be used in key pre-distribution to considerably decrease the memory
requirements imposed on sensor nodes while still maintaining a rather high probability
of any two nodes sharing a common key. For this reason, each node is pre-loaded
with a random subset of keys selected from a large key pool. Two nodes that have a
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Fig. 5.1. The value of expression (5.1) when k = 100 and m1 = m2 = m. As we can see, the
probability of the two subsets intersecting increases rapidly with m, and it reaches 1

2
when

m is around 8. In general, the probability will be close to 1
2
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are both close to
√
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common key in their subsets are able to communicate securely using the shared key.
The probability of this event will be rather high when the number of selected keys is
in the order of the square root of the pool size. Thus, we expect that large networks
can be supported with a rather limited size memory in sensor nodes.

Below, we elaborate on this idea in more detail. First, we describe a basic scheme
and some of its straightforward improvements. Then, we describe an approach to
combine random key pre-distribution with threshold cryptography in order to increase
the resistance of the scheme to node capture attacks.

The basic random key pre-distribution scheme

The basic scheme works in three phases. In the initialization phase, a large pool S of
unique cryptographic keys is randomly generated, and then, for each node, m keys are
selected randomly from S and pre-loaded into the node. This set of m keys is called
the key ring of the node. The number k of keys in S is chosen in such a way that any
two nodes will have a common key in their key rings with a certain probability p (see
analysis below).

After the sensors are deployed, the direct key establishment phase is performed. In
this phase, the nodes first find out with which of their neighbors they share a common
key. Such key discovery can be implemented by assigning short identifiers to each key
in S before deployment and by having each node broadcast the set of identifiers that
correspond to the keys in the node’s key ring. Two neighboring nodes that discover
that they share a common key can then verify that they both really possess that key
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by executing a challenge-response protocol. The shared key is then used to protect
the link between the two nodes.

Some pairs of neighboring nodes may not have a common key in their key rings, and
therefore may not be able to setup a secure link in the direct key establishment phase.
In order to remedy this situation, a path key establishment phase is performed. In
this phase, neighboring nodes that do not share a key initially establish a shared key
through a path of intermediate nodes where each link of the path is already secured
in the direct key establishment phase. This will work only if the graph, which consists
of the nodes (as vertices) and the secure links created in the direct key establishment
phase (as edges), is connected. As we will see below, this can be achieved with high
probability by appropriately choosing the parameters of the scheme.

Setting the parameters: We use results from random graph theory to set the pa-
rameters of the basic scheme. Although sensor networks are not random graphs, as
nodes cannot have communication links with most of the other nodes in the network,
using the random graph metaphor is still useful to give us an idea of the order of
magnitude of the various parameters.

We know from random graph theory [125] that in order for a random graph to be
connected with high probability, the expected degree of the vertices should exceed a
certain threshold. More precisely, in order for a random graph to be connected with
probability c (e.g., c = 0.9999), the expected degree d of the vertices should be:

d =
n− 1

n
(ln(n)− ln(− ln(c))) (5.2)

where n is the number of vertices in the graph.
In our case, the edges of the graph correspond to the secure links created between

neighboring nodes in the direct key establishment phase. Let p denote the probability
that two nodes have a common key in their key rings. In addition, for a given density
of node deployment, let n′ be the expected number of neighbors of a node. Then, in
our graph of secured links, the expected node degree is d = p · n′. Thus, we obtain
that, in order for the basic scheme to work, the following should hold:

p =
d

n′
(5.3)

where d is defined in (5.2).
Note that, using (5.1), we can compute p as follows:

p = 1− ((k −m)!)2

k!(k − 2m)!
(5.4)

Recall that k is the number of keys in the key pool S, and m is the number of keys
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in the key rings of the nodes. We can use (5.4) to determine the values of k and m

for a given value of p.
Let us consider a numerical example. Let us assume that there are n = 10, 000

nodes in the network, and the nodes are deployed in such a way that the expected
number of neighbors is n′ = 40. We want the basic scheme to work with probability
c = 0.9999. Using (5.2), we can compute that the expected node degree in the graph
resulting after the direct key establishment phase should be d = 18.42. From this, we
obtain p = 0.46 using (5.3). Finally, we can use (5.4), to determine the values of k

and m. We can check, for instance, that for k = 100, 000 and m = 250, (5.4) evaluates
to approximately 0.5, meaning that a key pool size of 100, 000 and a key ring size of
250 would be an appropriate choice. Alternatively, we can use (5.4) to determine k

if m is given due to the memory constraints of the sensor nodes. For instance, if the
key ring size is limited to m = 75 keys due to memory constraints, then we get from
(5.4) that the key pool size should be k = 10, 000 to obtain a connected graph after
the direct key establishment phase with probability 0.9999.

A brief qualitative analysis: We can see that the basic scheme is quite well-
adapted to the special design constraints for key establishment schemes in sensor
networks. First of all, the parameters of the scheme can be adapted to support the
memory constraints of the sensor nodes. In addition, setting up pairwise keys does
not need any intensive computations. Indeed, when the nodes have a common key
in their key rings, that common key becomes the shared pairwise key, and no further
processing is needed, apart from a simple challenge-response protocol to ensure that
the nodes actually possess the key. When two nodes do not have a common key in their
key rings, they can establish a shared key through intermediate nodes. This requires
some additional processing, because the intermediate nodes must decrypt and re-
encrypt the key establishment messages sent between the nodes. However, this must
be done only once, at the beginning of the operation of the network. In addition,
simulation results in [126] show that the length of the path of the intermediaries is
limited to a few hops. This also indicates a moderate communication overhead of the
scheme.

The basic scheme does not make any assumptions about the network topology apart
from assuming that the expected node degree is known a priori. Moreover, the scheme
supports the post-deployment introduction of new nodes into the network. For this,
the new node must be pre-loaded with its own key ring, and no further action is
needed. In particular, the nodes already deployed do not need to be updated, and
the new node can use the basic mechanisms (direct and path key establishment) to
setup secure links with already deployed nodes.

The disadvantage of the basic scheme is that, by compromising sensor nodes, an
adversary obtains keys from the key pool, which may be used to secure links be-
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tween other, non-compromised nodes. Thus, node capture affects the security of
non-captured nodes too. One way to mitigate this problem would be to increase the
pool size. In that case, however, the size of the key rings should also be increased
in order to ensure the same probability of connectivity of the graph resulting from
the direct key establishment phase. The problem is that the size of the key ring is
limited by the available memory in sensor nodes, and hence it cannot be arbitrarily
increased.

Another related disadvantage is that establishing path keys through captured nodes
jeopardizes the secrecy of the recently established key. In order to overcome this
problem, compromised nodes must be discovered and excluded from the network
rapidly, but discovering that a node is compromised is a very difficult problem in
itself.

Finally, yet another disadvantage of the basic scheme is that it does not provide
node-to-node authentication. This means that a node can establish shared keys with
its neighbors, but it does not know exactly who its neighbors are. Node-to-node
authentication would be useful in detecting node replication attacks and in identifying
and expelling misbehaving nodes.

q-composite random key pre-distribution

One approach to increase the resilience of the sensor network against node capture
attacks is to use q-composite random key pre-distribution. The q-composite scheme
differs from the basic scheme in requiring the nodes to have at least q common keys
in their key rings in order to be able to establish a pairwise key. The pairwise key is
then computed as the hash of all shared keys.

The q-composite scheme degenerates into the basic scheme when q = 1. Intuitively,
when q > 1, the probability that two nodes can directly establish a shared key is
smaller than the same probability in the basic scheme for the same values of the
parameters k and m, because it is less probable to share at least q keys than to share
at least one. Thus, in order to maintain the same expected degree of the nodes after
the direct key establishment phase (and hence, to ensure secure connectivity), either
the size m of the key rings should be increased, or the size k of the key pool should be
decreased. However, neither of the above two options are desirable: in the first case,
the memory use of the sensors is increased, whereas in the second case, an increased
fraction of the keys in the pool is compromised by capturing the same number of nodes.
It is true, however, that the latter effect (increased fraction of compromised keys) is
counterbalanced by the fact that now, in order for the adversary to compromise a
link, it must compromise all the keys that have been hashed together to obtain the
link key.

The simulation results in [94] show that the q-composite scheme offers greater
resilience against node capture than the basic scheme does only when the number of
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captured nodes is small, whereas it tends to reveal larger fractions of link keys when
large number of nodes have been captured by the adversary. In effect, by requiring q to
be greater than 1, we make it harder for the adversary to obtain sufficient information
to compromise links at the beginning when only a few nodes have been captured. But
once a certain amount of information is collected by capturing more nodes, it becomes
more and more easy to compromise further links. In other words, the q-composite
scheme increases the entry cost of a node capture attack. This makes sense, as it is
reasonable to assume that it is more difficult to capture a large number of nodes than
to capture only a few of them.

Multipath key reinforcement

Multipath key reinforcement is a technique to strengthen the security of a link key by
establishing it through multiple disjoint paths. It can be applied in conjunction with
the basic scheme to greatly improve its resilience against node capture. The trade-off
is that establishing link keys through multiple paths results in a higher communication
overhead.

The operation of multipath key reinforcement is the following: Let us assume that
the direct key establishment phase of the basic scheme is performed, and two neigh-
boring nodes u and v have discovered that they have a common key K in their key
rings. Instead of simply using this key as the link key between u and v, the nodes
will establish their link key in the following way. Node u identifies a set of j disjoint
paths to v in the graph resulting from the direct key establishment phase, and sends
j key shares κ1, κ2, . . . , κj to v such that each key share is sent through a different
path. Each key share is protected during transit hop-by-hop, using the keys that are
discovered in the direct key establishment phase. Then, both u and v compute the
shared link key as K ⊕ κ1 ⊕ . . .⊕ κj .

The advantage of multipath key reinforcement is that in order to compromise a
link key, the adversary needs to compromise at least one key on every path through
which the key shares are transmitted. The simulation results in [94] show that ex-
tending the basic scheme with multipath key reinforcement enables it to outperform
the q-composite scheme, even when the latter is also extended with multipath key
reinforcement. The intuitive reason is that in the q-composite scheme, the trade-off
for the increased resilience is the reduced size of the key pool, which undermines the
effectiveness of multipath key reinforcement by making it easier for the adversary to
build up a critically large collection of compromised keys. As opposed to this, when
the basic scheme is extended with multipath key reinforcement, the size of the key
pool does not need to be decreased. The cost of the improved resilience in this case
is an added overhead in path discovery and key establishment traffic.

Note that multipath key reinforcement can also be used to reinforce path keys that
are established between nodes that do not have a common key in their key rings. The
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operation of the mechanism in this case is similar to the one described above, with
the difference that the path key is computed as κ1 ⊕ κ2 ⊕ . . .⊕ κj . This will further
improve the security of the schemes.

Random key pre-distribution combined with threshold cryptography

As we have seen above, the main problem of the basic random key pre-distribution
scheme is that if a node is captured, then all its keys become known to the adversary,
and as these keys might have been chosen from the pool by other, non-captured nodes
too, their compromise affects the security of the non-captured nodes. We would like
to extend the basic scheme in a way that minimizes the effect of capturing a node
on other non-captured nodes. In particular, if some key material is leaked, it should
not be directly usable by the adversary to learn the key material of other nodes.
A possible approach to achieve this is to extend the basic scheme with principles
borrowed from threshold cryptography.

The general idea of using threshold cryptography is that capturing less than a
certain number of nodes is not sufficient for the adversary to learn anything useful.
In order to compromise the links of non-captured nodes, the number of captured
nodes must exceed a threshold; hence the name threshold cryptography.

We start with the description of polynomial-based pairwise key pre-distribution,
and show how this can be combined with the basic random key pre-distribution scheme
later. Let f(x, y) =

∑t
i,j=0 aijx

iyj be a bivariate t-degree polynomial over a finite
field GF (q), where q is a large prime number, such that f(x, y) = f(y, x). Each node
is pre-loaded with a polynomial share f(i, y), where i is the ID of the node. Any
two nodes i and j can compute a shared key. For this, node i evaluates f(i, y) at
point j and obtains f(i, j); similarly, node j evaluates f(j, y) at point i and obtains
f(j, i) = f(i, j).

It can be proven that this scheme is unconditionally secure and t-collision resistant.
This means that any coalition of at most t compromised nodes knows nothing about
the shared keys computed by any pair of non-compromised nodes. In addition, any
pair of nodes can establish a shared key, and this incurs no communication overhead
(apart from telling the node IDs to each other). The memory requirement of the
nodes is (t + 1) log(q), as each node needs to store a t-degree polynomial over GF (q).

This scheme could be applied in sensor networks, but it has some limitations. In
particular, it can only tolerate at most t captured nodes, where the value of t is limited
by the memory size of the sensor nodes. This means that t is usually small, and thus
the larger the sensor network is, the more likely that the adversary can capture more
than t nodes.

In order to overcome this problem, we can use the idea of random key pre-distribution;
but instead of a pool of keys, now we have a pool of t-degree polynomials. For each
sensor node i, we choose a subset of m polynomials from the pool and pre-load into
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node i the polynomial shares of these m polynomials computed at point i. Two nodes
that have polynomial shares of the same polynomial can establish a shared key as
described above. It may happen that two nodes that want to establish a shared key
have no common polynomials. In this case, they can establish a shared key through a
path of intermediate nodes in the same way as path keys are established in the basic
random key pre-distribution scheme.

Combining the polynomial-based key pre-distribution scheme with the basic ran-
dom key pre-distribution scheme combines their advantages and results in a better
scheme. In particular, in the combined scheme there is a unique key between each
pair of nodes, thus capturing a node does not directly reveal the shared key of any
other pair of nodes. In addition, the storage overhead for each node is m(t+1) log(q),
which differs from the storage overhead of the polynomial based key pre-distribution
scheme only in a constant factor m. Although it requires slightly more memory in the
sensor nodes, the combined scheme has the advantage that it can tolerate the capture
of more than t nodes. The reason is that in order to compromise a polynomial, the
adversary needs to obtain t + 1 shares of that polynomial. However, due to the ran-
dom selection of polynomials, it is very unlikely that t + 1 randomly captured nodes
have all selected the same polynomial from the pool, and thus collectively have t + 1
shares of the same polynomial.

It must be noted, however, that once a polynomial is compromised, every pair of
nodes that used the shares of that compromised polynomial to set up a secure link
is affected. This means that after capturing a critically large number of nodes, the
security provided by the system starts decreasing abruptly. The advantage of the
combined scheme is that it pushes the threshold where the system becomes insecure
much higher than in the basic random key pre-distribution scheme and in any of its
straightforward extensions (i.e., the q-composite scheme and multipath key reinforce-
ment).

Having described how key establishment can be carried out in sensor networks, we
will now move to personal communications.

5.2 Exploiting physical contact

In this and the two subsequent sections, we will explain how authentication and key
establishment can be engineered in peer-to-peer communication networks. In this
(short) section, we will explain how these operations can be achieved by means of
physical contact between the devices. Then we will leverage on a secure side channel
such as the one provided by infrared communications. Finally, we will assume that
even infrared is not available and show how to achieve peer-to-peer authentication by
relying only on radio communications.

Each individual (in this part of the world) possesses a growing number of wireless
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personal devices: mobile phone, laptop, PDA, remote control devices for appliances,
and so on. Some of these devices, such as the remote control of the car locks and
the garage door control unit, play an important security role. As a result, one of
the problems the user has to solve is to appropriately and securely initialize these
devices (and, whenever meaningful, the devices they control). More specifically, the
user must be able to tell a given device to “obey” or “become the slave” of another
device (already under the user’s control).

In a growing number of cases, the problem must be solved in the absence of any
trusted server. In addition, the slave devices should not be required to perform
complex computations such as modular exponentiations and should not be assumed
to have a screen.

To illustrate and solve this problem, Stajano and Anderson rely on the metaphor
of the resurrecting ducking [353]: a duckling emerging from its egg will recognize as
its mother the first moving object its sees that makes a sound. Likewise, a newly
purchased device will recognize as its owner the first entity that sends it a secret key.
The duckling can “resurrect” in the sense that - in well-defined conditions - it can be
reimprinted by its mother (its owner), for example if it is transferred to another user.

In order to secure the imprinting or reimprinting operations, the most convenient
solution is to use physical contact between the master and the slave devices to transfer
the secret. Once this operation is completed, the master and the slave can securely
communicate over the wireless channel by making use of this secret. Of course,
appropriate precautions need to be taken to protect the key in case one of the devices
is stolen.

An additional feature of this model is that the ducklings can communicate securely
also with each other, independently from the mother. This principle can be used
notably to secure communication between sensors.

5.3 Exploiting mobility

As we have mentioned in Part I, traditional mobile networks (such as cellular net-
works) are secured in a centralized way: each mobile device carries a (symmetric)
cryptographic key, provided by the operator at the time of contract signing.

In the previous section, we have explained that the authentication and the estab-
lishment of security associations between two devices can be achieved by physical
contact. But this solution is not always convenient, because the devices do not neces-
sarily provide the appropriate interfaces, or because users are not necessarily carrying
the required cables with them.

In this section, we will thus abandon physical contact and rather rely on a secure
side channel, as the one provided by infrared communication. We will also take a more
global view: instead of focusing on two nodes, we will consider how a whole mobile
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ad hoc network can be secured (hence the authentication and key exchange protocols
must be scalable). This is very important, notably in order to secure network-wide
mechanisms such as routing, as we will see in Chapter 7.

It is a common belief that peer-to-peer security is more difficult to achieve than
traditional security (based on a central trusted authority); moreover, wireless commu-
nication and mobility are considered to be at odds with security. Indeed, as we have
seen, jamming and eavesdropping are easier on a wireless link than on a wired one,
notably because such mischiefs can be perpetrated without physical access or contact.
Likewise, a mobile device is more vulnerable to impersonation and to denial-of-service
attacks.

Nevertheless, in this section and in the following one, we will show that physical
presence is the best way to increase mutual trust and to exchange information in a
secure way. Indeed, authentication is straightforward, as users can visually recognize
each other (if they meet for the first time, they can be introduced to each other by a
common friend whom they trust, or they can check each other’s ID).

We will thus show that, far from being a hurdle, mobility can in fact help security
by enabling basic functions such as authentication and key establishment, even at a
full network scale.

5.3.1 Mechanisms to establish security associations

In this subsection, we first describe the system model and then we propose the mech-
anisms for the establishment of security associations.

System Model

We assume that each legitimate user has a single device (or “node”) and that each
node is able to generate cryptographic keys, to check signatures and, more generally,
to accomplish any task required to secure its communications (including to agree on
cryptographic protocols with other nodes).

We also assume that the adversary can eavesdrop on all radio links3 and can manip-
ulate messages in all kinds of ways. In contrast with the previous section, we assume
that any pair of nodes can communicate over a secure side channel (e.g., infrared),
provided that they are close enough to each other: the adversary cannot modify mes-
sages transmitted over this channel, but we do not require the secure side channel to
protect the confidentiality of the exchanged information. Finally, we consider that
the adversary can have at her disposal several fake devices.

We will first study the scenario of a self-organized mobile ad hoc network, as defined
in Part I. At the end of this subsection, we will consider the presence of a trusted
authority.
3 This is reasonable, as we want the solution to work also for small-sized networks.
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As mentioned in Part I, if the network is self-organized, it means that there is no
infrastructure (hence no PKI), no central authority, no centralized trusted third party,
no central server, and no secret share dealer, even in the initialization phase; each
node is its own authority domain.

In order to establish the security associations, we consider that the nodes can make
use of a secure side channel when they get in each other’s power range. As we will
show in Section 5.3.2, relying exclusively on the mobility of the nodes can lead to a
frustratingly low pace of establishment of the security associations. To expedite the
process, we introduce the additional, very intuitive notion of friend . Two nodes i

and j are said to be friends if (i) they trust each other to always provide information
about themselves and about other nodes they have previously encountered and (ii)
they have already established a security association with each other (typically, they
know each others’ public keys). The security association between friends is assumed
to be established (or at least checked) over an out-of-band channel. Note that we do
not assume the friend relationship to be transitive, as this would require transitivity
of trust. Strictly speaking, this relationship does not even have to be symmetric, yet
to simplify the presentation, we will assume this symmetry to hold.

Mechanisms

If a node u possesses a certificate signed by a third party (typically one of her friends),
which binds node v with its (v’s) public key, then we say that there exists a one-way
security association from u to v. Two one-way security associations between nodes u

and v (one in each direction) constitute a two-way security association between the
nodes. Likewise, if u and v share a secret key kuv, we say that there exists a two-way
security association between u and v.

If public-key cryptography is used, a (two-way) security association between two
nodes u and v is represented by triplet (U, ku, au) at the side of v and triplet
(V, kv, av) at the side of u, where U and V are the names of the users that are
associated with nodes u and v, ku and kv are the public keys of u and v, and au and av

are the node addresses of u and v, respectively. Once nodes u and v have established
a security association between themselves, they can set up secure communication
channels that protect the integrity and confidentiality of the exchanged messages. In
fact, for efficiency reasons, u and v may want to use symmetric key cryptography for
the protection of their messages. In this case, they establish short-term symmetric
keys (session keys) using the public keys in the security association. In this way, the
nodes establish short-term symmetric-key security associations, which they can use
for example for efficient secure routing.

Similarly, if symmetric-key cryptography is used, a security association between
nodes u and v is represented by triplet (U, kuv, au) at the side of v and triplet
(V, kuv, av) at the side of u, where kuv is a symmetric key shared by u and v. In
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the symmetric-key based approach, we consider security associations to be always
two-way; it is not possible to establish a one-way security association.4

When two users meet, they are obviously given the possibility to visually identify
each other. The decision to set up a security association between two nodes is based
on this physical encounter. To support this mechanism, we assume that the two
devices can establish a secure side channel. A secure side channel can only be point-
to-point and works only when the nodes are within a “secure range” of each other.
We consider this assumption to be realistic, as almost all personal mobile devices are
equipped with infrared interfaces (although this tends to be less true, nowadays). We
assume that the activation of the side channel is made by both users consciously and
simultaneously. When activating the side channel, the users simultaneously associate
the name (or the face) of the other person to the established security association. This
operation is very similar to the exchange of business cards; in fact, it can even be
transparently combined with the exchange of electronic business cards (e.g., exchange
of vCards5 between PDAs). These encounters make it possible for a user to associate
a face6 to a given identity (and to a given public key), thus solving many of the
classical problems of security in distributed systems (e.g., impersonation attacks and
Sybil attacks).

We will now address the public-key approach, and then the symmetric one.

Public-key approach As we assume no authority, each user’s device has to generate
its public/private key pair(s). Three mechanisms support the establishment of new
security associations (Figure 5.2). Mechanism (a) is used when two nodes u and v

are in the vicinity of each other, and it consists in u and v exchanging their triplets
using the secure side channel. Because the secure side channel ensures the integrity
of the exchanged messages, it precludes the possibility of a man-in-the-middle attack.
This guarantees a secure binding between the received user name, public key, and
node address. In addition, the user can easily verify the validity of the received
name because the name should correspond to the person present at the encounter.
The node can also verify that the other node indeed possesses the private key that
belongs to the received public key by executing a simple challenge-response protocol.
Finally, the node address can be verified against the public key. The verification
of the node address against the public key is necessary, notably for secure routing.
4 In practice, the nodes can derive sub-keys from the shared symmetric key of the security associ-

ation, where each sub-key is used in one direction only and perhaps only for a specific security
service (e.g., either for integrity or for confidentiality, but not for both); this is a policy issue, out
of the scope of our discussion.

5 http://www.imc.org/pdi/
6 If a user wants to establish a security association with a user-independent device (e.g., a printer),

she will visually identify the device and bind its identity to the context in which the device
operates. Whereas here, we focus on the establishment of security associations between users’
personal communication devices.
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Fig. 5.2. Three mechanisms to create new security associations using (a) the secure side
channel, (b) a common friend, and (c1, c2) the combination of the first two approaches
(mechanism (c1) is used only in the public-key based approach). From [87], c© IEEE, 2006.
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One possible solution is to generate the node address from its public key7 by making
use of Cryptographically Generated Addresses, described in Chapter 4. In this way,
node addresses are bound to public keys in a verifiable way. Note, however, that a
malicious node may generate several public keys and the corresponding node addresses
and distribute them to other nodes. Whether this is a problem very much depends
on how the routing protocol is secured (see Chapter 7).

A possible implementation of the direct establishment of security associations is
shown on Figure 5.3.

u v
Given au, pick ru Given av, pick rv

ξu = h(ru‖U‖ku‖au) ξv = h(rv‖V ‖kv‖av)
au‖ξu -
av‖ξv¾

ru‖U‖ku‖au-
rv‖V ‖kv‖av¾

Verify h(rv‖V ‖kv‖av) = ξv Verify h(ru‖U‖ku‖au) = ξu

Compare V ; match(kv , av)? Compare U ; match(ku, au)?
σu(rv‖U‖V )-
σv(ru‖V ‖U)¾

Legend
Radio channel: -
Secure side channel: -

Fig. 5.3. Direct Establishment of a Security Association. From [87], c© IEEE, 2006.

Users u and v first generate random numbers ru and rv, respectively, and exchange,
through the secure side channel, their addresses au and av and the cryptographic hash
values ξu = h(ru‖U‖ku‖au) and ξv = h(rv‖V ‖kv‖av) of their random numbers and
triplets. After this initial exchange, u and v send messages to each other through
the radio interface (as they have obtained each other’s node address in the first two
messages). They exchange their random numbers and triplets, and each of them
verifies if the hash value of the received random number and triplet is equal to the
received hash value ξu (or ξv). If this is the case, they can be sure that they have
received the random number and the triplet from the party with which they exchanged
the first messages through the secure side channel. The random numbers serve as
nonces and guarantee the freshness of the subsequent messages. Now, both users can
verify if the received user name corresponds to the other party and both nodes can
verify if the received node address matches the received public key. Finally, the nodes
generate and send to each other a signature (σ()) on the received random number and
7 If the node has several public keys, then the node address is generated from a designated one.
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on the user names in order to prove that they possess the private keys that belong to
the exchanged public keys.

With Mechanism (b), two nodes u and v can establish a security association if they
have a common friend f . A simple solution is the following: Since f knows the triplets
of both u and v, it can issue (on request from u and/or v) fresh certificates for both
triplets and send them to v and u, respectively, via the network. Both u and v know
the public key of f and they also trust f , therefore they can both verify the received
certificates and will accept the information therein if the verification is successful.

Mechanism (c1) is a combination of the friendship relationships and the encounters,
and they establish only a one-way security association: If nodes u and f are friends
and f has obtained the triplet of v in an encounter with v, then f can issue (on request
from u) a fresh certificate for the triplet of v and send this certificate to u via the
network. As u knows the public key of f , and also trusts f , she can verify the received
certificate and accept the received triplet if the verification is successful. A two-way
security association between nodes u and v is then established as a combination of
two one-way security associations (from u to v and from v to u).

The protocols corresponding to Mechanisms (b) and (c1) are straightforward and
we do not detail them.

Symmetric-key approach The mechanisms used in the symmetric-key approach
are similar: They can be applied to both the self-organized and the authority-controlled
networks.

The first mechanism (Figure 5.2, Mechanism (a)) is a direct establishment through
the side channel: When the nodes are in the vicinity of each other, they can exchange,
through the side channel, their user names and node addresses, and additional data
that allow them to compute a shared secret. It is important to note, however, that
in a pure symmetric-key approach, setting up a shared secret between two parties
always requires a confidential side channel between them. This means that in this
case, the side channel must ensure not only the integrity but also the confidentiality
of messages. Like in the public-key implementation, the users can verify the received
names through personal encounters. The node addresses, in contrast, can be verified
against the received (and verified) names.

Mechanism (b) supports the establishment of security associations between two
nodes u and v via a common friend f . By assumption, f already has a security
association with both u and v, meaning that it has symmetric keys established with
them. In addition, f is trusted by both u and v. Therefore, to establish a session
key between u and v, well-known symmetric-key protocols can be used, where f plays
the role of the trusted (key) server. The session key can be generated either by f

who would send it to both u and v (like in the Kerberos protocol), or by u or v, in
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which case f would be used as a trusted relay (like in the Wide-Mouth-Frog protocol);
please refer to Appendix A for a description of these two protocols.

Finally, Mechanism (c2) can be used when two nodes u and v do not have a common
friend, or have a common friend f but do not want f to know their shared secret
key. Like in the public-key based approach, Mechanism (c2) combine the first two
mechanisms (encounters and friends). Let us assume that u has a friend f who has
already set up a security association with v using the first mechanism. Similarly, let
us assume that v has a friend g who has set up a security association with u using the
first mechanism. Now u and v can set up a security association using f and g by u

generating key contribution ku and sending it to v via g, v generating key contribution
kv and sending it to u via f , and then both u and v computing a common value kuv

from ku and kv.
The Friend-Assisted Establishment of a Security Association, shown in Figure 5.4,

illustrates this in more detail. In this protocol, nodes u and v first exchange the
names of their friends (to be used in the protocol as trusted relays) and two nonces ru

and rv (used to guarantee the freshness of subsequent messages). Then, u generates
some random key ku and sends it to v via g (msg3 and msg4), and v generates some
random key kv and sends it to u via f (msg3’ and msg4’). Here, dx→y is a direction
bit that indicates that the message goes from x to y (and not from y to x).8 req and
rep are bits that indicate that the message is a request to a friend or a reply from a
friend, respectively. We need these bits because every node can play either the role
of a requesting node (u and v) or the role of a friend (f and g), and thus we must
indicate not only that this is a message from x to y but also that x is the requesting
node and y is the friend (or vice versa). Finally, u and v compute a common value
kuv from ku and kv using a publicly known pseudo-random function h (e.g., a hash
function).

u v

msg1
f‖ru -

msg2
g‖rv¾
g

msg3
u‖Ekug

(du→g‖req‖v‖ku‖rv)-

msg4
g‖Ekvg

(dg→v‖rep‖u‖ku‖rv)-
f

msg3’
v‖Ekvf

(dv→f‖req‖u‖kv‖ru)
¾

msg4’
f‖Ekuf

(df→u‖rep‖v‖kv‖ru)
¾

kuv = h(ku‖kv) kuv = h(ku‖kv)

Fig. 5.4. Friend-Assisted Establishment of a Security Association. From [87], c© IEEE, 2006.

8 Note that since messages are always encrypted with a symmetric key kxy, the only possible
ambiguity is the direction.
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An interesting feature of the protocol is that it replaces a single trusted party with
two parties trusted by one entity each. If f and g are not colluding, then neither of
them has enough information to compute kuv. In addition, both u and v trust at
least one of them for not colluding.

Presence of an authority

We now assume that there is a central, trusted authority, but that it is not (or at least
not always) accessible online. A typical example is a vehicular network: neighboring
vehicles may need to establish a security association, but do not have the connectivity
(or simply the time) to contact a server in order to do so.

The existence of this authority makes things easier, as it can assign a unique identity
to each node.

If public-key cryptography is used, the solution is simple: The authority provides a
certified public key to each node. We can also assume that each node holds a correct
public key of the authority, so that it can verify the correctness of the certificates that
other nodes hold. Hence, when two nodes move into the (radio) power range of each
other, they will exchange certificates that contain their public keys, and establish a
security association.

If the system is restricted to the use of symmetric cryptography, then the protocols
we have presented for the case of the self-organized network can be used.

The major difference between the self-organized and the authority-based approach
stands in user involvement: In a self-organized approach, users need to establish
security associations consciously; on the contrary, in the authority-based approach
with public-key cryptography, users do not need to be aware of the establishment
of the security associations, as this is done automatically by their nodes. The use of
either of these approaches strongly depends on the purpose of the network. Typically,
the self-organized approach is useful in securing personal communications on the
application level, whereas the authority-based approach is used to secure networking
mechanisms such as routing.

5.3.2 Performance evaluation

In this subsection, we provide an estimate of the pace at which security associations
are created. We assume that, initially, each node established security associations
only with its friends; we further assume that each node has the same number of
friends.

In our analysis, we will observe the following values: the convergence r(t), which
represents the fraction of the security associations established until time t, and the
convergence (meeting) time tM , which is the time needed to establish all the desired
security associations. One additional value of interest is the average meeting frequency
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1/tIM of nodes. Here, tIM is the node inter-meeting time. This value is important for
assessing the frequency of rekeying and the time necessary to perform key revocation.

In the simulations we describe, the Random Waypoint mobility model described
in Chapter 2 is used and we extend this model with some new features; we call
this new model the Restricted Random Waypoint model. As we have seen, in the
conventional Random Waypoint model a node chooses its destination and its speed
towards this destination randomly. After arriving at the destination, the node pauses
for a certain period of time, and then chooses its new destination and its speed.
In the Restricted Random Waypoint model, the nodes move in the same way as in
the Random Waypoint model, but their choice of destination points is restricted to
a number of fixed points on the plane with some probability p. This means that
with probability p, a node randomly chooses a point from a finite set of destination
points, and with probability 1−p, it chooses as its destination a random point on the
plane. This model is closer to reality in the sense that users normally do not choose
destination randomly, but they rather move to some meeting points (e.g., meeting
rooms, lounges, restaurants) where communication between users takes place. If
p = 1 and if the set of destination points is small, the convergence time will be small
as well. On the contrary, if p = 0, we have the standard Random Waypoint mobility
model and the convergence time will be longer.

In this mobility model, two nodes can establish a security association if they are
in the security range of each other (for the self-organized network) or in each others’
power range (in the authority based network). The security range is the maximum
range for the secure side channel to be set up; it is significantly smaller than the power
range of mobile nodes.

In all simulations, the same simulation area (a 1000m×1000m square) is used and
the number of nodes is set to n = 100. When the nodes hit the area border, they
bounce off under the same angle under which they hit the border. The node maximum
speed is set to 5 m/s (except in one case on Figure 5.5a, where it is 20 m/s), and the
minimum speed to 1 m/s. The pause time is set to 100 s.

On Figure 5.5 we observe the convergence rn×s(t) and the node meeting frequency.
Figure 5.5a shows that the friends mechanism speeds up convergence proportionally
to the number of friends. Furthermore, this shows that, as expected, a higher average
speed of nodes results in a faster convergence (and therefore a shorter convergence
time). The same figure also illustrates another very intuitive result: The convergence
is faster if the nodes gather at and around meeting points. It is also interesting
to observe that, in the most favorable case (in which the security range is 100 m
and the network is controlled by a central authority), 40% of security associations
are established in less than 1000 seconds (17 minutes). This is an important result,
given that, as we will show in Chapter 7, this percentage of security associations is
sufficient to support secure routing. Figure 5.5b shows the node meeting frequency
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Fig. 5.5. Restricted Random waypoint simulation results; (a) average convergence, (b) meet-
ing frequency. Here, f is the number of node’s friends, p is the restriction probability, v is the
node speed, and sr is the range within which the nodes can establish security associations.
The results are shown with 95% confidence intervals. From [87], c© IEEE, 2006.

(two nodes), in areas of various sizes. We observe that the meeting frequency is
inversely proportional to the size of the area.

5.4 Exploiting the properties of vicinity and of the radio link

As we have just seen, authentication and key establishment can be based on the usage
of a secure side channel, typically by means of infrared communication. However, as
we have mentioned, infrared interfaces are not always available on devices anymore.
Consequently, we show in this section how security associations can be established by
making use only of the radio link, even in the absence of an authority.

More specifically, we consider the case in which two users, each equipped with a
personal device capable of communicating over a radio link, get together and want to
establish a shared key. Although they can visually recognize each other, we assume
that they do not share any authenticated cryptographic information (e.g., public keys
or a shared secret) prior to this meeting. The challenge is the following: How can the
users establish a shared key in a secure way? 9

This situation corresponds to the frequent case in which two people get together
(e.g., at a meeting, or in the street) and make use of their devices to exchange in-
formation, for example their (electronic) business cards. Clearly, the communication
between these devices must be properly secured.
9 This situation is different from the establishment of a shared key between two Bluetooth devices

belonging to the same user, which we described in Chapter 1.
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Very often, the two users will want the security between their devices to be peer-
to-peer, thus operating independently from any authority. In practice, this means
that the mobile devices must run a protocol to authenticate each other and to protect
the data they exchange (to ensure confidentiality and integrity); the latter operation
typically requires setting up a symmetric shared key.10 This key can be used to secure
both immediate communications and communications that take place afterwards (e.g.,
when users exchange email over the Internet).

Assuming that they have visually authenticated each other, we will now show how
they can establish a key over the radio link. To this end, we will first precisely
define the model we consider, and then describe the protocol that solves the problem.
Note that a number of protocols have been proposed to solve this problem, and we
will enumerate them in Section 5.7. The solution we will present hereafter requires
minimal effort from the users (they do not need to type in any thing; all they have to
do is to push a button to trigger the unfolding of the protocol and compare a short
string of characters).

5.4.1 System model

The Diffie-Hellman (DH) key agreement protocol [362], described in Appendix A,
seems to be appropriate for the problem (and the set of assumptions) at hand; the
DH key agreement protocol is believed to be secure against a passive adversary11 (e.g.,
eavesdropping on a wireless link). Let us briefly review how the DH key agreement
protocol works. To agree on a shared key, two users, Alice (A) and Bob (B) proceed
as follows. A picks a random secret exponent XA, and calculates the DH public
parameter gXA , where g is a generator of a group of large order. B does the same,
that is, he calculates gXB . Finally, A and B exchange the public parameters gXA and
gXB and calculate the shared DH key as K = gXAXB = (gXA)XB = (gXB )XA .

It is well known that the basic version of the protocol is vulnerable to an active
adversary who uses a man-in-the-middle (MITM) attack. At first glance, it may seem
that mounting the MITM attack against wireless devices that communicate over a
radio link and are located within the radio communication range of each other can
be perpetrated only by a sophisticated attacker. But this is not the case, as we will
now explain by a simple example in the framework of Internet protocols.

As we have seen in Subsection 4.2.1, neighbor discovery protocols involve both
the MAC and the IP addresses of nodes. In IPv4, the Address Resolution Protocol
(ARP) [313] is used by the Internet Protocol to map IP network addresses to the
hardware addresses used by a data link protocol (the MAC addresses). An attacker

10 In practice, it is recommended to make use of different keys for confidentiality, integrity (and,
where appropriate, authentication). We will not go to this level of detail here.

11 This is true if the Computational Diffie-Hellman problem [262] is intractable.



5.4 Exploiting the properties of vicinity and of the radio link 129

can send spoofed ARP-replies to the victim, who will consequently send all its packets
to the attacking machine. In this way, the attacker redirects the traffic between two
“legal” machines through an attacking machine, despite the fact that the two legal
machines were in radio communication range of each other. In this way, the attacker
can perpetrate a MITM attack (by altering the DH parameters). This attack can
easily be implemented by making use of publicly available tools for network auditing
and penetration testing, such as dsniff [348].

Of course, ARP-spoofing is not the only way to mount a MITM attack against
wireless devices. Examples of more involved MITM attacks against Bluetooth [349]
equipped devices can be found in [202] and [236].

Hence, the goal is to devise mechanisms that prevent the attacker from modifying
the DH parameters without being noticed.

Assumptions

We assume each user to be equipped with a computationally constrained personal de-
vice (e.g., a PDA). Each device is equipped with a radio transceiver (e.g., IEEE 802.11,
which is described in some detail in Chapter 9). We also assume that each device has
a human-friendly interface (i.e., a screen and a keyboard).

The solution that we will present makes use of the multiplicative group G with the
generator g. Here, we take G to be a subgroup of Z∗p of the prime order q, where
Z∗p is the multiplicative group of non-zero integers modulo a large prime p. However,
the whole treatment here applies to any group in which the Decisional Diffie-Hellman
(DDH) problem is hard. These are all groups in which it is infeasible to distinguish
between quadruples of the form (g, gx, gy, gxy) and quadruples (g, gx, gy, gz) where
x, y, z are random exponents. Furthermore, we assume that p and the generator g of
Z∗p, (2 ≤ g ≤ p− 2) are selected and published. All devices are preloaded with these
values.

Concerning the adversarial model, we adopt the Dolev-Yao threat model that we
already discussed in Chapter 3. Dolev-Yao is usually unsuitable for wireless networks,
yet in this specific case, as we consider only two parties communicating over a single
channel and do not address Sybil or replication attacks, the model is appropriate.
Thus, we assume that the attacker Mallory (M) controls the radio communication
channel: He can obtain any message transmitted over the radio channel. M can initi-
ate a conversation with any other user. However, we assume M to be computationally
bounded. We further assume that the two parties involved in the communication do
trust each other; otherwise, little can be done (a corrupted party can always disclose
any secret information received by another party). Whenever we speak of the security
of a given protocol, we implicitly assume that the users involved in the protocol (or,
more specifically, their devices) are not compromised.
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Commitment schemes

Before describing the protocol, we still need to introduce one notion: the commitment
scheme. The principle of a commitment scheme is the following: (i) a user who
commits to a certain value cannot change this value afterwards (we say that the
scheme is binding), (ii) the commitment is hidden from its receiver until the sender
“opens” it (we say that the scheme is hiding).

A commitment scheme transforms a value m into a commitment/opening pair (c, d),
where c reveals no information about m, but (c, d) together reveal m, and it is infeasi-
ble to find d̂ such that (c, d̂) reveals m̂ 6= m. Now, if Alice wants to commit a value m

to Bob, she first generates the commitment/opening pair (cA, dA)← commit(m), and
sends cA to Bob. To open m, Alice simply sends dA (and m if necessary) to Bob, who
runs m̂ ← open(ĉA, d̂A). We denote with x̂ the message at the receiver’s side when
message x is sent over a public (unauthentic) channel. If the employed commitment
scheme is “correct”, at the end of the protocol we must have m = m̂. In the security
analysis, we assume the use of an ideal commitment scheme.12 We are now ready to
describe the protocol.

5.4.2 Protocol description

Our goal is to ensure the integrity of DH public parameters (gXA , gXB ) rather than
the integrity of the agreed key K. The reason is the following: People build trust
in each other when they meet in person; secure communication is usually needed
only afterwards (typically when they communicate over the Internet). Clearly, in
such a scenario, it is not necessary to compute the shared DH key immediately; this
“expensive” computation (typically a modular exponentiation) can be postponed to
some later time, when (remote) secure communication is needed. In this way, we
reduce the computational burden on the personal devices used during the protocol
itself.

The simplest way to check the validity of the exchanged DH public parameters for
Alice (A) and Bob (B) is for them to report the exchanged public parameters gXA

and gXB to each other and then compare them. The comparison of the exchanged
values can be performed by looking at the screen of the communicating party, or
by reading aloud the values to be compared. Although this approach provides very
strong security, it is clearly impractical because it requires A and B to compare rather
large streams of digits. A possible way to make visual (and verbal) verification easier
for A and B is to represent the DH public parameters in a more readable form by, for
12 In particular, we assume the commitment scheme is non-malleable. Informally, an unmalleable

commitment scheme means that the attacker is unable to alter a commitment of a targeted party
into another (apparently legitimate) commitment. The interested reader may refer to [115] for
details on malleability.
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example, significantly reducing the number of digits to be compared by hashing them
and potentially encoding the bits in a more readable form; the latter can be achieved
by splitting the result of the hash in small groups of bits, and associating a word of
the common language (e.g., “house”, “dog”, etc.) to each possible combination of
bits.13. However, in this way, many different (long) DH public parameters translate
to the same (short) bit string (the check value). This may give some advantage to a
potential attacker.

Another simple approach consists in first exchanging gXA and gXB over the public
channel, and in turn, verifying (for example, visually) that h(gXA‖gX̂B ) matches
h(gX̂A‖gXB ), where h is a hash function satisfying appropriate security properties,
“‖” denotes concatenation, and a symbol with a “hat” (“̂ ”) designates a value received
over the wireless channel. In order for this approach to be usable, the output of the
hash function h should be truncated to a relatively short length (e.g., around 50
bits). With this approach, an adversary is successful if she can find values a and b

such that h(gXA‖a) = h(b‖gXB ); she is then said to find a collision on the truncated
output of h(·). Note that it is not sufficient for an adversary to find any collision on
h(·). However, the adversary is not constrained to finding a second pre-image14 for a
single fixed image value gXA or gXB ; indeed, an adversary controls the inputs to h(·)
through the values a and b. Furthermore, the outcome of the used hash function is
truncated (e.g., 50 bits long). Therefore, even if h(·) is a second pre-image resistant
hash function, this still may not be a sufficient guarantee that the adversary cannot
find a collision between truncated h(gXA‖a) and h(b‖gXB ).

In order to make the approach based on string comparison usable, it is essential to
make a proper trade-off between security and usability. The protocol that we will now
describe is called DH-SC (Diffie-Hellman key agreement with String Comparison); it
achieves an optimal trade-off between security and usability and is provably secure.

The protocol unfolds as shown on Figure 5.6. Most of the operations are carried
out by the devices of Alice and Bob. The only operation in which the two (human)
characters are consciously involved are (i) the decision to launch the protocol after
visual identification and (ii) the verification that iA = iB .

Both Alice (A) and Bob (B) select randomly their secret exponents, respectively,
XA and XB from the set {1, 2, . . . , q} (q being the order of G) and calculate DH
public parameters gXA and gXB , respectively. A and B proceed by generating k-
bit random strings NA and NB , respectively. Finally, A and B calculate commit-
ment/opening pairs for the concatenations 0‖IDA‖gXA‖NA and 1‖IDB‖gXB‖NB ,
respectively. Here, 0 and 1 are two public (and fixed) values that are used to prevent

13 The interested reader can refer for example to RFC 2289 [157] for more information on this
solution.

14 For a given x, x
′

is said to be a second pre-image if x 6= x
′

and h(x) = h(x
′
) [262].
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Alice Bob
Given IDA, gXA Given IDB , gXB

Pick NA ∈U {0, 1}k Pick NB ∈U {0, 1}k
mA ← 0‖IDA‖gXA‖NA mB ← 1‖IDB‖gXB‖NB

(cA, dA)← commit(mA) (cB , dB)← commit(mB)
cA -
cB¾
dA - bmA ← open(ĉA, d̂A)

bmB ← open(ĉB , d̂B)
dB¾ Verify 0 in bmA; iB ← NB ⊕ N̂A

Verify 1 in bmB ; iA ← NA ⊕ N̂B

If iA = iB , Alice and Bob output “Accept” m̂B and m̂A, respectively.

Fig. 5.6. Operation of Diffie-Hellman key agreement protocol with String Comparison (DH-
SC). From [78], c© IEEE, 2006.

a reflection attack (see Appendix A). IDA and IDB are human-readable identifiers
belonging to parties A and B (e.g., their e-mail addresses).

The following four messages are exchanged over the radio link. In the first message,
A sends to B the commitment cA. B responds with his own commitment cB . In turn,
A sends out dA, by which A opens the commitment cA. B checks the correctness of
the commitment/opening pair (ĉA, d̂A) and verifies that 0 appears at the beginning
of m̂A. If the verification is successful, B sends in the fourth message dB , by which
B opens the commitment cB . A in turn checks the commitment and verifies that 1
appears at the beginning of m̂B . If this verification is successful, A and B proceed to
the final phase.

In the final phase, A and B first generate the verification strings iA and iB , re-
spectively, as shown on Fig. 5.6 (⊕ is the bitwise “xor” operation). The length of
each of these strings is k. Finally, Alice and Bob simply compare iA and iB . If they
match, Alice and Bob accept each other’s DH public parameters gXA and gXB and
the corresponding identifiers IDA and IDB as being authentic. At this stage, Alice
and Bob can safely generate the corresponding secret DH key (gXAXB ).

Let us now define formally what we mean by a secure protocol.

Definition 5.1 We say that a protocol Π(k, (A,B)) is a secure protocol enabling
authentication of DH public parameters between A and B if the (polynomial-
time) attacker M cannot succeed in deceiving A and B into accepting DH public
parameters different than gXA and gXB , except with a satisfactorily small probability
O(2−k).

To state the result about the security of DH-SC protocol, we need two additional
security parameters (k was already introduced before: it is the length of verification
strings iA and iB). We denote with γ the maximum number of sessions (successful
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or abortive) of the DH-SC protocol that any party can participate in (during a whole
lifetime). We further assume that there are in total n parties in the world that are
using the DH-SC protocol. The following result is proven under the assumption that
an ideal commitment scheme is used.

Theorem 5.1 The probability that an attacker succeeds against the DH-SC protocol
is bounded by nγ2−k. Therefore, for the appropriately chosen parameter k, DH-SC is
a secure protocol enabling authentication of DH public parameters.

Note that the probability of success by the attacker as stated in Theorem 5.1, refers to
the success against any among all DH-SC protocol runs; in other words, the attacker
does not care which parties’ communication she breaks/influences. On the contrary,
the probability that the attacker is successful against a specific (targeted) party is
only γ2−k.

The proof of the theorem and the assessment of the security of the protocol can be
found in [78].

Let us give an example of possible values for the above parameters. Assume there
are at most n = 220 parties using the protocol and each party can participate in
at most γ = 220 sessions (successful or abortive) in her lifetime. Then, by choosing
k = 55 we obtain that the highest probability of success by the attacker (having seen
a huge number nγ = 240 of protocol runs) is at most nγ2−k = 2−15. Note that k also
represents the length of the verification strings iA and iB to be compared by users.
To make this task easier for users, as mentioned before, we can encode the bits in a
string of short words from some predefined dictionary. In our specific case, let us call
` the number of short words into which we encode the k = 55 bits. For example, in
order to have ` = 5, where each word is 4 characters long, each user would have to
store a dictionary of 2

k
` = 211 = 2048 4-character words. Of course ` can be reduced

further by using larger dictionaries.

5.5 Revocation

If public keys and certificates are delivered by an authority, it must be possible,
whenever necessary, for the authority to revoke them. This is one of the most difficult
problems of public-key cryptography, and it is clear that there is no one-fit-all solution.
Indeed, revocation is strongly related to the kind of trust expected between the users
and the authorities, and this trust can vary from one application to another.

In order to illustrate this concept, we will rely on one of our running examples,
namely the problem of key revocation in a vehicular network, based on the principles
introduced in Subsection 2.2.7.

The advantages of using a PKI for vehicular communications are accompanied by
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some challenging problems, notably certificate revocation. For example, the certifi-
cates of a detected attacker or malfunctioning device have to be revoked, i.e., it should
not be able to use its keys or if it still does, vehicles verifying them should be made
aware of their invalidity.

The most common way to revoke certificates is the distribution of CRLs (Certifi-
cate Revocation Lists) that contain the most recently revoked certificates; CRLs are
provided to passing by vehicles by roadside units. In addition, using short-lived cer-
tificates automatically revokes keys. These are the methods proposed in the IEEE
P1609.2 standard [195]. But there are several drawbacks to this approach. First,
CRLs can be very long due to the enormous number of vehicles and their high mobil-
ity (meaning that a vehicle can encounter a high number of vehicles when travelling,
especially over long distances). Second, the short lifetime of certificates still creates
a vulnerability window. Last but not least, the availability of an infrastructure will
not be pervasive, especially in the first years of deployment.

To avoid the above shortcomings, we describe a specific solution, based on a set of
revocation protocols called RTPD (Revocation Protocol of the Tamper-Proof Device),
RCCRL (Revocation protocol using Compressed Certificate Revocation Lists), and
DRP (Distributed Revocation Protocol). We present the details of RTPD, illustrated
in Fig. 5.7, and we only outline the main features of RCCRL and DRP; the interested
reader may refer to [318, 321] for more details.

In RTPD, once the CA has decided to revoke all the keys of a given vehicle M ,
it sends to it a revocation message encrypted with the vehicle’s public key. After
the message is received and decrypted by the TPD of the vehicle, the TPD erases
all the keys and stops signing safety messages. Then it sends an ACK to the CA.
All the communications between the CA and the vehicle take place in this case via a
base station. In fact, the CA has to know the vehicle’s location in order to select the
base station through which it will send the revocation message. If it does not know
the exact location, it retrieves the most recent location of the vehicle from a location
database and defines a paging area with base stations covering these locations. Then
it multicasts the revocation message to all these base stations. In the case when there
are no recent location entries or the ACK is not received after a timeout, the CA
broadcasts the revocation message, for example, via the low-speed FM radio on a
nationwide scale or via satellite.

The RCCRL protocol is used when the CA wants to revoke only a subset of a
vehicle’s keys or when the TPD of the target vehicle is unreachable (e.g., by jamming
or by tampering of the device). Given the expected large size of CRLs in VANETs,
the key idea in RCCRL is to use Bloom filters (a probabilistic data structure used to
test whether an element is a member of a set) [65]. Thus, the size of a CCRL will
be only a few KiloBytes. RCCRL also relies on the availability of the infrastructure
that broadcasts the CCRLs periodically (say, once every 10 minutes). Compared with
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Fig. 5.7. Revocation protocol of the tamper-proof device (RTPD). From [321], c© IEEE,
2006.

RTPD, RCCRL warns the neighbors of a revoked vehicle because they also receive
the CCRLs.

The DRP protocol is used in the pure ad hoc mode whereby vehicles accumulate ac-
cusations against misbehaving vehicles, evaluate them using a reputation system and,
in case misbehavior is detected, report them to the CA once a connection is available.
Unlike RTPD and RCCRL, the revocation in DRP is triggered by the neighbors of a
vehicle upon the detection of misbehavior. Mechanisms for the detection of malicious
data [150] can be leveraged to spot vehicles generating these data (since all messages
are signed).

5.6 Summary

In this chapter, we studied the problem of key establishment in sensor networks.
We explained that in sensor networks, different types of keys are needed in order to
support different types of communication patterns and in-network processing. We
showed that node keys, cluster keys, and network keys can be established relatively
easily using the technique of key pre-loading and using already established link keys.
However, we identified the problem of link key establishment as a difficult one. We
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elaborated on two approaches to solve the link key establishment problem. The
first approach is based on a short-term master key known to every node after its
deployment for a limited amount of time. The second approach is based on the idea
of random key pre-distribution. We described a basic protocol that uses random key
pre-distribution and some of its enhancements.

We then moved to personal communications and explained how physical contact
can be used to establish security associations between devices.

Next we considered the case in which users find physical contact (of their devices)
impractical, and assumed the presence of a secure side channel, such as the one
provided by infrared communications. We explained that mobility can help securing
mobile networks. We illustrated this on two scenarios: self-organized networks and
networks with an off-line authority. In the first scenario, we showed that the solution
is intuitive to the users, as it mimics real-life concepts (physical encounters, friends),
and solves some classical problems of security in distributed systems. In the second
scenario, a direct establishment of security associations over the (one-hop) radio link
solves the well-known security-routing interdependency problem, which we will discuss
in Chapter 7.

We then removed the assumption of the presence of a secure side channel and de-
scribed how two users, moving into the vicinity of each other, can let their devices
authenticate each other and set up a security association. We explained that this
operation can be securely carried out in spite of the fact that (i) the two devices com-
municate exclusively over an unsecured radio link and (ii) the two users are assumed
not to share any prior information such as mutual certificates.

Finally, we described a way to implement revocation in the case of vehicular net-
works.

All these mechanisms are of course very useful to protect networking mechanisms
(for example, in order to secure routing, as we will see in Chapter 7). It is important
to note that they can also be used in order to protect application-level transactions.

5.7 To probe further

A considerable amount of research has been carried on the topic of establishment of
security associations; hence we have organized this section in the same order as the
themes addressed in this chapter.

Key establishment in sensor networks: In Section 5.1, we explained that an
important requirement for key establishment in sensor networks is to support in-
network processing. Notably, one of the reasons for setting up link keys and cluster
keys is to make in-network data aggregation and passive participation possible. We
note that some researchers have explored other ways to support in-network processing
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based on aggregation of encrypted data without prior decryption (see e.g., [90, 372]).
These concealed data aggregation schemes are promising; however, currently, they
support only a limited number of aggregation functions, and they do not allow for
passive participation.

The link key establishment approach that is based on a short-term master key was
proposed in [400] by Zhu, Setia, and Jajodia as part of LEAP (Localized Encryption
and Authentication Protocol), a key management scheme for sensor networks.

The basic random key pre-distribution scheme for link key establishment in sensor
networks was proposed by Eschenauer and Gligor in [126]. The q-composite random
key pre-distribution scheme and multipath key reinforcement was proposed by Chan,
Perrig, and Song as improvements on the basic scheme in [94]. The approach to
combine random key pre-distribution with threshold cryptography was proposed by
Du, Deng, Han, and Varshney in [119], and by Liu and Ning in [256]. The scheme
described in [119] is based on matrices, whereas the scheme proposed in [256] is based
on polynomials. In effect, the two proposals are analogous and lead to the same result
in terms of improvement with respect to resistance to node capture.

Since the seminal paper [126] of Eschenauer and Gligor on random key pre-distribution
in distributed sensor networks, a multitude of papers have been published on pairwise
key establishment in sensor networks. A comprehensive survey of these papers (up to
2005) can be found in [79], written by Campete and Yener. They not only describe
and classify the various approaches but also identify which contribution is based on
which other contributions.

Exploiting physical contact: As we have mentioned, Stajano and Anderson have
proposed the resurrecting duckling security policy model, [352] and [353], in which
key establishment is based on the physical contact between communicating parties
(e.g., their PDAs).

Exploiting mobility: The section of this chapter devoted to the exploitation of
mobility is based on [87].

In [399], Zhou and Haas propose a distributed public-key management service for
ad hoc networks in which the functionality of the central authority is distributed over
a subset of nodes through a threshold cryptography scheme.

Another approach, explored by Čapkun et al. consists in letting each node carry a
subset of the trust graph [82, 182]. This approach requires some level of transitivity
of trust and was not investigated further.

We should also mention the work of Grossglauser and Tse [153] which shows that
mobility can help to increase the per-user throughput in ad hoc networks, and which
was a source of inspiration for the solution we have described.
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Exploiting vicinity: The section of this chapter devoted to the exploitation of mo-
bility is based on a contribution authored by Čagalj, Čapkun, and Hubaux [78].

An approach inspired by the resurrecting duckling security policy model is proposed
by Balfanz et al. [39]. In that work, the authors go one step further and relax the
requirement that the location limited channel has to be secure against passive eaves-
dropping; they introduce the notion of a location-limited channel (e.g., an infrared
link), similar to the secure side channel mentioned in this chapter. A location-limited
channel is used to exchange pre-authentication data and should be resistant to active
attacks (e.g., man-in-the-middle). Once pre-authentication data are exchanged over
a location-limited channel, users switch to a common radio channel and run any stan-
dard key exchange protocol over it. Possible options for a location-limited channel
include: physical contact, infrared, and sound (ultrasound).

Asokan and Ginzboorg propose another solution based on a shared password [29].
They consider the problem of setting up a session key between a group of people
(i.e., their computers) who get together in a meeting room and who share no prior
context. It is assumed that they do not have access to public key infrastructure or
third party key management services. The proposed solution is the following. A fresh
password is chosen and shared among those present in the room (e.g., by writing it
on a sheet of paper or a blackboard). The shared password is then used to derive a
strong shared session key. This approach requires users to type the chosen password
into their personal devices.

It is well known that IT security systems are only as secure as their weakest link.
In most IT systems the weakest links are the users themselves. People are slow and
unreliable when dealing with meaningless strings, and they have difficulties remem-
bering strong passwords. In [310], Perrig and Song suggest using hash visualization to
improve the security of such systems. Hash visualization is a technique that replaces
meaningless strings with structured images.

In US patent no. 5,450,493 [261], Maher presents several methods to verify DH
public parameters exchanged between users. The first method described in [261] is
the most relevant for the problem considered in this chapter; other methods are based
on certificates and/or shared secrets. A and B first perform the DH key exchange
protocol and in turn report to each other values f(KA) and f(KB), where KA and KB

are the shared DH keys as computed by A and B, respectively, and f is a compression
function (i.e., f maps a key to 4-digit hex vectors [261]). Unfortunately, this technique
has a flaw, that was discovered by Jakobsson [199].

Motivated by this flaw, Jakobsson [199] and Larsson [246] propose two solutions,
both based on a temporary secret shared between the two users (one of the solutions
is called SHAKE, which stands for Shared key Authenticated Key Exchange).

Dohrmann and Ellison [114] propose a method for key verification that is similar to
the one described in this chapter. This method is based on converting key hashes to
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readable words or to an appropriate graphical representation. However, it seems that
users are required to compare a substantial number of words (or graphical objects)
and this task can take them as much as 24 seconds according to [114]. This time is
significantly reduced when the graphical representation is used.

In [143] and [144], Gehrmann et al., propose a set of techniques to enable wireless
devices to authenticate one another via an insecure wireless channel with the aid
of the manual transfer of data between the devices. The protocol, which they call
MANA II, is similar to the DH-SC protocol described in this chapter, but requires
the users to compare a higher number of bits.

Cameras are more and more frequently embedded on mobile devices such as mobile
phones. Yet another approach, proposed by McCune, Perrig, and Reiter [266] propose
to make use of the camera to capture the image displayed by another device and
perform authentication tests.

We should also mention other key-exchange protocols, proposed primarily for the
use in the Internet: IKE [160], JFK [14] and SIGMA [233]. All these protocols involve
authentication by means of digital signatures. We also should mention the work of
Corner and Noble [103], who consider the problem of transient authentication between
a user and her device.

5.8 Questions

(a) What is the purpose of authentication?
(b) In order to support link key establishment between neighboring nodes in a

sensor network, we could pre-load in each node n−1 keys, where n is the total
number of nodes, such that each pair of nodes share a common key. What are
the disadvantages of this approach?

(c) In sensor networks, in order to save energy, sensor nodes spend most of their
time in sleeping mode. When new nodes are added to an already deployed
network, the new nodes cannot immediately establish link keys with their
sleeping neighbors. Why is this a problem if we use the link key establishment
scheme based on a short-term master key? How can the problem be solved?

(d) Is it always necessary that both devices have a display when performing key
establishment between them? Why?

(e) What is the purpose of a commitment scheme?
(f) Can a key established by DH-SC be reused afterwards for authentication pur-

poses? Why?
(g) Assume we remove the commitment phase from the DH-SC protocol. What

kind of vulnerabilities would this modification create?
(h) Is the DH-SC protocol vulnerable to Denial-of-Service attacks based on jam-

ming? Why? What can the users do about it?
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(i) Do you think that the protocol illustrated in Figure 5.3 would be appropriate
in vehicular networks? Why? How about the protocol in Figure 5.4?



6

Securing neighbor discovery

Many wireless networking mechanisms, notably routing, require that wireless nodes be
aware of their neighborhood. This means that the nodes must know which other nodes
they can communicate with directly. The procedure used to acquire this knowledge
is called neighbor discovery .

In wired networks, neighbor discovery is not an issue, because neighbor relationships
do not change often, and hence routers can be pre-configured with the list of their
wired neighbors. In contrast, in mobile wireless networks, the neighbor relationships
change dynamically, which makes neighbor discovery an important mechanism. It
is particularly important in the upcoming wireless networks that we described in
Chapter 2.

Neighbor discovery can be achieved through simple protocols, where a node that
wants to determine who its neighbors are broadcasts a neighbor discovery request,
and every node that receives this request responds with a neighbor discovery reply.
Receiving a reply means that the requesting node and the responding node can hear
each other’s transmission. In other words, they can communicate with each other
directly, and hence they should consider each other as neighbors. The neighbor dis-
covery protocol is sometimes called “hello protocol”, and the request and the reply
are called “hello messages”.

An adversary can try to thwart the successful execution of the neighbor discovery
protocol, for instance, by jamming the communication between two nodes. In this way,
the adversary achieves that two nodes, which otherwise could communicate directly,
cannot establish a neighbor relationship. Blocking the links between many pairs of
nodes in this manner can have serious consequences to the connectivity of the network,
and hence indirectly to upper layer protocols, such as routing.

Unfortunately, it is quite difficult to eliminate this attack. The usual way to prevent
jamming is to use spread spectrum communications. But, when the nodes execute
the neighbor discovery protocol, they usually have no common context that could
be used to determine the frequency hopping sequence to be used. It is possible, for
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instance, that the nodes meet each other for the first time, but even if they do not,
identifying the other already needs the exchange of messages. This means that the
neighbor discovery request should be broadcast using a pre-determined, public hop-
ping sequence that is vulnerable to jamming. Note that the more links the adversary
wants to remain undiscovered, the more effort she needs to invest in the attack, in the
sense that she must be physically present at many points in the network. In addition,
the adversary usually tries to avoid being detected, and jamming large parts of the
network almost certainly results in adversary detection. Therefore, such a jamming
attack is likely to affect only a limited number of nodes.

Besides preventing two nodes from establishing a neighbor relationship, the ad-
versary can also try to arrange that two far away nodes, which otherwise could not
communicate directly with each other, believe that they are neighbors. One way
to achieve this is identity spoofing: a node controlled by the adversary can use the
identity of a legitimate node and establish neighbor relationships with other nodes
in the name of that legitimate node. Identity spoofing can be prevented by building
cryptographic entity authentication mechanisms into the neighbor discovery proto-
col. Entity authentication is a widely studied problem in traditional networks, and
therefore we will not address it here; some of the basics can be found in Appendix A.

Another way to create false neighbor relationships that cannot be prevented by
cryptographic mechanisms solely, is to instal wormholes in the network. In this chap-
ter, we study this problem in details. We begin by explaining what a wormhole is
and how it can be used to mount severe denial-of-service attacks. Then, we give
an overview of some of the approaches that are proposed in the literature to detect
wormholes.

6.1 The wormhole attack

A wormhole is an out-of-band connection, controlled by the adversary, between two
physical locations in the network. The two physical locations representing the two
ends of the wormhole can be at any distance from each other; however, the typical
case is that this distance is large. The out-of-band connection between the two ends
can be a wired connection or it can be based on a long-range, directional wireless
link. The adversary installs radio transceivers at both ends of the wormhole. Then,
she transfers packets (possibly selectively) received from the network at one end of
the wormhole to the other end via the out-of-band connection and there re-injects the
packets into the network.

The effect of a wormhole on neighbor discovery is that some nodes that would not
be neighbors otherwise can establish a neighbor relationship due to the presence of
the wormhole. This is illustrated in Figure 6.1. More importantly, the wormhole can
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have devastating effects on upper layer protocols, especially on routing, as we will see
below.
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Fig. 6.1. Illustration of the effect of a wormhole on neighbor discovery and routing. Part (a)
shows a set of wireless nodes that are placed randomly on the plane. The gray disc around
node x represents its communication range. For simplicity, we assume that the size of the
communication range of every node is the same. Part (b) shows the neighbor relationships
between the nodes, and part (c) shows the minimum length routes to node x from all other
nodes in the network assuming the neighbor relationships in part (b). The route length is
measured in the number of the hops. Part (d) illustrates a wormhole, where the transceivers
of the adversary are denoted by black rectangles, and the out-of-band connection is repre-
sented by the dashed line. In part (e), nodes x and y become neighbors due to the presence
of the wormhole and the fact that the adversary relays the packets of the neighbor discovery
protocol between them. Part (f) shows the minimum length routes to node x from all other
nodes in the network assuming the neighbor relationships in part (e). One can observe that
in part (f), many of the nodes reach node x via the wormhole.

Clearly, the wormhole affects route discovery mechanisms that operate on the con-
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nectivity graph. For instance, link state routing protocols, such as the Optimized Link
State Routing (OLSR) protocol [100], search for the shortest paths in the connectivity
graph that is constructed locally by each node using the information obtained from
periodic link state update messages of the other nodes. With a well placed wormhole,
the adversary can achieve that many of these shortest paths go through the wormhole.
This gives a considerable power to the adversary, who can monitor a large fraction of
the network traffic, or mount a denial-of-service attack by permanently or selectively
dropping data packets passing through the wormhole so that they never reach their
destinations.

Some routing protocols, such as the Dynamic Source Routing (DSR) protocol [208],
do not rely on explicit neighbor discovery mechanisms. In these protocols, the nodes
discover their neighbors implicitly by means of route request and route reply messages.
However, these protocols are equally vulnerable to the wormhole attack. In DSR, for
instance, a node x that wants to discover a route to a node y broadcasts a route
request packet. Each node that receives this route request for the first time appends
its identifier to the request and re-broadcasts it. In this way, the whole network is
flooded with copies of the route request packet, some of which will eventually reach the
target node y. Each request packet that reaches node y contains the list of identifiers
of the nodes that processed the packet; this list represents a route between x and
y, discovered by the algorithm. A route reply is returned by node y to each request
received, which follows the reverse of the route obtained from the request.

Now, let us imagine that an adversary sets up a wormhole in the network, such
that one end of the wormhole is close to node x and the other end is close to node
y. When the adversary receives a route request originating from node x, she tunnels
it through the wormhole and re-broadcasts it near to node y. Most probably, due to
the fast out-of-band connection of the wormhole, the nodes near to node y receive
this tunneled copy of the route request earlier than the other copies that follow the
normal multi-hop routes in the network. Therefore, those copies of the request will
be discarded as duplicates later when they arrive near to node y. As a result, the
route discovery protocol will be unable to discover routes between x and y other than
those going through the wormhole. To some extent this is even worse than in the case
of link-state routing protocols, where the nodes, being aware of the topology of the
network, can at least try alternative (potentially suboptimal) routes when they realize
that the route through the wormhole provides an unacceptable level of throughput.

The wormhole attack is also dangerous in other types of wireless applications where
direct, one-hop communication and physical proximity play an important role. An
example is a wireless access control system for buildings, where each door is equipped
with a contactless smart card reader, and they are opened only if a valid contactless
smart card is presented to the reader. The security of such a system depends on the
assumption that the personnel carefully guard their cards. Thus, if a valid card is
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present, then the system can safely infer that a legitimate person is present as well,
and the door can be opened. Such a system can be defeated if an adversary can set
up a wormhole between a card reader and a valid card that could be far away, in
the pocket of a legitimate user: The adversary can relay the authentication exchange
through the wormhole and gain unauthorized access. The feasibility of this kind of
attack has been demonstrated in [218].

Before we leave this section and begin the presentation of some countermeasures for
wormholes, we must emphasize that, although the wormhole attack can have strong
effects on routing, it is essentially an attack against neighbor discovery. In particular,
in order to mount a wormhole attack, the adversary does not need to control nodes in
the network, hence she can stay “invisible” at the routing layer. It is sufficient for the
adversary to install simple radio transceivers at the two ends of the wormhole that
operate in the physical layer and function as repeaters. Due to the broadcast nature
of wireless communications, the adversary can overhear packets that are transmitted
in the proximity of her radio transceivers; she can capture these packets, and transfer
them through the wormhole.

We must also note that the adversary does not need to understand what she trans-
fers through the wormhole. Indeed, the adversary does not even need to wait to
receive the entire packet before she starts to transfer it to the other end of the worm-
hole; she can operate on a bit-by-bit basis. This means that a wormhole attack can
be effective even if packets are encrypted; in this case, the adversary transfers the
encrypted bits through the wormhole, without breaking any cryptographic keys.

There exists an attack that has similar effects on routing to the wormhole attack,
but in contrast to the wormhole attack, it is carried out in the routing layer. This
attack is called tunneling attack . In the tunneling attack, the adversary controls some
corrupted nodes in the network. When one of her controlled nodes receives a route
request packet, the adversary puts the entire request packet in the payload part of a
normal data packet and sends this data packet to another adversarial node using the
normal multi-hop forwarding mechanism of the network. The receiving adversarial
node takes the route request out of the data packet and processes it as if it had
received it via its radio interface. All this is similar to the way in which IP packets
originating from one part of a virtual private network (VPN) are tunneled through
gateways to another part of the same VPN; hence the name tunneling.

Although the effects of the tunneling attack and the wormhole attack on routing
protocols are similar (essentially, routes are shortened and made more attractive in
both cases), there are some important differences between the two attacks. In order
to carry out the tunneling attack, the adversary needs to have corrupted nodes in the
network. Thus, the adversary is visible at the network layer, unlike in the wormhole
attack. In contrast, in the tunneling attack, there is no need for an out-of-band
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connection between the devices of the adversary, but they can communicate using the
network itself.

As we mentioned before, from an architectural point of view, the tunneling attack
can be considered as an attack at the routing layer, whereas the wormhole attack
is carried out at the physical layer. For this reason, we discuss the two attacks
in different chapters of the book. Specifically, the tunneling attack is addressed in
Chapter 7, where security of routing is discussed, and we address the wormhole attack
in the context of neighbor discovery in this chapter.

6.2 Wormhole detection mechanisms

In the rest of this chapter, we study how wormholes can be detected. Broadly, the dif-
ferent detection mechanisms fall into two classes: the centralized mechanisms and the
decentralized ones. In the centralized approach, data collected from the local neigh-
borhood of every node are sent to a central entity. The central entity uses the received
data to construct a model of the entire network, and tries to detect inconsistencies in
this model that are potential indicators of wormholes. In the decentralized approach,
each node constructs a model of its own neighborhood using locally collected data;
hence no central entity is needed, which is a big advantage of this approach. We
note, however, that in some applications, central entities are inherently present in the
network. One example is a sensor network, where the base stations are in a position
to collect data from the nodes, and thus they can play the role of the central entity. In
this kind of network, the centralized approach can be acceptable too. In the following,
we first present some techniques that use the centralized approach, and then we give
an overview on some of the mechanisms that use the decentralized approach.

6.2.1 Centralized approaches

The central entity tries to detect the wormholes by identifying inconsistencies in the
constructed model. The kinds of inconsistencies that might appear in the model, due
to the presence of wormholes, depend on the nature of the local information provided
by the nodes. We illustrate this with two examples.

In the first example, the nodes report only the list of their believed neighbors to
the central entity. In this case, the model constructed by the central entity consists
of the connectivity graph of the network. A crucial observation is that a wormhole
always increases the number of edges in the connectivity graph, as it introduces new
neighbor relationships. This increase in the number of edges changes the properties of
the connectivity graph in a detectable way with respect to some expectations that are
based on basic assumptions about the system (e.g., the distribution of node positions,
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the communication range of the nodes, etc). The main idea of the first mechanism is
to detect the changes in the connectivity graph using statistical methods.

In the second example, the nodes also estimate the distances from their believed
neighbors and send their neighbor list with the estimated distances to the central
entity. In this case, the model constructed by the central entity is a virtual layout of
the network. The crucial observation here is that a wormhole contracts the virtual
layout in certain regions, because it makes some nodes appear to be neighbors where
in reality these nodes are far away from each other. The main idea of the second
mechanism is to detect these contractions by visualizing the virtual layout.

Statistical wormhole detection

Let us assume that the network consists of n nodes placed in a flat area of size S

uniformly at random.1 Let us further assume that the nodes are static (e.g., the
network is a static sensor network), and their communication range r is fixed and it
is the same for every node. Then, we can compute the probability that a node has
exactly k neighbors (0 ≤ k < n) as

p(k) =
(

n− 1
k

)
· qk · (1− q)n−1−k (6.1)

where

q =
r2π

S
(6.2)

Hence, although the random variables representing the node degree of the different
nodes in the network are not independent, in a dense network we expect that the
distribution of the node degrees is close to the binomial distribution with parameters
n− 1 and q.

Now, let us assume that an unsophisticated adversary establishes a wormhole in the
network that functions as a perfect repeater: Every bit overheard at one end of the
wormhole is transferred to the other end and re-transmitted there. Such a wormhole
allows every pair (x, y) of nodes such that x resides in the communication range of one
of the wormhole’s transceivers and y resides in the communication range of the other
transceiver to set up a neighbor relationship. Thus, assuming that the communication
range of the wormhole’s transceivers is the same as that of the nodes, the number
of believed neighbors of the nodes within the range of the wormhole will double on
average. Therefore, the degree distribution that the central entity can observe in the
connectivity graph that is constructed from the nodes’ neighborhood information will
be distorted with respect to the binomial distribution derived above.
1 In fact, the nodes are not necessarily placed randomly in the field. However, any known structure

would make the detection of the wormhole easier. Therefore, we discuss here the case where the
locations of the nodes are random.
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In order to illustrate this phenomenon, we performed a simple experiment. We
placed n = 300 nodes uniformly at random in a rectangular area of size 500 × 500
square units, and we set r = 54 units. In part (a) of Figure 6.2, we plotted in gray the
expected histogram of the node degree (induced by the binomial distribution), and in
black the observed histogram when a randomly placed wormhole was present in the
network. One can clearly observe the difference between the two histograms. As we
expected, the black histogram shows that if there is a (perfectly repeating) wormhole
in the network, then there are a few nodes with unexpectedly high node degrees in
the connectivity graph.
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Fig. 6.2. Results of two experiments, where n = 300 nodes we placed uniformly at random
in a rectangular area of size 500× 500 square units, r is set to 54 units. In part (a), the gray
bars show the expected histogram of the node degree, and the black bars show the observed
histogram when a randomly placed, perfectly repeating wormhole is present in the network.
There is a clear difference between the two histograms. In particular, the black histogram
shows that there are several nodes with unexpectedly high node degrees, a sign that indicates
the presence of a wormhole. In part (b), the gray bars show the expected histogram of the
length of the shortest paths in the network, which we obtained by measuring the lengths of
the shortest paths in randomly generated networks with the same parameters as above. The
black bars show the observed histogram of the length of the shortest paths when there is a
randomly placed wormhole in the network, which created a single new link in the connectivity
graph. The difference between the histograms is clearly observable: The black histogram
shows that when the wormhole is present, shorter paths are more likely. From [69], with
kind permission of Springer Science and Business Media.

In order to defeat the detection mechanisms based on the verification of the node
degree distribution in the connectivity graph, a more sophisticated adversary would
not connect each pair of nodes within the range of the wormhole, but it would rather
allow for the creation of only a small number of false neighbor relationships. But even
if it creates just a few new links, the length of the shortest paths between many pairs of
nodes can decrease significantly, especially if the wormhole’s out-of-band connection
spans over a long distance. This is justified by the result of another experiment,
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which is shown in part (b) of Figure 6.2. In this experiment, the parameters were the
same as in the previous case, but the wormhole created only a single link between
two randomly selected nodes within its range. The black bars show the observed
histogram of the length of the shortest paths between all pairs of nodes when the
wormhole is present. The gray bars show the expected histogram of the length of the
shortest paths in wormhole-free networks, which we obtained by measuring the lengths
of the shortest paths in randomly generated networks with the same parameters as
above. Again, the difference between the histograms is clearly observable. The black
histogram shows that shorter paths are more likely when the wormhole is present.

The notion of “clearly observable difference” between histograms is not precise
enough to build a wormhole detection algorithm on it. We need a mathematically
rigorous way of deciding if two data samples originate from the same distribution or
from different ones. Fortunately, there exist standard statistical tests, such as the
χ2-test, for this purpose.

The main disadvantage of the statistical method that we described above is that,
although it detects the presence of wormholes with high confidence, it does not locate
them. In other words, it tells us that there are probably wormholes in the system,
but it does not tell us where they are set up and exactly which nodes are affected.
Therefore, to some extent, it only does half of the job. The method described in the
following subsection overcomes this problem.

Wormhole detection with multi-dimensional scaling

Another centralized wormhole detection approach is based on augmenting the connec-
tivity information with (possibly inaccurate) distance estimations between neighbor-
ing nodes. However, in return for the increased complexity introduced by the distance
estimation requirement, this technique allows for the localization of wormholes.

The main idea here is to reconstruct a virtual layout of the network and identify
inconsistencies in it. For this reason the connectivity information and the inaccurately
estimated distances between the neighbors are fed into a multi-dimensional scaling
(MDS) algorithm, that tries to determine a virtual position for every node in such
a way that the constraints induced by the connectivity and the distance estimation
data are respected. As the distances estimations can be inaccurate, the algorithm has
a certain level of freedom in “stretching” the nodes within some error bounds.

Now, let us suppose that an adversary has installed a wormhole in the network
and has created fake links in the connectivity graph between far away nodes. If the
estimated distances between the affected nodes are much larger than the nodes’ com-
munication range, then the wormhole is detected immediately. Hence, the adversary
must also falsify the distance estimation and arrange that the estimated distances
between the nodes affected by the wormhole become credible (i.e., smaller than the
communication range plus the maximum distance estimation error). This will result,
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however, in a distortion in the virtual layout constructed by the MDS algorithm; in
particular, the layout will be contracted between the affected nodes. By visualizing
the virtual layout or by computing appropriate indicator values, the distortion can
be detected and the wormhole can be located by identifying the affected nodes.
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Fig. 6.3. Wormhole detection by constructing a virtual layout of the network based on the
connectivity information and the inaccurate distance measurements between the nodes that
believe they are neighbors. For easier understanding, the main idea is illustrated on a one
dimensional network. Part (a) of the figure shows the real placement of the nodes. The
gray disc represents the communication range of node b. The lines represent the established
neighbor relationships. The dashed line between nodes b and f represents a fake neighbor
relationship created by an adversary with the help of a wormhole. Part (b) shows the
virtual layout of the network reconstructed from the inaccurate distance measurements of
the neighboring nodes. As nodes b and f are neighbors, their distance must be smaller than
the communication range. However, this constraint makes it impossible to fit the nodes on
a straight line. In other words, the virtual layout is contracted between nodes b and f with
respect to the real layout of the nodes. By visualizing the virtual layout, the contraction can
be identified and the wormhole can be detected.

Figure 6.3 illustrates how the wormhole contracts the virtual layout constructed by
the MDS algorithm. For simplicity, we illustrate the main idea in case of a one dimen-
sional network, but the same approach works in two or in three dimensions. Part (a)
of Figure 6.3 shows the real placement of the nodes. The gray disc represents the
communication range of node b. The dotted lines represent the established neighbor
relationships. The dashed line between nodes b and f represents a fake neighbor rela-
tionship created by an adversary with the help of a wormhole. Part (b) of the figure
shows the virtual layout of the network reconstructed from the inaccurate distance
measurements of the neighboring nodes. Since nodes b and f are neighbors, their
distance must be smaller than the communication range. However, this constraint
makes it impossible to fit the nodes on a straight line. In other words, the virtual
layout is contracted between nodes b and f with respect to the real layout of the
nodes. The distortion in the virtual layout can be detected by a human operator if
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the layout is visualized. The detection can also be automated; the interested reader
is referred to [365] for the details.

6.2.2 Decentralized approaches

The advantage of decentralized wormhole detection mechanisms is that they do not
require a central entity in the system, and therefore, they can be used in a wider range
of applications. In this subsection, we give a brief overview of the main approaches
proposed in the literature.

Wormhole detection based on distance estimation

A straightforward idea for wormhole detection is to estimate the real physical distance
between the nodes that are believed to be neighbors. If the estimated distance is larger
than the nodes’ communication range, then the nodes are likely connected through a
wormhole, and they should not consider each other as neighbors. Distance estimation
can be done by the nodes themselves locally, so it can form the basis of decentralized
wormhole detection approaches.

One wormhole detection approach based on the idea of distance estimation is called
packet leashes, and it consists of two mechanisms: geographical and temporal leashes.
The main idea of both mechanisms is to add some information to the packets that
restricts their maximum allowed transmission distance. Allegorically, the added in-
formation keeps the packet on a leash, hence the name of the mechanisms. A ge-
ographical leash is based on location information, and it allows the receiver of the
packet to determine an upper bound on its distance to the sender. A temporal leash
is based on timing information, and it ensures that the packet has an upper bound
on its lifetime. Indirectly, however, this also ensures an upper bound on the distance
between the sender and the receiver, because the packet cannot travel faster than the
speed of light.

Both types of leashes can be used for wormhole detection, because they allow the
receiver of the packet to detect whether the sender is further away than the nodes’
communication range. More precisely, the receiver can determine only an upper bound
on its distance to the sender. However, if this upper bound is greater than the nodes’
communication range, then the receiver should not accept the packet. In this way,
packets that arrive through a wormhole are always rejected.

Packet leashes can be added to the packets of the neighbor discovery protocol when
the nodes use such mechanisms explicitly for setting up their neighbor relationships.
In this case, the application of packet leashes prevents the establishment of fake
neighbor relationships. When no explicit neighbor discovery mechanism is used in
the system, packet leashes can still be added to the packets of the routing protocol, in
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order to prevent the undesirable effects of wormholes on routing, which we described
in Section 6.1.

Now, we describe the operating principles of geographical and temporal packet
leashes in more details.

As we mentioned above, geographical leashes are based on location information.
It is assumed that each node is aware of its own location, which can be determined
using GPS (Global Positioning System) or some other positioning mechanism (e.g.,
[83, 247, 85, 86]). It is further assumed that the nodes maintain loosely synchronized
clocks. When sending a packet, the sender includes its location ~ps in the packet and
the time ts of sending. When receiving a packet, the receiver compares these values
to its own location ~pr and the reception time tr. Given a maximum positioning error
∆p, a maximum clock synchronization error ∆t, and an upper bound vmax on the
speed of the nodes, the receiver can compute an upper bound on the real distance d′

between the sender and itself at the time of receiving the packet as follows:

d′ ≤ d + 2∆p + 2vmax (tr − ts + ∆t) (6.3)

where d = ||~pr − ~ps|| is the distance between the locations ~pr and ~ps. Because both
nodes could have some positioning error, d′ could be larger than d. However, if the
nodes are static, then d′ must be smaller than d + 2∆p, as illustrated in Figure 6.4.
This explains the second term in (6.3). In addition, if the nodes are not static, then
they could diverge during the packet transmission time. Given that the maximum
clock synchronization error is ∆t, when the sender’s clock shows ts, the time at the
receiver can only be ts −∆t. Therefore, the time that elapses between sending and
receiving the packet is upper bounded by tr − (ts −∆t). During this time, the nodes
can diverge at most 2vmax (tr − ts + ∆t). This explains the third term in (6.3).

ps
pr

∆p

p's p'r
d'

δs
δrd

Fig. 6.4. Computation of the upper bound on the real distance d′ between the sender and
the receiver when using geographical leashes and assuming that the nodes are static. Due to
the inaccuracy of positioning, the real locations ~ps

′ and ~pr
′ of the sender and the receiver,

respectively, can be anywhere within a range of ∆p around the locations ~ps and ~pr that
are determined by the positioning system. Let d = ||~pr − ~ps||, δs = ||~ps

′ − ~ps||, and δr =
||~pr

′ − ~pr||. Then, we have that d′ ≤ d + δs + δr ≤ d + 2∆p.

Temporal leashes require that the nodes have tightly synchronized clocks, such
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that the maximum difference ∆t between any two nodes’ clocks is in the order of
a few hundred nanoseconds. This precision can be achieved with some of today’s
technologies such as LORAN-C [271], WWVB [272], or GPS. When sending a packet,
the sender includes in the packet the time ts of sending the first bit of the packet.
When receiving a packet, ts is compared to the time tr of receiving the first bit of the
packet at the receiver. More precisely, the receiver computes an upper bound on its
distance d′ to the sender as

d′ ≤ vlight(tr − ts + ∆t) (6.4)

where vlight is the speed of light. In order for this upper bound to be useful, vlight∆t

must be much smaller than the communication range of the nodes. That is the reason
the nodes’ clocks must be tightly synchronized (i.e., ∆t must be very small).

A potential problem with the temporal leash mechanism described above is that
when using a contention based medium access control protocol, the sender cannot
know exactly when the first bit of the packet will be sent. For instance, if the
IEEE 802.11 protocol is used, then the sender cannot know the starting time of the
transmission until approximately one slot time (20 µs) before the transmission really
begins. This might be too short for timestamping the packet, especially if the times-
tamps are authenticated with digital signatures (see next paragraph). We can try to
solve this problem by using more efficient authentication mechanisms (e.g., Schnorr
signatures, or symmetric key MACs) or by increasing the minimum packet length
such that the computation of the signature can be completed during the transmission
of the packet payload.

Both geographical and temporal leashes require that the packets carrying the
leashes are authenticated and their integrity is protected, because otherwise an ad-
versary can modify or forge a leash and jeopardize the distance estimation. Origin
authentication and integrity protection can be based on digital signatures or on sym-
metric key MACs. The advantage of digital signatures is that they provide broadcast
authentication, and therefore they can be used efficiently for protecting neighbor
discovery beacons, route discovery messages, or link state updates; all of which are
usually broadcast messages. The disadvantage of digital signatures is that they are
several orders of magnitude slower than symmetric key MAC computations, and speed
is critical, especially in the case of temporal leashes. Although MACs can be computed
faster, they cannot be used efficiently to protect broadcast messages (see Appendix A
for more details).

One way to solve this problem is to use TESLA [309] with Instant Key-disclosure
(TIK) to authenticate temporal leashes in packets. TESLA combines the advantages
of digital signatures and MACs. Its description can be found in Appendix A, and
therefore, we will not detail it here. Instead, we briefly present the main idea of the
TIK protocol.
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The TIK protocol is based on the observation that the authentication delay of
TESLA can be removed in an environment where the nodes’ clocks are tightly syn-
chronized. TESLA requires that the MAC value of the packet is received earlier by the
receiver than the time at which the TESLA key used for computing the MAC is dis-
closed by the sender. This can be achieved by sending the MAC value at the beginning
of the transmission and disclosing the TESLA key at the end of the same transmis-
sion, as shown in Figure 6.5. The receiver’s clock shows tr + τmac when it received
the entire MAC. The sender’s clock shows ts + τmac + τpkt when it starts disclosing
the key; at the same moment, the time at the receiver can be ts −∆t + τmac + τpkt
at the least. Hence, if the receiver finds that tr + τmac < ts−∆t + τmac + τpkt , where
ts is known to the receiver from the temporal leash in the packet, then the TESLA
condition is satisfied (i.e., the full MAC is received before any bit of the key with
which it was computed is released), and the receiver can start the verification of the
MAC essentially without any delay. Clearly, in order for this to work, very precise
timings are needed and, in particular, ∆t must be very small (or otherwise packets
need to be extremely long).

MAC packet K

MAC packet K

time at sender

time at receiver

ts ts + τmac + τpkt

tr tr + τmac

τmac τpkt

τmac

ts - ∆t + τmac + τpkt

Fig. 6.5. Illustration of the main idea of the TIK protocol (i.e., TESLA with Instant Key-
disclosure). The sender sends the MAC of the packet at the beginning of the transmission
and discloses the TESLA key with which the MAC was computed at the end of the same
transmission. The TESLA condition is satisfied if the receiver receives the MAC value earlier
than the time at which the sender starts disclosing the TESLA key. The receiver can verify
this by checking if tr < ts − ∆t + τpkt holds. Note that the receiver knows ts from the
timestamp placed in the packet by the sender. From [178], c© IEEE, 2003.

Although packet leashes provide an effective solution to the wormhole detection
problem, they have some disadvantages that prevent their usage in certain environ-
ments. The main disadvantage of the geographical leash mechanism is that it requires
the nodes to be equipped with GPS receivers or to be able to determine their location
in some other way. Integrating a GPS receiver in every node can be prohibitively ex-
pensive in some applications, for instance, in sensor networks. In addition, GPS has
known problems in an indoor environment. Other positioning mechanisms could be
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used, but their security must be also ensured. The main disadvantage of the temporal
leash mechanism is that it requires very tight clock synchronization, which might not
be possible to achieve in some environments.

Another approach that is also based on distance estimation between the nodes, but
does not require any clock synchronization or localization mechanisms, is based on
the concept of distance-bounding . The main idea of distance-bounding is simple but
very powerful. It is based on the facts that electro-magnetic waves propagate nearly
with the speed of light and with current technology it is easy to measure local timings
with nanosecond precision. The distance bounding technique essentially consists of
a series of rapid bit exchanges between the two nodes. Each bit sent by the first
node is considered to be a challenge for which the other node is required to send a
one bit response immediately. By locally measuring the time between sending out
the challenges and receiving the responses, the first node can estimate its distance to
the other node, assuming that the messages travel with the speed of light and the
processing delay at the other node is negligible.

Note that the estimated distance is only an upper bound on the real distance
between the nodes, because the second node could be closer, but it can delay the
responses in order to appear to be further. Even if the nodes are trusted for not
delaying their responses, an active adversary can delay the messages between the
parties, and hence the estimated distance will still be just an upper bound on the real
distance. However, in the case of a wormhole attack, the adversary’s goal is not to
make the two nodes believe that they are far away from each other. On the contrary,
the adversary wants the two nodes to believe that they are within each other’s range,
when in reality they are not. In order to achieve that the estimated distance is smaller
than the nodes’ real distance, the adversary should arrange that the messages travel
faster than the speed of light, which is impossible. Thus, distance-bounding can be
used for wormhole detection.

We slightly modify the above described distance-bounding technique such that it
allows both nodes to measure the distance between them simultaneously and it uses
symmetric key cryptographic primitives for authentication purposes. In order for this
to work, it is assumed that each pair of nodes share a symmetric key. We call the
resulting protocol Mutual Authenticated Distance-bounding, or shortly MAD.

Let x and y denote the two nodes in the protocol, and let their shared key be
kxy. We will denote the message authentication function controlled by the key kxy by
mackxy . The operation of the protocol is summarized in Figure 6.6, and it is explained
as follows:

• Initialization phase:
Both x and y generate uniformly at random two numbers. The numbers of x are
denoted by r and r′, and the numbers of y are denoted by s and s′. Numbers r and
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s are ` bits long, and r′ and s′ are `′ bits long (i.e., r, s ∈ {0, 1}` and r′, s′ ∈ {0, 1}`′)
Both x and y compute a commitment to the generated numbers by using a collision
resistant one-way hash function H: cx = H(r||r′) and cy = H(s||s′). Finally, x

sends cx to y and y sends cy to x. Note that the random numbers can be generated
and the commitments can be computed well before running the protocol.
• Distance-bounding phase:

Let the bits of r and s be denoted by ri and si (i = 1, 2, . . . , `), respectively. The
following two steps are repeated ` times, for i = 1, 2, . . . , `:

– x sends bit αi to y immediately after it received βi−1 from y (except for α1 which
is sent without receiving any bit from y), where α1 = r1 and αi = ri ⊕ βi−1 for
i > 1;

– y sends bit βi = si ⊕ αi to x immediately after it received αi from x.

x measures the times between sending αi and receiving βi, and y measures the
times between sending βi and receiving αi+1. From the measured times, they both
estimate their distance.
• Authentication phase:

Node x computes the bits si = αi ⊕ βi, and the MAC

µx = mackxy (x||y||r1||s1|| . . . ||r`||s`)

Similarly, y computes the bits r1 = α1 and ri = αi ⊕ βi−1 for i > 1, and the MAC

µy = mackxy (y||x||s1||r1|| . . . ||s`||r`)

Finally, x sends r′||µx to y and y sends s′||µy to x. Node x verifies that the
commitment cy and the MAC µy of y are correct, and y verifies that the commitment
cx and the MAC µx of x are correct.

In the above protocol, the MAC ensures the authenticity of the exchange: both x

and y can believe that they ran the distance-bounding phase with the other, and thus
the distance that they estimate is really the distance between x and y. Committing
to r and s in the initialization phase ensures that the protocol is successful only if
exactly the bits of r and s are exchanged. As r and s are random, an adversary
cannot try to cheat x by predicting the bits of s and responding earlier than y, and
similarly it cannot cheat y either. More precisely, the probability that such an attack
succeeds is 2−` and hence decreases exponentially in `.

The advantage of MAD is that it does not require the localization of the nodes or
the synchronization of their clocks. MAD still requires, however, special hardware
in the nodes in order to quickly switch the radio from receive mode into send mode.
In addition, it needs a special medium access control protocol that allows for the
transmission of bits without any delay.
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x y

generate random numbers generate random numbers

r ∈ {0, 1}`, r′ ∈ {0, 1}`′ s ∈ {0, 1}`, s′ ∈ {0, 1}`′
compute commitment cx = H(r||r′) compute commitment cy = H(s||s′)

cx−→
cy←−

— start of distance-bounding phase —
the bits of r are r1, r2, . . . , r` the bits of s are s1, s2, . . . , s`

α1 = r1
α1−→
β1←− β1 = s1 ⊕ α1

· · ·
αi = ri ⊕ βi−1

αi−→ measure delay between βi−1 and αi

measure delay between αi and βi
βi←− βi = si ⊕ αi

· · ·
α` = r` ⊕ β`−1

α`−→ measure delay between β`−1 and α`

measure delay between α` and β`
β`←− β` = s` ⊕ α`

— end of distance-bounding phase —

compute MAC compute MAC
si = αi ⊕ βi (i = 1, . . . , `) r1 = α1 and ri = αi ⊕ βi−1 (i = 2, . . . , `)

µx = mackxy (x||y||r1||s1|| . . . ||r`||s`) µy = mackxy (y||x||s1||r1|| . . . ||s`||r`)
r′||µx−→
s′||µy←−

verify cy and µy verify cx and µx

Fig. 6.6. The Mutual Authenticated Distance-bounding (MAD) protocol. From [81], c©
ACM, 2003.

Wormhole detection using position information of anchors

In the previous subsection, we saw a straightforward way of using the location infor-
mation of the nodes for wormhole detection. To be more precise, we described the
concept of geographical packet leashes and an implementation that uses the nodes’
location data for estimating the real distances between them. We argue, however,
that obtaining the location data of every node is not feasible in many applications,
because it requires either a GPS receiver in every node or complex positioning mech-
anisms that need to be secured. In this subsection, we describe a wormhole detection
mechanism that requires only a few specialized nodes to be aware of their locations.
These specialized nodes can be viewed as anchors that help other nodes to set up
their neighbor relationships in a secure way.

We assume that the nodes are randomly deployed in some area and they are static.
The random deployment with node density λ can be modeled as a spatial homogeneous
Poisson point process [105] with rate λ. In this model, the probability that there are
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exactly k nodes within a region of size S is

(λS)k

k!
e−λS (6.5)

We assume that a small fraction of the nodes are specialized and they are aware
of their own locations. These nodes are the anchors. We further assume that the
transmission range R of the anchors is larger than the transmission range of the
regular nodes. The anchors are also deployed randomly, but their density λ∗ is much
smaller than the density of the regular nodes.

As we said before, the role of the anchors is to assist the establishment of the
neighbor relationships. More precisely, we want to ensure that two nodes consider
each other to be neighbors only if they hear each other and in addition, they hear more
than T common anchors. For simplicity, we assume that threshold T is a publicly
known system parameter.

The neighbor relationships are represented by local broadcast keys, hence ultimately
the anchors are used to assist the establishment of these cryptographic keys. Each
node has a single local broadcast key that it wants to share with all of its neighbors.
For this purpose, the nodes run a three-step protocol. In the first step, each anchor
generates a random fractional key and broadcasts it within its range. Several frac-
tional keys will be combined into a single pairwise key, hence the name fractional. In
order to protect the secrecy of the fractional keys, the anchors’ messages are encrypted
with a key globally shared by all nodes and all anchors. In addition, the authenticity
of the messages and the protection against message replay must also be ensured. In
the second step, every regular node broadcasts the key identifiers of the fractional
keys that it hears. If two nodes that hear each other share more than T fractional
keys, then they use those keys to generate a pairwise key. Finally, in the third step,
every node uses its pairwise keys to securely unicast its local broadcast key to each
neighbor.

Note that it can be possible that two nodes are close to each other but they hear less
than T common anchors, and therefore they cannot establish a neighbor relationship.
The probability Pfail of such an event can be computed as follows. Let us consider
Figure 6.7. The two nodes are x and y, and their distance is d. The anchors heard by
node x are located in a disc of radius R around x, and similarly for y. The common
anchors are those in the intersection of the two disks, which is represented by the
shaded area Acmn in the figure. The probability that we are interested in is the
probability that there are no more than T anchors in Acmn :

Pfail =
T∑

k=0

(λ∗Scmn)k

k!
e−λ∗Scmn (6.6)

where Scmn is the size of Acmn .
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Fig. 6.7. Two nodes x and y can become neighbors only if they hear each other and they
hear more than a threshold number of common anchors. The anchors heard by node x are
located on a disk Ax of radius R around x, and similarly for y. The common anchors are
those in the intersection of the two disks, which is represented by the shaded area Acmn in
the figure. From [248], c© IEEE, 2005.

Figure 6.8 shows Pfail as a function of the relative distance d/R between x and y.
The different curves belong to different values of λ∗. T is set to

⌈
1
3λ∗R2π

⌉
, which

means that the threshold number of common anchors required to establish a neighbor
relationship is one third of the number of the anchors heard by the nodes on average.
d/R = 1 means that the distance of the nodes equals the range R of the anchors.
Recall, however, that the communication range of the regular nodes is smaller than
R. Therefore, if the nodes hear each other directly, then their distance is smaller than
R, and the probability of not being able to set up a neighbor relationship is small, as
illustrated by Figure 6.8.
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Fig. 6.8. The probability Pfail of two nodes not being able to set up a neighbor relationship
as a function of their relative distance d/R. Pfail is defined in (6.6). The different curves
belong to different values of λ∗. T is set to
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The careful reader might have noticed that the local broadcast key establishment
protocol presented above does not prevent wormhole attacks yet. Indeed, an attacker
can tunnel the messages of some node and some anchors through a wormhole, and
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in this way, it can achieve that far away nodes hear each other and more than T

common anchors. In order to prevent this, each anchor also puts its location data in
the message in which it broadcasts its fractional key. The nodes can use the location
data in the messages that they receive from the anchors to detect wormhole attacks
based on the following two principles:

(a) A node cannot hear two anchors that are 2R apart from each other because
any anchor heard by a node must lie within a range of radius R around the
node.

(b) A node cannot receive the same message twice from the same anchor, because
the messages sent by the anchors are encrypted, and each anchor includes a
one-time password in every message that it sends.

Let us now explain why these principles can be used to detect wormholes. First,
consider part (a) of Figure 6.9, where we illustrated a wormhole with transceivers O

and D, and a node x that is located in such a way that it directly hears transceiver
D. The anchors directly heard by node x are those that lie in the disk Ax of radius
R around x. In addition, x also hears the anchors in the disk AO of radius R around
O due to the wormhole. If there are two anchors in Ax and AO that are further than
2R away from each other, then the wormhole is detected based on Principle 1. The
probability P1 of detection is not easy to compute but we can give a lower bound of
it as follows. Consider the shaded areas A′x and A′O, which have a distance of 2R

from each other. If there is at least one anchor in each of these shaded areas, then
the attack is detected. Note that this event does not include all possible cases when
there are two anchors in Ax and AO that are further than 2R away from each other,
thus, it yields only a lower bound on P1. The probability that at least one anchor
lies in A′x is 1− e−λ∗S′x , where S′x is the size of A′x. Similarly, the probability that at
least one anchor lies in A′O is 1− e−λ∗S′O , where S′O is the size of A′O. Hence, we get
that

P1 ≥ (1− e−λ∗S′x)(1− e−λ∗S′O ) (6.7)

Assuming a fix distance between x and O, it can be shown that this lower bound is
maximized when S′x = S′O. The left side of Figure 6.10 shows the lower bound on P1

when A′x and A′O are selected such that S′x = S′O holds. The different curves belong
to different values of λ∗. We can observe, on the one hand, that the probability of
detection is very close to 1 when the distance between x and O is larger then 1.5 R.
On the other hand, below this distance the detection probability drops abruptly.

However, when the distance between x and O is smaller than 2R, we can use
Principle 2. Consider part (b) of Figure 6.9. When x and O are closer than 2R,
the disks Ax and AO overlap. If there is an anchor in the intersection AxO, and the
adversary transfers every message blindly from one end of the wormhole to the other
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Fig. 6.9. Part (a) of the figure illustrates a wormhole with transceivers O and D, and a node
x that is located in such a way that it directly hears transceiver D. The anchors directly
heard by node x are those that lie in the disk Ax of radius R around x. In addition, x also
hears the anchors in the disk AO of radius R around O due to the wormhole. The shaded
areas A′x and A′O have a distance of 2R from each other. If there is at least one anchor in each
of these shaded areas, then the attack is detected based on Principle 1. Part (b) illustrates
the case when x and O are closer than 2R, and the disks Ax and AO are overlapping. If
there is an anchor in the intersection AxO, then the wormhole can be detected based on
Principle 2. From [248], c© IEEE, 2005.
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Fig. 6.10. The lower bound on the probability P1 of detecting a wormhole based on Prin-
ciple 1 (left side) and the probability P2 of detection based on Principle 2 (right side) as
a function of the relative distance d/R between x and O. The different curves belong to
different values of λ∗.

end, then the message carrying the fractional key of that anchor is heard twice by
x: first directly and then from transceiver D who receives it from O through the
wormhole. Thus, the wormhole can be detected based on Principle 2.

The probability P2 of detection is equal to the probability that there is at least one
anchor in AxO that can be computed as follows

P2 = 1− e−λ∗SxO (6.8)

where SxO is the size of AxO. The right side of Figure 6.10 shows P2 as a function of
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the relative distance d/R between x and O. The different curves belong to different
values of λ∗. We can observe that the detection probability is close to 1 when the
distance between x and O is not larger than 1.5 R.

As the wormhole can be detected based on any of the two principles, the overall
detection probability is very close to 1 irrespectively of the distance between x and
O.

Wormhole detection with directional antennas

Let us assume that each node in the network is equipped with a directional antenna.
Every antenna has n, non-overlapping zones, and each zone has a spanning angle
of 2π/n; hence the zones collectively cover the entire area around a node. When a
node is idle, it listens to the carrier in omni-directional mode. When it receives a
message, it determines the zone in which the received signal strength is maximal and
uses that zone to communicate with the sender. An important assumption is that the
orientation of the zones is always established with respect to the Earth’s median, and
therefore all nodes use the same orientation irrespectively of their physical locations
and their own orientations. This can be achieved in modern antennas with the help
of a magnetic needle that always remains collinear to the Earth’s magnetic field.

1
23

4
5 6

yx 1
23

4
5 6

Fig. 6.11. When two nodes are within each other’s communication range, they must hear
each other’s transmission from opposite directions. For instance, if n = 6 and a node x hears
a node y in zone 1, then y hears x in zone 4.

The main idea is that when two nodes are within each other’s communication range,
they must hear each other’s transmission from opposite directions. For instance, if
n = 6 and a node x hears a node y in zone 1, then y hears x in zone 4, as illustrated
in Figure 6.11. In the following, we will denote the zone in which x hears y by Zxy,
and the opposite zone by Z̄xy. Hence, if x and y are within each other’s range, then
Zyx = Z̄xy holds. However, if nodes x and y communicate through a wormhole, then
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this condition is not always satisfied. This is illustrated in Figure 6.12(a), where
node x hears node y (through the wormhole) in zone 1, but y hears x (through the
wormhole) in zone 3.
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Fig. 6.12. If two nodes communicate (unknowingly) through a wormhole, then they may or
may not hear each other in opposite zones. Part (a) of the figure illustrates the case when
they do not hear each other in opposite zones. Part (b) illustrates the case when they hear
each other in opposite zones despite the presence of the wormhole. From [173], c© 2004.

Based on this observation, one could use the following neighbor discovery protocol
for establishing neighbor relationships between the nodes. We assume that x and y

already share a key. First, the initiator x of the neighbor discovery broadcasts a hello
message that contains its identifier. This is done by sweeping through the zones and
transmitting the hello message in every direction. When a node y receives a hello
message in zone Zyx, it sends a response to x in the same zone, where the response
contains the identifiers of y and x, the zone identifier Zyx, and a random number R.
Apart from the identifier of y, the response is encrypted with a key shared by x and y,
and hence only x can decrypt it. When x receives a response in zone Zxy, it decrypts
it and verifies whether Zxy = Z̄yx. If this equality holds, then it sends R back to y

as a confirmation that the verification was successful. Two nodes consider each other
neighbors only if they have successfully run this protocol.

Note that the above protocol does not always detect that x and y are communicating
through a wormhole. In order to see this, consider Figure 6.12(b), where node x hears
node y (through the wormhole) in zone 1 and y hears x (through the wormhole) in
zone 4. Thus, they successfully execute the neighbor discovery protocol and wrongly
conclude that they are neighbors. Indeed (on average) one sixth of the node pairs
(x, y), such that x is in the range of one of the transceivers of the wormhole and y

is in the range of its other transceiver, can execute the protocol successfully and will
establish a fake neighbor relationship. Therefore, though it decreases the number of
fake links, the protocol does not really eliminate the effects of the wormhole, because
even a single fake link can make the routes through the wormhole appear shorter than
other routes in the network.

In order to overcome this problem, the nodes can cooperate and help each other
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detect the wormhole. The idea is based on the observation that if two nodes x and y

are real neighbors, then every node that both x and y can communicate with must be
able to run the protocol successfully with both x and y. On the other hand, if x and y

are not real neighbors, then there could be a node v that they both can communicate
with (possibly via a wormhole), but v cannot run the neighbor discovery protocol
successfully with either x or y. Thus, v can play a verifier role and help establish the
legitimacy of the neighbor relationship between x and y.

There are certain conditions that must be met to be a valid verifier. First, we
observe that if y hears v in the same zone in which it hears x (i.e., Zyv = Zyx),
then y could hear both x and v through the wormhole (see Figure 6.13(a)). This
means that x and v could be real neighbors, and therefore the wormhole cannot be
detected using v as a verifier. Hence, we require that for a valid verifier Zyv 6= Zyx

holds. Moreover, we can also observe that even if Zyv 6= Zyx, if v hears x in the
same zone in which y hears x (i.e., Zvx = Zyx), then they could both hear x through
the wormhole’s transceiver (see Figure 6.13(b)). If, in addition, x happens to hear
the other transceiver of the wormhole in zone Z̄yx, then x can establish neighbor
relationships with both y and v. Thus, we require that for a valid verifier Zvx 6= Zyx

holds too.
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Fig. 6.13. The conditions for being a valid verifier. Part (a) illustrates that if node y hears v
in the same zone in which it hears x, then y could hear both x and v through the wormhole.
Hence, we require that for a valid verifier Zyv 6= Zyx holds. Part (b) illustrates that if v
hears x in the same zone in which y hears x (i.e., Zvx = Zyx), then they could both hear x
through the wormhole’s transceiver. If, in addition, x happens to hear the other transceiver
of the wormhole in zone Z̄yx, then x can establish neighbor relationships with both y and v.
Thus, we require that for a valid verifier Zvx 6= Zyx holds too.

We extend the neighbor discovery protocol with the use of verifier nodes as follows.
The first three steps of the verified neighbor discovery protocol are the same as the
steps of the simple protocol we described above. So let us assume that x and y

successfully ran the first three steps. Then, y broadcasts a verification request in all
of the zones except for Zyx (as nodes in that zone cannot be verifiers in any case due
to the first condition of being a valid verifier). The verification request includes the
identifier of Zyx, so prospective verifiers can check whether they satisfy the second



6.2 Wormhole detection mechanisms 165

condition of being a valid verifier. Nodes that receive the verification request and
satisfy the conditions of valid verifiers respond with an encrypted message. This
message confirms that the verifier heard x in a zone different from Zyx and successfully
ran the first three steps of the protocol with x (which means that Zxv = Z̄vx). Finally,
if at least one verifier responds to y, then y accepts x as a neighbor and sends a
confirmation message to x, who can then accept y as a neighbor.

Let us assume that v is a valid verifier. The first condition of being a valid verifier
(i.e., Zyv 6= Zyx) ensures that if y hears x through the wormhole, then it hears v

directly (as it hears it from another zone). In addition, the second condition (i.e.,
Zvx 6= Zyx) ensures that if y hears x through the wormhole, then x cannot run the
first three steps of the protocol successfully with both y and v. This would require
that Zxy = Z̄yx and Zxv = Z̄vx hold, which cannot be the case for the following
reasons: Because x is at the other end of the wormhole, it hears both y and v in the
same zone, so Zxy = Zxv. This means that if both Zxy = Z̄yx and Zxv = Z̄vx holds,
then Z̄yx = Z̄vx should be true. But this is impossible due to the second condition
that says that Zvx 6= Zyx. All this means that if y hears x through the wormhole,
then no valid verifier will respond to the verification query, and therefore x and y will
not become neighbors.

However, there is still a problem with this neighbor discovery protocol, which man-
ifests itself if x and y are just beyond the communication range (so they should not
be neighbors) but there is a valid verifier that they can both hear directly. Such a
situation is illustrated in Figure 6.14(a). In this case, an adversary can place a re-
peater W between x and y and relay the messages of the neighbor discovery protocol
between them. Node y can use v as a verifier, because v satisfies the conditions. In
addition, v responds to y’s verification request, because by being in the range of x, it
could have run the first three steps of the protocol with x successfully. Thus, x and
y will believe each other neighbors.

In order to prevent also this kind of attack, we must further strengthen the con-
ditions for valid verifiers, and we must require that if Zyv is adjacent to Zyx, then
Zxv is not adjacent to Zxy, and vice versa, if Zxv is adjacent to Zxy, then Zyv is not
adjacent to Zyx. Figure 6.14(b) illustrates the region where valid verifiers are located
when x and y are close to each other.

We must note that it can happen that two nodes are within each other’s commu-
nication range, but there are no potential verifier nodes that they can use (i.e., the
shaded areas in Figure 6.14(b) are empty). In this case, the nodes cannot set up a
neighbor relationship and we lose a potential link. Clearly, the probability of losing a
link between nodes x and y depends on the density of the network. Simulation results
in [173] show that when the nodes have around 10 other nodes within the range of
their directional antennas, around 58% of all potential links are lost, and 5.3% of the
nodes become completely disconnected due to the strict constraints on verifier nodes.
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Fig. 6.14. Part (a) of the figure illustrates a case when the verified neighbor discovery proto-
col does not detect the wormhole. Here, x and y are just beyond the communication range
(so they should not be neighbors) but there is a valid verifier v that they can both hear
directly. An adversary can place a repeater W between x and y and relay the messages of
the neighbor discovery protocol between them. In order to prevent this attack, we must
further strengthen the conditions for valid verifiers. Part (b) of the figure illustrates the
region where valid verifiers are located according to the strengthened conditions when x and
y are close to each other. From [173], c© 2004.

Even for a more dense network, when nodes have on average 32 other nodes within
the range of their directional antennas, around 40% of the potential links are still lost
and 0.03% of the nodes become disconnected.

Losing links is not desirable, because it reduces the robustness of the network in
case of link failures, and increases the average length of the routes in the network.
Another disadvantage of this approach is that it requires the nodes to be equipped
with directional antennas. This is an assumption that, in some cases, cannot be
satisfied in many applications. Moreover, the protocol proposed above detects only
a single wormhole; when there are several of them, then y and v can hear x through
different wormholes, and the protocol can be executed successfully. We leave the
construction of an example, as an exercise, for the reader.

6.3 Summary

Neighbor discovery is a basic mechanism that is essential to the operation of many
wireless networks. In this chapter, we identified two attacks on neighbor discovery: (i)
preventing the creation of a neighbor relationship between two nodes that are within
each other’s power range, and (2) making two nodes that are not within each other’s
power range believe that they are neighbors. The first attack can be implemented
by jamming. However, a large scale jamming adversary can be easily detected. The
second attack can be implemented by setting up wormholes in the system. Wormhole
attacks do not seem to be easily detectable at first sight, but in this chapter, we
described some techniques that can be used to detect them.

We classified wormhole detection techniques into two groups: centralized and de-
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centralized approaches. In the centralized approach, data collected from the local
neighborhood of every node are sent to a central entity. The central entity uses the
received data to construct a model of the entire network and tries to detect inconsis-
tencies in this model that are potential indicators of wormholes. In the decentralized
approach, each node constructs a model of its own neighborhood using locally col-
lected data; hence no central entity is needed.

We discussed two centralized wormhole detection mechanisms: one based on statis-
tical hypothesis testing and another based on multidimensional scaling and visualiza-
tion. Moreover, we discussed several decentralized mechanisms for wormhole detec-
tion, including techniques based on distance estimation, the availability of position
information, and the use of directional antennas. We also discussed the advantages
and the disadvantages of all these techniques.

6.4 To probe further

The centralized wormhole detection mechanism based on statistical hypothesis testing
was proposed by Buttyán, Dóra, and Vajda in [69]. In their paper, more details
about this method can be found, including simulation results that demonstrate its
effectiveness.

The application of multidimensional scaling for wormhole detection was proposed
by Wang and Bhargava in [365]. They described how this mechanism works in two
dimensions. Multidimensional scaling itself is a technique that was originally devel-
oped in social sciences, but later it was also adopted to solve positioning problems in
wireless networks (see e.g., [345]).

Packet leashes are proposed by Hu, Perrig, and Johnson in [178]. As we men-
tioned, geographical packet leashes rely on position information. Secure positioning
is discussed in several papers, including [247, 85, 86].

Wormhole detection based on distance bounding and the MAD protocol are pro-
posed by Čapkun, Buttyán, and Hubaux in [81]. The idea of distance bounding itself
originates from Brands and Chaum [63], who developed it to prevent the mafia fraud ,
a sophisticated attack aimed at stealing money from innocent people using a fake
ATM (Automated Teller Machine).

The wormhole detection technique based on position information of anchor nodes
is proposed by Lazos et al. in [248]. In their paper, the anchors are called guards.

Directional antennas have been recognized as a powerful way of increasing the
capacity and the connectivity of wireless networks. Their application for wormhole
detection is proposed by Hu and Evens in [173].
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6.5 Questions

(a) The main disadvantage of the statistical wormhole detection method described
in Subsection 6.2.1 is that, although it detects the presence of a wormhole with
high confidence, it does not locate it. How could the statistical approach be
used to identify the nodes that are affected by the wormhole?

(b) Let us consider the TIK protocol described in Subsection 6.2.2. Let us assume
that the maximum clock synchronization error is 180 ns and the maximum
communication range of the nodes is 250 m. Compute the minimum packet
length required by the TIK protocol in order for the TESLA condition to be
satisfied.

(c) A disadvantage of the MAD protocol described in Subsection 6.2.2 is that it
needs several rounds of rapid bit exchanges. Can you think of a way to perform
distance bounding by a single exchange of multiple bit messages?

(d) What is the purpose of combining the next bit to be sent to the other party
with the last received bit in the MAD protocol? Can you construct an attack
against a modified version of the protocol where the bits are sent independently
from the received bits?

(e) Consider the wormhole detection method based on directional antennas that we
presented in Subsection 6.2.2. Try to construct an example with two wormholes
that are not detected by the described method.
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Secure routing in multi-hop wireless
networks

As we have described in Chapter 2, some of the upcoming wireless networks use multi-
hop wireless communications. In those networks, the nodes have two roles: they act
as end-systems and they also perform routing functions. This means that routing
control messages are sent over wireless channels. Moreover, due to the lack of their
physical protection, some of the routers could be corrupted and not follow the routing
protocol faithfully. This can have undesirable effects on the operation of the network.
In extreme cases, the operation of the entire network can be disabled by attacking
the routers and manipulating the messages of the routing protocol. This chapter
is devoted to this problem. More precisely, we study the problem of securing the
routing protocol in two kinds of multi-hop wireless networks: mobile ad hoc networks
and wireless sensor networks.

7.1 Routing protocols for mobile ad hoc networks

A large amount of work on routing in mobile ad hoc networks has been carried out
in the research community, which has resulted in a multitude of routing protocols.
One way to classify ad hoc network routing protocols is illustrated in Figure 7.1.
As we can see, there exist topology-based routing protocols and position-based routing
protocols. Topology-based protocols are based on traditional routing concepts, such as
maintaining routing tables or distributing link state information, but they are adapted
to the special requirements of mobile ad hoc networks. Position-based protocols use
information about the physical locations of the nodes to route data packets to their
destinations.

Topology based protocols can be further classified into two groups: proactive and
reactive protocols. Proactive routing protocols try to maintain consistent, up-to-
date routing information within the system so that at any time, every node knows
how to route packets to all other nodes in the network. In contrast to this, in the
case of reactive routing protocols, a route is established between a source and a

169
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Fig. 7.1. Classification of ad hoc network routing protocols. Topology-based protocols are
based on traditional routing concepts, such as maintaining routing tables or distributing
link state information, but they are adapted to the special requirements of mobile ad hoc
networks. Position-based protocols use information about the physical locations of the nodes
to route data packets to their destinations. Topology-based protocols can be proactive or
reactive. Proactive protocols try to maintain consistent, up-to-date routing information
within the system. In contrast to this, reactive protocols establish a route between a source
and a destination only when it is needed. For this reason, reactive protocols are also called
on-demand protocols.

destination only when it is needed (i.e., when the source wants to send something
to the destination). For this reason, reactive protocols are also called on-demand
protocols.

Proactive protocols usually require periodic exchanges of routing information
among the nodes. If only a few pairs of nodes communicate with each other, then
most of the periodically exchanged information is useless (in the sense that it is never
used), and hence proactive protocols can waste a lot of resources unnecessarily. But
as routing information is always (nearly) up-to-date and available, packets can be sent
to any destination virtually with no delay. In contrast to this, in case of reactive or
on-demand protocols, the nodes use their resources for setting up routes only when
they are really needed. At the same time, it may well happen that when a node wants
to communicate with another node, no working route to that other node is available,
and the communication must be delayed until such a route is discovered. There exist
some hybrid protocols that try to combine the advantages of the proactive and the re-
active approaches. Typically, hybrid protocols use the proactive approach to maintain
up-to-date routing information at each node regarding the node’s local neighborhood
(e.g., up to a certain number of hops), and they use the reactive approach when routes
to far away destinations are needed.

As we mentioned above, position-based ad hoc network routing protocols use in-
formation about the physical locations of the nodes to route data packets to their
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destinations. In general, each node is aware of its own location (by means of GPS or
some other positioning service) and obtains the location information of other nodes
via a location service that is provided by the nodes themselves in a distributed man-
ner. When sending a data packet, the source obtains the location of the destination
from the location service, and it includes this information in the header of the packet.
Then, each intermediate node makes routing decisions based on its own location and
the location of the destination obtained from the packet header.

The advantage of position-based routing is that the nodes do not need to maintain
routing information or to discover routes explicitly, and therefore the control overhead
of these protocols tends to be smaller. However, there is still some overhead associ-
ated with the operation of the location service and with the retrieval of the location
information of the destinations. The disadvantage of position-based routing is that
they rely on additional hardware in each node or some other mechanisms by which the
nodes can determine their own location. Another disadvantage is that position-based
routing protocols must cope with voids (i.e., geographic areas where no node can be
found), which complicate their operation.

Providing a comprehensive description of all existing ad hoc network routing pro-
tocols is obviously out of the scope of this book. Our goal is rather to highlight the
basic operating principles of some mainstream routing protocols in order to allow the
understanding of the security implications and the secure routing protocols presented
later.

7.1.1 On-demand source routing

As an illustrative example of on-demand source routing protocols, we briefly describe
the operation of the Dynamic Source Routing (DSR) protocol. DSR was among the
very first routing protocols proposed for mobile ad hoc networks, and its design has
been highly influential to other similar protocols proposed later. A detailed descrip-
tion of DSR can be found in [208].

DSR is a source routing protocol which means that every data packet carries the
list of those nodes in its header that the packet should traverse in order to reach
its destination. When a node receives such a data packet, it first verifies if it is the
destination of the packet. If not, then the node verifies if its identifier is in the list
carried by the packet, and if so, it forwards the packet to the next node in the list,
which must be its direct neighbor (strict source routing). Otherwise the packet is
dropped.

One main advantage of source routing is that it is trivial to detect routing loops
just by identifying repeating values in the list of node identifiers in the packet header.
Another advantage is that forwarding nodes do not need to maintain up-to-date rout-
ing information in order to be able to forward the packet towards the destination,
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because that information is available directly from the packet header. Finally, a third
advantage of source routing is that every node that receives or overhears a packet can
learn routing information from the packet header and cache it locally for future use.
The disadvantage of source routing is the communication overhead resulting from
carrying the whole route in the packet header, which limits the applicability of this
approach in highly resource constrained environments, such as sensor networks, and
in large networks where routes can be very long.

When using source routing, the source of a packet must know a full route to the
destination before actually sending the packet. In DSR, such a route can be available
to the source from its local route cache. If an appropriate route is not found in the
cache, then the source uses the route discovery mechanism of DSR to dynamically
discover a route to the destination. In addition to route discovery, DSR has a route
maintenance mechanism that allows the source to detect if a route that it is trying
to use is broken.

Basic DSR route discovery

DSR route discovery is based on flooding the entire network with a route request and
returning some route replies. A route request message contains the identifiers of the
source and the destination, and a record listing the identifiers of every intermediate
node that forwarded this particular request message. Each request also has a request
identifier, which, together with the identifier of the source, uniquely identifies the
request and allows the intermediate nodes to detect and discard duplicates.

The source generates a route request message with a new request identifier and an
empty list of forwarding nodes and broadcasts it to its neighbors. Each intermediate
node that receives a copy of the request verifies that it has not received that request
before. If the request has already been received, then it is dropped. Otherwise, the
intermediate node appends its identifier to the list of identifiers in the request and re-
broadcasts the request to its neighbors. This procedure is repeated until the request
reaches the destination.

The destination generates a route reply by copying the recorded list of identifiers
from the route request into the route reply. The route reply is then unicast back to the
source. For this, the destination needs a route to the source. It could have such a route
already in its route cache. Otherwise, if bi-directional links can be assumed, then the
destination can obtain such a route by reversing the list of identifiers received in the
route request. If links cannot be assumed to be bi-directional, then the destination
must use DSR route discovery to obtain a route to the source; but in this case, it
piggybacks the route reply on the route request in order to avoid an infinite recursion.
When the source receives the route reply, it extracts the route from it and caches it
locally in its route cache. Then it uses the route to send the data packets that were
buffered during the execution of the route discovery procedure.
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Basic DSR route maintenance

DSR requires each intermediate node to make sure that the data packet that it is
forwarding reaches the next hop. This requirement can be satisfied in several ways.
Firstly, the data link layer protocol can provide an acknowledgement for each delivered
data packet. Secondly, the intermediate node can overhear the transmission of the
packet by the next intermediate node, which serves as a passive acknowledgement.
Finally, if none of these options are available, then the intermediate node can request
the next intermediate node to send an acknowledgement packet (which can take a
multi-hop route if the link between the two nodes is not bi-directional).

If no acknowledgement arrives for a given packet, then the intermediate node tries
to re-transmit it for some time. If all attempts are unsuccessful, then the intermediate
node generates a route error message, indicating that the link to the next intermediate
node is not functioning, and sends this error back towards the source of the packet.
The source and each of the intermediate nodes that forward the error invalidate the
routes that contain this broken link in their route caches. Then, the source can try
to send the data packet via an alternative route if it has some in its cache, otherwise
it initiates a new route discovery.

DSR optimizations

The basic operation of DSR, as described above, can be extended with many optimiza-
tions to further improve the performance of the protocol. Such optimizations include:
the caching of overheard routing information; replying to route requests by interme-
diate nodes using their cached routes; effectively expanding the local cache with the
caches of neighboring nodes by sending a non-propagating route request (with hop
limit equals to 0) and allowing neighboring nodes to reply from their caches; packet
salvaging; automatic route shortening; increased spreading of route error messages
to reduce the number of invalid route reply packets generated by intermediate nodes
that are not aware of a broken link; and caching negative information (e.g., a bro-
ken link) in the route caches. We must note, however, that such optimizations often
greatly increase the complexity of the protocol, and thus make it more vulnerable to
different attacks. For this reason, secure routing protocols that are based on the same
principles as DSR usually do not apply them.

7.1.2 On-demand distance vector routing

Another group of on-demand protocols do not use source routes in packets, but make
routing decisions based on traditional routing tables. However, those tables are up-
dated only in an on-demand manner. In particular, routing information for destina-
tions that are not in active communications is not maintained. A well-known example
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of such an on-demand, routing table based protocol is the Ad hoc On-demand Dis-
tance Vector (AODV) protocol. A detailed description of AODV can be found in
[307]; here we give only a brief overview.

In AODV, each node maintains a routing table where each entry of the table con-
tains information related to a particular destination, including the following: the
identifier of the destination, the number of hops needed to reach that destination,
the identifier of the next hop on the route towards the destination, the list of precur-
sor nodes that can forward packets to the destination via the node maintaining this
routing table, and a destination sequence number(which helps to identify and discard
out-of-date routing information and ensures the loop-freedom of the protocol). When
an intermediate node receives a packet to be forwarded to a given destination, it
looks into its routing table to see who is the next hop towards that destination and
then forwards the packet to that next hop node. This procedure is repeated until the
packet reaches its destination.

Obviously, this works only if the routing tables of the source and the intermediate
nodes contain a valid entry for the destination of the packet. In AODV, this is ensured
through a route discovery procedure similar to that of the DSR protocol. In other
words, a route request is flooded in the network, and a route reply is sent back to the
source; the difference is that instead of updating route caches, here the nodes update
routing tables upon processing route request and route reply messages.

AODV route discovery

When a source wants to send a data packet to a destination, and it does not have a
valid entry for that destination in its routing table, then it generates and broadcasts a
route request message. This route request contains the identifiers of the source and the
destination, a hop count, and two sequence numbers, the first of which is the current
sequence number of the source, and the second is the last known sequence number of
the destination. Each node has a single sequence number, which is incremented after
each detected change in the node’s neighbor set. The route request also contains a
broadcast identifier, which plays a role similar to the role of the request identifier in
DSR (i.e., it helps intermediate nodes to detect and discard duplicates of the same
request).

When an intermediate node receives a route request, it first determines if it is a
duplicate or not. Duplicates are silently discarded. If the request is not a duplicate,
then the node checks if it has a valid entry in its routing table for the destination
indicated in the request. If it does not have a valid entry, or it has a valid entry with a
sequence number smaller than the destination sequence number in the request, then
the node rebroadcasts the request after incrementing the hop count in it. On the
other hand, if the intermediate node does have a valid entry for the destination with
a sequence number at least as large as the destination sequence number in the request,
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then it generates a route reply. Obviously, if the request reaches the destination, then
it will also generate a route reply.

Besides the processing described in the previous paragraph, upon receipt of a route
request message, an intermediate node creates or updates the entry in its routing
table that corresponds to the source of the request. In fact, if such an entry already
exists, it is updated only if its sequence number is smaller than the sequence number
of the source received in the request, or if the two sequence numbers are equal, but
the length of the new route indicated by the hop count in the request is smaller.
When an entry is created or updated, the destination identifier of the entry is set to
the identifier of the source of the request, the length of the route in the entry is set
to the hop count in the request, the next hop is set to the identifier of the node from
which the request was received, and the sequence number of the entry is set to the
sequence number of the source in the request. This entry will be needed, if eventually
the intermediate node receives a route reply that should be forwarded back to the
source.

As we mentioned above, a route reply can be generated by either the destination
or an intermediate node that has a valid entry in its routing table for the destination.
The route reply contains a destination sequence number and a hop count. If the reply
is generated by the destination, then the sequence number in the reply is set to the
current sequence number of the destination and the hop count is set to zero. If the
reply is generated by an intermediate node, then the sequence number and the hop
count in the reply are set to the sequence number and the hop count in the entry
that corresponds to the destination in the routing table of the intermediate node. In
addition, the intermediate node generates a so-called gratuitous route reply, which
it sends to the destination. This route reply message will set up the necessary state
in the routing tables of the intermediate nodes between the intermediate node that
generated the reply and the destination, so that these nodes will be able to forward
data packets from the destination back to the source.

The route reply message intended for the source is then forwarded back on the
reverse path taken by the route request. The processing of the route reply by the
intermediate nodes is very similar to the processing of the route request. In particular,
the hop count in the reply is incremented before the reply is passed on. Moreover,
each intermediate node creates or updates the routing table entry corresponding to
the destination by setting the hop count in the entry to the hop count in the reply,
the next hop field in the entry to the node from which it received the reply, and the
sequence number in the entry to the destination sequence number in the reply. In
addition, the precursor list of the entry corresponding to the destination is extended
with the node to which the route reply is forwarded, and the precursor list of the
entry corresponding to the source is extended with the node from which the route
reply was received. These updates are made only if the destination sequence number



176 Secure routing in multi-hop wireless networks

in the reply is greater than the sequence number in the entry corresponding to the
destination, or if the two sequence numbers are the same, but the length of the route
indicated by the hop count in the reply is smaller than that currently stored in the
entry.

AODV route maintenance

AODV also has a route maintenance mechanism that uses route error messages such
as the ones used in DSR. When a node detects a broken link to the next hop while
attempting to forward a data packet, it invalidates the routing table entries corre-
sponding to those destinations that were reachable through this failed next hop. Then
it generates a route error message that contains the list of those destinations that be-
came unreachable and sends it to the nodes in the precursor lists of the invalidated
entries. A node receiving a route error verifies if it uses the sender of the message
as the next hop towards the destinations listed as unreachable in the error message.
If this is the case for some destinations, then the node invalidates the corresponding
routing table entries and sends a similar error message to the nodes in the precursor
lists of the invalidated entries.

7.1.3 Proactive routing

Proactive routing protocols maintain up-to-date routing information for all possible
destinations in the network. These protocols are usually based on a periodic exchange
of routing information, and they have two types: link state protocols and distance
vector based protocols.

In link state protocols, each node periodically floods the network with a message
that contains the state of the links of that node. As these messages are propagated in
the entire network, each node learns the link state information of every other node,
and thus each node has a full view of the network topology. Then, centralized shortest
path algorithms can be used locally by each node to determine the best route to all
other nodes in the network.

In contrast to this, in distance vector based protocols, the nodes execute a dis-
tributed shortest path algorithm to determine the best route to every other node in
the network. For this purpose, each node periodically sends its current routing table
to the neighboring nodes. Thus, each node obtains the routing information known by
its neighbors. By inspecting the routing tables of its neighbors, a node can discover
that there is a better route to some destination than the route that has been known
so far by the node. In this case, the node updates its routing table to incorporate
the new information. By repeating the routing table exchange and routing table up-
date steps, the system converges to a stable state, where each routing table contains
correct routing information.
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At first sight, it seems that due to their periodic nature, proactive routing protocols
have too much overhead to be applicable in mobile ad hoc networks. It turns out,
however, that some optimized versions of them can work pretty well under certain
circumstances. In particular, if a large and frequently changing set of random pairs
are communicating, then maintaining routes to all possible destinations is not so much
of an overhead anymore, and the proactive approach can even outperform the reactive
one.

OLSR

An example of a proactive routing protocol proposed for mobile ad hoc networks is
the Optimized Link State Routing (OLSR) protocol. Its full description can be found
in [100]; here we summarize only its main characteristics.

OLSR is a link state protocol and, as such, it periodically floods the entire network
with control messages containing link state information. However, OLSR minimizes
the control overhead induced by flooding by using only selected nodes, called multi-
point relays (MPRs), to retransmit control messages. The set of MPRs of a given node
is a subset of its neighbors that are selected in such a way that they cover (in terms
of radio range) all strict two-hop neighbors (i.e., those nodes that can be reached in
two hops and that are not neighbors themselves) of the node. The nice thing about
MPRs is that requiring only them to participate in the flooding significantly reduces
the number of retransmissions of a given control message, while the way they are
selected ensures that all nodes in the network will receive the message.

A second optimization used by OLSR is that it floods only partial link state infor-
mation. Indeed, it can be shown that in order to compute the shortest paths between
any pair of nodes, it is sufficient that each MPR declares only the links to its MPR
selectors (i.e., those neighbors that selected it as MPR).

There are two basic types of messages in OLSR: HELLO messages and TC (topology
control) messages. HELLO messages are local broadcast messages that are received
by the neighbors of the sender, but they are not retransmitted. TC messages are
global broadcast messages that are flooded in the network by MPR nodes.

The HELLO message sent by a given node A contains the list of its believed neigh-
bors. For each neighbor in the list, the state of the link to that neighbor is indicated.
In addition, the neighbors that are selected as MPRs by A are marked as such.

When a node B receives such a HELLO message, it learns a whole lot of information
from it. First of all, it learns that A is its neighbor (if it has not known that yet).
If B is listed as a neighbor in the HELLO message, then B learns that A considers
it as a neighbor, and thus there must be a symmetric link between them; otherwise
the link is asymmetric because B hears A, but not vice versa. Assuming that B is
listed in the HELLO message, B learns the state of the link between A and B. If
in addition, B is marked as an MPR, then now it knows that A selected it as MPR,
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and hence, A is in B’s MPR selector set. Finally, by looking at the list of neighbors
of A, B learns about its two-hop neighborhood. To summarize, HELLO messages in
OLSR are used for link state sensing, neighbor detection, two-hop neighbor detection,
and MPR signalling. Indirectly, HELLO messages are also used in MPR selection,
because the nodes can determine their MPR set based on the neighborhood and two-
hop neighborhood information that they obtained from the HELLO messages.

TC messages are sent in the network to advertise links. They contain a list of
advertised neighbors. Only MPR nodes send and retransmit TC messages, and a
TC message must contain at least those neighbors that have selected the sender
node as an MPR. Based on the advertised links in TC messages, each node in the
network reconstructs a (partial) topology of the network and builds a routing table
that contains forwarding information for all possible destinations in the network. This
routing table is then used for routing data packets towards their destinations.

DSDV

Another proactive ad hoc network routing protocol is the Destination-Sequenced Dis-
tance Vector (DSDV) protocol [308]. The main novelty of DSDV with respect to other
distance vector based protocols is the application of sequence numbers that prevents
routing loops.

DSDV is a predecessor of AODV, and thus, it has a similar sequence number
mechanism. In DSDV too, each entry of a routing table is tagged with the most recent
sequence number known for the destination to which the entry belongs. Similarly,
periodic routing updates also contain sequence numbers for each destination in the
update. When a node receives a routing update, for each destination in the update,
the node prefers the newly advertised route if the sequence number in the update
is greater than the sequence number known by the node for that destination, or if
the two sequence numbers are equal, but the routing metric in the update indicates
that the newly advertised route is shorter than the one known by the node. If none
of these conditions is satisfied, then the update for the given destination is ignored.
Like in AODV, sequence numbers are increased, when a change in the state of a link
of the node is detected.

Another optimization in DSDV is that besides full updates listing all destinations,
a node can also send incremental updates that list only destinations for which the
route has changed since the last full update sent by the given node.

7.1.4 Position-based routing

In position-based routing protocols, the source of a data packet includes in the packet
header the location of the destination. This information is used by intermediate nodes
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to route the packet towards the destination. Based on the packet forwarding strat-
egy used by the intermediate nodes, three types of approaches can be distinguished:
greedy forwarding, restricted directional flooding, and hierarchical protocols.

Greedy forwarding

In greedy forwarding, it is assumed that each node is aware of its own location and the
locations of its neighboring nodes. The former is obtained by means of GPS or some
GPS-free localization service. The location information of the neighbors can be learnt
by using periodic, local, one-hop broadcast messages, called beacons, in which each
node announces its own location. In addition, recall that each data packet carries the
approximate position of its destination.

Greedy forwarding means that, upon receipt of a data packet by an intermediate
node, the packet is forwarded to a neighbor that is closer to the destination than the
forwarding node itself. However, there can be several such neighbors, and there are
different strategies to choose the next hop from them. These strategies are illustrated
in Figure 7.2 and explained below.

compass

MFR

NFP
source

destination

Fig. 7.2. Illustration of the operation of greedy forwarding strategies. MFR (Most Forward
within Radius) selects the neighbor that is the closest to the destination and, in this way,
minimizes the number of hops taken by the packet. NFP (Nearest with Forward Progress)
selects the nearest neighbor that is still closer to the destination; when the nodes can control
their transmission power, this strategy can minimize the probability of packet collisions.
Compass routing selects the neighbor that is the closest to the straight line between the
forwarding node and the destination, and it minimizes the spatial distance that the packet
travels. Finally, the next hop can be selected randomly; this can be a good strategy if the
location information of the neighbors is inaccurate. From [265], c© IEEE, 2001.

One intuitively appealing strategy is to forward the packet to the neighbor that
makes the largest progress towards the destination (i.e., the node which is the closest
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to the destination). This strategy is called MFR (Most Forward within Radius) [358],
and it tries to minimize the number of hops taken by the packet on its way to the
destination.

Another, less intuitive strategy is to forward the packet to the nearest neighbor
that is still closer to the destination than the forwarding node. This strategy is called
NFP (Nearest with Forward Progress) [168]. NFP only makes sense when the nodes
can control their transmission power; in this case, NFP minimizes the probability of
packet collisions, and thus the average progress of packets can be higher for NFP than
for MFR.

Yet another strategy is to forward the packet to the neighbor that is the closest
to the straight line between the forwarding node and the destination. This strategy
is called compass routing [232], and it tries to minimize the spatial distance that the
packet travels.

Finally, the forwarding node could select the next hop randomly from the set of
neighbors that are closer to the destination than the forwarding node itself [282]. This
strategy minimizes the number of operations required to forward the packet, and it
can be advantageous when the location information of the neighbors is inaccurate.

No matter what forwarding strategy is used, routing protocols based on greedy for-
warding must cope with the problem of dead-ends: it can happen that an intermediate
node receiving the data packet has no neighbor that is closer to the destination than
the node itself, therefore it cannot pass on the packet. To recover from this situation,
the protocol can try to construct a planar sub-graph of the graph that represents the
ad hoc network and then use a planar-graph traversal algorithm to find a path to the
destination. An example of this approach is the face routing algorithm [59] which has
many variants including GFG (Greedy-Face-Greedy) [60], GPSR (Greedy Perimeter
Stateless Routing) [216], and the GOAFR+ (Greedy Other Adaptive Face Routing)
family of algorithms [237, 238].

Restricted directional flooding

The idea of restricted directional flooding algorithms is that an intermediate node
re-broadcasts a data packet only if it lies “in the direction of the destination”. In
order for the intermediate node to decide if it lies in the good direction, it is sufficient
to know (besides its own location) the location of the destination and the location
of the previous intermediate node. This information can be included in the packet
header by the source and the previous intermediate node, respectively, thus, there is
no need for periodic beacons to learn the location information of all neighbors.

One approach to determine if a node lies in the direction of the destination is called
DREAM (Distance Routing Effect Algorithm for Mobility) [41], and it is illustrated in
part (a) of Figure 7.3. DREAM first calculates an expected region of the destination
of the packet. This is a disc, the center of which is the approximate location of
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the destination obtained from the packet header, and the radius is a function of the
maximum speed of the nodes and the time elapsed since the generation of the packet
by the source (known from a timestamp in the packet header). Then, the direction to
the destination is defined by the line between the forwarding node and the center of
the destination’s expected region, and the angle φ. Each neighbor of the forwarding
node that lies within this angle is in the good direction, and must re-broadcast the
packet. Note that φ increases as the packet gets closer to the destination, which helps
to cope with the problem that the location information of the destination inserted in
the packet header by the source becomes less accurate as time elapses (assuming that
the nodes move).

source

destination
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φ

source
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Fig. 7.3. Illustration of the operation of the restricted directional flooding algorithms
DREAM (a) and LAR (b). In DREAM, first an expected region of the destination is calcu-
lated. Then, the direction to the destination is defined by the line between the forwarding
node and the center of the destination’s expected region, and the angle φ. Each neighbor
of the forwarding node that lies within this angle must re-broadcast the packet. These cal-
culations are repeated by each intermediate node that receives the packet until it reaches
the destination. In LAR, the source of the data packet calculates an expected region of the
destination, and then the packet is flooded within the rectangular region illustrated in the
figure. From [265], c© IEEE, 2001.

Another approach is called LAR (Location Aided Routing) [220]. In LAR the
source of the data packet calculates an expected region of the destination, and then
the packet is flooded within the rectangular region illustrated in part (b) of Figure 7.3.
In other words, each node in this region that hears the packet will re-broadcast it,
while the nodes outside this region will drop it.
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Hierarchical approaches

Position-based routing can be combined with topology-based routing in order to in-
crease the scalability and the efficiency of the routing protocol [53]. The typical way
to do this is to use a position-based approach to route the packet into the estimated
geographical region of the destination, and to use a topology-based protocol locally
within that region to actually find the destination. This hybrid approach counters
the disadvantages of the pure position-based and the pure topology-based approaches:
The scalability problems of topology-based protocols are mitigated by using them only
locally, within a limited geographical area, whereas the problem of inaccurate location
information in position-based routing is mitigated by using a topology-based protocol
to finally route the packet to the destination. Another advantage of hierarchical ap-
proaches is that they can be used in applications where not every node can determine
its own location: those location unaware nodes can route packets to location aware
nodes, so-called location proxies, by using topology-based routing.

Location services

As we have seen above, in position-based routing protocols, the source of a data
packet must be able to obtain the location information of the destination. This
information is usually provided by a location service. Although some position-based
routing protocols specify it explicitly, the location service does not actually need to be
part of the routing protocol, but it can be provided as a separate mechanism that is
used by the routing protocol as an external service. Due to its rather loose connection
to routing itself, we do not describe the operation of location services here.

7.2 Attacks on ad hoc network routing protocols

Routing is a fundamental service in any kind of network; hence an ideal target for
attacks. In this section, we describe why and how ad hoc network routing protocols
can be attacked. The general discussion will be followed by some illustrative examples.

7.2.1 Setting the scene

Before indulging into the attacks themselves, it is useful to elaborate on the general
objectives and capabilities of an adversary in the context of ad hoc network routing
protocols. That is what we do in this subsection.

General objectives of attacking routing

Attacks against routing protocols can have the following three objectives:

• increase adversarial control over the communications between some nodes;
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• degrade the quality of the service provided by the network;
• increase the resource consumption of some nodes (e.g., CPU, memory, or energy).

We must note that these objectives are not fully independent from each other.
Firstly, the ultimate goal of increasing the resource consumption of some nodes is
typically to degrade the quality of the service provided by the network. For instance,
the result of overloading some nodes with excessive traffic could be that they start
dropping legitimate traffic, or they deplete their batteries and the network becomes
disconnected and dysfunctional. Nevertheless, it makes sense to distinguish these two
objectives, because some attacks, as we will see, aim at increasing resource consump-
tion in a brute force manner without any particular projection on how this would
degrade the quality of service; it is intuitively simpler to think of these attacks as
pure resource-consumption attacks. In addition, there are attacks that degrade the
quality of service without actually increasing the resource consumption of the nodes.
Secondly, the ultimate goal of increasing adversarial control over the communications
between some nodes can also be the degradation of the quality of service, although
this is not always the case.

We must also note that achieving any of the three objectives listed above can
result in achieving another objective as a side effect. For instance, one way to achieve
increased adversarial control over the communications between some nodes is to divert
some traffic through particular routes, but in this case, the resource consumption of
the nodes on those routes is also increased, because those nodes must now support
some extra traffic.

Outsider vs. insider adversary

The adversary can interfere with the routing protocol in two ways: from outside and
from inside. An outsider adversary can attack the communications of some nodes,
which is made easy by the usage of wireless channels. This usually means eavesdrop-
ping, jamming, and injecting fabricated or replayed messages into the network. In
addition to all these, an insider adversary controls some nodes in the network. We re-
fer to these nodes as adversarial nodes. Adversarial nodes can exhibit any Byzantine
behavior.

It is quite reasonable to assume that ad hoc networks are subject to both outsider
and insider attacks. First of all, the nodes are usually not physically protected, so they
can be captured and compromised by the adversary. In addition, in civilian scenarios,
the adversary can acquire some nodes in a legitimate way (e.g., she can buy them).
Indeed, in civilian scenarios, the term adversary refers to a set of misbehaving users
that are otherwise legitimate. Hence, in the following section, we assume that the
adversary is part of the network and that she launches attacks from adversarial nodes.
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Attack mechanisms

An attack against routing is a specific combination of some attacking mechanisms
aiming at achieving one or more of the objectives introduced above. Those attacking
mechanisms include classical mechanisms such as eavesdropping, replaying, modify-
ing and deleting control packets (i.e., packets containing routing information). In
addition, an adversary can try to fabricate control packets containing fake routing in-
formation, or it can create control packets under a fake identity: the former is called
packet forgery, and the latter is usually referred to as spoofing.

Data packets can also be eavesdropped, replayed, or modified, but these misdeeds
are typically not considered to be routing security issues; they must be prevented or
detected at higher (end-to-end) or lower (hop-by-hop) layers. Dropping data packets
maliciously, however, is considered to be an attacking tool, which targets the packet
forwarding function of routing.

Besides the classical attack mechanisms, there are mechanisms that can even be
useful in some applications, but they can be misused in the context of routing to
implement various attacks. Such a mechanism is tunneling . Tunneling means that
two, potentially remote adversarial nodes pass control packets back and forth between
each other by encapsulating them into normal data packets and using the multi-hop
routing service offered by the network to transfer those data packets. Recall that
in our terminology, a tunnel is not a wormhole (see also Chapter 6 on wormholes),
although both have similar effects on routing. However, a wormhole operates in the
physical layer, and it does not require the adversary to control nodes in the network; a
wormhole can be implemented with two simple radio transceivers connected through
an out-of-band channel. By definition, tunneling means that an adversary can send
data packets between its nodes, therefore, these nodes must be addressable, and hence
present at the routing layer.

7.2.2 Types of attacks

Using the attack mechanisms mentioned in the previous subsection, the adversary can
mount the following types of attacks against routing protocols:

• route disruption;
• route diversion;
• creation of incorrect routing state;
• generation of extra control traffic; and
• creation of a gray hole.

Below, we describe each of these attacks in more details.
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Route disruption

In a route disruption attack, the adversary prevents a route from being discovered
between two nodes that are otherwise connected. In other words, there exists a route
between the two victim nodes, but due to the adversary, the routing protocol is unable
to discover it. The primary objective of this attack is to degrade the quality of service
provided by the network. In particular, the two victims cannot communicate, and
other nodes can also suffer and be coerced to use suboptimal routes.

There are various ways to implement a route disruption attack. In case of topology-
based routing protocols, if the adversary controls a set of nodes that form a vertex cut
in the network, then it is fairly easy to prevent the discovery of any routes between the
two parts of the network by dropping all control packets sent from one part into the
other. Another way to mount a route disruption attack is to forge error messages that
would invalidate the correct routing state in some victim nodes, thereby effectively
preventing them from being able to communicate with some other nodes.

A subtle way of implementing a route disruption attack against some on-demand
routing protocols is to combine tunneling and the deletion of control packets. Let us
assume, for instance, that the protocol works in the following way: When a source
wants to discover a route to the destination, it floods the network with a route re-
quest. When the destination receives the first copy of the request, it does not respond
immediately, but it waits until it receives a copy of the request from each of its neigh-
bors. Then, it selects the neighbor with the best routing metric (e.g., the neighbor
from which it received the request with the smallest hop count or shortest list of
identifiers), and sends a single route reply back to the source through that neighbor.
In this case, the adversary can set up a tunnel somewhere between the source and
the destination and make the route through this tunnel appear to the destination as
the route with the best routing metric.1 Subsequently, when the single route reply
passes through the tunnel on its way back to the source, the adversary drops it. In
this way, the source will never be able to discover a route to the destination.

In the case of on-demand protocols that drop duplicates of a given route request
and use predictable request identifiers (e.g., a sequence number), route disruption can
be achieved by predicting the next request identifier of a victim node and flooding the
network with a spoofed route request containing that identifier. As a result, when the
victim wants to discover a new route, its route request will be perceived as a duplicate
and dropped even by legitimate nodes. This can prevent the discovery of any routes
by the victim.
1 Note that a tunnel appears to be a single link in the network topology for the routing protocol.

In particular, the intermediate nodes that implement the tunnel do not increase the hop count
(in distance vector based protocols) or extend the identifier list (in source routing protocols) in
the route request, as it is encapsulated into a regular data packet, and handled as such by the
intermediate nodes. Therefore, route request messages that passed through the tunnel carry better
metrics than those that traveled in the normal way.
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Similarly, link state protocols also use duplicate detection to control flooding, which
can be exploited in a route disruption attack. For instance, an adversarial node that
re-broadcasts the link state update of a victim node can change the state of all links
of the victim to asymmetric, pointing from the victim to its neighbors. As a result
some nodes that receive this modified link state update message will not be able to
find a route to the victim. In addition, even if these nodes also receive the correct
link state update on an alternative path later, they will drop it as a duplicate.

In position-based routing protocols, there is no explicit route discovery, but the
adversary can still prevent a source from being able to communicate with a destination
by falsifying the location information of the destination. This can be achieved by
spoofing location update messages and coercing the location service to respond to
location queries with false information, or it can be achieved by forging or modifying
a response from the location service.

Route diversion

In a route diversion attack, the adversary does not prevent the establishment of routes,
but it achieves that some established routes are diverted. This means that due to
the presence of the adversary, the protocol establishes routes that are different from
those that it would establish, if the adversary did not interfere with the execution of
the protocol.

The objective of route diversion can be to increase adversarial control over the
communications between some victim nodes. In this case, the adversary tries to
achieve that the diverted routes contain one of the nodes that it controls or a link
that it can observe. Then, the adversary can eavesdrop or modify data sent between
the victim nodes easier. A particularly efficient way to divert routes through nodes
under adversarial control is to setup a tunnel. As routes through the tunnel appear
to be shorter, many pairs of communicating nodes can choose the tunneled routes,
thereby allowing the adversary to access their communications easier.

Another objective of route diversion can be to increase the resource consumption
of some nodes. For instance, if routes are diverted through a tunnel, as described
above, then the nodes close to the two ends of the tunnel will receive a higher amount
of transit traffic, and so they must use more resources to forward that traffic. Alter-
natively, by modifying or forging routing messages, the adversary can divert many
routes directly through a victim node.

Finally, route diversion can aim at increasing the length of discovered routes, and
thus increasing the end-to-end delay between some nodes, which can be viewed as a
degradation of quality of service.

In topology-based routing protocols, route diversion can be implemented by forg-
ing or manipulating control packets. For instance, in source routing protocols, the
adversary can change the list of identifiers in route reply messages. In distance vector
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based protocols, the adversary can decrease hop count values in control messages,
whereas in link state protocols, she can change the state of a link in a link state
update message from symmetric to asymmetric. All these modifications will result in
the establishment of diverted routes by some nodes.

Even the simple dropping of control packets can cause the diversion of routes. For
instance, assume that there are only two routes between a source and a destination,
a long one and a short one, and the latter goes through an adversarial node. Fur-
thermore, assume that an on-demand routing protocol is used. Then, by simply not
re-broadcasting the route request, the adversary can prevent the discovery of the
shorter route and divert the traffic between the source and the destination through
the longer one.

In position-based routing protocols, an adversary can lie about its position and
appear to be closer to a given destination than other nearby nodes. In this way, some
routes can be diverted, and the adversary can increase its control over the commu-
nications of some nodes. Larger detours can be created by pretending that the data
packet encountered a dead-end and forcing the protocol to enter into recovery mode.
Besides diverting the packet, this will also lead to increased resource consumption
associated with the execution of the recovery algorithm.

Creation of incorrect routing state

Another type of attack aims at jeopardizing the routing state in some nodes so that
the state appears to be correct but in fact it is not, and thus data packets routed using
that state will never reach their destinations. One example of this attack is when the
route discovery procedure of a source routing protocol returns a non-existent route
to the source; as a consequence, data packets using this non-existent route will be
dropped when they reach the first non-existent link in the route. Another example is
the creation of a routing loop. In this case, some packets will be forwarded in a cycle
until their hop count reaches the maximum allowed value, and at the end, they are
discarded. Distance vector based protocols are particularly vulnerable to this kind
of attack, because the nodes do not have a full view of the whole network (unlike in
case of link state protocols) or of the entire route (unlike in case of source routing
protocols). Yet another example is when the network is disconnected, but the routing
state in some nodes falsely indicates that each destination is reachable. Again, data
packets are started to be forwarded, but they are eventually dropped, because some
destinations are indeed unreachable.

We must note that routing information can become incorrect due to mobility even
if no adversary tries to interfere with the protocol. For instance, links can be broken,
which results in source routes becoming non-functional. All protocols proposed for
mobile ad hoc networks have a mechanism to cope with this situation (usually based
on sending route error messages), meaning that some inherent protection against the
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attack consisting in creating incorrect routing state already exists in those protocols.
The problem is that these mechanisms are not designed with malicious attacks in
mind, but they assume random errors due to mobility and node failures. In particular,
the reaction time of these mechanisms is quite poor, and a considerable amount of
resources could be wasted before the attack is detected.

Hence, one objective of creating incorrect routing state is exactly to increase the
resource consumption of some nodes: the victims will use their incorrect state to
forward data packets, until they learn that something goes wrong. Obviously, another
objective is to degrade the quality of service.

Incorrect routing state can be created by spoofing, forging, modifying, or dropping
control packets. For instance, in source routing protocols, an adversarial node can
simply overwrite the list of identifiers accumulated in route request messages, returned
in route reply messages, or included in the header of data packets. In distance vector
based protocols, routing loops can be created by manipulating or forging routing
messages in such a way that the resulting routing tables of some nodes contain a
loop. In link state protocols, a link state update message can be modified so that a
non-functional link appears to be functional for some nodes, who can then select routes
that contain that link. Position-based routing protocols seem to be more resistant to
this kind of attack, because intermediate nodes do not store routing states.

Generation of extra control traffic

As we have seen, many routing protocols flood the entire network with control packets.
An attack aiming at increasing resource consumption can exploit this fact by injecting
spoofed control packets into the network. In on-demand protocols, a spoofed route re-
quest can be flooded in this way; similarly, in link state protocols, a spoofed link state
update can be flooded in the network. In distance vector based protocols, a spoofed
routing update message can cause a sequence of “triggered” updates propagating in
the entire network.

Position-based routing protocols again seem to be more resistant to this attack,
because they do not use control packets. However, the attacker can send forged or
spoofed location update messages to the location service. The new location informa-
tion will be distributed among some nodes in the network, and this generates some
extra control traffic. Similarly, the adversary can initiate excessive location informa-
tion retrieval, which will also generate some extra control traffic.

Setting up a gray hole

All the attacks that we have discussed so far target the route establishment function
of routing. Whereas the gray hole attack is concerned with the packet forwarding
function. In a gray hole attack, an adversarial node selectively drops data packets
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that it should forward. If all data packets are dropped, then the gray hole degenerates
into a black hole.

The primary objective of the gray hole attack is to degrade the quality of service.
In particular, the packet delivery ratio between some nodes can decrease considerably.
The gray hole can be detected by protocols above routing (e.g., at the transport layer),
and the source can try to use an alternative route, however this can incur some delay
if no alternative route is currently available and a new route must be established. In
addition to degrading the quality of service, a gray hole will also waste the resources of
those nodes that forward the data packets that are finally dropped by the adversarial
node.

A gray hole attack is trivial to implement: The adversarial node just needs to
participate in the route establishment and then, when it receives data packets for
forwarding, it drops them. However, with a bit of more sophistication, much more
harm can be caused. In particular, the adversary can first setup a tunnel and divert
traffic towards itself; then it drops packets.

All routing protocols that use a single path to route a packet to its destination are
vulnerable to this attack. Yet, the restricted directional flooding protocols that we
discussed in the context of position-based routing are inherently resistant to gray hole
attacks.

7.2.3 Some examples

In the previous subsection, we described the major types of attacks against ad hoc
network routing protocols. In this subsection, we present specific examples that illus-
trate how these attacks can be mounted against the DSR and the AODV protocols.
All examples assume the network topology depicted in Figure 7.4.

Route disruption. Let us consider the DSR protocol first. The source S initiates a
route discovery towards destination D by flooding the network with a route request.
Let us assume that the route caches of all nodes are empty. The adversarial node
A can always prevent route S,H, A,E, G,D from being discovered by dropping the
route request received from S or by dropping the route reply that contains this route.
However, the adversary can also prevent the discovery of route S,B, E,G, D. For
this, A must arrange that E receives the route request from A earlier than from B,
as in that case, E drops the request received from B as a duplicate. Node A can,
for instance, keep the channel constantly busy to prevent E from receiving anything
from B. In this way, the adversary can achieve that none of the existing two routes
between S and D are discovered by DSR.

In the case of AODV, the adversary can prevent the discovery of the routes between
S and D by manipulating the hop count value in the route request message. In
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Fig. 7.4. The network topology used in our examples that illustrate attacks against DSR and
AODV. The network contains a single adversarial node A which is represented by the black
node in the figure. The interconnection of the nodes represent the neighbor relationships;
two nodes are considered to be neighbors if they can hear each other’s transmission.

particular, the adversarial node A can set the hop count value in the route request
message received from H to 0. In this way, E will believe that the next node on the
shortest route to S is A, and therefore, E will forward route reply messages destined
to S to A. By dropping these messages, A can prevent the discovery of any existing
routes between S and D.

Route diversion. In the DSR protocol, route diversion can be performed as follows.
Let us assume again that S initiates a route discovery towards D. When A receives
the route request from H, it responds with a fake route reply that contains the
route S, H, A, D. This fake reply is sent to S. Since the fake route reply contains
a shorter route than the one discovered by the protocol (i.e., S, B, E, G, D), S may
decide to use the route S, H, A, D. Thus, the adversary can successfully divert the
communication between A and D. In order to stay invisible, A must modify the
source route S, H, A, D to S,A, E,G, D in each subsequent data packet that is sent
by S to D.

Route diversion in AODV can be achieved by manipulating the hop count value
in routing control messages as described above in the route disruption attack against
AODV. In particular, if in the above route disruption attack, the adversarial node A

does not drop the route reply message originating from D, then route S, H, A, E, G, D

is discovered by the protocol, which can be viewed as diverted route, as the route
S, B, E, G, D would be shorter.

Creation of incorrect routing states. In the case of DSR, creating incorrect rout-
ing state means that the adversary coerces the source of a route discovery to accept
and cache a non-existent route to the destination. For instance, when node S initiates
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a route discovery in order to communicate with D, A does not re-broadcast the route
request received from H, but it waits until it hears another copy of the same request
from E. This copy of the request contains the route S, B, E. Afterwards, A generates
a route reply containing the route S, B, E, A,D, and sends it to E. The reply is
routed back to S via node B, and S caches the non-existent route S, B, E,A, D.

In the AODV protocol, the adversary can create incorrect routing state in some
nodes by manipulating the destination sequence number or the hop count in routing
control messages. S initiates a route discovery by flooding the network with a route
request. A receives the route request from H, and increments the destination sequence
number before re-broadcasting it in the name of F . As a result, E sets F as its next-
hop towards S, since F is a neighbor of E, and the falsified route request appears to
be fresher than the correct one coming from B. Thus, E gets into an incorrect state,
as there is no route to S via F .

7.3 Securing ad hoc network routing protocols

In the previous section, we saw what kind of attacks are possible against ad hoc
network routing protocols. In this section, we elaborate on techniques that can be
used to defend against some of those attacks. In terms of presentation, we follow
the strategy of the previous section: We first introduce applicable countermeasures in
general, explain why they are needed, and then we illustrate how these countermea-
sures can be used by presenting some specific ad hoc network routing protocols that
are designed with security in mind. A benefit for the reader is that this latter part
on specific protocols can also be used as an independent quick reference on secure
routing protocols proposed for mobile ad hoc networks.

7.3.1 Countermeasures

Origin authentication of control packets

As we have seen in the previous section, many of the attacks against routing protocols
are based on spoofing or modifying control packets. The usual way to thwart these
types of misdeeds is to authenticate packets. But there are two questions that arise
here: First, who should authenticate the control packets? Second, who should be able
to verify the authenticity of control packets?

Regarding the first question, it seems to be natural to require that control packets
are authenticated by their originators. This would make it possible to detect spoofing.
In addition, as message authentication mechanisms usually provide integrity protec-
tion functions, it would also make it possible to detect the modification of control
packets.



192 Secure routing in multi-hop wireless networks

However, the effectiveness of control packet origin authentication can also depend
on the way we handle the second question. In order to see this, let us consider an
on-demand routing protocol and assume that each control packet is authenticated by
its originator (i.e., by the source, in case of route requests, or the destination, in case
of route replies). Let us further assume that only the target (i.e., the destination
or the source) of the control packet can verify its authenticity.2 What we achieve
with this is that spoofed or modified route requests will not be responded to by
the destination, and spoofed or modified route replies will not be accepted by the
source. In other words, we prevent the creation of an incorrect routing state (e.g.,
inserting a non-existent route in the route cache) in the source and the destination.
However, the adversary can still increase the resource consumption of the nodes,
because spoofed or modified route requests and route replies are still processed and
forwarded by intermediate nodes (because they cannot detect that they are spoofed
or modified); in addition, this work is superfluous, because those spoofed or modified
control packets will be discarded by their targets anyway. Spoofed route requests are
especially harmful, because the entire network will be flooded with them. In addition,
if the intermediate nodes update their routing state based on the control packets that
they forward (e.g., they cache routes observed in forwarded route replies), then the
adversary can successfully create incorrect routing state in intermediate nodes despite
the fact that control packets are authenticated.

Thus, a useful design principle can be the following:

• each control packet should be authenticated by its originator;
• in order to prevent the creation of incorrect routing state in the nodes, each node

that updates its routing state as a result of processing a control packet should be
able to verify the authenticity of the packet;

• in order to prevent the generation of extra (and superfluous) control traffic, each
node that processes, and re-broadcasts or forwards a control packet should be able
to verify its authenticity.

Since typically, a routing control packet is processed by several nodes in the net-
work, the authentication mechanism should enable broadcast authentication. In other
words, the originator should authenticate the control packet in such a way that all
the nodes that will process and act upon it will be able to verify its authenticity.
However, the originator usually does not know in advance which other nodes will pro-
cess the packet. Hence, in practice, authenticity should be verifiable by every node.
An authentication mechanism that makes this possible is the digital signature; the
symmetric key equivalent of this is TESLA [309].

We must note here that verifying digital signatures (or MACs, in the case of
2 This is the case when authentication is based on a shared symmetric key between the source and

the destination.



7.3 Securing ad hoc network routing protocols 193

TESLA) also consumes resources. So an adversary can attempt to take advantage of
this by injecting fake control packets in the network; these packets will be dropped,
but trying to verify the signatures on them will increase the resource consumption
of the nodes. The good thing is that these forged packets are not propagated in the
network, but they are caught immediately by the first legitimate node that verifies
their signature. Hence, the effect of the attack is localized: Although some limited
number of nodes might suffer, the rest of the network is saved from processing use-
less control traffic. We must also mention that computation consumes less energy
than communication, therefore it makes sense to trade-off increased computational
overhead for decreased communication load.

Control packet origin authentication using digital signatures or TESLA is an effec-
tive way to secure link state protocols, because in those protocols, control packets do
not change while being broadcast in the network. However, proactive distance vector
protocols and on-demand routing protocols need additional protection mechanisms,
as we will see below.

Protection of mutable information in control packets

In many routing protocols, notably in on-demand protocols, the intermediate nodes
add information to the control packets before forwarding or re-broadcasting them. For
instance, in on-demand source routing protocols, the intermediate nodes extend the
list of identifiers in route request packets with their own identifiers. Likewise, in on-
demand distance vector protocols, the hop count field in the control packets is updated
by each intermediate node. Since other nodes will act upon this added information,
it must also be protected somehow from being forged and modified. However, control
packet origin authentication will not solve this problem, because the information that
we are talking about is added after the originator sends the control packet.

So what can we do? Well, we can apply the same principles as before, and require
that each node that adds information to a control packet should authenticate the
added information in such a way that each other node that acts upon this information
is able to verify its authenticity. This sounds simple, but it becomes complicated when
we take a closer look.

First of all, there are traceable additions and untraceable additions. Extending the
list of identifiers accumulated in the route request is a traceable addition, because
each modification preserves the previous state of the packet, therefore anyone can
see who added information to it. In contrast to this, incrementing the hop count in
control packets is an untraceable addition of information, because it is impossible to
tell just from the hop count value who contributed to it. Needless to say, traceable
and untraceable additions require different protection mechanisms; it should also be
clear, that protecting untraceable additions is much harder.

A seemingly simple solution for authenticating traceable additions to a control
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packet is that each intermediate node that adds information re-signs the entire up-
dated packet. However, there are (at least) three problems with this approach. Firstly,
the signature and the added information can be removed. For instance, imagine that
when a node adds its identifier to the list of identifiers in a route request, it signs the
entire request to authenticate its added information and to link it to the rest of the
packet. An adversarial node can still remove identifiers and corresponding signatures
from the end of the list and, in this way, can manipulate the routing information.
In addition, such removal will be undetected, because all the remaining signatures
verify correctly. Indeed, recall that being traceable means that the packet preserves
its previous states, and the adversary can exploit this by enforcing a previous correct
state.

There are no easy ways to work around this problem. Some proposals (e.g., Ariadne,
described later in this chapter) use a hash value in the packet, which is re-hashed by
each intermediate node, thereby introducing an untraceable element in the packet,
which prevents the adversary to revert a previous correct state. However, this per
hop hash approach does not provide a perfect solution, as we will see later. Another
interesting countermeasure against removing signatures from the end of a signature
list is to replace the signature list with aggregate signatures that makes it possible to
compact multiple signatures from different parties into a single signature in such a
way that anybody can still verify who signed the message.

A second problem of authenticating traceable additions by re-signing the entire
control packet is that it increases the resource consumption of the nodes considerably.
Let us consider, for instance, a route request of an on-demand source routing protocol.
As it is flooded in the network, not only each node has to sign it, but potentially (if
intermediate nodes cache the routes learned from route requests, or simply to prevent
the propagation of a modified request), each node has to verify every signature in the
request, and the number of signatures grows by each hop taken by the request.

In order to overcome this problem some protocols (e.g., SDSR [214] and endairA
[12]) avoid signing the route request. In some other protocols (e.g., in SRP [294]
and in Ariadne [180]), the intermediate nodes are actually not required to verify the
authenticity of the information added by other intermediate nodes to control packets.
This has some disadvantages. For instance, in this case, an adversary can increase
the resource consumption of the intermediate nodes by modifying a control packet,
as this modification will not be detected by the intermediate nodes. In addition,
in this case, intermediate nodes should not be allowed to update their routing state
as a result of processing control packets, because updating the routing state based
on unauthenticated information can lead to an incorrect state. However, by not
allowing state update in intermediate nodes, the effectiveness of the routing protocol
is somewhat decreased. The advantage, however, is that intermediate nodes do not
perform any verifications, apart from performing control packet origin authentication
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and, instead of digital signatures, they can authenticate the information that they
add to control packets by using more efficient MACs that are verifiable by the target
of the control packets (assuming that the target shares a key with every intermediate
node that processed the packet). Note that the target typically acts upon the control
packet (e.g., updates its route cache), therefore it needs to authenticate all information
in it. This approach is followed by Ariadne with MACs.

We must mention here that using symmetric key MACs requires the establishment
of shared keys between the nodes. We can use traditional session key establishment
protocols for this purpose (e.g., protocols based on a key distribution center), but
there is an interesting problem that arises here: key distribution messages must also
be routed somehow, but at the same time they are needed for setting up the routing
infrastructure securely. Thus, there seems to be a vicious circle of requirements here.
One way to solve this problem is to use another approach to route key distribution
messages, such as broadcasting them blindly in the network. Another approach is to
distribute some of the keys out-of-band (e.g., manually, or using some of the tech-
niques described in Chapter 5), and then use these available keys for authenticating
routing messages and setting up the remaining keys at the same time. This can be
achieved by piggybacking key establishment information on routing control packets
that are secured with the already established keys; an example of this approach is
BISS (Building secure routing out of an Incomplete Set of Security associations) [84].

The third problem with authenticating traceable additions by re-signing the control
packet is that, in fact, authentication will not solve every problem. In particular,
adversarial nodes can add incorrect information to control packets, and then sign
them. Recall that the adversary is an insider, who can possess some signing keys. As
a result, the packet will be verified as authentic, but the information inside can still
be incorrect, leading to the creation of incorrect routing state in some nodes. This is
a tough problem. An approach to mitigate it would be to verify the consistency of
the information received in a control packet by cross-checking it with other control
packets. Unfortunately, this solution might not be applicable in general.

Let us now investigate how to deal with untraceable additions to control packets.
Typically, untraceable additions are used by distance vector protocols (both proactive
and reactive). In reactive distance vector protocols, intermediate nodes increase the
hop count in control packets (i.e., in route requests and route replies). In proactive
distance vector protocols, control packets are not forwarded or re-broadcast explicitly,
but still nodes broadcast their routing tables, which can cause some changes in the
routing tables of their neighbors who will then broadcast their routing tables, and
so on. Thus, the principle is the same and, in both cases, the same problem arises:
the nodes update their routing state based on untraceable information (received in
control packets or accumulated in the routing tables of their neighbors).

In essence, this is a problem related to trust. Let us explain why through an
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example: Assume that a node A receives a control packet from one of its neighbors
B indicating that the hop count to a given destination is x. In order to accept the
packet, A must believe that B behaved correctly and it received the control packet
from one of its neighbors C with a hop count x− 1. However, this is not enough; A

must also believe that C behaved correctly and it received the control packet from
some other node D with a hop count x− 2, and so on. Thus, A must trust the whole
chain of nodes that processed the control packet, however, due to the untraceability
condition, it does not even know who those nodes are. In other words, the whole
thing works only if A can trust every node in the network, but it cannot, because it
knows that the adversary is an insider who controls some of the nodes. Note that
exactly the same problem arises in proactive distance vector protocols.

There is no bullet-proof solution to this problem. Some protocols (e.g., SAODV
[386] and SEAD [175]) use per hop hashing. The idea is the following: Control packets
(in the case of SAODV) or routing table entries (in the case of SEAD) contain not
only a hop count, but also a hash value that is initialized by the originator of the given
control packet or the destination corresponding to the given routing table entry. In
the case of SAODV, each intermediate node that forwards or re-broadcasts a control
packet, increments the hop count and computes the one-way hash of the hash value
that it received in the control packet. Likewise in SEAD, when a node updates an
entry in its routing table, it increments the hop count and hashes the hash value that
it received in the corresponding entry of the routing table of its neighbor. As a result,
adversarial nodes cannot decrease the hop count in control packets (in SAODV) and
in routing table entries (in SEAD) that they process, because they cannot invert the
hash function. However, they can always increase the hop count, and this can also
lead to creating incorrect routing state in other nodes.

Another approach is to eliminate hop counts as a routing metric. One interesting
solution is to replace the hop count with the packet propagation delay. For instance,
the originator of a control packet can put a timestamp in the packet when sending it.
Each intermediate node that receives the packet can compute the time that the packet
traveled until it arrived at the given node (assuming synchronized clocks). Then, a
routing table entry can be updated if a faster route is discovered, and the routing
metric in the entry would be set to the computed delay. An example of a protocol
that follows this approach is ARAN (described later in this chapter). Actually, using
the delay as a routing metric is a good idea, because the adversary cannot transfer
data faster than the speed of light, therefore attacks (at least those attempting to
shorten routes) are inherently limited. The disadvantage is that this approach needs
synchronized clocks. In addition, the packet propagation delay between two nodes
can vary in time, and it might not be the same in both directions.

To summarize, there is no perfect solution to protect mutable information in rout-
ing control packets, and hence different protocols choose different tradeoffs. Link
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state protocols are very advantageous from this point of view, because they have no
mutable information in their control packets. Similarly, position-based protocols are
also advantageous, because they have no control packets at all.

Detecting tunnels

Recall that tunneling means that two adversarial nodes pass routing control packets
back and forth between each other by encapsulating them into normal data packets.
The result of this is that the two adversarial nodes appear to be neighbors in the
routing topology, while in reality, they may be far away from each other. The effect
of the tunneling attack on routing is therefore similar to the effect of wormholes. In
particular, routes through the tunnel appear to be shorter and may be preferred by
some nodes, which increases the adversarial control over the communications of those
nodes. Note, however, that tunneling is a network layer attack, because it requires at
least two adversarial nodes that are addressable and that can communicate with each
other using the network itself. In contrast to this, wormholes do not require presence
at the network layer, and they use out-of-band channels to connect the transceivers
of the adversary.

A first interesting observation with respect to tunnels is that they rely on the very
same mechanism that they try to subvert (i.e., routing). The problem is that due to
the tunnel, some nodes store incorrect routing state. This may also be true for the
nodes that participate in the forwarding of the tunneled traffic. At the end, the incor-
rect routing state in these nodes may result in the disruption of the communication
through the tunnel. In other words, the tunnel may collapse upon itself.

Let us assume, for instance, that node F is the first node that should forward the
tunneled traffic from adversarial node A to another adversarial node A′. Since A and
A′ report themselves neighbors, F may conclude that the shortest route from itself to
A′ is the route through A. Thus, when A sends tunneled messages towards A′ via F ,
F will send those messages back to A. However, the adversary may solve this problem
by introducing a third adversarial node midway between A and A′, and sending all
tunneled traffic between A and A′ through this third node.

Let us now consider how tunneling could be detected. First of all, since worm-
holes and tunnels are similar, some wormhole detection approaches may be success-
fully adopted to detect tunnels. In particular, some centralized wormhole detection
approaches that we described in Subsection 6.2.1 can be easily adopted to detect
tunneling attacks against link state routing protocols. In this case, the tunneling ad-
versarial nodes report each other as neighbors in their link state update messages. A
central entity that can collect all link state update messages is able to re-construct the
believed topology of the network, and it can detect inconsistencies in this topology.
For instance, if the adversarial nodes are far away from each other, then they will not
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have common neighbors in the re-constructed network topology. This is suspicious,
as in a typical network topology, neighboring nodes likely have common neighbors.

Some decentralized wormhole detection approaches can also be adopted to detect
tunnels. Let us consider, for instance, on-demand source routing protocols where
the routing control packets carry the list of nodes that constitute a route or a route
segment. If each node is aware of its own geographic position, then, besides its
identifier, each intermediate node can also place its position in the control packets.
Thus, by inspecting the position information in a control packet, non-corrupted nodes
can detect shortcuts in the route or route segment carried by the packet. Clearly,
this approach needs other countermeasures as well to prevent the adversary from
modifying the position information in the routing control packets.

Another approach is based on the observation that a virtual link in the topology
created by a tunnel is actually a multi-hop route, and therefore, the delay on this
virtual link must be much higher than the delay on a real link. Now, there are
two strategies. First, each node could measure the round trip time to its three-hop
neighbors3 explicitly. From the measured timings, the node can deduce whether its
three hop neighbors are reachable through a tunnel or not, and if so, which link
may be the tunneled one. Alternatively, the routing protocol could use the end-
to-end delay between a source and a destination as a routing metric instead of the
hop count. In this way, the tunnel may not be detected explicitly, but its effect
is greatly reduced, because sending routing control packets through the multi-hop
tunnel cannot be significantly faster than sending them through similar alternative
routes. An example of a distance vector routing protocol that uses this principle is
ARAN [333], which we discuss later in Subsection 7.3.2.

Finally, when a control packet is tunneled from one adversarial node to another, it
is placed in the payload part of a data packet. Hence, the control packet “disappears”
at one end of the tunnel and “re-appears” at the other end. Such a disappearing and
re-appearing packet may be detected by the neighbors of the two end of the tunnel. In
particular, if the nodes monitor the incoming and outgoing traffic of their neighbors,
then an overheard control packet which is not re-transmitted by a neighbor may be
an indication for a tunneling attack. Similarly, if a node overhears the transmission
of a control packet, but no one in the neighborhood heard this control packet before,
then the packet may have arrived through a tunnel. Unfortunately, this kind of
monitoring is not very reliable as we will see soon in the next subsection where we
discuss countermeasures against gray holes. Another disadvantage is that continuous
monitoring requires the nodes to run in promiscuous mode and listen to the channel
all the time, which consumes a lot of energy.
3 Note that measuring round trip times to direct neighbors or to two-hop neighbors would not help

to detect the virtual link.
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Combating gray holes

Gray holes are attacks against the packet forwarding function of routing. Conse-
quently, countermeasures must aim at the protection of data packets rather than
control packets. There are two main approaches to combat against gray holes. The
first one consists in using multiple, preferably disjoint routes between the source and
the destination to send data packets. The idea is that even if forwarding is disrupted
by the adversary on some of these routes, the packet can still be delivered through
the remaining routes. This is a robust approach, but it induces increased resource
consumption in intermediate nodes, as they have to forward multiple copies of the
same data packet. This overhead can be reduced by using special coding schemes by
which the packet can be split into smaller pieces in such a way that a threshold num-
ber of pieces (but not all) is sufficient to reconstruct the entire packet. In this case,
not the packet itself, but its smaller pieces must be sent through multiple routes to
the destination. The adversary can drop some of the pieces, but if enough of them are
received by the destination, then the packet is successfully delivered. This approach
still has some overhead, as the pieces must be redundant to be able to tolerate the
loss of some of them. However, what we lose on redundancy, we gain in terms of
robustness and, at the end, the nodes waste more resources (by forwarding packets
that are never delivered) in the single path approach than in case of using multiple
routes. As an example of multi-path forwarding, we present the SMT protocol [297]
later in this section.

One can also use a “detect and react” approach to mitigate the effect of gray hole
attacks. In this case, the idea is to first detect if a node does not forward data
packets, and then, to select routes that avoid the misbehaving node. Gray holes can
be detected by requiring each node to monitor the activities of its neighbors. By
doing so, a correctly behaving node can detect that one of its neighbors has received
a packet that it should forward, but it does not. This kind of monitoring can be
implemented by putting the network interface of the nodes in the promiscuous mode
(most interface cards allow this) and by listening to everything in the wireless channel.
If a node does not overhear the retransmission of a packet by its neighbor, then that
neighbor can be suspected to misbehave. This sounds simple, but the devil is always
in the details. First of all, this approach requires the nodes to run in the promiscuous
mode, which consumes much more energy than allowing the nodes to go into the
sleep mode when they have nothing else to do. Secondly, it turns out that this kind
of monitoring is not very reliable. Below, we list some cases where either a correctly
behaving node is falsely identified as misbehaving or a misbehavior is not detected.

For illustration purposes, let us assume that a packet should be forwarded by nodes
A, B, and C - in this order. For the first example, let us further assume that A

forwarded the packet. When B forwards the packet, A can receive something at the
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same time from another node X that B does not hear. Thus, the transmissions of X

and B will collide at A, and A will not hear that B forwarded the packet. Hence, A

will falsely believe that B is misbehaving. For this reason, the nodes should not decide
definitely about their neighbors’ behavior after just one experience, but they should
monitor their neighbors for an extended period of time. Typically, a node would be
identified as misbehaving node (i.e., a gray hole) only if it is perceived as dropping
packets with a rate higher than a predefined threshold. This, however, allows the
adversary to drop packets with a rate below that threshold.

For the second example, let us assume again that A forwarded the packet. When
B also forwards it, the transmission can collide with some other transmission at C.
Hence, A will believe that B forwarded the packet, but in fact, C did not receive it.
Then, B can skip the re-transmission, because A will not accuse it for misbehavior.

For the third example, suppose that the nodes can control their transmission power,
and that A is closer to B, than B to C. Then, B can forward the packet with a power
that allows A to overhear B’s transmission, but does not allow C to receive the packet.
Again, A will falsely believe that B behaves correctly.

Finally, let us assume that B and C are colluding, and B does not report when C

drops a packet. Again, neither B nor C will be identified as a misbehaving node.
Instead of local neighbor monitoring, misbehaving nodes can also be detected in an

end-to-end manner by requiring the destination and the intermediate nodes on the
route of a packet to send acknowledgements to the source. This approach requires
that the nodes use source routing, and therefore, the source knows the entire route
to the destination. The idea is the following: The destination is required to return
an acknowledgement for every packet that it receives successfully. Based on these
acknowledgements, the source keeps track of the loss rate in a time window of a given
size. If the loss rate exceeds a threshold, the source starts a binary search on the route
to identify the misbehaving node, or more precisely, the link that causes the delivery
failure of the packets. For this, the source adaptively specifies a list of intermediate
nodes in the subsequent packets that should also return an acknowledgment for the
packets that they successfully processed. These nodes are called probe nodes. First,
one probe node is selected in the middle of the path between the source and the desti-
nation. If the acknowledgements arrive from this node but not from the destination,
then the bad link must be between the probe node and the destination. Otherwise,
if the acknowledgements do not arrive from the probe node either, then the bad link
must be between the source and the probe node. Once the sub-path that contains the
bad link is identified, a new probe node is specified in the middle of that sub-path.
This procedure is continued until the sub-path that contains the bad link is narrowed
down to a single link, which must be the bad link. The misbehaving node can be
either end of the identified bad link.

We must note that the approach described above requires the lifetime of the routes
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to be sufficiently long so that there is enough time to identify the bad link. In
addition, the source must be able to authenticate the acknowledgements sent by the
probe nodes.

Now, let us assume that the gray hole is detected with a reasonable level of accuracy.
The next step is to invoke some reaction mechanism. This typically involves the
distribution of information about misbehaving nodes to other nodes in the network,
so that the nodes can avoid the gray holes when setting up routes. Warnings about
a gray hole can be distributed in the entire network. In this case, it is assumed that
the nodes maintain reputation values for all other nodes in the network, and when
they receive notifications about gray holes they update these values by lowering the
reputation of the misbehaving nodes. The reputation values are then used in the
route establishment process (i.e., routes traversing nodes with good reputation are
preferred).

Building up reputation can be a lengthy process, but it is possible to expedite it by
letting the nodes exchange their reputation values. In this case, if A trusts B, and B

says that C is not very trustworthy in terms of packet forwarding, then A can try to
avoid routes containing C, even if it has no previous experience with C at all. This
principle of “recommendations” is very intuitive and well-known from real life, but it
is quite difficult to implement it in ad hoc networks correctly. The main problem is
that the adversarial nodes can try to frame some other nodes by disseminating bad
reputation reports about them. Hence some kind of a trust model must be used to
govern the maintenance of reputation values, which carefully combines each node’s
own experience with reports from other nodes.

Later in this section, we describe two examples of the “detect and react” approach:
Watchdog and Pathrater [263], and the ODSBR protocol [34]. The former uses neigh-
bor monitoring, whereas the latter is based on the adaptive acknowledgement scheme
that we described above.

7.3.2 Specific examples of secure routing protocols

SRP

SRP (Secure Routing Protocol) was proposed in [294] as a secure on-demand source
routing protocol for mobile ad hoc networks based on symmetric key cryptography.
The design of SRP was driven by the observation that due to the mobility of the
nodes, and hence the volatility of the routes, it would be impractical to require that
the source or the destination shares keys with all intermediate nodes on a route.
Therefore, in SRP only the source and the destination share a key, which simpli-
fies the key management considerably. This results in a strict end-to-end exchange
of routing control information between the source and the destination, and end-to-
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end authentication of routing control packets. SRP introduces another useful design
principle as well: the avoidance of optimizations. This means that in SRP, the in-
termediate nodes do not send replies to route discovery messages (only on behalf of
the destination) and they do not cache information from overheard routing control
packets.

S → ∗ : (rreq, S, D, id , sn, macS, [ ])
F1 → ∗ : (rreq, S, D, id , sn, macS, [F1])
F2 → ∗ : (rreq, S, D, id , sn, macS, [F1, F2])
D → F2 : (rrep, S, D, id , sn, [F1, F2], macD)
F2 → F1 : (rrep, S, D, id , sn, [F1, F2], macD)
F1 → S : (rrep, S, D, id , sn, [F1, F2], macD)

Fig. 7.5. Operation example of SRP and format of the SRP messages. The identifier of the
source is S, the identifier of the destination is D, and the identifiers of the intermediate nodes
are F1 and F2. id is a randomly generated query identifier, sn is a query sequence number
maintained by S and D, macS is the MAC generated by S that covers the fields rreq, S, D,
id , and sn, and macD is the MAC generated by D that covers the fields rrep, S, D, id , sn,
and (F1, F2).

The operation of SRP and the format of SRP messages are illustrated in Figure 7.5.
The source generates a route request message and broadcasts it to its neighbors.
The integrity of this route request is protected by a MAC that is computed with
a key shared between the source and the destination. Each intermediate node that
receives the route request for the first time appends its identifier to the request and
re-broadcasts it. The MAC in the request is not checked by the intermediate nodes
(as they do not know the key with which it was computed), and the nodes do not
append their own MACs either (i.e., they do not authenticate the route request).
When the route request reaches the destination, it contains the list of identifiers of
the intermediate nodes that passed the request on. This list is considered as a route
found between the source and the destination.

The destination verifies the MAC of the source in the request. If the verification
is successful, then it generates a route reply and sends it back to the source via
the reverse4 of the route obtained from the route request. The route reply contains
the route obtained from the route request, and its integrity is protected by another
MAC generated by the destination with a key shared between the destination and
the source. Each intermediate node passes the route reply to the next node in the
route (towards the source) without modifying it. When the source receives the reply
it verifies the MAC of the destination, and if this verification is successful, then it
accepts the route returned in the reply.

The destination can receive several route requests that belong to the same route
4 SRP assumes that links are bidirectional.
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discovery process5, and it sends a reply to each of these requests. It is assumed that
the source waits for some time (defined by a timeout parameter), and then it outputs
the set of routes collected from all the replies it received.

SRP is a very efficient protocol, as route request and route reply messages contain
only a single MAC value; moreover these MAC values are not processed by the inter-
mediate nodes. At the same time, if it is combined with a secure neighbor discovery
protocol, then SRP provides protection against attacks aiming at route disruption,
route diversion, and the creation of incorrect routing state. To be more precise, SRP
resists against attacks mounted by an adversary from a single adversarial node, or
from multiple non-colluding nodes, but not against attacks mounted by colluding
adversarial nodes (see questions at the end of this chapter).

Ariadne

Ariadne is proposed in [180] as a secure on-demand source routing protocol for ad hoc
networks. Ariadne comes in three different flavors corresponding to three different
techniques used for data authentication. More specifically, authentication of routing
messages in Ariadne can be based on TESLA [309], on digital signatures, or on stan-
dard MACs. Ariadne with digital signatures is conceptually the simplest among these
three versions, therefore we begin the presentation with that variant.

S : hS = MAC SD(rreq, S, D, id)
S → ∗ : (rreq, S, D, id , hS, [ ], [ ])
F1 : hF1 = H(F1, hS)
F1 → ∗ : (rreq, S, D, id , hF1 , [F1], [sigF1

])
F2 : hF2 = H(F2, hF1)
F2 → ∗ : (rreq, S, D, id , hF2 , [F1, F2], [sigF1

, sigF2
])

D → F2 : (rrep, D, S, [F1, F2], [sigF1
, sigF2

], sigD)
F2 → F1 : (rrep, D, S, [F1, F2], [sigF1

, sigF2
], sigD)

F1 → S : (rrep, D, S, [F1, F2], [sigF1
, sigF2

], sigD)

Fig. 7.6. Operation example of Ariadne with signatures and format of the Ariadne messages.
The source is S, the destination is D, and the intermediate nodes are F1 and F2. id is a
randomly generated query identifier, H is a publicly known one-way hash function, and
MAC SD is a MAC function used with the key shared between S and D. sigF1

, sigF2
, and

sigD are digital signatures of F1, F2, and D, respectively. Each signature is computed over
the message fields that precede the signature.

The operation of Ariadne with digital signatures is illustrated in Figure 7.6. As we
can see, there are two main differences between Ariadne and SRP. First, in Ariadne not
only the source and the destination authenticate the messages, but the intermediate
nodes also insert their own digital signatures in route requests. Second, Ariadne uses
5 As the neighbors of the destination re-broadcast the request at most once, the destination can

receive at most as many requests as the number of its neighbors.
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per-hop hashing to prevent removal of identifiers from the accumulated route in the
route request.

The source generates a route request message and broadcasts it to its neighbors.
The route request message contains the identifiers of the source and the destination,
a randomly generated request identifier, and a MAC computed over these elements
with a key shared by the source and the destination. This MAC is hashed iteratively
by each intermediate node together with its own identifier using a publicly known
one-way hash function. The hash values computed in this way are called per-hop
hash values. Each intermediate node that receives the request for the first time
re-computes the per-hop hash value, appends its identifier to the list of identifiers
accumulated in the request, and generates a digital signature on the updated request.
Finally, the signature is appended to a signature list in the request, and the request
is re-broadcast.

When the destination receives the request, it verifies the per-hop hash by re-
computing the MAC of the source and the per-hop hash value of each intermediate
node. Then, it verifies all the digital signatures in the request. If all these verifications
are successful, then the destination generates a route reply and sends it back to the
source via the reverse of the route obtained from the route request6. The route reply
contains the identifiers of the destination and the source, the route and the list of
digital signatures obtained from the request, and the digital signature of the desti-
nation on all these elements. Each intermediate node passes the reply to the next
node on the route (towards the source) without any modifications. When the source
receives the reply, it verifies the digital signature of the destination and the digital
signatures of the intermediate nodes (for this it needs to reconstruct the requests that
the intermediate nodes signed). If the verifications are successful, then it accepts the
route returned in the reply.

Ariadne with TESLA is similar to Ariadne with digital signatures, but instead of
signatures, the intermediate nodes compute MACs on the route request with their
current TESLA key (see Appendix A for details on the operation of TESLA). The
advantage of this is that MACs can be computed more efficiently than digital signa-
tures. However, the disadvantage is that the application of TESLA introduces some
delay in the route discovery process, which may not be desirable in dynamic networks.
When the destination receives the route request, it verifies that the TESLA keys that
were used in the request have not been disclosed yet (i.e., their indicated discloser time
is still in the future). The destination also verifies the per-hop hash value received in
the request by iteratively computing all the per-hop hash values of the intermediate
nodes. If these verifications are successful, then the destination returns a route reply,
which includes the MACs of the intermediate nodes obtained from the request.
6 Here it is again assumed that links are bidirectional.
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Each intermediate node that receives the route reply waits until it can disclose the
TESLA key that it used to compute the MAC for the corresponding route request.
Then, it appends this TESLA key to the reply before passing it on to the next
intermediate node. In this way, when the route reply arrives to the source, it contains
all the TESLA keys needed to verify the MACs of the intermediate nodes (obtained
from the request and inserted also in the reply). The source can thus authenticate all
intermediate nodes.

S : hS = MAC SD(rreq, S, D, id)
S → ∗ : (rreq, S, D, id , hS, [ ], [ ])
F1 : hF1 = H(F1, hS)
F1 → ∗ : (rreq, S, D, id , hF1 , [F1], [macF1 ])
F2 : hF2 = H(F2, hF1)
F2 → ∗ : (rreq, S, D, id , hF2 , [F1, F2], [macF1 , macF2 ])
D → F2 : (rrep, D, S, [F1, F2], macD)
F2 → F1 : (rrep, D, S, [F1, F2], macD)
F1 → S : (rrep, D, S, [F1, F2], macD)

Fig. 7.7. Operation example of Ariadne with standard MACs. It is assumed that each
intermediate node shares a key with the destination D. macF1 and macF2 are MACs computed
by F1 and F2, respectively, with the keys that they share with D. Each MAC is computed
over the message fields that precede the MAC.

Finally, when Ariadne is used with standard MACs, then it is assumed that each
intermediate node shares a key with the destination. Figure 7.7 illustrates the op-
eration and the messages of Ariadne with standard MACs. The source generates a
route request and broadcasts it in the network. Each intermediate node computes a
MAC on the request with the key that it shares with the destination. Hence, all these
MACs can be verified by the destination when it receives the request. In addition,
the per-hop hash mechanism is used too, in order to prevent the removal of MACs
from the end of the MAC list in the request. If the verification of the MACs and the
per-hop hash value by the destination are successful, then the destination generates
a reply, which contains the discovered route, and it is protected by a MAC computed
by the destination with a key that it shares with the source. Each intermediate node
passes the reply to the next node on the route without any modification. When the
reply arrives at the source, it verifies the MAC of the destination. Note that in this
case, the source cannot authenticate the intermediate nodes, but it must trust the
destination to perform this authentication correctly. In addition, the intermediate
nodes can authenticate neither the route request nor the route reply.

In [180], an optimized version of Ariadne is proposed, which does not use a per-hop
hash value and a MAC list in the route request, but it uses instead a single MAC
that is updated by the intermediate nodes iteratively. In this optimized version of
Ariadne, the route request re-broadcast by the i-th intermediate node Fi has the
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following format:

(rreq, S, D, id , [F1, . . . , Fi−1, Fi], macFi)

where macFi is a MAC computed by Fi with the key that it shares with D on the
route request that it received from Fi−1:

(rreq, S, D, id , [F1, . . . , Fi−1], macFi−1)

This optimized version is more efficient than the basic protocol in terms of compu-
tational and communication overhead. First, there is no need for the per-hop hash
mechanism anymore, because the MACs computed by the intermediate nodes can
play the same role as the per-hop hash values in the original protocol. Second, route
requests are shorter, because they do not contain a per-hop hash value and they con-
tain only a single MAC instead of a MAC list. Finally, this optimized version seems to
be more secure than the original version that uses a MAC list, because the adversary
cannot access the individual MACs of the intermediate nodes in the same way as it
can in case of a MAC list, and therefore, MACs cannot be removed from the route
request at the adversary’s will.

In the basic Ariadne protocol, a route request is not authenticated until it reaches
the destination. Thus, an adversary can initiate malicious route request flooding in
the network aiming at increasing the resource consumption of the nodes. In order to
protect against this, Ariadne is extended with a rate limiting mechanism based on
one-way hash chains (for a detailed description of hash chains, see also Appendix A).
The idea is the following: Each node generates a hash chain and releases its element
in reverse order, one element with each route request message that it originates. Since
route requests are flooded in the entire network, all nodes learn the most recent hash
chain element of all other nodes. When a node receives a route request message,
it verifies if the hash chain element in the message is fresher than the most recent
hash chain element that belongs to the source of the route request. This can be done
by hashing the value received in the route request and comparing the result to the
stored hash chain element. The route request is re-broadcast only if this verification
is successful. Due to the one-way property of the hash chains, the adversary cannot
predict the next element of the chain to be released, and therefore, cannot initiate
the flooding of malicious route requests.

endairA

endairA is another secure on-demand source routing protocol proposed in [12]. The
design of endairA has been inspired by Ariadne, hence, the two protocols are quite
similar. The difference is that instead of signing the route request, in endairA, in-
termediate nodes sign the route reply. This explains the name endairA, which is the
reverse of Ariadne. A remarkable feature of endairA is that it can be proven to be
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secure in a formal model. We will elaborate on this in the next section. Here, we
describe the operation of the protocol.

The operation and the messages of endairA are illustrated in Figure 7.8. In endairA,
the source generates a route request that contains the identifiers of the source and the
destination, and a randomly generated request identifier. Each intermediate node that
receives the request for the first time appends its identifier to the route accumulated
so far in the request and re-broadcasts the request. When the request arrives at
the destination, it generates a route reply. The route reply contains the identifiers
of the source and the destination, the accumulated route obtained from the request,
and a digital signature of the destination on these elements. The reply is sent back
to the source on the reverse of the route found in the request. Each intermediate
node Fi that receives the reply verifies that its identifier is in the node list carried by
the reply, and that the preceding identifier Fi−1 (or that of the source if there is no
preceding identifier in the node list) and the following identifier Fi+1 (or that of the
destination if there is no following identifier in the node list) belong to neighboring
nodes. Each intermediate node also verifies that the digital signatures in the reply
are valid and that they correspond to the following identifiers in the node list and to
the destination. If these verifications fail, then the reply is dropped. Otherwise, it is
signed by the intermediate node and passed to the next node on the route (towards
the source). When the source receives the route reply, it verifies if the first identifier
in the route carried by the reply belongs to a neighbor. If so, then it verifies all the
signatures in the reply. If all these verifications are successful, then the source accepts
the route.

S → ∗ : (rreq, S, D, id , [ ])
F1 → ∗ : (rreq, S, D, id , [F1])
F2 → ∗ : (rreq, S, D, id , [F1, F2])
D → F2 : (rrep, S, D, id , [F1, F2], [sigD])
F2 → F1 : (rrep, S, D, id , [F1, F2], [sigD, sigF2

])
F1 → S : (rrep, S, D, id , [F1, F2], [sigD, sigF2

, sigF1
])

Fig. 7.8. An example of the operation and the messages of endairA. The source is S, the
destination is D, and the intermediate nodes are F1 and F2. id is a randomly generated
request identifier. sigD, sigF1

, and sigF2
denotes the digital signature of D, F1, and F2,

respectively. Each signature is computed over the message fields (including the signatures)
that precede the signature.

endairA has a significant advantage over Ariadne (and similar protocols): It is more
efficient, because it requires less cryptographic computation overall. This is because
in endairA only the processing of the route reply message involves cryptographic op-
erations meaning that only those nodes need to perform cryptographic computations
that are in the node list carried in the route reply. In contrast with this, in Ariadne,
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the route request messages need to be digitally signed by all intermediate nodes; how-
ever, due to the way a route request is propagated, this means that each node in the
network must sign each and every route request.

One problem with the basic endairA protocol is that it is vulnerable to malicious
route request flooding attacks. This is because the route request messages are not au-
thenticated, and hence an adversary can initiate route discovery processes by spoofing
route request messages. These spoofed route requests would be flooded in the net-
work, because only the impersonated source can detect that they are spoofed. In
order to prevent this, the route request can be digitally signed by the source, and
rate limiting techniques similar to the one used by Ariadne can be applied to endairA
too. Naturally, such extensions put more burden on the nodes, as now they also need
to verify the signature of the source in each route request message and to maintain
information that is required by the rate limiting mechanism.

Finally, we note that endairA can be optimized with respect to communication
overhead by replacing the signature list in the route reply with a single aggregate sig-
nature (e.g., using the scheme described in [57]). This aggregate signature is computed
by the intermediate nodes iteratively similarly to the iterated MAC computation in
the optimized version of Ariadne.

SAODV

SAODV [386] is a secure variant of AODV. Its operation is similar to that of AODV,
but it uses cryptographic extensions to provide authenticity and integrity of routing
messages, and to prevent the manipulation of the hop count information.

Conceptually, SAODV routing messages (i.e., route requests and route replies) have
a non-mutable and a mutable part. The non-mutable part includes, among other
fields, the node sequence numbers, the addresses of the source and the destination,
and a request identifier, whereas the mutable part contains the hop count information.
Different mechanisms are used to protect the different parts.

The non-mutable part is protected by the digital signature of the originator of the
routing message (i.e., the source, in the case of a route request, and the destination, in
the case of a route reply). This ensures that the non-mutable fields cannot be changed
by an adversary without the change being detected by non-compromised nodes.

SAODV uses hash chains in order to prevent the manipulation of the hop count
information. There are four specific fields in the routing messages that are used by
the hop count protection mechanism: HopCount, MaxHopCount, Hash, and TopHash.
When a node originates a routing message (i.e., a route request or a route reply), it
first sets the HopCount field to 0, and the MaxHopCount field to the TTL (Time-
to-Live) value. Then, it initializes the Hash field of the routing message with a
random value. After that, it calculates the TopHash field by hashing the seed it-
eratively MaxHopCount times. The MaxHopCount and the TopHash fields belong to
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the non-mutable part of the message, whereas the HopCount and the Hash fields are
mutable. Every node receiving a routing message hashes the value of the Hash field
(MaxHopCount−HopCount) times, and verifies whether the result matches the value
of the TopHash field. Then, before re-broadcasting a route request or forwarding a
route reply, the node increases the value of the HopCount field by one, and updates
the Hash field by hashing its value once.

The rationale behind using the above hash chaining mechanism is that given the
values of the Hash, the TopHash, and the MaxHopCount fields, anyone can verify the
value of the HopCount field. Preceding hash values, however, cannot be computed
starting from the value in the Hash field due to the one-way property of the hash
function. This is intended to ensure that an adversary cannot decrease the hop count,
and thus cannot make a route appear shorter than it really is. This is not true in
general, because an adversarial node that happens to be in the route between the
source and the destination can pass on the routing message without increasing the
value of the HopCount field and updating the value of the Hash field. In this way, she
can make the route seemingly shorter. In addition, as we have already pointed out,
the adversary can always increase the hop count.

ARAN

ARAN (Authenticated Routing for Ad hoc Networks) is another secure, on-demand
distance vector routing protocol for ad hoc networks proposed in [333]. Just like
SAODV, ARAN uses public key cryptography to ensure the integrity of routing mes-
sages. Its operation and message format are illustrated in Figure 7.9.

S → ∗ : (rreq, D, certS, n, t , sigS)
F1 → ∗ : (rreq, D, certS, n, t , sigS, sigF1

, certF1)
F2 → ∗ : (rreq, D, certS, n, t , sigS, sigF2

, certF2)
D → F2 : (rrep, S, certD, n, t , sigD)
F2 → F1 : (rrep, S, certD, n, t , sigD, sigF2

, certF2)
F1 → S : (rrep, S, certD, n, t , sigD, sigF1

, certF1)

Fig. 7.9. Operation example of ARAN. S and D are the identifiers of the source and the
destination, respectively, and F1 and F2 are the identifiers of the intermediate nodes. n is a
nonce generated by S, and t is the current time-stamp when generating the route request.
certX and sigX are the public key certificate and the digital signature of X, respectively.
All signatures are generated on the message fields that precede the signature.

The source node begins the route discovery process by broadcasting a route request
message. This route request contains the identifier of the destination, the public key
certificate of the source, a nonce generated by the source, the current time-stamp, and
the digital signature of the source on all these elements. The nonce, the time-stamp,
and the identifier of the source together uniquely identify the message, and they are
used to detect and discard duplicates of the same request (and reply).
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Later, when the request is propagated in the network, intermediate nodes also
sign it. Hence, in general, the request contains two signatures: that of the source
and that of the last intermediate node that processed it. Intermediate nodes process
the request as follows: When an intermediate node Fi+1 receives the request from
another intermediate node Fi, it verifies the signatures of the source S and Fi, and
the freshness of the nonce. If these verifications are successful, then Fi+1 sets an entry
in its routing table with S as destination, and Fi as next hop. Then, Fi+1 removes
the certificate and the signature of Fi, signs the request, appends its own certificate,
and re-broadcasts the updated request.

When the destination receives the first route request that belongs to this route
discovery, it performs the verifications and updates its routing table in a similar
manner by the intermediate nodes. Then, it sends a route reply message to the
source. The route reply is propagated back on the reverse of the discovered route as
a unicast message. The route reply is signed by the destination; in addition, like in
the case of the route request, it is also signed by the intermediate node that has just
passed it on. The processing of the route reply by the intermediate nodes is analogous
to the processing of the route request.

As it can be seen from the description, ARAN does not use hop counts as a routing
metric. Instead, the nodes update their routing tables using the information obtained
from the routing messages that arrive first; any later message that belongs to the same
route discovery is discarded. This means that ARAN does not necessarily discover
the shortest paths in the network, but rather it discovers the quickest ones. In effect,
ARAN uses the message propagation delay (i.e., physical time) as a routing metric.
This results in a robust protocol: indeed, ARAN is proven to be secure in [11].
However, a major drawback of ARAN is that it needs extensive signature generation
and verification during the route request flooding phase.

SEAD

SEAD (Secure Efficient Ad hoc Distance vector routing) is a proactive distance vector
based routing protocol for mobile ad hoc networks proposed in [175]. It can be viewed
as a secure variant of the DSDV protocol where the destination sequence numbers
and the hop count values are protected using one-way hash chains. More precisely,
SEAD tries to ensure that sequence numbers cannot be increased, and hop count
values cannot be decreased by an adversary, but no attempt is made to prevent the
modification of these values in the other direction (i.e., decreasing sequence numbers
and increasing hop count values).

When using SEAD, each node generates a one-way hash chain of length n+1 using
a publicly known hash function H, where n is a multiple of the maximum diameter
m of the network. Hence, the hash chain of a node can be denoted by h0, h1, . . . , hn,
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where n = k ·m, h0 is a random value, and hi = H(hi−1). It is assumed that hn is
securely distributed to all other nodes in the network.

When a node S sends out a route update message about itself with sequence number
i and hop count value 0, it reveals h(k−i)m in the same message. A neighboring node
will update its routing table entry that belongs to S by recording sequence number
i, hop count value 1, and hash value H(h(k−i)m) = h(k−i)m+1. Then, it sends out a
route update message, and its neighboring nodes will record sequence number i, hop
count value 2, and hash value H(h(k−i)m+1) = h(k−i)m+2 for destination S, and so
on.

Each route update concerning S can be verified by the nodes using a previously
known hash value from the hash chain of S; indeed, the nodes update their routing
table entry for S only if this verification is successful. Let us assume, for instance,
that D knows sequence number i, hop count value c, and hash value h = h(k−i)m+c for
S, and now it receives a route update concerning S with sequence number j > i, hop
count c′, and hash value h′. Then, D accepts this update only if H(j−i)m+c−c′(h′) = h,
where Hx means that we invoke H iteratively x times (see Figure 7.10 for illustration).

H

h0 hnh1
h = h(k-i)m + c

n = k m 

h' = h(k-j)m + c'

H(j-i)m + c - c'

sequence number isequence number jsequence number k
hop count
 0  1  2  . . .

. . . . . . . . .

. . .... ...

Fig. 7.10. Illustration of the hash chain used in SEAD. Each route update concerning S can
be verified by the nodes using a previously known hash value from the hash chain of S. For
instance, assume that D knows sequence number i, hop count value c, and hash value h =
h(k−i)m+c for S, and now it receives a route update concerning S with sequence number j > i,

hop count c′, and hash value h′. Then, D accepts this update only if H(j−i)m+c−c′(h′) = h,
where Hx means that we invoke H iteratively x times.

The main idea is that if an adversarial node knows a hash value belonging to a
given sequence number and hop count, then, due to the one-way property of the hash
function, it cannot compute hash values that belong to larger sequence numbers, or
the same sequence number and smaller hop count values. Thus, the adversary cannot
advertise a fresher or a shorter route to S.

SMT

SMT (Secure Message Transmission) [297] is a secure data communication protocol
for ad hoc networks that thwarts gray hole attacks. SMT simultaneously uses a set of
diverse routes – preferably node disjoint – between a source and a destination. The
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source first invokes the route discovery function of some underlying routing protocol
in order to discover a set of routes to the destination. Then, it splits the message to
be sent to the destination into several pieces using a coding scheme [315] that ensures
that the original packet can be reconstructed from at least a given number of pieces.
After that, the pieces are sent to the destination through the set of routes established
earlier (one piece per route). At the destination, the message can be reconstructed
successfully if a sufficient number of pieces are received. In other words, even if some
pieces are lost due to a gray hole attack, or corrupted by other means, the destination
can still reconstruct the message if it receives enough number of pieces correctly.

SMT uses MACs to protect the integrity and to ensure the authenticity of the mes-
sage pieces. The MACs are computed with a key that is shared between the source
and the destination; hence only they can verify the correctness of the pieces. As
we have discussed in Subsection 7.3.1, this is a design trade-off, which ensures that
intermediate nodes do not need to perform cryptographic computations at the cost
of admitting increased resource consumption at intermediate nodes due to forward-
ing modified or spoofed message pieces. In any case, the destination can verify the
integrity and authenticity of the received pieces, and it acknowledges each correctly
received piece. The acknowledgement is sent back to the source using the same prin-
ciple of splitting into pieces. The pieces for which no acknowledgement arrives are
re-sent by the source through different routes in order to avoid repeating failures.
The destination waits for the re-transmission of the missing pieces, and once enough
correct pieces are received, it acknowledges the successful reception of the entire mes-
sage, meaning that no more re-transmissions are needed even if some pieces are still
missing.

Acknowledgements play an important role in SMT, as they allow the source to
learn which routes are working: a missing acknowledgement is a strong indication
that the corresponding route is either broken or under the control of the adversary.
The source maintains a rating for each route that it knows to the destination. The
rating of a route is increased or decreased depending on whether the message piece
that was sent through that route was delivered successfully or not. When the rating
of a route falls below a lower threshold, the route is discarded and not used again.

Watchdog and Pathrater

Watchdog and Pathrater [263] are two mechanisms that together implement a gray
hole mitigation tool based on the “detect and react” approach. Watchdog is in charge
of continuously monitoring neighbors and trying to identify gray holes (i.e., misbe-
having nodes that do not forward data packets that they should forward). Pathrater
is used to select routes that likely avoid those gray holes.

The operation of Watchdog is based on listening in the promiscuous mode and
trying to catch the transmission of the data packet by the neighbor to which it was
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forwarded. We have already elaborated on the issues related to the operation of this
approach in Subsection 7.3.1; the same can be said about Watchdog. Therefore, here
we focus on the operation of Pathrater.

Pathrater assumes that each node maintains a rating in the interval [0, 1] for all the
other nodes it knows in the network. Then, the reliability of a route is quantified by
the source of a data packet by averaging the ratings of the nodes in that route. The
nodes prefer routes with a higher average rating.

Nodes assign ratings to other nodes according to the following algorithm: When a
node B becomes known to another node A, then A assigns a neutral rating of 0.5 to
B. The ratings of the nodes in each active route are incremented by 0.01 at periodic
intervals. The maximum value a rating can reach is 0.8. At the same time, the rating
of a node is decreased by 0.05 when a link break is detected and that node becomes
unreachable. In addition, the highly negative rating of −100 is assigned to nodes that
are suspected of misbehaving by Watchdog. When the route metric is calculated,
negative average ratings indicate that the route has a gray hole in it, and the route
is not selected for data transmission. Of course, nodes that are incorrectly accused
by Watchdog should not be excluded from routing forever, but they should be able
to regain a normal rating. Therefore, all ratings are slowly increased in time or set
back to a non-negative value after a long time-out.

The specific values of the parameters used by Pathrater seem a bit arbitrary, but
the principle is clear, and the simulation results in [263] show that Watchdog and
Pathrater can considerably increase the throughput of the network even if a large
portion (e.g., 40%) of the nodes are misbehaving.

ODSBR

The ODSBR (On-Demand Source routing with Byzantine Robustness) protocol was
proposed in [34] as a source routing protocol for wireless ad hoc networks that tries
to detect gray holes (and other misbehavior causing packet delivery failure) with an
adaptive acknowledgement scheme and to discover routes that avoid those gray holes.

The protocol consists of three components: (i) Byzantine fault detection, (ii) link
weight management, and (iii) route discovery with fault avoidance. Component (i) is
responsible for identifying faulty links in the network over which the packet loss ratio
exceeds a pre-defined threshold. Each node uses component (ii) to maintain a weight
for every link in the network that it knows about. The default weight of a link is 1,
and the weight is increased if the link is detected to be faulty. Component (iii) is a
route discovery mechanism that takes into account the link weights assigned by the
source to the links of the network when selecting routes. In particular, component
(iii) is responsible for finding the least weight route from the source to the destination.
Since the link weights are related to the reliability of the links, the least weight route
should be the most reliable one.
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For the detection of faulty links, ODSBR uses the adaptive acknowledgement
scheme that we described in Subsection 7.3.1 as a gray hole detection mechanism.
This means that when the packet loss ratio exceeds a given threshold on a route, the
source specifies probe nodes on the route that should return acknowledgements for
subsequent packets. The selection of the probe nodes implements a binary search
on the route that results in the identification of the link where the packets are lost.
Either end of this link can be a misbehaving node. ODSBR does not attempt to
identify which node is misbehaving, instead, it tries to avoid links that are detected
to be faulty.

The mechanism for specifying the list of the probe nodes in a packet is essential for
the correct operation of the protocol. The list contains the probe nodes in the same
order as they appear on the route, and it is encrypted in an onion-like, layered manner.
Each layer corresponds to a probe node on the list, and besides information destined
to that probe node, it contains all subsequent layers. The layers are encrypted in
such a way that each layer can be decrypted by the probe node corresponding to the
previous (outer) layer. This induces a processing order. The first probe node removes
the information destined to it and then decrypts the rest of the list before forwarding
the packet further. All subsequent probe nodes do the same. This layered encryption
prevents the adversary from incriminating other links by removing specific nodes from
the probe list.

Acknowledgements must also be handled with care. If the adversary can drop indi-
vidual acknowledgements, then she can incriminate any arbitrary link along the route.
In order to prevent this, each probe node does not send its acknowledgement imme-
diately, but waits for the acknowledgement from the next probe node and combines
them into one acknowledgement. If no acknowledgement is received within a timeout,
then the probe node gives up waiting, and creates and sends its own acknowledgement
only.

The route discovery mechanism of ODSBR floods both the route request and the
route reply messages. The flood of the route request is required to guarantee that it
reaches the destination. However, route requests are digitally signed by the source in
order to avoid malicious route request flooding by an adversary. The route reply must
also be flooded because if it was unicast, a single adversary could prevent a route from
being established. If an adversary was able to prevent routes from being established,
the fault detection algorithm would be unable to detect and avoid the faulty link, since
it requires a route as input in order to operate. The route reply messages are signed
by the destination, in order to prevent malicious route reply flooding, and by the
intermediate nodes that pass on the route reply, in order to authenticate themselves
to the source.

As we mentioned above, the route discovery mechanism of ODSBR finds the least
weight route between the source and the destination. This is done in the following
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way. The source creates and signs a route request that includes the destination, the
source, a sequence number, and the weight list of the source (i.e., a list that contains
the weights assigned to the links of the network by the source7). This route request
is flooded in the network, until it reaches the destination. The destination generates
a route reply that contains the source, the destination, a sequence number, and the
weight list obtained from the route request. The route reply is also flooded in the
network. When receiving a route reply, an intermediate node computes the total
weight of the sub-route contained in the reply using the weight list included in the
reply, and compares it to the minimum weight that it has computed for previously
forwarded route replies. If the new route reply contains a route with a smaller weight,
then the node appends its identifier to the route reply, signs it, and re-broadcasts it;
otherwise, the route reply is dropped. In this way, the source obtains the least weight
working route from itself to the destination.

7.4 Provable security for ad hoc network routing protocols

As we have seen in the previous section, many secure routing protocols have been
proposed for mobile ad hoc networks. However, the security of those protocols have
been analyzed by informal means only. It is well-known that informal arguments
about security can be prone to errors, therefore there is a strong need for a more
rigorous analysis technique. In this section, we introduce such an analysis technique
based on the simulation paradigm that has already been used in other contexts to
prove the security of cryptographic algorithms and protocols.

7.4.1 Why do we need a more rigorous analysis technique?

Our main goal in this subsection is to demonstrate that attacks against ad hoc routing
protocols can be very subtle, and therefore, difficult to discover. Consequently, it is
also difficult to gain sufficient assurance that a protocol is free of flaws. The approach
of verifying the protocol for a few specific configurations can never be exhaustive,
thus it is far from satisfactory as a method for security analysis.

In order to support our claims above, we present an attack against Ariadne when
used with MACs. We note that a similar attack can also be carried out when TESLA
is used, or when digital signatures are used and, for efficiency reasons, intermediate
nodes do not verify the signature list in the route request (which is an assumption
that is compliant with the description of Ariadne in [180]).

Let us consider the network configuration illustrated in Figure 7.11. We assume
7 Note that it is sufficient to include in the weight list only those weights that have non-default

values.
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that the adversary controls two adversarial nodes (represented by the black nodes in
the figure), and it uses only a single compromised identifier A.

source destination

S DA AF1 G1 F2G2

. . .

adversarial nodes

Fig. 7.11. Part of a configuration where an attack against Ariadne is possible. The adversary
controls two adversarial nodes, depicted in black, and it uses only a single compromised
identifier A. From [12], c© IEEE, 2006.

S initiates a route discovery process toward D. The first adversarial node receives
the following route request:

msg1 = (rreq, S, D, id , hF1 , [F1], [macF1 ])

The adversary does not append the MAC of A to the request, instead, it puts hF1 on
the MAC list, and re-broadcasts the following request:

msg2 = (rreq, S, D, id , hF1 , [F1, A], [macF1 , hF1 ])

Recall that the intermediate nodes cannot verify the MACs in the request. Note
also that MAC functions based on cryptographic hash functions (e.g., HMAC [234])
output a hash value as the MAC, and therefore, hF1 looks like a MAC. Hence, G1

will not detect the attack, and the following request arrives to the second adversarial
node:

msg3 = (rreq, S, D, id , H(G2, . . . ,H(G1, hF1)),
[F1, A, G1, . . . , G2], [macF1 , hF1 ,macG1 , . . . ,macG2 ])

The adversary removes G1, . . . , G2 from the node list and the corresponding MACs
from the MAC list. The adversary can do this in the following way: By recognizing
identifier A in the accumulated route, the adversary knows that the request passed
through the first adversarial node. By looking at the position of identifier A in the
node list, the adversary will know where hF1 is on the MAC list. From hF1 , the ad-
versary computes hA = H(A, hF1) and a MAC on (rreq, S, D, id , hA, [F1, A],macF1),
and re-broadcasts the following request:

msg4 = (rreq, S, D, id , hA, [F1, A], [macF1 ,macA])

Since the per-hop hash value and both MACs are correct in msg4, D will receive a
correct request, and returns the following reply:

msg5 = (rrep, D, S, [F1, A, F2], macD)
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When the reply reaches the second adversarial node, it will forward the following
message to G2:

msg6 = (rrep, D, S, [F1, A, G1, . . . , G2, A, F2], macD)

Note that G1, . . . , G2 cannot verify the MAC in msg6. In addition, their identifiers are
in the route carried by the reply, and the preceding and following identifiers belong to
their neighbors. Therefore, each of them forwards the reply. Finally, when the first
adversarial node receives the reply, it removes G1, . . . , G2 and one of the A’s from the
node list:

msg7 = (rrep, D, S, [F1, A, F2], macD)

In this way, S receives the route reply that D sent. This means that the MAC verifies
correctly and S accepts the route (S, F1, A, F2, D), which is non-existent.

It must be noted that in msg6, the compromised identifier A appears twice in the
node list. Note, however, that Ariadne does not specify that intermediate nodes
should check the node list in the reply for repeating identifiers. If each honest node
checks only that its own identifier is in the list and that the preceding and follow-
ing identifiers belong to its neighbors, then the attack works. Moreover, a slightly
modified version of the attack would work even if the intermediate nodes checked re-
peating identifiers in the reply. In that case, the second adversarial node would send
the following reply towards S:

msg ′6 = (rrep, D, S, [F1, X,G1, . . . , G2, A, F2], macD)

where X can be any identifier that is different from the other identifiers in the node
list. With non-negligible probability8, X is a neighbor of G1, and thus, G1 will pass
the reply on, so that the first adversarial node can overhear it. Then, the adversary
can remove the identifiers X,G1, . . . , G2, and send the reply containing the node list
(F1, A, F2) to F1. F1 will process the reply, because it contains no repeating identifiers
and A is its neighbor.

This is an attack aimed at creating an incorrect routing state in some nodes. In
particular, the source will accept a non-existent route and cache it in its route cache.
In addition, the attack is powerful, because despite the use of the per-hop hash mech-
anism the adversary manages to shorten an existing route, and therefore the source
will probably prefer this short route over others (assuming there are other alternative
routes between S and D that are not illustrated in Figure 7.11). As a consequence,
the source will probably start sending data packets through a non-existent route.

At this point, it must be clear that proving that a routing protocol is free from this
and similar kinds of attacks is virtually impossible by informal reasoning.
8 In fact, the probability that X is a neighbor of G1 is greater than nG1/n, where n is the number

of nodes in the network and nG1 is the number of G1’s neighbors.
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7.4.2 A framework for security analysis

In this subsection, we shortly introduce a framework in which routing protocols can
be analyzed in a rigorous manner. For a detailed description of this framework, we
refer to [12]. The framework has been developed for topology-based protocols and,
in particular, for on-demand source routing and on-demand distance vector based
protocols. In addition, routing security is defined in terms of resistance against attacks
aimed at creating an incorrect routing state in the network. Thus, route disruption,
route diversion, generation of extra control traffic, and gray hole attacks are not
considered within the framework. In this sense, the framework is somewhat restricted;
but as we will see, dealing only with attacks aimed at creating an incorrect routing
state is already sufficiently complicated if we want to be really precise.

The framework consists of a static and a dynamic model of the system and a
formal definition of routing security based on these models. That is described in this
subsection. In the next subsection, we illustrate the use of the framework by using it
to prove the security of the endairA protocol.

Static representation of the system

Network model: We model the ad hoc network as an undirected labelled graph
G(V, E), where V is the set of vertices and E is the set of edges. Each vertex rep-
resents a node, and there is an edge between two vertices if the corresponding nodes
can hear each other (via either a radio link or perhaps a wormhole).

We assume that the nodes use authenticated identifiers (e.g., public keys) during
neighbor discovery and in the routing protocol. We denote the set of identifiers by L,
and we label each vertex v of G with the identifiers used by the node corresponding to
v. We assume that honest (non-adversarial) nodes use a single identifier that is unique
in the network, whereas adversarial nodes can use multiple compromised identifiers
(see attacker model below).

For the purpose of modelling distance vector routing protocols, we also assign cost
values to the nodes and to the radio links that can be interpreted as, respectively,
processing and transmission costs and can be used to compute routing metrics.
Adversary model: We assume that the adversary is not all powerful, but it launches
its attacks from adversarial nodes that it controls and that have communication capa-
bilities similar to regular nodes. We denote the vertices that correspond to adversarial
nodes by V ∗. In addition, we assume that the adversary compromises some identifiers,
by which we mean that the adversary compromises the cryptographic keys that are
used to authenticate those identifiers. We denote the set of compromised identifiers
by L∗. We further assume that the adversary distributes all compromised identifiers
to all adversarial nodes. Using the notation introduced in [180], the adversary de-
scribed above is an Active-y-x adversary, where x = |V ∗| and y = |L∗|. In addition,



7.4 Provable security for ad hoc network routing protocols 219

we assume that the adversary is static in the sense that it does not corrupt more
nodes and does not compromise more identifiers during the operation of the system.

As neighboring adversarial nodes can communicate with each other in an unre-
stricted manner (e.g., by sending encrypted messages), they can appear as a single
node (under all the compromised identifiers) to the other nodes. Hence, without
loss of generality, we assume that adversarial nodes are not neighbors in G; if they
were, we could merge them into a single adversarial node that would inherit all the
neighbors of the original nodes.
Configuration: A configuration is represented by the graph G, the set of adversarial
nodes V ∗, the labelling of the nodes with identifiers from L, and the assignment of
costs to the nodes and to the links. We make the simplifying assumption that the
configuration is static (at least during the time interval that is considered in the
analysis).

Correctness criteria

Source routing: From secure source routing protocols, we require that they return
only “existing” routes. However, we must take into account that the adversary can
always emulate the execution of the routing protocol using the compromised identifiers
locally within a single adversarial node. Hence, the adversary can always extend any
route that passes through an adversarial node with any sequence of compromised
identifiers. This is a fact that our definition of security must tolerate, otherwise we
cannot hope that any routing protocol will satisfy it. This observation leads to the
following definition of “existing” routes:

Definition 7.1 A sequence `1, `2, . . . , `p of identifiers is a plausible route with
respect to a configuration if each `i is different, and the sequence can be partitioned
into k sub-sequences in such a way that each of the resulting partitions is a subset of
the identifiers assigned to a vertex in V , and in addition, these vertices form a path
in G.

Distance vector routing: In distance vector routing, no explicit routes are returned
by the route discovery procedure, but rather the state of the system is represented
by the routing tables of the non-adversarial nodes. We assume that an entry of the
routing table of every node contains the following three fields: the identifier of the
target node, the identifier of the next hop towards the target, and the cost value that
represents the believed cost of the route to the given target via the given next hop.
Without loss of generality, we assume that the routing metric is such that routes with
lower cost values are preferred.

Then, we define a correct state as follows:
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Definition 7.2 The system is in a correct state if all the routing table entries of the
non-adversarial nodes are correct. If non-adversarial node v has an entry for target
`tar with next hop `nxt and cost c, then this entry is correct if there exists a route
in the network that starts from node v, ends at a node that uses the identifier `tar,
passes through a neighbor of v that uses identifier `nxt, and has a cost that is smaller
than or equal to c.

Dynamic representation of the system

The dynamic behavior of the system is represented by two models, each consisting
of a set of interactive probabilistic Turing machines. One of the models is called
the real-world model, and it represents the behavior of the real system; the other is
called the ideal-world model, and it describes how the system should work ideally.
In both models, there is an adversary whose behavior is not constrained, apart from
requiring it to run in time polynomial in the security parameter (e.g., size of the
cryptographic keys used by the cryptographic primitives). This allows us to consider
any feasible attacks and makes the approach very general. Although the adversary
is not constrained, the construction of the ideal-world model ensures that all of its
attacks are unsuccessful against the ideal-world system. In other words, the ideal-
world system is secure by construction (e.g., non-plausible routes are never returned).

Formal definition of security

Once the models are defined, the goal is to prove that for any real-world adversary,
there exists an ideal-world adversary that can achieve essentially the same effects in
the ideal-world model as those achieved by the real-world adversary in the real-world
model (i.e., the ideal-world adversary can simulate the real-world adversary). The
existence of a proof means that no attacks can be successful in the real-world model (or
more precisely, attacks can be successful only with negligible probability), otherwise
an attack would be successful in the ideal-world model too, which is impossible by
definition. This leads to the following definition of routing security:

Definition 7.3 A routing protocol is said to be (statistically) secure if, for any
configuration and any real-world adversary, there exists an ideal-world adversary, such
that the output of the real-world model is (statistically) indistinguishable from the
output of the ideal-world model.

Hence, if a routing protocol is (statistically) secure, then any system using this
routing protocol returns a non-plausible route or gets into an incorrect state only
with negligible probability. This negligible probability is related to the fact that the
adversary can always forge the cryptographic primitives (e.g., generate a valid digital
signature) with a very small probability.
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7.4.3 An example – the security proof of endairA

In this subsection, we want to illustrate the use of the framework introduced above.
For this reason, we will prove the security of the endairA protocol. However, in order
to do this, we need to give some more details about the dynamic representation of
the system.

Recall that the dynamic representation of the system consists of an ideal-world
model and a real-world model, where the ideal-world model is defined in such a way
that attacks are not possible in it, whereas the real-world model allows all kinds of
misdeeds by the adversary. Specifically, in source routing protocols, the ideal-world
model is constructed in such a way that the Turing machine that is responsible for
passing messages between the Turing machines that represent the nodes marks route
reply messages that carry non-plausible routes. We can imagine this as route reply
messages with a fictive plausibility flag attached to them, and the value of this flag
is set by the Turing machine that handles the communication in the model. Then,
in the ideal-world model, it is ensured that the routes received in marked route reply
messages are not accepted by the honest nodes, whereas obviously, in the real-world
model, the plausibility flag of the messages are ignored (since in reality there is no
such a flag attached to the messages). Thus, the ideal-world model is ideal in the
sense that non-plausible routes are never returned to the honest nodes by definition.

Let us now prove the following theorem:

Theorem 7.1 The endairA protocol described in Subsection 7.3.2 is (statistically)
secure if the signature scheme used in the protocol is secure against chosen message
attacks.

Proof: We provide only a sketch of the proof. We want to show that for any con-
figuration and for any adversary, a route reply message in the ideal-world model is
discarded due to the value of its plausibility flag (meaning that the message carries
a non-plausible route) with negligible probability. Discarding a message due to its
plausibility flag leads to a simulation error, because the message is not discarded in
the real-world model where plausibility flags are ignored. By showing that messages
are discarded with negligible probability due to their plausibility flags in the ideal-
world model, we show that simulation errors occur with negligible probability, or in
other words, the effects of the real-world adversary can be simulated in the ideal-world
model with overwhelming probability, and this is the basis of our security definition.

In what follows, we will refer to non-adversarial nodes with their identifiers. Let us
suppose that the following route reply is received by a non-adversarial node `src in
the ideal-world model:

msg = (rrep, `src , `dst , id , [`1, . . . , `p], [sig`dst
, sig`p

, . . . , sig`1 ])
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Let us suppose that msg passes all the verifications required by endairA at `src , which
means that all signatures in msg are correct, and `src has a neighbor that uses the
identifier `1. Let us further suppose that msg has been received with a plausibility
flag indicating that the message contains a non-plausible route. This means that
(`src , `1, . . . , `p, `dst) is a non-plausible route in the given configuration. Hence, msg
is dropped due to the value of its plausibility flag. We will show that this situation
is possible only if the adversary forged the digital signatures of some non-adversarial
nodes.

Recall that, by definition, adversarial nodes cannot be neighbors. In addition, each
non-adversarial node has a single and unique non-compromised identifier assigned to
it. It follows that every route, including (`src , `1, . . . , `p, `dst), has a unique meaningful
partitioning, which is the following: Each non-compromised identifier, as well as each
sequence of consecutive compromised identifiers should form a partition.

Let P1, P2, . . . , Pk be the unique meaningful partitioning of (`src , `1, . . . , `p, `dst).
The fact that this route is non-plausible implies that at least one of the following two
statements holds:

• Case 1: There exist two partitions Pi = {`j} and Pi+1 = {`j+1} such that both `j

and `j+1 are non-compromised identifiers, and the corresponding non-adversarial
nodes are not neighbors.

• Case 2: There exist three partitions Pi = {`j}, Pi+1 = {`j+1, . . . , `j+q}, and
Pi+2 = {`j+q+1} such that `j and `j+q+1 are non-compromised and `j+1, . . . , `j+q

are compromised identifiers, and the non-adversarial nodes that correspond to `j

and `j+q+1 have no common adversarial neighbor.

As we will see, in both cases, the adversary must have forged the digital signature of
a non-adversarial node.

In Case 1, node `j+1 does not sign the route reply, because it is non-adversarial
and it detects that the identifier that precedes its own identifer in the route does not
belong to a neighboring node. Hence, the adversary must have forged sig`j+1

in msg .
In Case 2, the situation is more complicated. Let us assume that the adversary

has not forged the signature of any of the non-adversarial nodes. Node `j must have
received

msg ′ = (rrep, `src , `dst , id , [`1, . . . , `p], [sig`dst
, sig`p

, . . . , sig`j+1
])

from an adversarial neighbor, say A, since `j+1 is compromised, and thus, a non-
adversarial node would not send out a route reply message with sig`j+1

. In order to
generate msg ′, A must have received

msg ′′ = (rrep, `src , `dst , id , [`1, . . . , `p], [sig`dst
, sig`p

, . . . , sig`j+q+1
])

because by assumption, the adversary has not forged the signature of `j+q+1, which
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is non-compromised. As A has no adversarial neighbor, it could have received msg ′′

only from a non-adversarial node. However, the only non-adversarial node that would
send out msg ′′ is `j+q+1. This would mean that A is a common adversarial neighbor
of `j and `j+q+1, which contradicts the assumption of Case 2. This means that
our assumption that the adversary has not forged the signature of any of the non-
adversarial nodes cannot be true.

It should be intuitively clear that if the signature scheme is secure, then the ad-
versary can forge a signature only with negligible probability, and thus, a route reply
message in the ideal-world model is dropped due to the value of its plausibility flag
only with negligible probability. Nevertheless, we sketch how this could be proven
formally. The proof is indirect. We assume that there exists a configuration and an
adversary such that a route reply message in the ideal-world model is dropped due to
its plausibility flag with probability ε, and then, based on that, we construct a forger
F that can break the signature scheme with probability ε/n, where n is the number
of non-adversarial nodes in the network. If ε is non-negligible, then so is ε/n, and
thus the existence of F contradicts with the assumption about the security of the
signature scheme.

The construction of F is the following. Let puk be an arbitrary public key of the
signature scheme. Let us assume that the corresponding private key prk is not known
to F , but F has access to a signing oracle that produces signatures on submitted
messages using prk . F runs a simulation of the ideal-world model where all nodes
are initialized with the keys of the corresponding nodes, except that the public key
of a randomly selected non-adversarial node `i is replaced with puk . During the
simulation, whenever `i signs a message m, F submits m to the oracle, and replaces
the signature of `i on m with the one produced by the oracle. This signature verifies
correctly at other nodes later, as the public verification key of `i is replaced with
puk . By assumption, with probability ε, the simulation of the ideal-world model will
result in a route reply message msg such that all signatures in msg are correct and
msg contains a non-plausible route. As we saw above, this means that there exists a
non-adversarial node `j such that msg contains the signature sig`j

of `j , but `j has
never signed (the corresponding part of) msg . Let us assume that i = j. In this case,
sig`j

is a signature that verifies correctly with the public key puk . Since `j did not
sign (the corresponding part of) msg , F did not call the oracle to generate sig`j

. This
means that F managed to produce a signature on a message that verifies correctly
with puk . Since F selected `i randomly, the probability of i = j is 1

n , and hence, the
success probability of F is ε/n. 2
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7.5 Secure routing in sensor networks

Wireless sensor networks are envisaged to use multi-hop communications in order
to reduce the interference between the nodes and the overall energy consumption of
the network. Ultimately, using multi-hop communications is expected to result in
an increased network life-time, which is crucial in many sensor network applications,
because recharging the batteries of the nodes may be impossible, or at least very
impractical. However, using multi-hop communications raises the problem of secure
routing in sensor networks too.

The types of attacks that an adversary can mount against the routing protocol in
a wireless sensor network are similar to those listed for mobile ad hoc networks with
a somewhat stronger emphasis on increased resource consumption as their objectives,
because sensor nodes are highly resource constrained. This similarity stems from the
similar assumptions that can be made about the capabilities and the attack mecha-
nisms of the adversary in both cases. Consequently, the applicable countermeasures
are similar too. One may even think that secure routing protocols developed for mo-
bile ad hoc networks could directly be used in wireless sensor networks. However, this
is not the case in general due to the following important differences between mobile
ad hoc networks and wireless sensor networks:

• First of all, in sensor networks, node-to-node communications are usually not re-
quired. Rather, the sensor nodes must be able to communicate with the base station
(e.g., to send sensor readings), and vice versa (e.g., to send control information or
specific queries). Thus, in sensor networks, the prevailing communication types
are many-to-one and one-to-many, in contrast to mobile ad hoc networks, where
most of the communications are one-to-one. As a consequence, secure ad hoc net-
work routing protocols designed to support one-to-one communications may not be
efficient for many-to-one and one-to-many communications.

• In the majority of the envisaged sensor network applications, the nodes are static,
and therefore, the topology changes are less dynamic in sensor networks than they
are in ad hoc networks. Some topology changes may still occur in sensor networks,
as sensor nodes may disappear temporarily due to some failure, or permanently due
to battery depletion, but the resulting dynamicity of the network is much lower than
that in ad hoc networks where the nodes are mobile. This means that secure ad hoc
network routing protocols designed to cope with the dynamic nature of the network
may contain features that are unnecessary in sensor networks, or at least, that can
be implemented in a more efficient way.

• Sensor nodes are assumed to be much more resource constrained than the nodes
in mobile ad hoc networks. Typically, in mobile ad hoc networks, the nodes are
hand-held devices, such as PDAs or mobile phones, or even laptop class computers.
These have orders of magnitude more resources than a typical sensor node. For
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instance, a contemporary PDA is equipped with a memory of several hundreds of
megabytes, while a typical sensor node has only a few kilobytes of memory. In terms
of CPU speed, the differences are similarly large. We note that these differences will
likely persist in the future due to the objective of keeping the price of sensor nodes
at a very low level. In addition to the differences in memory size and CPU speed,
reduced energy consumption is even more critical in sensor networks than it is in
ad hoc networks. For all these reasons, secure ad hoc network routing protocols
that rely on public key cryptography (e.g., ARAN, SAODV, and endairA) cannot
be directly used in sensor networks.

In the rest of this section, we sketch three approaches to secure routing in wireless
sensor networks. The first approach extends a known topology based sensor network
routing protocol, TinyOS beaconing, with cryptographic protection to defend against
spoofing routing control messages. In this way, a reasonable level of security can
be achieved against an outsider adversary, but the protocol can still be successfully
attacked by an insider adversary. The second approach uses the principles of link state
routing. The advantage of link state routing is that the routing control messages do
not need to be modified by intermediate nodes, and hence, they can be protected in an
end-to-end manner, which simplifies the protocol. Finally, the third approach is based
on extending a position based routing protocol with security measures. The rationale
of starting from a position based routing protocol is that such protocols usually do not
maintain routing state in the nodes, and hence, the routing state cannot be corrupted.
For the same reason, position based routing protocols also incur less overhead, and
hence, they are more energy efficient than the topology based protocols.

7.5.1 Authenticated TinyOS beaconing

TinyOS beaconing is a simple (but insecure) sensor network routing protocol. This
protocol establishes a routing tree rooted at the base station. Once the tree is estab-
lished, sensor nodes forward data packets towards the base station by sending them
to their parent in the tree. The establishment of the tree is based on a network wide
flooding. The base station generates a route update message and broadcasts it to its
neighbors. Each node that receives the route update message for the first time sets the
node from which the route update was received as its parent, and then re-broadcasts
the route update message. Any copy of the route update that is received later by the
node is discarded.

Since route update messages are not authenticated, an adversary can spoof them.
As a result, the adversary can initiate the routing tree establishment process, and she
can become the root of the established tree. Then, every sensor node will send data
packets to the adversary, who can inspect and drop them. Thus, the adversary can
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easily obtain information from the entire system, which means increased control over
the communications. Moreover, the quality of the service provided by the system is
decreased, as the base station receives no sensor readings anymore, and the resource
consumption of the nodes is increased.

To protect against this attack, the base station can authenticate the route update
message. Since every node must be able to verify the authenticity of the route update,
the base station should use a broadcast authentication scheme. Taking into account
the resource constraints of the sensor nodes, a good candidate for this would be the
TESLA broadcast authentication protocol, which uses only symmetric key cryptogra-
phy. This would prevent the adversary from initiating the routing tree establishment
process, but there are still other attacks that she can perform. For instance, she can
spoof the node identifier of a far-away node when re-broadcasting the route update
message. All nodes that hear the spoofed route update message will set that far-away
node as their parent. Later, when these nodes want to forward data packets towards
the base station, they will send the packets into void. This results in decreased quality
of service and increased resource consumption by some nodes.

The above described attack will be discovered quickly if data packets are acknowl-
edged at the link layer. However, an even more subtle attack is possible against
the protocol and can only be detected in an end-to-end manner (meaning that much
more resources are wasted before successful detection). The attack is illustrated in
Figure 7.12. Let us assume that the adversary resides near a node u, and u has a
neighbor v, which is further away from the base station than u itself. When the adver-
sary receives the authenticated route update message, it re-broadcasts it in the name
of v, and therefore, u sets v as its parent. When u re-broadcasts the route update
message, v sets u as its parent. Thus, the adversary creates a routing loop between u

and v by arranging that they both set each other as parent. The result is decreased
quality of service, because some data packets will never reach the base station, and
increased resource consumption for nodes u and v, and for all nodes downstream from
them.

To protect against the spoofing of node identifiers, the route update message should
also be authenticated in a hop-by-hop manner. This requires pairwise keys between
neighboring nodes, which can be set up as described in Section 5.1. While hop-by-
hop authentication results in a larger overhead, this can still be bearable because only
symmetric key cryptography is used, and the routing tree establishment procedure is
run rather infrequently due to the static nature of the network.

The authenticated TinyOS beaconing protocol provides a reasonable level of pro-
tection against an outsider adversary, but an insider adversary (i.e., one that com-
promised the cryptographic keys of some sensor nodes) can still mount some attacks.
Another disadvantage of the authenticated TinyOS beaconing protocol is that it sup-
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adversary

u

v
in the name of v
route update

Fig. 7.12. Illustration of an attack against the TinyOS beaconing protocol, where the ad-
versary creates a routing loop between two nodes u and v by arranging that they both set
the other as parent in the routing tree. In order to achieve this, the adversary re-broadcasts
the route update message in the name of v. The result of the attack is decreased quality of
service, because some data packets will never reach the base station, and increased resource
consumption for nodes u and v, and for all nodes downstream from them.

ports only tree topologies, only node to base station communication, and only single
path forwarding.

7.5.2 Centralized link state routing

In the TinyOS beaconing protocol, the routing state of every node is determined
by the identity of the neighbor from which it receives the routing update message.
Therefore, in order to prevent the creation of incorrect routing states in the nodes,
this identity information needs to be protected from spoofing. That is the reason for
hop-by-hop authentication of routing update messages.

Another approach could be to avoid that the routing state depends on information
contributed by intermediate nodes to routing control messages. One way to achieve
this is to use link state routing. In link state routing protocols, each node distributes
its neighborhood information in a link state update message. Since other nodes do
not need to add anything to this link state update message, it is sufficient if only the
source of the message authenticates it.

At first sight, link state routing does not seem to be a very good idea for sensor
networks, because in traditional link state routing protocols, each node floods the
entire network with link state updates, and the authentication of link state update
messages is based on digital signatures (so that every node can verify them). Note,
however, that traditional link state routing protocols are designed to support one-to-
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one communications. Since in sensor networks, the nodes do not need to communicate
with each other in an end-to-end manner, the requirement of flooding the entire
network with link state update messages can be relaxed. In addition, if link state
update messages are not flooded in the entire network, then there is no need to
ensure that every node can verify them, and hence, digital signatures can be replaced
with more efficient primitives.

Link state routing in wireless sensor networks could work in the following way: Each
node collects its neighborhood information locally, and sends the list of its neighbors
to the base station in a link state update message. Based on the received link state
update messages, the base station constructs the routing table for every node, and
distributes the computed routing tables to the nodes. A protocol based on these
principles would have many advantages:

• Each node needs a single symmetric key that it shares with the base station. This
key can be used to protect routing control messages (link state updates originating
from the node and routing tables destined to the node) using an efficient symmetric
key MAC.

• The computation of the routing topology is performed by the base station, which
is much more powerful than the sensor nodes, and it has no resource constraints.

• The routing tables are computed centrally using information obtained from the
entire network. This allows the construction of highly optimized routing topologies,
which may greatly reduce the overall energy consumption of the network.

• Related to the previous point, the base station can run centralized wormhole de-
tection algorithms such as those described in Subsection 6.2.1.

• There is no restriction on the form of the routing tables that are distributed to
the nodes. Hence various kinds of routing schemes can be easily supported in the
link state approach ranging from simple routing trees to more complex multi-path
routing.

One remaining problem is that the sensor nodes do not necessarily know how to
route link state update messages to the base station, since at that stage of the protocol,
they have not received their routing tables yet. Indeed, the very purpose of sending
the link state update messages to the base station is to let it compute the routing
tables.

This problem can be solved by a mechanism that is similar to TinyOS beaconing:
The base station floods the network with a link state request message, which informs
the nodes that the base station collects link state information, and helps to establish
an initial routing state in every sensor node that receives the request. In particular,
each node can set the node from which it received the link state request for the first
time as the next hop towards the base station. Later, the node can forward the link
state update messages to the base station via this next hop node.
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Note that the above described mechanism assumes that the links are bidirectional.
Note also that the same kind of attacks may be possible here as in the case of TinyOS
beaconing. However, the difference is that flooding the network with the link state
request establishes only an initial routing state in the nodes, which is used during
the transfer of the link state update messages (i.e., for a very limited time), and
later, this initial routing state is replaced by the routing tables computed by the base
station. Therefore, the attacks on this initial phase have a limited impact on the
resource consumption of the nodes. In addition, as link state update messages cannot
be spoofed and modified by the adversary due their MAC, the only possible attack
that the adversary can effectively mount against the protocol is to arrange that some
link state updates do not arrive to the base station. However, this can always be
achieved by jamming as well.

It is also important to prevent that the adversary can initiate the flooding of the
network with a spoofed link state request, because flooding consumes lot of energy,
and also because that would trigger the transfer of the link state update messages,
which also consumes energy. A simple approach to achieve this is to let the base
station create a one-way hash chain and release the elements of this hash chain in
the link state request messages in such a way that a released element can be checked
against the previously released, already authenticated elements, but the next element
of the chain cannot be computed. This ensures that the adversary cannot generate
a link state request message before the base station releases the next element, and
therefore, malicious flooding is prevented.

The distribution of the routing tables can use source routing, because the base sta-
tion has a full view of the network topology, and hence, it can easily determine source
routes to every node in the network. Alternatively, each node u may record the iden-
tifier of those nodes whose link state update messages it forwarded towards the base
station. Later, when node u overhears a transmission of the routing table destined
to one of the recorded nodes, it re-broadcasts that routing table to its neighbors. In
this way, the nodes that forwarded the link state update of a node also forward the
routing table of the same node, and therefore, the routing tables are delivered to their
destinations.

Obviously, sending the link state update messages to the base station and distribut-
ing the routing tables to the nodes result in a considerable overhead. However, this is
counterbalanced by the fact that the nodes’ routing tables are highly optimized and
the bulk of the communications (i.e., sending the sensor readings to the base station)
will use these routing tables. Moreover, sensor networks are rather static networks,
meaning that link state changes occur rarely. Thus, the overhead can be reduced
considerably by requiring the nodes to send only the changes with respect to their
previous link states to the base station. Similarly, the base station can send to each
node only the changes made in the routing table of the node.
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7.5.3 Secured position based routing

In general, position based routing protocols do not require the nodes to maintain
any routing state (apart from their own geographical position). For this reason,
position based routing protocols incur less overhead than topology based protocols.
In addition, this property also makes them inherently resistant against attacks aiming
at creating incorrect routing states in the nodes. Therefore, a position based routing
protocol can be a good starting point to construct a secure sensor network routing
protocol.

Let us consider, for instance, the Implicit Geographic Forwarding (IGF) protocol
[54]. In IGF, routing is integrated with the RTS/CTS handshake of the MAC layer.
A node u that wants to forward a data packet broadcasts an RTS containing its
own position and the position of the destination. The neighboring nodes that reside
in the 60◦ sextant centered on the direct line from u to the destination are eligible
to forward the packet further (see Figure 7.13 for illustration). These candidate
forwarder nodes set their CTS response timer inversely proportional to a weighted
sum of their distance from u, remaining energy, and perpendicular distance to the
line from u to the destination. Hence, the node that is the most desirable candidate
to forward the packet sends its CTS first. The other candidate nodes hear this CTS
(due to the fact that they are in the sextant) and cancel their timers. Finally, u

sends the data packet to the candidate neighbor that sent the CTS. Voids are dealt
with by shifting the forwarding sextant to the side and repeating the above described
procedure.

60ou

candidate forwarders

Fig. 7.13. Illustration of the selection of the next forwarder node in the IGF protocol. The
current forwarder u broadcasts an RTS containing its own position and the position of the
destination. The neighboring nodes that reside in the 60◦ sextant centered on the direct line
from u to the destination are the candidate next forwarders. The first that sends a CTS will
be selected as the next hop. CTS timers are set that nodes that are closer to the destination
and have more remaining energy are favored.
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The problem of IGF is that an adversarial neighbor of u can always arrange that
it is selected as the next forwarder by not respecting the protocol and sending a CTS
immediately after receiving the RTS. Then, the adversary can drop the data packets,
by which she can effectively disable the communication between the sensor nodes
downstream from u and the base station.

Fortunately, IGF can be modified to make it more resistant to this attack. The idea
is that instead of sending the data packet to the first neighbor that responds with
a CTS, u can wait in a specified time window and collect multiple CTS responses.
Clearly, this also requires that the candidate next forwarders do not cancel their CTS
timers when they hear a CTS response to the RTS of u. Then, u can select the next
forwarder randomly, thereby reducing the chances of the adversary to be selected.
It is also possible to select multiple next forwarders, which reduces the impact of
adversarial nodes met along the way to the base station. This extension of IGF still
results in a stateless protocol, which is advantageous with respect to security.

However, there is still one problem: the adversary can spoof node identifiers, and
hence, a single adversarial node can appear as several different nodes at different
locations in the neighborhood of u. In other words, the adversary can mount a Sybil
attack (see Chapter 4 for the description of this attack), and this has a negative impact
on the extended IGF protocol, because it increases the chances that the adversary is
selected as the next forwarder.

In order to prevent this attack, we must give up the fully stateless property of
the protocol. A straightforward way to mitigate this attack is to let each sensor
node authenticate its neighbors and restrict the selection of the next forwarder to
the set of authenticated neighbors. This, however, requires pairwise keys between the
neighboring nodes.

Neighbor authentication excludes attacks from outsider adversaries completely, but
an insiders adversary that can use the identities of some compromised nodes may still
try to introduce virtual nodes in the network under the compromised identities. To
mitigate this attack as well, the nodes can monitor the behavior of their neighbors
locally and assign trust values to them. The trust value of a neighbor that often fails
to forward data packets, introduces long delays, or reports itself at different positions
frequently can be progressively decreased until it reaches a threshold below which
that neighbor is not selected as next forwarder anymore. Note that the trust values
are computed by the nodes based on their local observations, and no reputation
reports need to be disseminated in the network. This makes sense because sensor
networks are static, and therefore, the local neighborhood of the nodes does not
change considerably in time. This makes it possible to progressively determine the
trust values. In addition, there is no need for recommendations for new neighbors, as
new nodes appear very rarely in the neighborhood.
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7.6 Summary

In this chapter, we studied the problem of securing routing in multi-hop wireless net-
works, notably in mobile ad hoc networks and in wireless sensor networks. First,
we gave an overview on the different approaches for routing in mobile ad hoc net-
works. Then, we described why and how ad hoc network routing protocols can be
attacked. This involved the presentation of the different objectives an adversary could
have (such as increasing adversarial control over the communications between some
nodes, degrading the quality of service provided by the network, and increasing the
resource consumption of some nodes) and the detailed description of the different
attack types (such as route disruption, route diversion, creation of incorrect routing
state, generation of extra control traffic, and creation of gray holes).

Following this, we presented general countermeasures against the attacks (such as
origin authentication of control packets, protection of mutable information in control
packets, detection of tunnels, and techniques to mitigate the effect of gray holes), and
we illustrated how these countermeasures can be applied by describing a set of ad hoc
network routing protocol designed with security in mind.

We argued that informal reasoning about the security of ad hoc network routing
protocols is prone to errors and we demonstrated, via an example, how subtle the
attacks against (secured) routing protocols can be. Then, we briefly presented a
formal framework in which routing security can be precisely defined and rigorous
proofs about the security of routing protocols can be carried out. We demonstrated
the usage of this framework by sketching the security proof of the endairA protocol.

Finally, we studied the problem of secure routing in wireless sensor networks. We
identified the main differences between mobile ad hoc networks and wireless sensor
networks, which render the application of secure ad hoc network routing protocols
largely inappropriate in sensor networks. Then, we described three approaches to
secure routing in wireless sensor networks: authenticated TinyOS beaconing, central-
ized link state routing, and secured position based routing. We argued that link state
routing and position based routing are advantageous with respect to security, beacuse
in link state routing, the routing control messages do not need to be modified by inter-
mediate nodes (hence there is no added information that needs to be authenticated),
and in position based routing, the nodes do not need to maintain routing state (hence
the routing state cannot be corrupted).

7.7 To probe further

Surveys on ad hoc network routing protocols and routing protocols for wireless sensor
networks can be found in [329, 16].

An overview of position-based routing protocols is presented in [265]. Location
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services for geographic routing protocols are proposed in various papers. For instance,
the location service of the DREAM protocol is presented in [41], a quorum-based
distributed location service is proposed in [155], a grid-based hierarchical location
service is presented in [255], and the concept of the virtual home region (a geographical
area determined by the ID of the node) is introduced in [148]. Another interesting
approach for position-based routing that does not require a location service is called
Last Encounter Routing and described in [120]. The effect of falsified location data
on position-based routing protocols is studied in [251].

Several groups of researchers have studied the problem of securing ad hoc network
routing protocols, including Papadimitratos and Haas [294, 296, 297, 298, 299]; Hu,
Perrig, and Johnson [175, 179, 180]; Zapata and Asokan [386]; and Sanzgiri, Dahill,
Levine, Shields, and Belding-Royer [333]. An overview of the various approaches for
securing routing in ad hoc networks can be found in [176].

The tunneling attack was first introduced by Papadimitratos and Haas in [294].
Later, it was further analyzed by Kruus et al. in [235] (where it is called in-band
wormhole).

A survey of two signature aggregation techniques is published by Boneh, Gentry,
Lynn, and Shacham in [56]. It would an interesting research direction to study how
these techniques can be used for replacing signature lists in the messages of ad hoc
network routing protocols.

The formal framework for the security analysis of ad hoc network routing protocols
described in Section 7.4 was proposed by Ács, Buttyán, and Vajda in [75, 11, 12].
Another approach based on the simulation paradigm has been proposed by Kong,
Hong, and Gerla in [225]. Yet another formal model for analyzing the security of
ad hoc network routing protocols was proposed by Yang and Baras in [381]. Finally,
in [300], Papadimitratos et al. introduced adversary models and definitions of routing
security, and formally proved some properties of the SRP protocol. Besides routing,
formal analysis technics have also been used to analyze other types of wireless security
protocols, such as 802.11i [163].

The problem of securing routing in wireless sensor networks is studied by Karlof
and Wagner in [215]. That paper lists possible attacks and illustrates them on main-
stream sensor network routing protocols proposed in the literature. The authenticated
TinyOS beaconing protocol was inspired by the authenticated sensor routing routing
protocol proposed by Perrig et al. in [311]. The centralized link state routing pro-
tocol for sensor networks that we described in Subsection 7.5.2 is based on the basic
INSENS protocol proposed by Deng, Han, and Mishra in [108]. Finally, the secured
position based routing protocol that we described in Subsection 7.5.3 was originally
proposed by Wood et al. in [373].
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7.8 Questions

(a) In Subsection 7.2.3, we presented some examples of attacks against on-demand
ad hoc network routing protocols. Try to construct similar example attacks
for pro-active and position-based routing protocols.

(b) Try to construct attacks mounted by colluding adversarial nodes against the
secure ad hoc network routing protocols described in this chapter.

(c) What is the role of the id field in the route reply of the endairA protocol?
(d) Try to construct an insider attack against the authenticated TinyOS beaconing

protocol.
(e) Could you propose a mechanism to prevent the replay of old link state update

messages in the centralized link state routing protocol described in Subsec-
tion 7.5.2?

(f) Why is measuring the round trip time to the two-hop neighbors insufficient to
detect a tunnel?



8

Privacy protection

Privacy means that one can control when, where, and how information about oneself
is used and by whom. Privacy is not about hiding one’s personal information from
everybody else in the world. In fact, revealing personal information to authorized par-
ties under well-defined circumstances can be very useful and should be made possible.
For instance, assume that someone suffers an accident and she is transferred to the
hospital in an unconscious state. In this case, it is quite useful if the medical doctors
can look up her medical record in a database.

It is clear, however, that we do not want that anybody can access our medical
record. In particular, employers and assurance companies should not have access to
it. However, the problem is that once personal information has fallen into the wrong
hands, one cannot control its use anymore. Therefore, hiding personal information
from unauthorized parties is indeed very important. This is one of the most powerful
(and sometimes the only) means to retain control.

Privacy is a problem that cannot be solved solely by technical means. For instance,
there is no technical solution that guarantees that a misbehaving doctor cannot reveal
sensitive medical data to an unauthorized party (e.g., an employer). Therefore, the
problem is usually addressed with a combination of some technical and some legal
means. In fact, the technical and the legal approaches can nicely complement each
other. Problems that cannot be solved technically are often related to human be-
havior. These problems can usually be tackled by legal means (as in other fields)
by defining laws and putting serious punishments in prospect for violators of those
laws. The enforcement of laws, however, can be very expensive and difficult (mainly
because it needs proofs of misbehavior that may be difficult to collect). Technical ap-
proaches can be used to make law enforcement more efficient and/or less expensive,
for instance, by providing digital evidences. Although it is important to understand
that privacy is not an exclusively technical issue, as this book is a technical book, we
will focus on technical approaches to privacy protection.

In communication networks, quite naturally, privacy is about controlling informa-
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tion related to communications. First of all, we do not want unauthorized parties to
access the content of our messages. This can be easily solved by encrypting them.
But there are other problems as well. Even if the adversary cannot access the content
of the messages, she may still be able to observe with whom we are communicating by
inspecting the headers of our messages and the frequency and duration of our com-
munication sessions. Note that header information is used by the networks to route
messages to their destinations, thus it is not encrypted by default. The identity of
our communication partners and the frequency and duration of our communication
sessions can reveal personal information about ourselves. For instance, the kind of
Web sites that we visit indicates our areas of interest. Hence, communication pri-
vacy is about controlling access to the content of the communication, as well as to
the meta-information related to the communication (e.g., who is communicating with
whom, how often, how long, etc.).

In addition, in mobile communication systems, unauthorized parties may learn our
location by observing our communications. Our current location is also personal data
that should not be revealed to anybody. Hence, besides communication privacy, there
is also a need for ensuring location privacy.

Communication and location privacy problems have already arisen in existing wire-
less networks, but there are strong reasons to believe that in the kind of upcoming
wireless networks that we described in Chapter 2, privacy is even more endangered.
There are two main factors that make these new systems more vulnerable with respect
to privacy. First, the density of deployment of wireless devices will be much higher,
and many of them will be embedded in real objects with which people interact in
their everyday life. This makes monitoring activities easier to carry out continuously
in space and in time. In addition, monitoring our Web transactions allows the ad-
versary to determine our activities in the virtual world of the World Wide Web, and
monitoring our interactions with real objects will allow her to track our activities in
the real world.

Second, in many of the upcoming systems, wireless devices associated with the
users will operate autonomously without conscious actions of the users. For instance,
in vehicular networks, it is envisioned that vehicles communicate with other vehicles
and with the roadside infrastructure without requiring any action from the drivers.
In Radio Frequency Identification (RFID) systems, RFID tags can be read silently
by nearby readers without the tag bearer noticing this. The autonomous operation
of devices means that the level of user control is reduced, making access to personal
information by unauthorized parties easier.

In this chapter, we will study three representative examples of privacy issues in
upcoming wireless systems:

• Privacy in RFID systems: Wireless devices, for various purposes, often need
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to identify themselves explicitly. For instance, when a device wants to access some
services, it usually needs to authenticate itself. Many authentication protocols
require that the device first identifies itself and then proves its identity by some
cryptographic means. Identification is done by sending the device identifier through
a wireless channel that can be easily eavesdropped. If identification is required
frequently, then it is easy for an eavesdropping adversary to track the movement of
the device, hence its user. RFID is a formidable context in which this problem can
be studied, the very purpose of RFID being wireless identification.
• Location privacy in vehicular networks: In addition to explicit identification,

wireless devices reveal their identities to eavesdroppers simply by sending mes-
sages. The reason is that the MAC protocol usually requires the device to include
its MAC address in the messages that it sends. In addition, MAC addresses are
usually static. This provides a convenient means for an eavesdropping adversary to
track the movement of a communicating device, hence its user. A suitable context
in which this problem can be studied is vehicular networks, because in those net-
works vehicles move and communicate more or less continuously. For instance, it is
envisioned that vehicles will emit their current position and speed with a frequency
high enough to enable crash avoidance by other nearby vehicles.
• Privacy preserving routing in ad hoc networks: The operating principles of

upcoming wireless networks are very much different from those of existing networks.
One important difference is that some of the upcoming networks are based on multi-
hop wireless communications. This represents some risk with respect to privacy;
in particular, there is a privacy problem related to the way routes are discovered
by on-demand routing protocols proposed for wireless ad hoc networks. These
protocols flood the entire network with route request messages when discovering
new routes, where the route request contains the identifiers of the source and the
destination of the intended communication. Thus, an eavesdropping adversary can
easily observe (independently of where she resides in the network!) who wants to
communicate with whom.

We must note that the level of maturity of the three areas described above are
very different. Although the research community has carried out a lot of work in the
domain of RFID privacy, the other two domains are largely unexplored. The number
of papers published in the area of privacy preserving routing in ad hoc networks is very
limited, perhaps because it is unlikely that this kind of networks will be deployed and
used on a large scale for personal communications. The problem of location privacy in
vehicular networks has only been identified recently, therefore, the published papers
in this area are even more limited.
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8.1 Important privacy related notions and metrics

Before discussing the examples described in the previous section, we first introduce
some fundamental notions related to privacy and some approaches for the quantifica-
tion of privacy that we will use in the analysis of the examples later.

As we said before, an effective way to retain control over the use of one’s personal
information is to hide it as much as possible from unauthorized parties. Depending
on what kind of information is being hidden, we can distinguish between the following
notions:

• Anonymity: Anonymity is concerned with hiding who performed a given action.
Actions are usually communication actions, such as sending and receiving mes-
sages. When the identity of the message sender is hidden, we speak about sender
anonymity. Similarly, when the identity of the receiver is hidden, we speak about
receiver anonymity. In addition, both types of anonymity can be provided with
respect to external eavesdroppers or with respect to communicating parties. For
instance, sender anonymity can be provided with respect to the receiver, meaning
that the receiver of a message cannot identify its sender.

It is clear why anonymity is relevant for privacy. If one can carry out an action
anonymously, then an adversary cannot link that action to anybody. She may
observe all the details related to the action, except that she does not know who
performed it. Hence, she obtains no personal information.

Anonymity can only be achieved if there exists a set of subjects with similar
attributes such that all of those subjects could potentially have performed the action
in question. If the adversary knows that a certain action can only be performed
by a single entity, and she observes that action, then no matter how effectively we
hide the identity of the entity, the adversary can trivially identify it as the source
of the action. This observation is so fundamental that it serves as the basis of the
commonly known definition of anonymity [312]: “Anonymity is the state of being
not identifiable within a set of subjects, the anonymity set.”

• Untraceability: Untraceability aims at making it difficult for the adversary to
identify that a given set of actions were performed by the same subject. Anonymity
is useful for ensuring untraceability, but it is not sufficient: The adversary may not
know who exactly performed the actions, but if she knows that all of them were
performed by the same subject, then untraceability is not provided.
• Unlinkability: The notions of anonymity and untraceability are generalized by

the notion of unlinkability. Unlinkability means hiding information about the re-
lationships between any items (e.g., subjects, messages, actions, etc.). In the case
of anonymity, the items that cannot be related by the adversary are the observed
action and the identifier of the subject who performed that action. In the case of
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untraceability, the items that cannot be related to each other are the actions of the
same subject.

Unlinkability allows us to describe requirements that are weaker than anonymity
but still meaningful with respect to privacy. For instance, it may be the case that
the adversary can determine who sends messages and who receives messages (i.e.,
neither sender not receiver anonymity hold), and yet the adversary may still be
unable to relate senders to receivers (i.e., unlinkability of senders and receivers is
provided). This means that though the adversary can see who is communicating,
she does not know who communicates with whom.
• Unobservability: In contrast to unlinkability, which is concerned with hiding the

relationships between items, unobservability is concerned with hiding the items
themselves. For instance, assume that instead of hiding the identity of the sender
of a message, we want to hide the fact that a message was sent at all. In this case,
we need sender unobservability instead of sender anonymity.

• Pseudonymity: Pseudonymity means that instead of her real identifier, one uses
a pseudonym to identify herself. This makes sense if the pseudonym and the real
identifier are unlinkable for the adversary. In this case, pseudonyms can be used to
refer to the subject that performed a given action without jeopardizing the privacy
of that subject. This is important, because as we already mentioned, communica-
tion protocols often require references to message senders and receivers.

In certain cases, unlinkability of pseudonyms and real identifiers may not be
enough, but we also need unlinkability of different pseudonyms of the same subject.
Especially, if the subject performs several actions under different pseudonyms, then
in order to ensure untraceability, those pseudonyms must be unlinkable.

There are different techniques to achieve unlinkability (anonymity and untraceabil-
ity), and unobservability. Sender anonymity can be achieved with the help of so-called
DC (Dining Cryptographers) networks [96], and receiver anonymity can be achieved
by broadcast communications. Unlinkability between senders and receivers can be
achieved by so-called MIX networks [95]. Each of these mechanisms can be extended,
with injection of dummy traffic, to achieve unobservability.

It makes sense to talk about unlinkability only with respect to some observations by
the adversary. However, different observations may yield different amounts of infor-
mation to the adversary, and thus they may result in different levels of unlinkability.
The question is how these levels can be determined. Or in other words, how can
unlinkability be quantified and measured ?

As far as anonymity is concerned, a popular metric is the size of the anonymity set
(i.e., the set of subjects that might have preformed the observed action). Intuitively,
the larger the anonymity set is, the more uncertainty the adversary has regarding
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who might have performed the observed action. If the anonymity set is a singleton,
then obviously no anonymity is provided.

The advantage of the anonymity set size as a metric for anonymity is that it is
usually easy to compute. Its disadvantage is that it is not really a precise measure.
Assume, for instance, that the adversary observes a message and she knows that the
message might have been sent by someone among one million potential senders, but
one of these potential senders is the real sender with probability 0.9, and each of
the other potential senders is the real sender with probability around 10−7. In this
case, the anonymity set size is one million, which seems like a large number, still the
adversary can almost be sure who is the real sender. It is easy to see what is wrong
with the anonymity set size as a metric for anonymity: it is a good measure only if
all the members of the set are equally likely to have performed the observed action.
In general, however, this is rarely the case.

Thus, a better metric can be obtained by taking into account the probability dis-
tribution over the members of the anonymity set. Since intuitively, anonymity means
that the adversary is uncertain about the real identity of the subject that performed
the observed action, it is natural to use the standard metric of uncertainty, namely the
entropy of the probability distribution, to quantify the level of anonymity. For this
reason, let us denote the anonymity set by A, and let us denote by px the probability
(for the adversary) that the observed action has been performed by subject x ∈ A.
Then, the entropy based measure of anonymity is defined as:

−
∑

∀x∈A

px · log px (8.1)

One can also normalize this metric by dividing by log |A|, and obtain a number
between 0 and 1. Normalization makes it easier to compare the level of anonymity in
cases when the anonymity sets have different sizes.

The same approach can be used to define an entropy based metric for unlinkability
in general. Let us assume that the adversary has made some observations and that
she wants to relate two sets of items, I1 and I2, to each other. For instance, I1

can contain message senders and I2 may contain message receivers. By definition, a
relation is a subset of I1 × I2. Let pR be the probability (for the adversary) that the
real relationship between the items in I1 and I2 is captured by relation R ⊆ I1 × I2.
Then, the measure of unlinkability can be defined as:

−
∑

∀R⊆I1×I2

pR · log pR (8.2)

Although these entropy based metrics precisely capture the idea behind measuring
the level of anonymity and unlinkability, their main disadvantage is that in order
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to compute them, we need to know the probability distribution, and this is usually
difficult to determine.

8.2 Privacy in RFID systems

The main problem with low-cost RFID tags is that they are not capable of enforcing
any kind of access control to the data that they store. This means that low-cost tags
respond to the query of any reader without authenticating it, and therefore clandestine
scanning of low-cost tags is a plausible threat. At the same time, these low-cost tags
are expected to be deployed on a large scale. Hence, there is a potential danger of
obtaining private information about people by stealthily scanning the tags that they
carry.

More precisely, there are two problems that arise here: inventorying and tracking .
Inventorying means that a reader can stealthily determine what objects a person is
carrying, including books, medicaments, banknotes, and clothes. Most of the infor-
mation obtained in this way is highly personal. For instance, medicaments convey
information about the diseases that a person has, and books may reveal their personal
interests or religion. Moreover, no one wants to reveal the number and the denomi-
nation of the banknotes in their wallet, especially when walking in a deserted street
at night.

The other problem is that based on the identifiers emitted by the tags carried by
a person, the location of that person can be tracked. Even if the tags do not emit
unique identifiers, a specific constellation of object types may be unique to a person,
and can be the basis for tracking. For instance, at a given period of time, there may
be a single person in a city wearing a specific type of shoes and wrist watch, and
carrying a specific book in a specific type of suitcase.

When talking about clandestine scanning, it is useful to remember that in practice,
various read ranges exist. First of all, there is a nominal read range associated with
a tag. This is the value that one can find in the official specifications, and it refers
to the maximum distance from which a normally operating reader can reliably read
the tag. Depending on the application, the nominal read range can vary form a few
centimeters to a few meters.

The rogue read range is the distance from which the tag can be read by a rogue
reader that uses a stronger signal than that used by normally operating readers.
Clearly, the rogue read range is larger than the nominal read range. For instance, in
case of proximity smart cards, the nominal range is around 10 centimeters, but it has
been demonstrated [218] that those cards can be read by a rogue reader from as far
as 1 meter, which means 10 times farther than the nominal range.

In addition to directly reading the tag, an adversary may try to eavesdrop the com-
munication (including identifying information) between tags and readers. As we have
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mentioned above, due to the way in which passive tags operate, the tag-to-reader
communication is more difficult to eavesdrop on than the reader-to-tag communica-
tion. Still, the tag-to-reader eavesdropping range can be much larger than the rogue
read range. For instance, there have been some rumors [389] that the US electronic
passport can be eavesdropped on from a few meters distance, perhaps hundred times
farther than its nominal range. Compared to that, the reader-to-tag eavesdropping
range can even be two orders of magnitude larger. Although eavesdropping the reader-
to-tag communications seems to be less dangerous with respect to the privacy of the
tag bearers, in some protocols the reader may reveal tag specific information that
could be exploited by an adversary in an attack against privacy.

8.2.1 Solutions for low-cost tags

There have been many proposals for privacy protecting protocols for RFID tags. They
can be broadly classified into two groups: protocols for low-cost tags that cannot
perform any computations and protocols for higher-tier tags that can perform certain
cryptographic operations. In this subsection, we give an overview of the first group
of solutions; the second group will be presented in the next subsection.

Killing and sleeping

One of the simplest solutions for protecting the privacy of consumers carrying tagged
objects is to “kill” the tags. For instance, upon the purchase of a product, an RFID
reader at the POS terminal can send a kill command to the RFID tag attached to the
product that changes its state to permanently disabled. Of course, such a command
should be somehow authenticated, otherwise tags can be killed by unauthorized read-
ers. One option for this is to require the kill command to be PIN protected. In other
words, the kill command must be accompanied by a PIN in order to be executed by
the tag. This is the approach that is supported by the EPC standards.

Killing tags is a very efficient solution to the privacy problems described above: nei-
ther inventorying nor tracking of killed tags is possible. However, the main problem
with this approach is that all the post-purchase benefits of RFID for the consumers,
such as returning an item without a receipt, are lost too. In addition, in some appli-
cations, tags simply cannot be killed. An example is the library application, where
the tags in the books must be operational after check-out in order to be able to read
them when the books are returned.

Another similar approach is to put the tags in disabled state only temporarily.
This means that instead of sending a kill command to the tags, the reader at the
POS terminal would send a sleep command to them. The advantage of this approach
is that just like dead tags, sleeping tags cannot be stealthily read, whereas unlike
dead tags, sleeping tags can be woken up if needed. Similarly to the kill command,



8.2 Privacy in RFID systems 243

the sleep and the wake up commands must be authenticated, for instance, by an
accompanying PIN. Note however, that whereas the PINs for the kill and the sleep
commands are managed by the retailer, the PINs for the wake up commands must
be managed by the consumer. Managing the PINs for all the tags the consumer has
seems to be an unrealistic requirement. Indeed, people already have difficulties with
properly managing their passwords for their various accounts, and it can be expected
that they would have many more tags in the future than accounts today.

Renaming

Let us assume now that the tags are neither killed nor put in a sleeping state. This
means that they can be read at any time. Recall that there are two problems that
we want to solve: preventing clandestine inventorying and preventing clandestine
tracking.

The easier problem is the prevention of clandestine inventorying. It can be solved
by using pseudonyms such that the pseudonyms can be decoded into real identifiers
only by the authorized readers. This prevents an adversary who does not have an
authorized reader to identify the tags, and hence, the objects to which they are
attached. However, using static pseudonyms does not solve the problem of clandestine
tracking: If the tag always responds with the same pseudonym, then the pseudonym
serves as a meta-identifier, which makes tracking possible.

In order to prevent tracking, the tag must change its pseudonym from time to
time. One approach to achieve this is to store a list of pseudonyms in the tag and
to require that the tag rotates these pseudonyms and uses a new pseudonym each
time it is scanned. Authorized readers would know all the pseudonyms of the tag
and they would be able to identify the tag based on the emitted pseudonym; and
an unauthorized reader that does not know the pseudonym list cannot correlate the
different responses of the same tag. In addition, authorized readers would also be
able to refresh the list of pseudonyms in the tag. As the tag is assumed to be a
low-cost tag that does not support any cryptography, the new pseudonym list would
be transmitted to the tag in clear. Hence, it must be assumed that the adversary
cannot continuously follow the tag, and pseudonym list refresh operations cannot be
eavesdropped by the adversary. Another problem is that an adversary could rapidly
query the tag several times so that it would emit all its pseudonyms in the list. Then,
the tag would continue to use the same list of pseudonyms until the next refresh
operation, consequently the adversary could still track the tag for some time. In
order to prevent this, the bandwidth of the tags must be restricted (e.g., by hardware
means), so that they can emit their pseudonyms only at a relatively low rate. Then
the attack requires that the adversary have access to the tag continuously for an
extended period of time, which is impractical.

Another approach for renaming uses some special properties of the ElGamal public-
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key crypto-system. In the ElGamal crypto-system, the public key of an entity, say
Alice, is a triplet (p, g, A), where p is a large prime, g is a generator of the multi-
plicative group Z∗p , A = ga (mod p), and a is a secret value known only to Alice.
In order to encrypt a message m with the public key (p, g, A), one has to generate
a random number r, and compute R = gr (mod p) and C = m · Ar (mod p). The
ciphertext is the pair (C, R). An interesting feature of the ElGamal crypto-system
is that a ciphertext can be re-encrypted without first being decrypted (i.e., without
the knowledge of the private key). Re-encryption works in the following way. One
generates a random number r′, and computes R′ = R · gr′ (mod p) and C ′ = C ·Ar′

(mod p). It is easy to verify that R′ = gr+r′ (mod p) and C ′ = m · Ar+r′ (mod p),
and therefore, (C ′, R′) is a valid ciphertext for m.

We can use this re-encryption property of the ElGamal crypto-system for chang-
ing pseudonyms of RFID tags in the following way. The pseudonym of each tag is
computed by encrypting its real identifier using the ElGamal crypto-system. Autho-
rized readers know the public key with which they can re-encrypt and rewrite the
pseudonym of the tags. Thus, after an interaction with such a reader, the pseudonym
of the tag is changed, which makes tracking difficult for the adversary. Some special
readers who also need to know the real identifier of the tag possess the private key
with which the pseudonyms can be decrypted into real identifiers.

This re-encryption scheme is quite elegant, but it has two disadvantages. First,
between two subsequent re-encryptions, the tag can still be tracked. Second, it must
be assumed that the adversary cannot eavesdrop on the communication between the
re-encrypting reader and the tag, otherwise she can link the new pseudonym to the
old one. This is a strong assumption because the reader-to-tag eavesdropping range
is usually quite large. Still, it is reasonable to assume that the adversary cannot con-
tinuously follow the tag, and thus cannot eavesdrop each and every new pseudonym.
This makes tracking difficult.

Blocking

An interesting approach to prevent tracking takes advantage of the very properties of
the low level anti-collision protocols used in RFID systems. In order to avoid collisions,
the reader first determines which tags are in its vicinity, and then it addresses each of
those tags individually. The procedure of determining which tags are nearby is called
singulation.

One example of a singulation procedure is the binary tree walking protocol. In this
protocol, it is assumed that the tag identifiers are initially assigned to the leaves of a
binary tree. The internal vertices of the tree are labeled with binary strings in such
a way that the left child of a vertex that has label ` is labeled with `0, and the right
child of the same vertex is labeled with `1. The root has an empty label. Such a
labeled binary tree is illustrated in Figure 8.1.
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Fig. 8.1. Illustration of a labeled binary tree used in the binary tree walking protocol. Tag
identifiers are assigned to the leaves of the tree. The internal vertices of the tree are labeled
with the largest common prefix of their descendant vertices. The root has an empty label.
The reader performs a depth-first search in this tree to determine which tags are nearby.
The figure also illustrates the concept of the privacy zone. The privacy zone is a specific part
of the identifier space. Tags can be transferred from the non-protected zone into the privacy
zone by changing their identifiers (e.g., setting the leading bits). When the reader recurses in
the privacy protected part of the tree, a special blocking device simulates collisions effectively
preventing the identification of any nearby tags in the privacy zone.

The reader performs a depth-first search in this tree. First, it requests all nearby
tags to emit the first bit of their identifiers. If every tag responds with a 0 (or a 1),
then no collision occurs at the physical layer, and the reader knows that all nearby
tags are in the left half (or in the right half) of the tree. In this case, the reader
recurses in the left (or in the right) subtree below the root. If, instead, some tags
respond with 0 and some tags respond with 1, then the reader detects a collision and
it knows that there are tags nearby from both halves of the tree. In this case, the
reader recurses in both subtrees below the root.

The same procedure is applied in each step of the recursion. Let us assume that
the root of the currently considered subtree is labeled with `. The reader requests
all nearby tags whose identifier starts with prefix ` to emit the next bit of their
identifiers. If no collision occurs, then depending on whether the response was 0 or 1,
the reader continues with the subtree whose root is labeled with `0 or `1, respectively.
Otherwise, it first considers the left subtree below the vertex labeled with `, and then
the right subtree of the same vertex. At the end, this procedure yields the identifiers
of all nearby tags.

As we can see, an eavesdropping adversary can obtain the same information as the
reader, meaning that she learns which tags are nearby. However, the properties of the
binary tree walking protocol can also be used to confuse an eavesdropper. The idea
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is that a special kind of device, called the blocker, can simulate a collision upon each
request of the reader. This would coerce the reader to walk through the whole tree.
Since the tree is usually very large (EPC tags, for instance, have 96 bit identifiers,
meaning that the tree has 296 leaves!), the reader would stall. More importantly, the
adversary would not learn any useful information either, as it would seem to her that
all tags of the system are nearby.

The nice thing about blocking is that the user can decide when she wants to activate
the blocking device. For instance, she can carry the blocker with her most of the time
preventing clandestine scanning and tracking of her tags. However, if she wants
to return an item to a merchant, she can simply do so by deactivating the blocker
device for the time of this specific transaction. In addition, the blocker device can be
manufactured almost as cheaply as an ordinary tag.

The blocking approach described above has a problem: If there is a blocker device
nearby, then it would prevent the reading of all tags in the vicinity, even those that
are legitimately being attempted to be read. For instance, the blocker device of one
consumer may prevent the reader from reading the tags of another nearby consumer.
One way to solve this problem is to divide the identifier space into two zones, one of
which is called the privacy zone (see Figure 8.1 for illustration). Then, each attempt
to read tags in the privacy zone is considered to be an adversarial action and it should
be blocked, whereas reading tags in the non-protected zone should be made possible.
Therefore, the blocking devices would start to simulate collisions only when the reader
recurses in the privacy zone. For instance, the privacy zone can be defined such that
all identifiers whose leading bit is 1 are considered to be in the privacy zone. Then,
each time the reader sends a query with a prefix starting with 1, the blocker device
would simulate a collision, but it would stay quiet when the prefix begins with 0.
In addition, tags could be transferred from the non-protected zone into the privacy
zone and back by appropriately setting the leading bit of their identifiers. This can
even be done automatically. For instance, upon purchase of a product, its tag can
automatically be transferred into the privacy zone at the POS terminal, thus providing
privacy to the consumer when she leaves the shop. Clearly, the reader that transfers
the tag from one zone into the other must be authenticated (e.g., using a PIN), in
order to avoid that tags are stealthily transferred back into the unprotected zone.

8.2.2 Solutions for crypto-enabled tags

In this subsection, we will assume that the tags are capable of cryptographic opera-
tions. We must note, however, that though advances in technology make it possible
to integrate more and more functions into microchips, public key cryptography still
seems to be prohibitively expensive for RFID tags. As the price of RFID tags is a
critical issue due to their potentially very large number, it is unlikely that low-cost
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RFID tags will be capable for public key cryptographic operations in the near future.
Therefore, we make the realistic assumption that tags can use only symmetric key
cryptography.

The advantage of crypto-enabled tags over the simple tags that we considered in the
previous subsection is that these tags can generate their pseudonyms themselves. One
simple approach for pseudonym generation is that the tag encrypts its real identifier
IDi and some random number R (freshly generated by the tag itself) with a key Ki

that it shares with the authorized readers. Let us denote the resulting ciphertext
by EKi

(IDi||R). The random number R is needed to ensure that the pseudonyms
are changing. Otherwise, the encrypted identifier would be static, and it would serve
as a meta-identifier for the tag. When the reader receives EKi

(IDi||R), it must
try all possible tag keys, until it finds Ki that properly decrypts the pseudonym.1

Once the pseudonym is decrypted, the reader learns the real identifier of the tag. An
eavesdropping adversary, in contrast, learns no practical, useful information regarding
the tag’s identity. The only thing that she can do is to mount a ciphertext-only attack
against the cipher E.

Clearly, the main disadvantage of this approach is that the reader must perform
O(n) operations for the identification of the tag, where n is the total number of tags
in the system. As n can be large, the delay needed to identify the tag may be too
long. Note that the tag cannot help the reader by providing information about which
key it should use, because that would also help the adversary to identify the tag.
Therefore, we need some clever way to improve the above scheme by reducing the
complexity of the identification procedure at the reader’s side, while preserving the
anonymity of the tag with respect to an eavesdropping adversary.

Time-memory tradeoff

Observe that the problem of determining which tag key was used to produce a
pseudonym is almost identical to the problem of breaking the key of a symmetric
cipher. There is a well-known technique, called Hellman’s time-memory trade-off
[164], that can be used for breaking symmetric keys with less effort than that of the
brute force key search. The brute force approach requires either O(n) computation
and no storage, or O(n) storage and no computation. In contrast to this, Hellman’s
technique needs only O(n

2
3 ) computation, but it also requires O(n

2
3 ) storage; hence

the trade-off. Thus, one can use Hellman’s technique to speed up the identification
of the tags at the cost of an increased storage requirement in the reader.
1 This requires some redundancy in the encrypted message that allows the reader to recognize that

it used the right key.
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Maintaining state

Another approach to avoid the brute force key search is for the reader to maintain
some state information for each tag. For instance, each tag can generate its pseudonym
by encrypting a counter c with the tag key Ki. Assuming that the reader knows the
current counter value for each tag, it can pre-compute the current pseudonym of each
tag. When the tag presents EKi

(c), the reader only needs to look up the received
value in its database and in this way identify the tag to which this pseudonym belongs.
After this transaction, both the tag and the reader increment the counter and compute
the next pseudonym. The same approach can also be implemented by using a one-way
hash function, instead of a symmetric key cipher, to compute the pseudonym from
the counter. In addition, if there are multiple authorized readers, then the state can
be stored at a central place where all readers can access it on-line.

There is a problem, however, with this simple solution. It may happen that the
tag and the reader become de-synchronized, meaning that the current counter values
at the tag and at the reader are not the same. For instance, if a rogue reader queries
the tag, then the tag increments its counter, while the state associated with that tag
at the reader remains unchanged. In order to solve this problem, the reader may
pre-compute several future pseudonyms for each tag. Let us assume, for instance,
that the current counter value of a tag is c, and the tag successfully identified itself
to the authorized reader using its current pseudonym EKi(c). Then, the reader can
pre-compute and store EKi(c+ j) for all 1 ≤ j ≤ d, where d is a parameter chosen by
the reader. This will increase the storage requirement at the reader, but at the same
time, this scheme can tolerate de-synchronization up to a difference of d between
the counter values at the tag and at the reader. Unfortunately, if d is known to
the adversary, then she can still enforce de-synchronization between the tag and the
reader by querying the tag more than d times.

Another problem with the above solution is that if a tag is compromised, meaning
that its tag key Ki and its current counter c become known to the adversary, then she
can compute all pseudonyms that the tag used in the past. Hence, if the adversary has
a log of all past transactions, it can easily identify the transactions of the compromised
tag in that log. In other words, the adversary can do delayed tracking, which may
still be dangerous concerning the privacy of the tag bearer.

This problem can be solved by replacing the counter with a hash value. This hash
value is re-hashed by the tag and the reader after each transaction using a one-way
hash function. If a tag is compromised and its current state becomes known to the ad-
versary, then she still cannot compute the previous states due to the unidirectionality
of the hash function. This property is often called forward secrecy or break backward
protection.
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Using key-trees

Another idea to reduce the complexity of tag identification while preserving privacy
is to use key-trees. A key-tree is a tree where a unique key is assigned to each edge
(see Figure 8.2 for illustration). The leaves of the tree represent the tags. Each tag
possesses the keys assigned to the edges of the path starting from the root and ending
in the leaf that corresponds to the given tag. The reader knows all keys in the tree
(or it can generate them from a master key). In order to identify itself to the reader,
a tag uses all of its keys, one after the other, starting from the first level of the tree
and proceeding towards lower levels. The reader first determines which first level key
has been used; for this, it needs to search through the first level keys only. Once
the first key is identified, the reader continues by determining which second level key
has been used; for this, it needs to search only through those second level keys that
reside below the already identified first level key in the tree. This process is continued
until all keys are identified, which at the end, identifies the tag. The crucial point is
that the reader can reduce the search space considerably each time a key is identified,
because it should consider only the subtree below the recently identified key. Hence,
the complexity of the procedure is O(log n), where n is the total number of tags in
the system.

k1

k11

k111

Fig. 8.2. Illustration of a key-tree. Each leaf represents a tag. There is a unique key assigned
to each edge. Each tag possesses the keys assigned to the edges of the path starting from
the root and ending in the leaf that corresponds to the given tag. For instance, the tag that
belongs to the leftmost leaf in the figure possesses the keys k1, k11, and k111. From [71],
with kind permission of Springer Science and Business Media.

The problem of the above described tree-based approach is that upper-level keys
in the tree are used by many tags, and therefore if a tag is compromised and its keys
become known to the adversary, then the adversary gains partial knowledge of the
keys of other tags too. This obviously reduces the privacy provided by the system,
because by observing the transaction of a non-compromised tag, the adversary can
recognize the use of some compromised keys, and therefore its uncertainty regarding
the identity of the tag is reduced (it may be able to determine which subtree the tag
belongs to).
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One interesting observation is that the basic scheme described at the beginning
of this subsection can be viewed as a special case of the key-tree based approach,
where the key-tree has a single level and each tag has a single key. Regarding the
above described problem of compromised tags, the basic scheme is in fact optimal,
because compromising a tag does not reveal any key information of other tags. At the
same time, as we have seen above, the identification delay is the worst in this case.
Whereas in a binary key-tree, the compromise of a single tag strongly affects the
privacy of the other tags (as we will see below), the binary tree is very advantageous
in terms of identification delay. Thus, there seems to be a trade-off between the level
of privacy and the identification delay in the key-tree based scheme that depends on
the parameters of the key-tree. A detailed analysis of this trade-off can be found in
[71].

As an exercise, we will now illustrate how to determine the level of privacy provided
by the key-tree based scheme when a single tag is compromised. For this, we will use
the concept of anonymity sets. Recall that the anonymity set of a tag v is the set of
tags that are indistinguishable from v from the adversary’s point of view. The size of
the anonymity set is a good measure of the level of privacy provided for v, because it is
related to the level of uncertainty of the adversary. Clearly, the larger the anonymity
set is, the higher the level of privacy is. The minimum size of the anonymity set is
1, and its maximum size is equal to the number of all tags in the system. In order
to make the privacy measure independent of the number of tags, we can divide the
anonymity set size by the total number of tags, and obtain a normalized privacy
measure between 0 and 1. Such normalization makes the comparison of different
systems easier.

Now, let us consider a key-tree with ` levels and branching factor b at each level,
and let us assume that exactly one tag is compromised (see Figure 8.3 for illustration).
Knowledge of the compromised keys allows the adversary to partition the tags into
partitions P0, P1, P2, . . . , P`, where

• P0 contains the compromised tag only,
• P1 contains the tags the parent of which is the same as that of the compromised

tag, and that are not in P0,
• P2 contains the tags the grandparent of which is the same as that of the compro-

mised tag, and that are not in P0 ∪ P1,
• . . .
• P` contains all the remaining tags that are not in P0∪ . . .∪P`−1 (these are the tags

that have no compromised keys).

Tags of a given partition are indistinguishable for the adversary, though it can dis-
tinguish between tags that belong to different partitions. Hence, each partition is the
anonymity set of its member tags.
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k1

k11

k111

P0 P1 P2 P3

Fig. 8.3. Illustration of what happens when a single tag is compromised. Without loss
of generality, we assume that the tag corresponding to the leftmost leaf in the figure is
compromised. This means that the keys k1, k11, and k111 become known to the adversary.
This knowledge of the adversary partitions the set of tags into anonymity sets P0, P1, . . . ,
P` of different sizes. Tags that belong to the same partition are indistinguishable to the
adversary, though it can distinguish between tags that belong to different partitions. For
instance, the adversary can recognize a tag in partition P1 by observing the use of k1 and
k11 but not that of k111, where each of these keys are known to the adversary. Tags in P3 are
recognized by not being able to observe the use of any of the keys known to the adversary.
Clearly, tags that belong to larger partitions enjoy more privacy, because the uncertainty of
the adversary is greater. The level of privacy provided by the system can be characterized by
the level of privacy provided to a randomly selected tag, or in other words, by the expected
size of the anonymity set of a randomly selected tag. From [71], with kind permission of
Springer Science and Business Media.

The level of privacy provided by the system can be characterized by the level of
privacy provided to a randomly selected tag, or in other words, by the expected size of
the anonymity set of a randomly selected tag. By definition, the expected anonymity
set size is:

S̄ =
∑̀

i=0

|Pi|
n
|Pi| =

∑̀

i=0

|Pi|2
n

(8.3)

where n is the total number of tags, and |Pi|/n is the probability of selecting a tag
from partition Pi. Then, the normalized expected anonymity set size can be computed
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as follows:

S̄

n
=

∑̀

i=0

|Pi|2
n2

(8.4)

=
1
n2

(
1 + (b− 1)2 + ((b− 1)b)2 + . . . + ((b− 1)b`−1)2

)

=
1
n2

(
1 + (b− 1)2

(
1 + b2 + (b2)2 + . . . + (b2)`−1

))

=
1
n2

(
1 + (b− 1)2 · b

2` − 1
b2 − 1

)

=
b− 1
b + 1

+
2

(b + 1)n2
(8.5)

where we used that n = b` and

|P0| = 1

|P1| = b− 1

|P2| = (b− 1)b

|P3| = (b− 1)b2

. . . . . .

|P`| = (b− 1)b`−1

Using this result, for a binary tree (i.e., when b = 2), we achieve that the normalized
expected anonymity set size of the system, when only one tag is compromised, drops
from 1 to around 1

3 (assuming that n is large). This reinforces our previous statement
that in a binary key-tree, the compromise of a single tag strongly affects the privacy
of the non-compromised tags.

The above calculations can be generalized for key-trees that have different branching
factors at different levels, and for the case when more than one tags are compromised.
For the details, the interested reader is referred to [71].

8.3 Location privacy in vehicular networks

In this section, we study the location privacy problem in mobile wireless networks,
and in particular, in vehicular networks. The location privacy problem in vehicu-
lar networks stems from the envisioned operational principles, specifically from the
requirement that each vehicle must broadcast its current location and speed with a
relatively high frequency. The idea is that nearby vehicles and roadside units can pick
up this information and they can use it in many applications, such as assisting the
drivers in making a left turn, merging the highway, or changing lanes, and warning the
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drivers when a collision is predicted or an emergency vehicle is approaching. When a
vehicle always broadcasts its position and speed under the same identity (e.g., using
a static MAC address), it becomes possible for an eavesdropping adversary to track
the movement of that vehicle. In addition, it is relatively easy to find out who is
the owner of a given vehicle, meaning that not only the vehicle, but its owner can be
tracked too.

8.3.1 Changing pseudonyms

One appealing approach to solve this problem is that the vehicles broadcast their mes-
sages under pseudonyms that they change with some frequency. These pseudonyms
should be generated in such a way that a new pseudonym cannot be directly linked to
previously used pseudonyms of the same vehicle. In most of the applications related
to road safety, it is important to let other vehicles know that there is a vehicle at a
given position moving with a given speed, but it is not important which particular
vehicle it is. Thus, using pseudonyms is just as good as using the real identifiers, as
far as the functionality of the applications is concerned.

But what do we really gain with using ever-changing pseudonyms? In fact, we gain
practically nothing against a global eavesdropper that can hear all communications in
the network. The reason is that such an adversary can link different pseudonyms of
the same vehicle together with very high probability based on the position and speed
information in the messages that she eavesdrops. Let us assume, for instance, that the
adversary eavesdrops the message “at time 13h:34m:52s vehicle v is at position (45 m,
102 m) heading East with a speed of 50 km/h”, and the message “at time 13h:34m:53s
vehicle u is at position (59 m, 102 m) heading East with a speed of 50 km/h”. There
is a very strong correlation between these two messages. Indeed, by looking at the
first message, the adversary can compute that at time 13h:34:53s, vehicle v should
most probably be at position (58.8 m, 102 m), because it goes to East with a speed
of 50 km/h, which is around 13.8 m/s. Moreover, it is unlikely that another vehicle
will be at the same position at the same time, because that would mean that the
two vehicles crashed. Thus, it is extremely likely that the second message came from
the same vehicle as the first message, meaning that pseudonym u refers to the same
vehicle as pseudonym v. Figure 8.4 illustrates how an adversary who is able to hear
all transmitted messages can track vehicles based on the information obtained from
those messages despite the fact that the vehicles may change their pseudonyms.

8.3.2 The mix zone

Actually, the assumption that the adversary is a global eavesdropper is a very strong
one. It is more reasonable to assume that the adversary can monitor the ether only
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Fig. 8.4. Illustration of how the adversary can track vehicles based on the messages that
she eavesdrops despite the fact that the vehicles may change their pseudonyms. The dots
correspond to messages that were broadcast at some time t, and the rectangles correspond
to messages that were broadcast one second later. Each dot and rectangle is placed at the
position indicated in the corresponding message. The arrows show the direction of the move-
ment obtained from the corresponding message, and the length of each arrow corresponds
to the distance that the given vehicle would cover in one second starting from the given
position and moving straight with a speed indicated in the message. We could have also
labeled the dots and the rectangles with the pseudonyms obtained from the messages, but
we deliberately did not do that in order to show that it is quite easy to determine which rect-
angles belong to which dots, and thus, which messages belong to the same vehicle, without
any identity information. This clearly shows that when vehicles broadcast their position and
speed with a relatively high frequency (as this is envisioned in future vehicular networks),
changing pseudonyms is not an effective mechanism to protect location privacy with respect
to a global eavesdropper.

at a limited number of places and only in a limited range. This means that vehicles
that change pseudonyms in the unmonitored region are mixed and the adversary is
confused.

In essence, the unmonitored area functions much in the same way as a mix node
in a mix network [95]. A mix network is a store-and-forward network that offers
anonymous communication facilities. It contains some special routers called mix
nodes. A mix node processes messages in batches of a given size n. It collects n

messages and forwards them all at the same time. Then, it collects the next n messages
and forwards them again simultaneously, and so on. In each batch, it changes the
encoding and the order of the messages, so an eavesdropper cannot easily determine
which outgoing message belongs to which incoming message. Similarly, in our case,
the adversary cannot easily tell which of the vehicles exiting the unmonitored area
belong to which of the vehicles entering it. For this reason, one can view the entire
unmonitored area as a mix zone.
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The level of privacy provided by the mix zone

The concept of the mix zone is very appealing, but one must be careful because the
geometry of the mix zone influences the level of the protection that it provides. As
an example, let us consider Figure 8.5, which illustrates a mix zone with three gates
(where vehicles can enter and exit the mix zone). The geometry of this mix zone is
such that gate 1 and 3 are close to each other, and gate 2 is farther from both gate 1
and 3. Assume that the adversary observes two vehicles entering the mix zone almost
at the same time at gate 1 and 2, respectively. Let us further suppose that the mix
zone was empty before, meaning that now there are only these two vehicles in it.
After some short time, the adversary observes a vehicle exiting the mix zone at gate
3. It may be that it is impossible or very unlikely to go from gate 2 to gate 3 in this
short amount of time, and therefore the adversary can link the vehicle exiting at gate
3 to the one that entered at gate 1. In this example, the mix zone does not provide
any protection.

1 2

3

mix zone

Fig. 8.5. Illustration of a mix zone with three gates. The geometry of this mix zone is such
that gate 1 and 3 are close to each other, and gate 2 is farther from both gate 1 and 3. Two
vehicles enter the mix zone nearly at the same time at gate 1 and 2, respectively. After some
short time, a vehicle exits the mix zone at gate 3. In this short amount of time, it may be
impossible or very unlikely to go from gate 2 to gate 3, and therefore, the adversary can link
the vehicle exiting at gate 3 to the one that entered at gate 1.

In order to quantify the level of location privacy provided by the mix zone, we
assume that the adversary has a model of the mix zone. This model consists of a
matrix P = [pij ] of size n×n, where n is the number of gates of the mix zone, and of
n2 discrete probability density functions dij(t) (1 ≤ i, j ≤ n). pij is the conditional
probability of exiting the mix zone at gate j given that the entry point was gate i.
dij(t) describes the probability distribution of the delay when crossing the mix zone
between gate i and gate j. We assume that time is slotted, that is why dij(t) is a
discrete function.

Equipped with this model, for each observation consisting of some entering events
and some exiting events, the adversary can compute the probability of a particular
mapping between those events. We can use these probabilities to compute the entropy
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corresponding to the given observation, which provides the means for quantifying the
level of unlinkability between the observed events, and hence, the level of location
privacy offered by the mix zone (in case if this particular observation). Below, we
explain how to do this.

Let an event consist of two elements: a gate number and a time-stamp. There
are two kinds of events: entering events and exiting events. For an entering event
N = (n, τ), n denotes the gate where the vehicle entered the mix zone, and τ denotes
the time when this happened. Similarly, for an exiting event X = (x, t), x denotes
the gate where the vehicle exited the mix zone, and t denotes the time when this
event happened. An observation is a set of entering and exiting events, which we will
shortly denote by (N̄ , X̄).

t

N1 N2 Nk

X1 X2 Xk

. . .

. . .

Ni = (ni, τi)
τ1 = 0

Xi = (xi, ti)

τ2 τk

t1 tk

Fig. 8.6. Illustration of an observation. The horizontal axis represents time, the arrows above
the axis represent entering events, and the arrows below the axis represent exiting events.
The placement of an arrow indicates the timing of the corresponding event. We assume that
the first entering event happens at time τ1 = 0, and the time of all other events are measured
from this first entering event. We further assume that the mix zone was empty before time
0 and it becomes empty again after the k-th exiting event.

Let us consider Figure 8.6, which illustrates an observation made by the adversary.
In the figure, entering and exiting events are represented by vertical arrows above and
below the time axis, respectively. We assume that the first entering event happens
at time τ1 = 0, and the time of all other events are measured from this first entering
event. For simplicity, we further assume that the mix zone was empty before the first
entering event and it becomes empty again after the k-th exiting event.

As the vehicles change pseudonyms while in the mix zone, the adversary cannot
directly map exiting events to entering events, but she considers many mappings
possible. Each possible mapping between the exiting and entering events can be
represented by a permutation π on {1, 2, . . . , k}. We will denote by mπ the mapping
described by the permutation π. Thus, we have:

mπ = (N1 → Xπ(1), N2 → Xπ(2), . . . , Nk → Xπ(k))
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where N → X means that the exiting event X belongs to the same vehicle as the
entering event N , and π(i) is the i-th element of the permutation π.

Now, we would like to determine the probability that mapping mπ holds given the
observation (N̄ , X̄), which we will shortly denote by Pr{mπ|N̄ , X̄}. In order to do
this, we first observe that:

Pr{mπ|N̄ , X̄} =
Pr{mπ, X̄|N̄}

Pr{X̄|N̄} (8.6)

and we compute the nominator and the denominator separately as follows:

Pr{mπ, X̄|N̄} =
k∏

i=1

pnixπ(i)dnixπ(i)(tπ(i) − τi) = qπ (8.7)

and

Pr{X̄|N̄} =
∑

π′
Pr{mπ′ , X̄|N̄} =

∑

π′
qπ′ (8.8)

where in (8.7), we made the simplifying assumption that each vehicle chooses its exit
gate independently from the other vehicles, and the experienced delays of the vehicles
are independent too.

The entropy corresponding to the observation (N̄ , X̄) is then computed as:

H(N̄ , X̄) = −
∑

π

qπ∑
π′ qπ′

log
(

qπ∑
π′ qπ′

)
(8.9)

where qπ is defined in (8.7).
One problem with (8.9) is that it considers mappings on the entire set of observed

events. It may be the case that each of the possible mappings has an equally low
probability (meaning that the entropy is high), but still a particular exiting event can
be related to a particular entering event with a much higher probability than to the
rest of the entering events. In other words, the adversary may be clueless regarding
the full mapping, but she can still track a particular vehicle. In order to see whether
this is the case, we can determine the probability Pr{Ni → Xj |N̄ , X̄} for all pairs of
i and j separately as follows:

Pr{Ni → Xj |N̄ , X̄} =
∑

π: π(i)=j

Pr{mπ|N̄ , X̄} (8.10)

where Pr{mπ|N̄ , X̄} is defined in (8.6-8.8).

An example

Although (8.9) does not give an immediate insight into the problem, it does provide
the means for computing the entropy for any observation given the model of the



258 Privacy protection

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
d13(t) 0.1 0.2 0.3 0.2 0.1 0.04 0.03 0.02 0.01 0 0 0
d23(t) 0 0 0 0.1 0.2 0.3 0.2 0.1 0.04 0.03 0.02 0.01

Table 8.1. Discrete probability density functions of the delay between gates 1 and 3, and the
delay between gates 2 and 3 in the example. d13(t) = d23(t) = 0 for t < 0.1 and t > 1.2

mix zone. We illustrate this by a quantitative example. Let us consider a mix zone
with three gates. Let the time-slot size be 0.1 unit. The discrete probability density
functions of the delay between gates 1 and 3, and the delay between gates 2 and 3
are given in Table 8.1.

Let us assume that the adversary observes two vehicles entering the mix zone at
gates 1 and 2 at time 0, and two vehicles exiting the mix zone at gate 3 at time 0.4
and at time 0.7. Thus, we have two entering events N1 = (1, 0) and N2 = (2, 0), and
two exiting events X1 = (3, 0.4) and X2 = (3, 0.7).

There are two possible mappings between these events: m12 = (N1 → X1, N2 →
X2) and m21 = (N1 → X2, N2 → X1). Let us compute q12 and q21:

q12 = p13d13(0.4− 0)p23d23(0.7− 0) = 0.2 · 0.2 · p13p23

q21 = p13d13(0.7− 0)p23d23(0.4− 0) = 0.03 · 0.1 · p13p23

From this, we get that

Pr{m12|N̄ , X̄} =
0.2 · 0.2 · p13p23

0.2 · 0.2 · p13p23 + 0.03 · 0.1 · p13p23
=

0.04
0.043

= 0.93

Pr{m21|N̄ , X̄} =
0.03 · 0.1 · p13p23

0.2 · 0.2 · p13p23 + 0.03 · 0.1 · p13p23
=

0.003
0.043

= 0.07

and

H(N̄ , X̄) = −0.93 · log 0.93− 0.07 · log 0.07 = 0.366

This means that the first mapping is much more likely than the second one (given
the observation), and consequently the entropy of the observation is small. In other
words, the uncertainty of the adversary is not really increased by the mix zone, hence
the mix zone is ineffective in this example.

8.4 Privacy preserving routing in ad hoc networks

In Chapter 7, we presented some routing protocols proposed for wireless ad hoc net-
works. In that chapter, we were concerned with the security of those protocols against
an adversary that wants to increase her control over the communications in the net-
work, to degrade the quality of service provided by the network, or to increase the
resource consumption of the nodes. Now, we will extend the above list, and consider
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an adversary that wants to obtain information about who is communicating with
whom in the network. Note that the secure routing protocols discussed in Chapter 7
do not prevent the adversary from learning this information: It is quite trivial for the
adversary to obtain this information by inspecting the headers of the control and the
data packets.

The privacy problem is most apparent in on-demand routing protocols where route
discovery is based on flooding the entire network with a route request that contains the
identifiers of the source and the destination of the intended communication. Hence,
anybody can observe who is communicating (or about to communicate) with whom
with virtually no effort, even those who are not on the routes between the communi-
cating nodes. Therefore, we will focus on on-demand ad hoc network routing protocols
in this section.

Before beginning to develop solutions, it is worth refining our objectives and spec-
ifying what kind of adversary we are dealing with. Our primary goal is to hide the
relationships between communicating sources and destinations; thus, we are aiming at
unlinkability. We assume that the adversary is a global eavesdropper, who may also
compromise some nodes. Therefore, we want to hide the relationship between every
pair of communicating source and destination from global eavesdroppers and from
all nodes other than the source and the destination, including the forwarding nodes
between them. This latter requirement immediately rules out approaches that are
based on encrypting every control and data packet with a common key shared by all
nodes in the network. Such a solution would work against an external eavesdropper,
but not against an insider node.

In addition, we want to hide the identity of the forwarding nodes from each other
and from a global eavesdropper because the knowledge of the identity of the forward-
ing nodes reduces the uncertainty of the adversary regarding the identity of the source
and the destination. For instance, the adversary would know that the source is one of
the neighbors of the first forwarding node and the destination is one of the neighbors
of the last forwarding node.

One may also consider unobservability as an objective (i.e., making it difficult for
the adversary to determine who is communicating at all), but in order to achieve
this, we would need to introduce a considerable amount of dummy traffic in the
network, which may not be desirable in the common case when the nodes have battery
constraints. Hence, we do not consider unobservability as an objective.

8.4.1 An effective but inefficient solution

As mentioned before, flooding route requests in the entire network is disadvantageous
with respect to privacy. In fact, the problem does not stem from the flooding, but from
the fact that the route request contains the identifier of the source and the destination
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in clear. Indeed, flooding is a broadcast operation, and broadcast communication is
known to be an effective mechanism to achieve recipient anonymity (if used correctly).
So we keep the flooding of route requests, but we want to hide the identity of the
source and the destination in such a way that only the destination can determine that
it is the target of the route request, and all other nodes can only determine that they
are not the target.

One way to achieve this is to encrypt the source and the destination identifiers in
the route request with the public key of the destination. Any node can attempt to
decrypt the encrypted identifiers with its own private key. If decryption fails, the
node will only know that it is not the target of the request, but it will not know who
is the target. If the decryption succeeds, then the node will know that it is the target,
and it will also learn the identity of the source.

The next thing we want to ensure is that the destination can return a route reply
that creates the necessary routing state in the forwarding nodes. However, we must
do this in a way that reveals neither the identity of the destination nor that of the
forwarding nodes to other forwarding nodes and to an external eavesdropper. We can
achieve this by using the route request to setup a secret key between each intermediate
node that relays the route request and the destination. These secret keys can then
be used by the destination to establish the necessary routing state in the forwarding
nodes. The question is how an intermediate node can setup a secret key with the
destination, when it does not know who the destination is.

In order to solve this problem, the source can generate an asymmetric key-pair and
include the public key in the route request. This public key can be used by every
intermediate node to setup a secret key with the destination. Because the destination
needs the corresponding private key, the source encrypts that key with the public key
of the destination together with the identifiers of the destination and the source. The
private key also serves as a salt that makes dictionary type attacks2 on the encrypted
identifiers inefficient.

We are almost finished, but there are still two questions to answer: First, what
should the routing state in the forwarding nodes be? Second, how should data packets
be handled? These two questions are related, because data packets are handled
according to the routing state in the forwarding nodes.

Note that the encoding of data packets must be changed at each hop, otherwise a
global eavesdropper can track a data packet from its source to its destination based
on its static appearance. Hence, data packets must be re-encrypted hop-by-hop. This
suggests the idea of representing the routing state in each forwarding node as a pair
2 In a dictionary attack, the adversary builds a dictionary containing plaintext-ciphertext pairs by

encrypting a set of known plaintexts with a known public key. Later, she can use the dictionary
to look up the plaintext that belongs to an observed ciphertext. This attack can be very efficient,
if the set of possible plaintexts is small.
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of link keys (kin, kout) with the following operating principle: When the node receives
an encrypted data packet, it tries to decrypt it with kin, and if this succeeds, then
it re-encrypts the data packet with kout and broadcasts the encrypted packet. It is
convenient that the node does not need to know with which neighbor it shares kin

and kout. Hence, this solution can satisfy the requirement that the forwarding nodes
should not know the identity of the other forwarding nodes.

The link keys can be established with the help of the route reply message. This
message can have an onion-like structure where each layer is encrypted with the key
shared by the destination and the corresponding forwarding node, and it contains the
link keys destined for that forwarding node. Each forwarding node peels off one layer
of the route reply, which ensures that the encoding of the route reply changes at each
hop, so it cannot be tracked.

Putting all these ingredients together, we arrive at the following protocol: Assume
that a source S wants to communicate with a destination D. For this reason, it must
first establish a route to D, and then send data packets to the destination via that
route. Route establishment is based on flooding the network with a route request,
and then returning a route reply, which creates the necessary routing state in the
forwarding nodes.

In order to create the route request message, the source generates an asymmetric
key-pair (K, K−1), a secret key k0, and a nonce n0. It then encrypts D, S, and K−1

with the public key KD of the destination. In addition, it encrypts k0 and n0 with
the public key K. Then, it broadcasts the route request:

EKD (D||S||K−1) || K || EK(k0||n0)

Assume that node F1 receives this route request. It first checks, if it has received
this request before. The public key K can serve as a request identifier, thus, F1 checks
if it has seen K before. If so, then the request is dropped, otherwise K is stored (until
some time), and the processing continues.

Next, F1 verifies if it is the target of the request. For this reason, it attempts to
decrypt EKD (D||S||K−1) with its private key K−1

F1
. If this is successful, then F1 is the

target, otherwise it is not. Let us assume for the moment that F1 is not the target;
the processing in the other case will be discussed later.

If F1 is not the target, then F1 generates a secret key k1 and a nonce n1, concate-
nates them to EK(k0||n0), and encrypts the result with K. Then, it broadcasts the
following route request:

EKD
(D||S||K−1) || K || EK(k1||n1||EK(k0||n0))

In addition, k1 and n1 are stored for later use.
Each intermediate node does the same, and hence, the general format of the route
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request message is the following:

EKD
(D||S||K−1) || K || EK(ki||ni|| . . . EK(k0||n0) . . .)

After receiving the route request, D attempts to decrypt EKD
(D||S||K−1) with its

private key, and it succeeds. Thus, D realizes that it is the target of the request.
Nevertheless, it broadcasts a dummy request:

EKD (D||S||K−1) || K || garbage
This is needed, since otherwise the adversary may identify the destination as the node
that does not forward the request.

As D successfully decrypted EKD
(D||S||K−1), it learns the private key K−1. With

that it decrypts EK(k`||n`|| . . . EK(k0||n0) . . .), and obtains the secret keys and the
nonces of the forwarding nodes. Then it generates a link key for each link of the dis-
covered route, and constructs a route reply, which has the following layered structure:

Ek`
(n`||kin

` ||kout
` || Ek`−1(n`−1||kin

`−1||kout
`−1 || . . . Ek0(n0|| − ||kout

0 ) . . .))

Each layer (except the most inner one) contains the nonce of the node corresponding
to that layer and two link keys intended for the given node. The most inner layer
corresponds to the source S that needs only one link key kout

0 with which it can
encrypt data packets to be sent. In addition, as a link key must be shared by the two
ends of the link, we have that kout

i = kin
i+1 for all 0 ≤ i < `. Finally, kout

` is stored by
the destination together with the identifier S.

When a route reply of this kind is received by an intermediate node Fi, it tries
to decrypt it with ki that it stored before. In fact, Fi may have several such keys
if it participated in multiple route discoveries, and it must check each of those keys.
If none of the keys work3, then Fi is not involved in the route, and the route reply
is discarded. If ki works, then the node must check if it received back its nonce ni

corresponding to key ki in the reply. If this is the case, then Fi peels the outer layer off
the route reply, applies some padding to retain its original length and re-broadcasts
the updated route reply. In addition, Fi stores kin

i and kout
i in its routing table.

Data packets are handled as follows. The source encrypts the packet with kout
0 and

broadcasts it. Each node that receives the transmission tries to decrypt it with its
incoming link keys. If none of the keys work, then the packet is discarded. Otherwise,
if Fi manages to decrypt the packet with kin

i , then it re-encrypts it with kout
i , and

re-broadcasts it. This process is repeated, until the packet arrives to the destination.

Brief informal analysis

Route request messages do not contain explicit identifiers. However, a global eaves-
dropper can observe where a particular route request is originated, hence she may
3 A key works if after decryption, the node can see one of its nonces in the decrypted message.
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guess who the source is. Whereas, the way in which the route requests are han-
dled, and especially the fact that the destination also rebroadcasts the route request
targeted to it, ensures that even a global eavesdropper cannot determine (solely by
observing the route request) who the destination is. Note that route request messages
contain a static part (the encrypted identifiers and the public key), but this is not a
problem because these messages are flooded in the network, hence tracking them is
futile.

Route reply messages do not contain explicit identifiers either. In addition, their
entire encoding is changed (while preserving their original length) at each hop, which
makes it non-trivial to track them from the destination to the source. Still, a global
eavesdropper can observe the timing of the transmissions of the route reply messages,
which may allow her to track them: Two route reply messages eavesdropped upon at
the same place right after each other are very likely two encodings of the same reply.
This problem is somewhat mitigated by the fact that each node may be involved in
many route discoveries simultaneously, thus nodes act as mixes for the route reply
messages. If this is deemed insufficient (e.g., the average number of simultaneous
route discoveries is low in the network), then the only way to overcome the problem
is to require that each node periodically injects dummy route reply messages in the
network, which are forwarded up to a few hops and then discarded.

Another problem is that a node transmitting a route reply immediately after re-
ceiving a route request is very likely the target of that request. Again, periodic
transmission of dummy route requests may help to solve this problem.

Data packets are similar to route request messages in the sense that they are unicast
messages and they change their entire encoding at each hop. Thus, the same analysis
applies to them as to route reply messages. One additional point that is worth
mentioning is that data packets are decrypted and re-encrypted by forwarding nodes.
Thus, their content should be protected so that forwarding nodes cannot determine
who are their sources and destinations. This can be achieved easily by end-to-end
encryption.

Notice that no attempt is made to hide who is source and who is destination.
However, due to the fact that data packets are re-encrypted at each hop, and that
forwarding nodes act as mixes (with additional dummy traffic if needed), it becomes
difficult even for global eavesdroppers to determine which destinations belong to which
sources.

8.4.2 Improving efficiency

The main problem with the protocol described above is that it requires much com-
putation from the nodes. Firstly, for each and every route request, each node in the
network must determine if it is the target of that route request by attempting to
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decrypt the encrypted identifiers in the request. This involves asymmetric key oper-
ations, which are very resource consuming. Secondly, when a node receives a route
reply, it must figure out if it is involved in the route or not by attempting to decrypt
the route reply with all its secret keys that belong to the pending route requests
processed by that node earlier. The number of those secret keys may be large, which
is advantageous with respect to privacy (because it means that many simultaneous
route discoveries are taking place), but it is disadvantageous with respect to efficiency.
Finally, when a node receives a data packet, it attempts to decrypt it with all its in-
coming link keys. Again, the number of those keys may be large, which is good for
privacy, but it is bad for efficiency.

Note that we are facing a problem that is similar to the one that we encountered
in the case of private identification of RFID tags. In other words, we want to use
symmetric key cryptography for efficiency reasons, but we cannot provide information
on which key should be used to process the messages, because that would also help the
adversary to break privacy. So we may try to borrow ideas from proposals for private
identification of RFID tags. The approach that we will follow below is based on
synchronized state maintained between the communicating source-destination pairs
and between neighboring nodes.

First of all, we replace the public key encryption of the source and destination
identifiers with symmetric key encryption. For this, we assume that the source and the
destination already share a secret key kSD. In addition, they also share a counter cSD

from which the source can compute a one-time hint for the destination, for instance, by
computing the keyed hash value h(kSD, cSD). Each node can pre-compute and store
the current hint of each possible source for which it is a destination, and therefore the
nodes need to do a table lookup only when processing route request messages. Once
the route request to D has been sent, S increments the counter cSD and, similarly
when the route request is received by D, it increments its own counter cSD. In this
way, the counters and the hints remain synchronized (assuming that no route request
is lost).

The modified route request has the following form:

h(kSD, cSD) || EkSD
(D||S||K−1) || K || EK(ki||ni|| . . . EK(k0||n0) . . .)

Next, we include hints in the route reply too. Here, we take advantage of the
common secret state between the destination and each of the intermediate nodes,
which was established by the route request message. In particular, we derive a hint
for node Fi from the nonce ni, which is a secret value shared by D and Fi, by hashing
it with a one-way hash function g. The modified route reply has the following form:

g(n`) || Ek`
(n`||kin

` ||kout
` ||g(n`−1) ||

Ek`−1(n`−1||kin
`−1||kout

`−1|| . . . g(n0) || Ek0(n0|| − ||kout
0 ) . . .))
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Each forwarding node Fi stores g(ni) besides ni and ki when processing a route
request. Thus, when processing route reply messages, the node has to do only a table
lookup to determine which key it should use to decrypt the route reply. In addition
g(ni) just looks as a random string to anyone who does not know ni, so it reveals no
information to eavesdroppers and other forwarding nodes that see it.

Finally, we use again synchronized counters to generate hints for forwarding nodes
that help them processing encrypted data packets. Here, we take advantage of the
link keys established by the route reply message. Let us consider two consecutive
forwarding nodes Fi and Fi+1. They share a link key k, which is referred to as kout

i

at Fi and as kin
i+1 at Fi+1. They can both initialize a shared counter c by computing

c = g(k). Then Fi can generate a one-time hint h(kout
i , c) as a keyed hash of the

counter. Fi+1 can pre-compute this hint and store it in its routing table together
with kin

i+1. When sending the next data packet encrypted with kout
i , Fi also sends the

hint h(kout
i , c) and then increments c. When receiving a data packet Fi+1 uses the

hint to do a table lookup and determine on which link the packet arrived, and which
key it should use to decrypt it. If the link is identified, then Fi+1 also increments c

and pre-computes the next hint.

8.5 Summary

In this chapter, we studied the very important issue of privacy in upcoming wireless
networks through three specific examples: privacy in RFID systems, location privacy
in vehicular networks, and privacy preserving routing in wireless ad hoc networks.

Before the discussion of these examples, in Section 8.1, we introduced some funda-
mental notions related to privacy, such as anonymity, unlinkability, unobservability,
and pseudonymity. We also presented metrics to quantify the level of privacy based on
the anonymity set size, as well as on the entropy of the probability distribution over
the members of the anonymity set. We used these notions and metrics extensively in
the subsequent sections.

In Section 8.2, we investigated privacy problems and possible solutions in RFID
systems. RFID is an interesting example for at least two reasons. First, it is expected
that low-cost RFID tags will be deployed massively in the future, which raises serious
concerns about the privacy of the tag bearers. Second, low-cost RFID tags are ex-
tremely resource constrained, meaning that any privacy protecting solution must be
very carefully designed and optimized. In particular, low-cost tags will not support
public key cryptography in the foreseeable future.

In terms of privacy problems, we identified clandestine reading and eavesdropping
of low-cost tags as a plausible threat that makes stealth inventorying and tracking
of tags possible. We also elaborated on the various read ranges and eavesdropping
ranges of passive RFID tags. Then, we presented privacy protecting solutions for tags
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that cannot perform any computations, and also for tags that can perform symmetric
key cryptographic operations. We illustrated how one of the presented solutions, the
key-tree based scheme, can be analyzed using the notion of the anonymity set. In
particular, we characterized the level of privacy provided by the scheme with the (nor-
malized) expected anonymity set size of a randomly selected tag, and we computed
this measure in the case when a single tag is compromised.

In Section 8.3, we were concerned with the problem of location privacy in vehicular
networks. We showed that it is nearly impossible to provide location privacy with
respect to a global eavesdropper even if the vehicles use pseudonyms that they change
frequently. This is mainly due to the envisioned operational principles of vehicular
networks that require that each vehicle broadcasts its current position and speed
with a high frequency. We proposed a more realistic adversary model, where we
distinguished between monitored zones and unmonitored zones. The latter was called
mix zone, because it provides similar services for moving vehicles as a mix node for
messages. Then, we studied how the level of location privacy provided by the mix
zone can be quantified using an entropy based metric, and illustrated the computation
of the privacy level through an example.

Finally, in Section 8.4, we investigated the problem of privacy in ad hoc network
routing protocols. Most of the protocols that we discussed in Chapter 7 trivially allow
for an adversary to learn who is communicating with whom in the network. In order
to counter this problem, we proposed a routing protocol that prevents global eaves-
droppers and forwarding nodes to learn who the communicating pairs are. We first
introduced a basic protocol that was effective but inefficient, and then we proposed
modifications to the basic protocol to improve its efficiency. The building blocks
that we used in our design were broadcast communications, hop-by-hop re-encryption,
padding to a fix length, and dummy messages.

8.6 To probe further

Privacy in general: Precise (but informal) definitions of anonymity, unlinkability,
unobservability, and pseudonymity are given by Pfitzmann and Köhntopp in [312].
Entropy based metrics for anonymity and for unlinkability are proposed by Diaz et
al. in [110], by Serjantov and Danezis in [338], and by Steinbrecher and Köpsellin in
[355]. In [322], Reiter and Rubin propose another approach, based on probabilities,
to measure the level of anonymity. They introduce an “informal continuum” with six
degrees of anonymity, and they illustrate how this measure can be used via the analysis
of a practical system called Crowds, designed for anonymous Web transactions.

Chaum pioneered techniques to protect privacy by proposing various mechanisms
including DC (Dining Cryptographers) networks [96] for anonymous communications
and MIX networks [95] for unlinkability of message senders and receivers. Later on,
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many researchers made various extensions and improvements to Chaum’s original
ideas.

RFID privacy: Weis, Sarma, Rivest, and Engels were among the first researchers
who began to investigate privacy (and security) problems in RFID systems [371,
334]. Later on, many privacy protecting schemes were proposed for RFID tags. A
comprehensive survey of the state of the art can be found in [211] written by Juels.
This paper also identifies several research questions in the field of RFID security and
privacy.

Concerns about the possibility of eavesdropping on the US electronic passports are
raised by Zetter in [389]. The feasibility of remote reading of RFID based contactless
smart cards is reported in [218] by Kfir and Wool.

The privacy protecting scheme based on pseudonym lists stored in the tags was
proposed in [210] by Juels. In the same paper, the author also proposes a formal
model for analyzing the security and privacy of RFID systems, which might be of
independent interest for the interested readers. The re-encryption scheme based on the
ElGamal crypto-system is proposed in [212] by Juels and Pappu. One disadvantage of
this scheme is that to perform the re-encryption operation, the readers must know the
system public key. Later, this limitation was overcome by the universal re-encryption
scheme proposed by Golle, Jakobsson, Juels, and Syverson in [151]. The approach
based on the blocker device is proposed by Juels, Rivest, and Szydlo in [213]. Many
papers explore the approach of maintaining synchronized state in the tag and in the
reader [210, 289, 113]. Among them, Ohkubo, Suzuki, and Kinoshita were the first
to identify forward secrecy as an important requirement in [289].

The key-tree based approach for privacy protecting tag identification is proposed by
Molnar and Wagner in [274]. The approach of using Hellman’s time-memory trade-
off [164] is proposed by Avoine, Dysli, and Oechslin in [33]. In the same paper, the
authors identifiy the problem of the decreasing level of privacy provided by the key-
tree based scheme when some tags are compromised. However, instead of anonymity
sets, the authors use a cryptographic approach to quantify the level of privacy. In
their model, the adversary is first allowed to compromise some tags, then she chooses
a target tag that she wants to track, and she is allowed to interact with the chosen
tag. Later, the adversary is given two tags such that one of them is the target tag
chosen by the adversary earlier. The adversary can interact with the given tags, and
she must decide which one is her target. The level of privacy provided by the system
is quantified by the success probability of the adversary. An entropy based approach
for quantifying the level of privacy provided by the key-tree based scheme is proposed
by Nohara et al. in [288]. The expected anonymity set size as a measure of privacy
provided by the key-tree based scheme is proposed by Buttyán, Holczer, and Vajda
in [71]. In the same paper, the authors also show that careful design of the key-tree
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can minimize the decrease of privacy caused by the compromised tags. They also
propose an algorithm that finds the optimal key-tree that provides the maximum
level of privacy given some constraints on the identification delay.

Location privacy in vehicular networks: The envisioned operational principles,
as well as many applications of vehicular communications, are described in [361]. El
Zarki et al. were among the first researchers to identify security and privacy problems
in vehicular networks [387]. Later, Hubaux, Čapkun, Luo, and Raya, as well as Parno
and Perrig published papers on the same topic [184, 319, 302]. The concept of the mix
zone is proposed by Beresfrod and Stajano in [50, 51] in the context of location based
services in ubiquitous computing systems. We adopted that model for the vehicular
setting. Another approach for location privacy in vehicular networks is proposed by
Sampigethaya et al. in [331].

At the time of this writing, the problem of location privacy in vehicular networks
is an on-going research topic. For instance, the quantification of the level of privacy
provided by mix zones needs further investigation. Questions are still open about
what characteristics of the mix zone have an effect on the level of privacy, and what
exactly that effect is. Another question is whether the adversary can choose its
monitoring area in an optimal way. Yet another open question is what effect the
change of pseudonyms has on the performance of the system, and in particular, on
the routing protocol.

Privacy preserving routing in ad hoc networks: The routing protocol that we
have described in Section 8.4 was inspired by the protocol proposed in [340] by Seys
and Preneel. A few other papers consider the problem of privacy preserving routing
in ad hoc networks [224, 392]. Seemingly, this problem has not yet received as much
attention from the research community as, for instance, RFID privacy.

8.7 Questions

(a) Let us consider the key-tree based approach to privacy preserving identification
of RFID tags described in Section 8.2. Let us assume that the reader sends a
challenge to the tag, and the tag uses its keys to encrypt that challenge. Does
the key-tree based approach in this case ensure forward secrecy? If so, why?
If not, could the scheme be extended to ensure it?

(b) Consider again the key-tree based approach to private authentication of RFID
tags. Generalize the computation of the expected anonymity set size for key-
trees that have different branching factors at different levels of the tree. How
would you estimate the expected anonymity set size in the case when more
than one tags are compromised?
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(c) In Section 8.3, we computed the level of privacy provided by the mix zone in
the case of a given observation of the adversary (see expression (8.9)). How
would you make the privacy metric independent of the observation?

(d) In the calculations of Section 8.3, we assumed that the mix zone was empty
before the first entering event, and it becomes empty again after the k-th
exiting event. In practice, however, the mix zone may not become empty at
all. How would you re-define the notion of observation in this case? What
effect does this modification have on the calculations?

(e) In the anonymous routing protocol that we described in Section 8.4, when
sending a route request, the source generates an asymmetric key-pair (K,K−1),
and encrypts the identifiers of the destination and the source, together with
K−1 as salt, with the public key of the destination. Explain why it is important
here to include some salt in the encryption.

(f) In the anonymous routing protocol that we described in Section 8.4, when
an intermediate node Fi receives the route reply, it peels one layer of en-
cryption off, removes the information that is destined to it, and applies some
random padding before re-broadcasting the message in order to retain its orig-
inal length. How can the next intermediate node Fi−1 on the path of the route
reply identify and remove this padding?

(g) When we improved the efficiency of the anonymous routing protocol that we
described in Section 8.4, we introduced a counter cSD whose value is syn-
chronously maintained by the source and the destination. This assumes that
the destination receives the route request packet. How realistic is this assump-
tion? What happens when the source and the destination are de-synchronized?
Can you propose a mechanism that helps the source and the destination to
maintain the synchrony?
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The third part of the book is about selfish behavior, an area that has only recently
captured the attention of the research community. As mentioned previously (notably
in Chapter 3, it is our profound belief that focusing exclusively on (malicious) attacks,
as frequently done in current practice, captures only one aspect of the problem. This
chapter will explain how to model the motivation of a given party to depart from its
nominal behavior.

The first two chapters of this part take the point of view of a selfish wireless station,
considering first the MAC layer and then a fundamental mechanism of the network
layer, namely packet forwarding. In both cases, we explain how to model the behavior
of the stations by means of game theory. The reader unfamiliar with this discipline
is strongly encouraged to first read the appendix devoted to game theory.

In the third chapter, we take the point of view of wireless operators having to cope
with each others’ presence in the same spectrum. Again, we explain how this problem
can be modelled by means of game theory.

The fourth and final chapter of Part III (and therefore of the book) proposes tech-
niques to enforce appropriate (non-selfish) behavior of the players in the specific case
of a mobile ad hoc network. Through this example, we show that security protocols
can be very helpful for this purpose.

As we have mentioned in Part I, the Internet community was taken by surprise by
selfish behavior (spam in particular). At the time at which this book is written (late
2006), it is still unclear how selfishness will materialize in practice in upcoming wireless
networks. Hence the treatment provided in this Part III must be understood as
examples of possible solutions, potentially to be adapted to slightly different networks,
rather than anticipations of future protocol standards.

These examples have been carefully chosen: each addresses a fundamental question
in its field.
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Selfish behavior at the MAC layer of
CSMA/CA

For our first analysis of selfish (or greedy) behavior in wireless networks, we will
focus on the MAC1 layer. More specifically, we will focus on IEEE 802.11, (the
security of which we have already discussed in Chapter 1) because (i) this protocol
is by far the most popular in existing wireless LANs, (ii) the devices (access points
and wireless adapters) are very inexpensive, (iii) simulation code is widely available,
and (iv) consequently the interested reader can relatively easily experiment the ideas
developed in this chapter. In other words, the prominence of this protocol in wireless
networks is such that it is the optimal candidate to illustrate the concepts of Part III
of this book with a concrete example. The subsequent chapters will be (as all of the
ones of Part II) standard-independent, with the exception of Section 11.2 in which
we will refer to UMTS.

In IEEE 802.11, the stations (including the Access Point) in a given radio domain
can transmit only one at a time. The temptation for selfish behavior is obvious, as
the radio link is shared between all stations in power range: by departing from the
protocol, a cheating station can substantially increase its bandwidth, at the expense
of the other stations.

In the first section of this chapter, we briefly describe the operating principles of
IEEE 802.11, which need to be known for a proper understanding of this chapter. In
the second section, we address the problem of greedy behavior of a mobile station in
the presence of an access point; this kind of misbehavior is typically to be expected
against WiFi and mesh networks. The focus is on the system and engineering aspects
of the problem. Finally, in the third section we consider greedy behavior in the
absence of access points. This case typically corresponds to self-organized mobile ad
hoc networks. The approach that third section is more theoretic.

The reader interested only in the theoretic aspects can skip Section 9.2; this would
not jeopardize the understanding of the rest of the chapter, nor of the other chapters.
1 In this and in the following chapters, unless otherwise stated, MAC will mean “Medium Access

Control”.
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More generally, the subsequent chapters can be understood also without reading the
present chapter.

It is important to notice that in the whole chapter (and in all the other chapters
of Part III), we consider exclusively selfish (and not malicious) behavior; if needed,
refer back to Chapter 3 for the definitions of these terms.

9.1 Operating principles of IEEE 802.11

Currently, IEEE 802.11 is the de facto standard for WLANs [101]. It specifies both the
medium access control and the physical layers for WLANs. The scope of IEEE 802.11
working groups (WGs) is to propose and develop MAC and PHY layer specifications
for WLAN to handle mobile and portable stations. In this standard, the MAC layer
operates on top of one of several possible physical layers. Medium access is performed
using carrier sense multiple access with collision avoidance (CSMA/CA). Concerning
the physical layer, three IEEE 802.11 standards are available at the time of this
writing: a, b, and g. The first IEEE 802.11 compliant products were based on 11b.
Since the end of 2001, higher data rate products based on the IEEE 802.11a standard
have appeared on the market [190]. More recently, the IEEE 802.11 working group
has approved the 802.11g standard, which extends the data rate of the IEEE 802.11b
to 54 Mbps [193]. The IEEE 802.11g specification offers transmission over relatively
short distances at up to 54 Mbps. The 802.11g PHY layer employs all available
modulations specified for 802.11a/b.

Figure 9.1 shows the reference model of the IEEE 802.11 architecture [101]. All
PHY layers consist of two sublayers and two management entities. The physical
medium dependent (PMD) sublayer defines characteristics of wireless medium and
performs data encoding and modulation as well. The physical layer convergence pro-
cedure (PLCP) sublayer allows the MAC to operate with minimum dependence on
the physical characteristics of the wireless medium. The PLCP sublayer also sets up
the frame called PHY protocol data unit (PPDU) using the information provided by
MAC layer. The payload part of the PPDU frame is called MAC protocol data unit
(MPDU).

The MAC layer communicates with the PHY layer using PLCP via specific prim-
itives through a PHY service access point. Management entities (for each layer)
perform the management of the PHY and MAC layer. Generally, the IEEE 802.11
WGs address the following issues [101]:

• Functions required for an 802.11 compliant device to operate either in a peer-to-peer
(ad hoc) fashion or integrated with an existing wired LAN.

• Operations of the 802.11 device within possibly overlapping 802.11 wireless LANs
and the mobility of this device between multiple wireless LANs.



276 Selfish behavior at the MAC layer of CSMA/CA

PHY

MAC Sublayer 

PLCP Sublayer

PMD Sublayer

MAC
Management

Entity

MAC
Layer

PHY
Layer

Station
Management

Entity

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Management
Entity

Fig. 9.1. Reference model of PHY and MAC layer covered by IEEE 802.11 standards
(From [101]).

• MAC level access control and data delivery services.
• Several physical layer signaling techniques and interfaces.
• Privacy and security of user data being transferred over the wireless media.

In general, the wireless networking can be implemented in two significantly different
operating modes: the ad hoc and infrastructure modes. The infrastructure mode
consists of an Access Point (AP) acting as a hub for the network with each client
communicating through it. This mode is the one used in virtually all of today’s
operational WLANs.

The ad hoc mode essentially eliminates the need for an access point. In this mode,
the mobile nodes can be connected dynamically in an arbitrary manner. This mode
is typically used when this MAC layer is used in mobile ad hoc networks, described
in Chapter 2.

The distributed coordination function (DCF) is the basic medium access mechanism
of IEEE 802.11, and uses a carrier sense multiple access with collision avoidance
(CSMA/CA) algorithm to mediate the access to the shared medium.2

The DCF protocol in IEEE 802.11 standard defines how the medium is shared
among stations. DCF is based on CSMA/CA [101]. It includes a basic access method
and an optional channel access method with request-to-send (RTS) and clear-to-send
(CTS) exchanged as shown in Figure 9.2 and 9.3, respectively. First, we explain the
basic access method.
2 The standard describes centralized, polling-based access mechanism, the Point Coordination Func-

tion (PCF). It is very rarely used in practice and is not used at all in this book.
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Fig. 9.2. Basic access CSMA/CA protocol
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Fig. 9.3. RTS/CTS exchange in CSMA/CA protocol

If the channel is busy for the source, a backoff time (measured in slot times)3 is
chosen randomly in the interval [0, CW ), where CW stands for the contention window.
This timer is decreased by one as long as the channel is sensed idle for a DIFS, i.e.,
distributed inter-frame space time. DIFS is equal to SIFS+2×SlotT ime, where SIFS
stands for short inter-frame space (see values in Table 9.1). The timer stops when
the channel is busy and resumes when the channel is idle again for at least a DIFS
period. CW is an integer whose range is determined by the PHY layer characteristics:
CWmin and CWmax. CW is doubled after each unsuccessful transmission, up to the
maximum value that is determined by CWmax + 1.
3 The slot time is the sum of the RX-to-TX turnaround time, MAC processing delay, and CCA

detect time [101]. The value of slot time for different PHY layer protocols is shown in Table 9.1.
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When the backoff timer reaches zero, the source transmits the data packet. The
ACK is transmitted by the receiver immediately after a period of duration equal to
SIFS. When a data packet is transmitted, all other stations hearing this transmission
adjust their net allocation vector (NAV). The NAV maintains a prediction of future
traffic on the medium based on the duration information that is announced in Data
frames (or RTS/CTS frames as will be explained in the following) prior to the actual
exchange of data. In addition, whenever a node detects an erroneous frame, the
node defers its transmission by a fixed duration indicated by EIFS, i.e., extended
inter-frame space time. This time is equal to the SIFS + ACKtime + DIFS time.

The contention window is initially set to the minimum value of CWmin, equal for
example to 15 (see Table 9.1). Every time a collision occurs, this is interpreted as
a high load of the network, and each station involved in the collision throttles down
its transmission rate by doubling the size of its contention window. In this way, the
contention window can take values equal for example to 31, 63, 127, 255, 511, up to
CWmax = 1023. Larger contention windows slow down the transmission of packets
and reduce the probability of collisions. In case of a successful (i.e. collision-free)
transmission, the transmitting station brings the value of its contention window back
to CWmin. The mechanism we have just described is called exponential backoff or
binary exponential backoff .

If the optional access method is used, an RTS frame should be transmitted by the
source and the destination should accept the data transmission by sending a CTS
frame prior to the transmission of the actual data packet. Note that stations in the
sender’s range that hear the RTS packet should update their NAVs and defer their
transmissions for the duration specified by the RTS. Nodes that overhear the CTS
packet update their NAVs and refrain from transmitting. In this way, the transmission
of the data packet and its corresponding ACK can proceed without interference from
other nodes (hidden nodes problem). Table 9.1 shows the important time interval
between frames in different standard specification called inter-frame space (IFS) [190,
191, 193]. IEEE 802.11g uses the IFS corresponding to its operating mode.

Table 9.1. Inter frame space and CW time for different PHY layers.

Parameters 802.11a 802.11b 802.11b 802.11b 802.11b
(FH) (DS) (IR) (High Rate)

Slot Time (µs) 9 50 20 8 20

SIFS (µs) 16 28 10 10 10

DIFS (µs) 34 128 50 26 50

EIFS (µs) 92.6 396 364 205 or 193 268 or 364

CWmin(SlotT ime) 15 15 31 63 31

CWmax(SlotT ime) 1023 1023 1023 1023 1023

The increasing number of wireless users and the demand for high-bandwidth mul-
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timedia applications over WLANs led the IEEE working groups to extend the MAC
layer to provide QoS support (IEEE 802.11e [189]). We do not describe it here, as it
is not used in this book.

9.2 Detecting selfish behavior in hotspots

IEEE 802.11 [101] wireless LANs were originally meant to be deployed in (relatively)
protected locations such as corporate offices; as a result, security, billing, and guaran-
tee of fair access received limited attention. But over the last few years, IEEE 802.11
has also become the standard solution for hotspots that provide public wireless access
to the Internet.

In this framework MAC-layer greedy behavior is particularly tempting: a station
can deliberately misuse the MAC protocol to gain bandwidth at the expense of other
stations. The benefits of this misuse are the following.

• It can result in significant bandwidth gains as it directly deals with the wireless
medium. Therefore, it is more efficient than misbehavior at the network and trans-
port layers.

• It is hidden from upper layers and hence cannot be detected by any mechanism
designed for those layers. Thus, it can be combined with upper layer misbehavior
to enhance it.

• It is always usable in WiFi settings, because all the wireless stations use the same
IEEE 802.11 MAC protocol. In contrast, for example, cheating with TCP yields
no benefits against UDP competing sources.

As we will see, MAC layer selfish behavior in IEEE 802.11 networks can lead to
severe unfairness in bandwidth distribution. This can become a serious problem in
public Internet access hotspots where individual users have to pay for network access
and hence can be motivated to cheat in order to increase their share of the medium.
Once a hacker has implemented an attack, she can make it available on a Web site,
thus jeopardizing the proper operation of many wireless networks around the globe.

It is important to note that the scope of this presentation goes beyond IEEE 802.11
networks; indeed, we provide a framework that can be adapted to the study of cheating
and detection techniques in any network based on a shared medium.

In this section, we explore this space of MAC-layer greedy behavior. We consider
that only a single4 mobile station can cheat (the Access Point is trusted, and complies
to the protocol). We propose a classification of the different MAC misbehavior tech-
niques and illustrate them with representative examples. Then, we present a system,
4 If there are several cheaters, their greedy behavior will lead to a high proportion of packet collisions,

which is a natural disincentive to cheat in such conditions; we will discuss the interactions between
multiple cheaters in detail in Section 9.3.
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called DOMINO (Detection Of greedy behavior in the MAC layer of IEEE 802.11
public NetwOrks) for detecting MAC misbehavior in a way that is transparent to the
operation of the network. The key features of DOMINO are its seamless integration
in or near the AP5, its full compliance with existing standards, and its ability to
identify the cheater.

Based on the output of the detection system, the WISP (Wireless ISP) can decide
how to react to cheating users. For example, the operator can invite the suspected
user to bring her mobile station for a technical scrutiny, charge a penalty bill, reduce
the service quality, or even completely stop the service, depending on the extent of
the observed cheating and the responsiveness of the cheater.

In order to make things very concrete, we deliberately go into the engineering
details of the solution by presenting the results of real experiments that demonstrate
the ease of cheating and the efficiency of DOMINO. It is indeed possible, by means
of minor changes to a driver for IEEE 802.11 compliant cards, to obtain much higher
throughput at the expense of stations equipped with unmodified drivers.

We will now explore possible misbehaving techniques. We will then present a
detection system and illustrate its performance by means of simulation results; we
will also describe its implementation.

9.2.1 Misbehavior techniques

In this section we present a taxonomy of MAC layer greedy behavior in IEEE 802.11
hotspots. As mentioned, we deliberately do not address the techniques making use of
the security weaknesses of the standard (we already addressed them in Chapter 1). We
rather focus on MAC greedy behavior, which consists in modifying the operation of the
IEEE 802.11 protocol by departing from the communication procedures or changing
parameters defined in the standard. In the rest of the chapter, “misbehavior” (or
“attack”) means greedy behavior and does not relate to the security aspects of wireless
networks.

Several studies have shown that around 90% of the traffic flowing over deployed
wireless LANs is TCP-based and is mainly downlink, namely from the AP to the
user stations (admittedly, this might change in case of massive adoption of Internet
telephony). Hence it is important to distinguish misbehavior techniques according
to the type of traffic they target. In the following, we describe greedy attacks on
uplink traffic (both TCP and UDP) and downlink TCP traffic (greedy attacks against

5 The actual component in which DOMINO has to be installed is the hotspot controller, which
provides access control and can control several APs [121]. Nevertheless we assume in the following,
without loss of generality, that the hotspot controller is incorporated in a single AP and thus we
refer, for simplicity, to both components as AP.
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downlink UDP traffic are much more difficult to perpetrate and will not be described
here).

Uplink traffic

• A greedy station can selectively scramble frames sent by other stations in order to
increase their contention windows. The frames to be targeted can be the following:

(a) CTS frames. In this case the cheater hears an RTS frame sent by another
station to the Access Point and intentionally causes collision and loss of
the corresponding CTS frame in order to prevent the subsequent long frame
exchange sequence (RTS/CTS handshake is generally used for large frames).
As a result, the channel becomes idle after the corrupted CTS, the station
whose CTS was jammed doubles its contention window, and the cheater has
a better chance to send her data.

(b) ACK and DATA frames. Although jamming these frames does not result in
saving the data frame transmission time, it causes the contention window
of the ACK destination (i.e., the DATA source) station to be doubled and
consequently makes the latter select larger backoffs. As before, the cheater
increases her chances to access the channel.

• A greedy station can manipulate protocol parameters to increase bandwidth share:

(a) When the channel is idle, transmit after SIFS but before DIFS.
(b) When sending RTS or DATA frames, set the duration field (in the frame

headers) to a high value; in this way, as the stations in range set their NAVs
with this value, they will refrain from contending with the channel during
all this time.

(c) Reduce the backoff time. This can be done by choosing a small fixed con-
tention window; thus the backoff is always chosen from this small window.

A cheater can also combine several of the above techniques or adaptively change
her misbehavior to avoid being detected. We will address this type of cheating in
Section 9.2.5.

Downlink traffic

• In the case of the downlink traffic, the cheater will attempt to increase the share of
traffic sent to her through the AP, thus increasing the number of packets destined
to it in the AP’s queue (usually there is indeed a single, FIFO queue); to achieve
this goal, she will target the protocols responsible for filling this queue. We can dis-
tinguish two types of sources (e.g., Web servers) sending traffic to wireless stations
through the AP:
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– UDP source: Attacking UDP traffic is pointless because UDP requires no ac-
knowledgements from the receiver and hence cannot be affected by channel con-
ditions.6

– TCP source: In contrast with UDP, the TCP traffic rate reacts to the channel
conditions by using congestion windows and acknowledgements from the receiver.
Hence an attack can be mounted on the TCP traffic by exploiting the congestion
avoidance mechanism and reducing the source rate, and eventually shutting down
the flow.

Downlink attacks are relatively less intuitive and require more “effort” from the
cheater’s side to increase her share of the bandwidth, and from the AP’s side to detect
the misbehavior. Leveraging on the closed-loop nature of TCP flows, their impact
goes beyond the local area (the hotspot and associated nodes) to reach remote servers.
Consider the topology in Figure 9.4 and the typical following scenario: Two mobile
nodes M and Mc are connected to the Internet via the AP. M and Mc download large
files from two remote servers, S and Sc, respectively. Both downloads use FTP/TCP.
To increase her download data rate, the cheater (Mc) can use the following two
techniques to reduce S’s data rate, thus freeing more bandwidth for himself at the
AP (or at any common bottleneck between the servers and the AP):

• Mc jams the TCP-ACKs from M to the AP, so they never reach the server S.
As TCP-ACKs get lost (jammed), S decreases its sending data rate, using TCP
congestion control, and ends up killing the connection. At the AP, M ’s share of
the bandwidth decreases, leading to an increase of the data rate from Sc to Mc.
• In the previous technique, the AP can still hear the collisions/jamming and can end

up detecting Mc based on the number of retransmissions of M . Another option
for Mc consists in jamming the AP’s frames destined for M , therefore reducing S’s
data rate without being heard by the AP. However, Mc’s packets share the same
queue as M ’s packets at the AP. While jammed frames get repeatedly retransmitted
by the AP, Mc’s packets get delayed in the queue, and her data rate (from Sc)
decreases as well. To prevent the AP’s retransmissions and the queueing delays,
Mc sends forged MAC-ACKs on behalf of M for the jammed packets.7 This avoids
retransmissions at the AP, and reduces the data rate from S. Furthermore, as we
will show in the simulation results, Mc can jam only part of the AP’s frames to M ,
saving her battery power and making detection even harder.

The effects of these misbehavior techniques can be devastating, given the extensive
use of TCP in the Internet, especially for Web browsing and file transfers, which are
6 To simplify the discussion, we do not address the case of applications with feedback loops running

over UDP.
7 In IEEE 802.11, ACK frames contain no source address fields, therefore making Mc’s task easier.
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major Internet applications nowadays. It should be noted that using IPsec to encrypt
TCP packets will not prevent the cheater from mounting the above attacks because
she can simply jam all the packets related to other stations without distinguishing
whether they are TCP or not.

From the implementation point of view, the above attacks are feasible. In fact, the
amount of time that a station has at its disposal to revert its radio (called RxTx-
TurnAroundTime) is smaller or equal to 5 µs in IEEE 802.11b (which was the first
deployed, and therefore the slowest version of IEEE 802.11); the MAC frame header
is 30 bytes; the IP frame header is 20 bytes. Hence, assuming the highest rate of
IEEE 802.11b (11 Mbps), which implies the shortest time available for jamming, the
transmission time of the MAC header is around 22 µs and of the IP header is around
15 µs. Once the cheater knows the source and destination addresses from the MAC
header, the short RxTxTurnAroundTime will allow her to jam the TCP frame or the
TCP-ACK even before the whole IP header is transmitted.

Note that the use of TCP-splitting techniques will increase the tolerance of the TCP
connection to the cheater’s jamming, but only for a while if the latter is persistent.
Hence, the connection will still be dropped, but after a longer delay.

Fig. 9.4. Generic scenario where Mc jams the AP’s TCP packets destined to M (or the
corresponding ACKs) in order to reduce the flow from server S. From [317], c© IEEE, 2006.

9.2.2 A possible solution: DOMINO

Several approaches can be envisioned to counter the misbehavior techniques presented
in Section 9.2.1. The one we describe here (DOMINO) is one of them. Given the
number of possible attacks and their independence, DOMINO has a modular archi-
tecture, depicted in Figure 9.5. As mentioned, DOMINO is entirely implemented at
the AP.

DOMINO periodically collects traffic traces of active user stations during short
intervals of time called monitoring periods (the choice of their length is discussed
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Fig. 9.5. The modular architecture of DOMINO. From [317], c© IEEE, 2006.

in Section 9.2.5). A series of tests, each aimed at detecting a particular misbehav-
ior technique, determines if the analyzed traffic presents behavior anomalies; these
anomalies can be considered the symptoms of the corresponding misbehavior. The
outputs of these tests are then fed into a Decision Making Component (DMC) that
decides whether a given station is cheating. If so, the control is passed to the mis-
behavior handling mechanism that, as mentioned before, is dependent on the WISP
policy.

The modular architecture presents several advantages. First, the tests as well as the
decision making component can be implemented using several algorithms depending
on the required accuracy and the tolerable complexity. Second, new tests for potential
and yet undiscovered misbehavior techniques can be easily added.

In the following, we present the tests designed to detect the previously presented
misbehavior techniques. Each test consists of two components: a Deviation Estima-
tion Component (DEC) and an Anomaly Detection Component (ADC). The DEC is
typically a statistical test that determines the amount of deviation of a station’s be-
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havior, inferred from its traffic trace, from a model of the expected behavior (derived
by observing the behavior of the AP or the other active stations during a monitoring
period). The ADC uses the deviation measured by the DEC in order to judge a sta-
tion as well-behaved or suspected. It can be as simple as a comparison of two values
or a more complicated technique such as a Bayesian inference.8

The DMC aggregates the partial decisions of the different tests in order to assess
the behavior of a given station in the last monitoring period. Following the modular
approach, the DMC is divided into two modules: an Aggregation Component (AC)
and a Behavior Classification Component (BCC). Again, the implementation of either
can be flexible. In the simplest instantiation, the AC can be implemented as a simple
OR of the boolean outputs of different tests. This means that if a station cheats using
any of the described methods, it will be detected as cheater. Alternatively, the AC
can output a weighted sum of different test outputs; this sum is then normalized to 1
and compared with a threshold. The weights can be chosen to indicate the confidence
in a given detection test, as well as the severity of the corresponding misbehavior.
For example, a test the output of which cannot be affected by factors such as channel
conditions would have a higher weight than a test that is more vulnerable to these
conditions. Similarly to the ADC, the implementation of the BCC can be based on a
simple misbehavior tolerance threshold, or a Bayesian inference.

Whereas the ADCs in different tests can use different or similar implementations,
the DEC is specific to each test. Therefore, in the following description of each test,
we will focus on the algorithm behind the corresponding DEC. The tests described
below use the following structure, where x indicates the test number.

It should be noted that all the tests described below are performed on each data
sample successfully collected for a station Mi during the last monitoring period; if
misbehavior is detected, the checking on Mi is interrupted as no further analysis is
needed. For clarity, we present the operation of the tests on a single data sample.

“Scrambled frames”

This test aims at detecting misbehavior techniques that rely on frame scrambling;
they correspond to the first attacks described in the uplink and downlink parts of
Section 9.2.1.

In order to gain a significant share of the common wireless bandwidth using
CTS/ACK/DATA scrambling, the cheater has to scramble a relatively large percent-
age of CTS, ACK, or DATA frames sent by other stations. As a result, its average
number of retransmissions will be less than that of other stations, and it can be de-
tected using Test 1 (for this test as for the following ones, if the inequality holds, it
means that a greedy attack is probably taking place).
8 Bayesian inference is a statistical technique in which evidence or observations are used to update

or to newly infer the probability that a given hypothesis could be true.
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Test 1 Scrambled frames
num rtx(Mi) < φ× Ej 6=i[num rtx(Mj)]

In this test, num rtx(M) is the number of times station M retransmitted its last
frame successfully received by the AP. φ is a tolerance parameter with a value between
0 and 1; it is applied to the average number of retransmissions of all “other” stations,
Ej 6=i.

DOMINO can detect a retransmission by observing a repeated sequence number in
the header of RTS or DATA frames when the corresponding CTS or ACK frames are
scrambled, respectively. In the case of DATA frames, we might argue that the AP
would not be able to distinguish retransmissions because the DATA frames are scram-
bled. However, the cheater cannot scramble the headers of these frames, otherwise it
cannot know whether a given frame is destined to herself.

As we assume a rational attacker who jams other frames only when she needs to,
her identity can be derived from the number of retransmissions. She cannot change
this number to cheat because the sender (the AP in this case) will react to a wrong
sequence number by discarding the frame (if the number is not larger than the last
recorded one) or by sending a frame out of order (if the number is larger than the
last recorded value) depending on the specific wireless card implementation. We also
assume that the attacker cannot change the MAC address of her station because an
authentication mechanism (e.g., WPA or IEEE 802.11i) is in place that prevents the
arbitrary use of MAC addresses.

A potential cause of false positives for this test could be the bad channel conditions
that lead to frame loss and retransmission. To avoid this pitfall, the AP can take
the Received Signal Strength Indicator (RSSI) of stations into consideration when
detecting misbehavior.

Detection of manipulated protocol parameters

In the following paragraphs we address misbehavior techniques that alter protocol
parameters. We focus mainly on backoff manipulation because it is the easiest to
implement (as we will show in Section 9.2.4) and the hardest to detect.

“Shorter than DIFS”
The AP can monitor the idle period after the last ACK and distinguish any station

that transmits before the required DIFS period. After having observed this misbehav-
ior repeatedly for several frames from the same station, the AP can make a reliable
decision (Test 2).

“Oversized NAV”
By measuring the actual duration of a transmission (including the DATA, ACK,

and optional RTS/CTS) and comparing it with the duration field value in the RTS
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Test 2 Shorter than DIFS
idle time after ACK(Mi) < DIFS

or DATA frame headers, the AP can detect a station that regularly sets the duration
field (and therefore the NAV of listening stations) to very large values. In Test 3,
the tolerance parameter A (greater than 1) ensures that the AP does not mistakenly
incriminate well-behaved stations.

Test 3 Oversized NAV
A× actual duration(Mi) < duration(Mi)

Backoff manipulation
Backoff manipulation detection is comprised of three tests described hereafter,

namely “Actual backoff”, “Consecutive backoff”, and “Maximum backoff”.
“Actual backoff”
This test (Test 4) consists in measuring the actual backoff, as shown in Figure 9.6.

The main procedures of the test can be summarized as follows:

• If between two transmissions from a station M there are no collisions, we assume
that M spent all its idle time backing off (although it could be just part of the M ’s
inter-frame delay, if it is transmitting at low data rates). Then we estimate this
backoff by computing the sum as illustrated in Figure 9.6.
• If a collision happens, it could be more difficult to know the identities of the senders

of the colliding frames and which stations whose measured actual backoff should
be updated. To avoid complexity, collisions are simply not taken into account; in
case of collisions, neither the current backoff nor the next one are measured for any
station.9

Test 4 Actual backoff
Bac[Mi] < αac ×Bacnom

In Test 4, Bac[Mi] denotes the average actual backoff (observed by the AP) of
station Mi. Bacnom is the nominal backoff value, which is equal to the average backoff
of the AP, assuming it has enough traffic to compute this value. The αac (0 < αac ≤ 1)
parameter is configurable according to the desired true positive (correct detection)

9 Stations that hear frame headers with a wrong CRC, caused by a collision, will defer their trans-
missions by EIFS (Extended InterFrame Spacing). This deferral does not interfere with the
measurements because all deferrals of all nodes are not taken into account after a collision.
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Transmission 
from M

DIFS DIFS

+

Measured actual backoff

...

Transmission(s) from other node (s)

Fig. 9.6. Measurement of the actual backoff. Transmissions from M are interleaved with one
or more transmissions from other nodes (including the AP). The transmission includes, in
addition to the DATA frame, all the control frames such as RTS, CTS, and ACK, as well
as the interleaving idle periods of SIFS and DIFS. The measured value is the sum of all idle
intervals (not including inter-frame spaces) between two transmissions from M . From [317],
c© IEEE, 2006.

Transmission from M Transmission from M

DIFS Consecutive 
backoff

Fig. 9.7. Measurement of the consecutive backoff. Backoff values are taken only between
consecutive non-interleaved transmissions from M . From [317], c© IEEE, 2006.

and false positive (wrong detection) percentages (for example, a value of αac = 90%
is used in the simulations).

As it collects no data during collisions, the actual backoff test measures backoffs
that are selected from only the [0, CWmin − 1] range. Due to its mechanism, this
test fails to detect a misbehavior case if the cheater has inter-frame delays (e.g., a
TCP source using congestion control). In fact, the test measures these delays instead
of backoffs because it adds up the idle periods between transmissions from the same
source (Figure 9.6). The solution to this problem is provided by the consecutive
backoff test.

“Consecutive backoff”
Figure 9.7 illustrates this test (Test 5), which works in the case of sources with inter-

frame delays. In practice, this is mainly the case of TCP sources (in this case the delay
is typically due to the congestion control of TCP). The actual backoff test for these
sources does not yield the correct values (as explained in the previous paragraph),
and consequently cannot detect potential cheating.

Let us consider a station M sending TCP traffic. We assume that there is enough
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traffic from other sources on the common channel such that, between two frames
sent by M and separated by a transport layer delay, there should be at least one
interleaving frame from another station. Hence, if the AP observes two consecutive
non-interleaved frames from M , it can consider the idle time between them as only a
backoff in addition to the mandatory DIFS. These consecutive frames are the result
of channel contention that can force M to queue packets at the MAC layer even if
they were separated by a delay at upper layers. In this situation, M would benefit
from cheating with backoff in order to free its MAC layer queue. Thus, DOMINO can
collect significant samples of the backoff values chosen by M ; we call these samples
consecutive backoffs.

The above assumption of traffic level is realistic. In fact, if the traffic on the
channel is low enough to invalidate this assumption, i.e., if M can send consecutive
non-interleaved frames separated by a delay in addition to the backoff and DIFS,
cheating would be pointless because reducing the backoff does not affect the upper
layer delay. Misbehavior detection would not be needed in this case.

Test 5 Consecutive backoff
Bco[Mi] < αco ×Bconom

As with the previous test, the average of the collected values Bco[Si] is compared to
a fraction αco (0 < αco ≤ 1; a value of αco = 90% is used in the simulations that we will
describe shortly) of the nominal value Bconom. The latter is the average consecutive
backoff of the AP if enough data are available. Otherwise, it is an analytical value
E[Bco] (see [317]).

“Maximum backoff”
As the IEEE 802.11 protocol selects backoffs randomly from the range [0, CW − 1]

(where CW depends on the number of retransmissions), the maximum selected backoff
maxbkf(Si) over a set of frames sent by a given station should be greater or equal to
CWmin − 1, if the number of samples is large enough. DOMINO uses this property
to identify stations whose maximum backoff over a set of samples is smaller than a
threshold value thresholdmaxbkf . Clearly, a tradeoff exists between the number of
samples and the threshold; if we increase the threshold (its largest value is CWmin),
we have to increase the number of sampled backoffs to obtain more distinct values
and thus avoid false positives. In the simulations (Section 9.2.3), a threshold equal
to CWmin/2 is used, thus the test works if the reduced contention window is in
[0, CWmin/2− 1].

Unfortunately, this check can be easily tricked by a clever cheater who succeeds at
making the monitor observe in every sample at least one backoff value larger than
or equal to the threshold; channel conditions can also yield a similar result and thus
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make the check fail. Thus, the maximum backoff check is only auxiliary to the above
two tests.

Scrambled TCP packets with forged MAC ACKs
Out of the two downlink attacks described in Section 9.2.1, the second one is the

most sophisticated, so we will focus on it. This second attack is also the most difficult
to detect, because the AP cannot hear collisions and, as the cheater forges the MAC
ACKs corresponding to scrambled frames, DOMINO cannot rely on the number of
retransmissions to detect misbehavior. To cope with this technique, DOMINO has
two complementary mechanisms that implement the DEC and ADC components of
the test in the system architecture (we call “Test 6” the combination of these two
mechanisms. First, DOMINO measures the throughputs of the downlink flows (this
is the DEC). Then, if there is a receiver that draws most of the traffic, DOMINO
suspects it as a potential cheater. As explained in Section 9.2.5, throughput is not
a reliable detection metric because of the different needs of users. Hence, DOMINO
uses Dummy Frame Probing (DFP) to confirm the suspicion or reject it. DFP consists
in sending dummy frames to virtual (nonexisting) stations. If any of these frames are
followed by a MAC ACK, this is an indication of an existing cheater in the network.
Longer throughput observation is then needed to determine the identity of the cheater.
DFP combined with throughput comparison constitute the ADC.

A clever cheater can construct the list of virtual stations (by recording stations
that do not reply with a MAC ACK) in order not to respond to the dummy frames.
To detect this cheater, the AP should also generate fake ACKs: in this way, the
cheater cannot easily distinguish the dummy frames from the others. But for the
cheaters it is beneficial to attack only the connections with high throughput. Thus,
in order to be effective, the dummy frames must be generated from time to time at
high throughput as well, as a trap for the cheater. The advantage of dummy frames
is that they represent a highly discriminating test: a simple sample is enough to raise
a very high suspicion, even if they are generated during a small amount of the time
(e.g., 5 to 10%). Thus, the resulting overhead is small.

9.2.3 Simulation results

In order to study the performance of the proposed solution, ns-2[128] has been used
to simulate DOMINO. As the frame scrambling misbehavior is fairly easy to detect
using the number of retransmissions, this section examines in detail only the backoff
manipulation tests and the complete detection mechanism.

Uplink traffic
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AP

AP Access Point

Well-behaved
station 

Cheating station

Fig. 9.8. Simulation scenarios: 8 stations send UDP or TCP data to the AP, which also
generates traffic similarly to one station and sends it to an additional receiver station (not
shown in the figure). The distance between each station and the AP is 50m. All stations
are within radio range of each other. From [317], c© IEEE, 2006.

Simulation topology Further to the discussion in the previous section about the
effect of traffic on Test 5, here we will study two cases (Figure 9.8) that are represen-
tative of common traffic types.

(a) UDP traffic
Besides the cheater, there are 7 stations sending CBR traffic (the nominal

rate is 500 bytes/packet, 200 packets/s); the cheater is also a CBR source. The
cheating technique consists in decreasing the contention window.

In any idle slot, there is at least one packet ready for transmission by any of
the competing stations. The time elapsed between two transmissions from the
same station (interleaved with transmissions from other stations) is therefore
due only to the backoff chosen by the IEEE 802.11 protocol.

(b) TCP traffic
Each of the 8 stations runs an FTP application; one station is cheating by

jamming TCP packets and forging the corresponding MAC ACKs.
This case illustrates the effect of inter-frame delays (due to TCP congestion

control) on backoff measurement. This is the most realistic scenario.

In both cases the AP generates traffic similarly to one station, i.e., CBR in the first
case and FTP in the second.

To take into account the fading effects present in real channels, the simulations are
carried out with the shadowing channel model, represented by the following equation:

[
Pr(d)
Pr(d0)

]

dB

= −10βlog

(
d

d0

)
+ XdB

where Pr(d) is the mean received power at distance d, d0 is a reference distance,
β is the path loss exponent, and XdB is a Gaussian random variable with zero mean
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Fig. 9.9. Throughput comparison between misbehaving and well-behaved stations. From
[317], c© IEEE, 2006.

and standard deviation σdB . The following values have been used: β = 2 (free space
propagation) and σdB = 4.

Results are averaged over 10 simulations, each of a duration of 110s. The monitoring
period is set to 10s, which also corresponds to one decision (cheater or well-behaved)
by the AP regarding each station. Thus, each point on the following graphs is averaged
over 100 samples with a 95% confidence interval; the first 10s of each simulation is an
initialization period, where measurements are not taken into account in the results.

In the following, the misbehavior coefficient represents the amount of misbehavior.
A misbehavior coefficient equal to m means that the corresponding station uses a
fixed contention window equal to (1−m)×CWmin and then chooses its backoff from
this new window. Thus, m = 0 means no misbehavior, and m = 1 means that the
station transmits without any backoff.

Impact of misbehavior on throughput Before presenting the performance of
DOMINO, we compare the throughput values of cheating and well-behaved stations
in both simulation scenarios.

Figure 9.9 shows that MAC misbehavior results in throughput10 benefits that are
obtained at the expense of well-behaved stations and that increase with the amount
of misbehavior. We can also notice that this increase is less significant in the case
of TCP sources. This is due to the TCP congestion control mechanisms and the
dependence of the TCP throughput, including the cheater’s, on the rate of the TCP
ACKs, which are sent by the (well-behaved) AP.

Actual backoff From the simulation graphs we can draw the following observations:
10 The graphs also display 95% confidence intervals that are very small in some cases.
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(a) Actual backoff test in the UDP traffic case.
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(b) Consecutive backoff test in the TCP traf-
fic case.

Fig. 9.10. Performance of the Actual backoff and Consecutive backoff tests. From [317], c©
IEEE, 2006.

• In the UDP traffic case, the test performs well, as shown in Figure 9.10(a), because
there is always at least one frame ready for transmission by each station. Hence
the channel idle time between two transmissions from a station is the result of only
the backoff mechanism (in addition to DIFS).

• In the TCP traffic case, the numbers of both correct and wrong detections are very
small (the curves are practically superimposed with the x-axis; thus, the corre-
sponding figure does not provide any important information and hence they have
been omitted). The low correct-detection accuracy can be explained by the fact
that the measured actual backoff is actually the idle period (not including trans-
mission cycles) between two interleaved transmissions from the same station, which
is equal in this case to the delay between frame transmissions from the source. This
delay is created by the TCP congestion control mechanisms.

Consecutive backoff The performance of this test differs from that of the previ-
ous one for the reasons mentioned in the description of the test (Section 9.2.2) and
confirmed by simulations.

In the UDP traffic case, the results of the test are of no use (the curves are su-
perimposed with the x-axis and therefore are omitted) because, in this case, the
measured average consecutive backoff rapidly decreases with the number of stations.
The comparison of small values becomes inaccurate, thus seriously affecting the test
significance.

In the TCP traffic case, the test yields good results as Figure 9.10(b) shows. This is
due to the presence of other sources that do not allow the source with the inter-frame
delay (induced by congestion control) to transmit two frames consecutively without
having queued the second one, i.e., the delay does not affect the idle time between
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two consecutive non-interleaved transmissions from the source. Otherwise, if there
is no frame ready in the queue, another source takes control over the channel and
transmits at least one frame between two successive frames of the first source.

Complete mechanism The descriptions of the actual backoff test and the consec-
utive backoff test in Section 9.2.2, as well as the simulation graphs presented so far,
have shown that each test performs well in specific traffic scenarios. The complete
mechanism is thus a combination of both.

It is worth noting that, as long as there is enough traffic on the channel to satisfy
the assumption in Test 5, only the type of the sender traffic determines which test
works and thus misbehavior in mixed-traffic scenarios (TCP/high rate UDP) can also
be accurately detected. If the traffic on the channel is low, misbehavior does not yield
substantial throughput benefits, hence its detection is not necessary.

Downlink traffic

In this section the only simulations we report are related to the second of the two
attacks on the downlink described in Section 9.2.1, i.e., referring to Figure 9.4, Mc

jams the TCP packets from server S to M , transmitted by the AP, and sends MAC-
ACKs on behalf of M .

In order to save energy and to make detection harder for the AP, Mc can jam only a
proportion X of the downlink traffic (e.g., when X = 1, Mc jams all frames from the
AP to M). This proportion of jammed packets can be either uniformly distributed in
time, or applied in bursts. In the latter case, Mc jams the channel during D seconds,
for each period T with D < T (therefore X = D/T ). We refer to this method as
“bursty jamming”.

Let us consider the throughputs of the cheater (Mc) and the well-behaved node
(M). Sources S and Sc start transmitting at the same time, using TCP-Reno with
1000-byte packets. To make sure that the throughput reaches a steady state, it is
assumed that the cheater begins jamming 60 seconds after Mc and M begin transmit-
ting. The results are averaged over 35 simulations. Three factors help Mc increasing
its throughput:

• Reducing the number of competing flows entering the queue at the AP
• Reducing the collision rate on the wireless channel (TCP-DATA transmitted by the

AP with TCP-ACKs transmitted by M and Mc)
• Reducing the queueing delays at the AP (the jammed packets are not retransmit-

ted).

Figure 9.11(a) shows the throughput of Mc and the throughput received by M as
a function of the proportion X of jammed frames. We can see that jamming 30% of
the frames is enough to reduce M ’s received throughput to zero, and increase Mc’s
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received throughput to the maximum available data rate. The evolution of Mc’s
throughput and M ’s received throughput in time is shown in Figure 9.11(b). Note
the low throughput of Mc when it first starts jamming M ’s frames and forging MAC-
ACKs. Later on, this overhead is reduced, since M receives decreased throughput,
therefore Mc jams less frames and forges less MAC-ACKs, increasing its efficiency.
This transient period lasts less than 10 seconds.
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Fig. 9.11. Cheating performance using regular jamming on downlink traffic. From [317], c©
IEEE, 2006.

Figure 9.12 shows the same metrics when the cheater applies bursty jamming. Using
for example T = 1s, inspired by [240, 7], the same jamming D/T = X proportion
leads to a better throughput for Mc and lower consumption for M , thus making the
attack even more devastating.
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Fig. 9.12. Cheating performance using bursty jamming on downlink traffic. From [317], c©
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9.2.4 Implementation

We briefly describe here an implementation of one of the cheating techniques based on
backoff manipulation and of a prototype of DOMINO. We consider a simple scenario
where two stations are sending UDP traffic to the AP.
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Fig. 9.13. Experimental results. On the x-axis, the misbehavior coefficient takes values 0,
0.53, 0.8, 0.93, and 1. From [317], c© IEEE, 2006.

The performed experiments correspond to several values of the cheater contention
window, which should be of the form 2n − 1, where n is an appropriate integer.
Specifically, both CWmin and CWmax are set11 to 0, 1, 3, 7, 15 (the default value of
CWmin is 15 and that of CWmax is 1023 on the wireless cards that have been used),
which correspond to misbehavior coefficients of 1, 0.93, 0.8, 0.53, and 0, respectively.
The resulting throughput (Figure 9.13(a)) and backoff (Figure 9.13(b)) of the cheating
and well-behaved stations are observed.

In Figure 9.13(a) we can see that the cheater obtains higher throughput, at the ex-
pense of the well-behaved station, by increasing her misbehavior. The corresponding
observed backoff values are shown in Figure 9.13(b) along with the detection curve.
When the misbehavior percentage increases, the cheater’s average backoff decreases
(thus increasing her chances to grab the channel first and boosting its throughput);
this can be easily detected by DOMINO, as the detection curve shows. In the mean-
time, the average backoff of the well-behaved station increases with the misbehavior
percentage (due to collisions and the subsequent increase of the contention window);
this explains her decreasing throughput.
11 In conventional IEEE 802.11 WLANs, setting these values requires to overwrite the corresponding

bytes in the firmware of the adapter. But if the Access Point is QoS-enabled (hence compliant
with IEEE 802.11e), some adaptors allow to set these values by a simple command.
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9.2.5 Discussion

This section addresses some additional issues related to the detection system.

Throughput as a detection metric

Although throughput seems to be the most intuitive metric for distinguishing stations
using higher shares of the channel bandwidth than other stations, it cannot be used
as a metric. Indeed, if two stations have different data rates and delays, such as VoIP
versus streaming video sources, the throughput of the latter will be naturally much
larger than that of VoIP. Hence, we cannot rely on throughput without knowing the
application running on each station (this would require each station to declare its
currently communicating applications to the AP, in violation with the principle of
layering in protocols).

Experimental studies (e.g., in [28] and [379]) have shown that the throughput of a
UDP source in a wireless network is affected by many factors, such as packet overhead,
SNR, network and host hardware, device drivers, and network protocol implementa-
tions in the operating system. The authors of [166] prove that the decrease of the bit
rate of a single station (due to a bad channel) decreases the bit rates of all the other
stations to values close to that of the disadvantaged station. The negative effect of
SNR on channel capture is explored in [370] (according to the authors, the results
obtained in the infrastructure mode are identical to those observed in the ad hoc
mode). All these factors lead to high differences in throughput even among stations
sending at equal rates.

The performance of TCP over wireless networks is studied experimentally in [379].
The authors explain that TCP coupled with the IEEE 802.11 MAC protocol result in
performance degradation. Among the factors that contribute to the degradation are
the congestion window, recovery mechanism, packet size, and timeout values of TCP,
as well as the acknowledgements, retransmission retry limit, and backoff mechanism
of IEEE 802.11 MAC.

Hence, although the fairness of wireless networks has been evaluated [40, 223, 279]
typically using Jain’s fairness index [197] (which in turn uses channel bandwidth
shares), throughput is far from being the optimal misbehavior metric in our case.

Hidden terminals

Hidden terminals can have a negative effect on DOMINO. For example, if two stations
A and B are seen by the AP but hidden from each other, A can sense the medium idle
while the AP senses it busy because B transmits. As a result, A will keep decrementing
its backoff counter and then transmit a frame whose backoff measured at the AP will
appear smaller than the actual value. After several repetitions of this scenario, the
detection mechanism will output a wrong suspicion of A. Both simulation scenarios for
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uplink traffic (UDP and TCP) have been rerun with hidden terminals (by changing the
reception range); by choosing appropriate values for detection thresholds (specifically,
αac and αco defined in Section 9.2.2), i.e., by tolerating some misbehavior, the results
indicate that it is possible to reduce false positives in the presence of hidden terminals.

Security

It should be noted that DOMINO can be exploited to create hybrid attacks, taking
advantage of both security flaws and MAC vulnerability. For example, a cheater
can impersonate a well-behaved station to provoke its punishment and, possibly, its
disconnection from the network by the operator. But a de-authentication attack
[121], which is easier to perpetrate, would yield a similar effect without relying on
the punishment policy. In addition, the adoption of security mechanisms, such as
WPA (Wi-Fi Protected Access) and IEEE 802.11i (see Chapter 1), would limit the
efficiency of these hybrid attacks. In fact, the cheater cannot transfer useful data in
the faked frames because it does not know the encryption key of the impersonated
host. In addition, such an attack would incur on the cheater an overhead due to the
dummy frames it sends.

The solution to these attacks lies in the use of enhanced security mechanisms jointly
with DOMINO. This issue further illustrates the fact, already mentioned at the be-
ginning of this book, that greediness and security must be jointly addressed.

Adaptive cheating

We call adaptive cheating the set of misbehavior techniques that exploit some knowl-
edge about the way DOMINO works. For example, a cheater can switch frequently
enough between several techniques described in Section 9.2.1, in such a way that
DOMINO fails to collect enough data to detect misbehavior. But as the cheater does
not know the detection parameters, such as the monitoring period and the thresholds,
it will be hard to adapt to the detection system in order to avoid being caught.

It is possible that if system administrators set the default detection parameter
values during installation, cheaters could use these to adapt their techniques. But as
explained in Section 9.2.5, different environments result in different parameter values,
even considering default values. Hence, it would be hard for the cheater to adapt to
different AP and their parameters.

Another way of tricking DOMINO would consist in employing techniques to disable
some tests. For example, a cheater might intentionally create collision-like signals
(e.g., by emitting scrambled frames at high power) to fail the actual backoff test and
never transmit two consecutive non-interleaved frames to fail the consecutive backoff
test. But such techniques obviously increase the cheater’s overhead (e.g., in terms
of inter-frame delay) that might not be compensated by a significant throughput
advantage over other stations.
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Choice of the detection parameters

The choice of the right parameters affects the performance of DOMINO. As this
choice depends on the environment in which the system operates, the parameters
should be set during the installation of the AP. In practice, system administrators
have to run a series of tests anyway. The values we have provided are a good tradeoff
between high detection and low misdetection ratios in the simulated environment.
Hence using other values would degrade either one or both of the ratios; the use of a
larger monitoring period is not necessary and will only contribute to a slower response
of the detection mechanisms. In the real setting, the administrators could start with
default values and then tune them appropriately. The default values can be obtained
by techniques similar to site surveys run by cellular and WLAN operators.

Monitoring period

To avoid overloading the AP with per-frame computations, the data required for
detection are collected during configurable intervals of time; at the end of each interval,
the detection mechanism is run. Another advantage of this method over a per-frame
detection approach is the ability to collect more statistical data and hence increase
the accuracy. In addition, it is shown in [40, 223, 279] that the binary exponential
backoff algorithm of IEEE 802.11 is unfair in the short term. This would result in
false positives if stations were monitored over short term periods (even in the absence
of misbehavior). Therefore the monitoring period has to be large enough to rely on
long term backoff fairness.

Taking into account the typical bit rates, monitoring periods can be short enough
(as was shown in the simulations) to prevent the cheater from gaining large benefits
before being detected. For example, assuming 500-byte packets and 7Mbps data rate
(this is the maximum effective IEEE 802.11b rate) equally divided among 50 stations,
the AP can collect in 10 seconds 350 backoff values per station.

Practical relevance

As mentioned, it is in principle relatively easy for a cheater to increase her amount of
traffic on the uplink, typically by altering the way the backoff is computed. However,
this alteration has to be done on proprietary pieces of software, meaning that it is
not trivial to implement, especially on non-Linux machines. Attacks against downlink
traffic are even more complicated to mount.

This means that the described threat is not as severe as it looks at first sight.
As we pointed out, the interesting dimension of this section is not the specific case
addressed here, but rather the description of how a real system can be abused by
greedy participants. The more software-based the radio systems will become, the
easier it will be to perpetrate the kind of misdeeds described in this section.
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It is also important to note that if the Access Point supports Quality of Service (in
compliance with the IEEE 802.11e standard), then the greedy behavior by means of
an IEEE 802.11e enabled adaptor is straightforward.

9.3 Selfish behavior in pure ad hoc networks

In the previous section, we have seen that a selfish user connected to an IEEE 802.11
Access Point can easily increase the amount of her bandwidth, at the expense of the
other users of this Access Point. We have also explained how such misbehavior can
be detected by the Access Point.

In this section, we will consider a set of mobile stations communicating with each
other in ad hoc mode (hence we assume that there is no access point). More specif-
ically, we consider that a selfish user (cheater) makes use of the easiest (and yet
highly rewarding) cheating technique among those that we have just described: she
deliberately does not respect the random deferment of the transmission of her packets.

Although this cheating technique is straightforward, we will see that studying its
implications is far from trivial. In the following analysis, each node is a player, the
throughput it enjoys is its payoff, and the size of its contention window represents its
move. We study several scenarios. First, we consider the simple case of a network
with a single cheater. We then assume the presence of several cheaters and identify
two families of Nash equilibria in a single stage (i.e., static) game: One family always
results in a network collapse, whereas in the other family a single selfish user receives
non-zero throughput. We also explain that the equilibria of the former family (the
tragedy of the commons-equilibria) are not robust (with respect to arbitrarily small
perturbations of the users’ payoff functions).

As the Nash equilibria of the static game are either highly inefficient or highly
unfair, we look for an alternative solution. In this regard, we compute the fair Pareto-
optimal point of operation of such a system. We then show how to make the Pareto-
optimal point a Nash equilibrium point by using the theory of repeated games. We
introduce the notion of cooperative players, namely cheaters who try to continue
operating at the fair Pareto-optimal point of operation. We also propose a detection
and a punishment technique for those players who exhibit a non-cooperative behavior.
Finally, we explain how the players can collectively search for the Pareto-optimal point
of operation, even if they are unaware of the number of nodes present in the network.

As mentioned, we heavily rely on game theory (see Appendix B).

9.3.1 System Model and Assumptions

Let us consider a finite number N of wireless nodes that are willing to transmit data
to N designated receivers. All the nodes use the same radio channel and share the
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Fig. 9.14. An example of a single-collision domain network with N = 3 communicating
pairs. Dashed lines represent connectivity, while the flows between the pairs are represented
by solid arcs. From [77], c© IEEE, 2005.

same collision domain, that is any node can hear any other node (see Figure 9.14);
this is to avoid complications introduced by the hidden terminal problem. Nodes
use a CSMA/CA based protocol to resolve contention at the MAC layer. In this
section (as in the previous one), we will be dealing exclusively with IEEE 802.11 (in
DCF mode) [101]; the analysis carried out in this setting can be extended to other
CSMA/CA based protocols. We further assume that each node has an authentic
MAC layer identifier (the MAC address). This can be achieved by means of MAC
layer authentication. Finally, we assume that the nodes are static and that they
always have packets (of the same size) to send.

We consider a scenario where out of the N senders, a subset P of cardinality |P |
sending nodes deliberately deviate from the IEEE 802.11 protocol (the reason why
we call this subset “P” is that it corresponds to the set of players). Without any loss
of generality, we assume P = {1, . . . , |P |}. We designate the nodes of subset P as
cheaters. There can be a number of ways in which a node can cheat. For example, in
violation of the standard protocol, a cheater i ∈ P initializes her contention window
size to a lower value in order to obtain a higher throughput, as we have described in
Section 9.2. We will call this lower value Wi.12 Moreover, a cheater does not respect
the binary exponential backoff [101] principle and keeps her contention window size
fixed after a collision, i.e. equal to Wi. This mode of cheating is the easiest for
potential cheaters, because it does not require changes to be made in the operation
of the IEEE 802.11 protocol. We stress that the main conclusions of this section
are applicable to most of the cheating techniques discussed in the previous section.
As mentioned, the relevance of these misbehaving techniques becomes even higher
with the emerging standards that address the Quality of Service support, such as
12 It was called CW in the previous section, but a more compact designation will be helpful here, as

we will see.
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IEEE 802.11e [189]. The latter gives the users total control of the MAC parameters,
therefore enabling them to cheat even more easily.

As in the previous section, we assume each cheater to be rational, meaning that she
wants to maximize her own benefit. In this particular context, every cheater i ∈ P

seeks to maximize the average throughput τi she enjoys. The cheater nodes define the
set P of players in this game. We define the pure-strategy set Si of a given player i

as follows

Si = {1, 2, . . . , Wmax,W∞} , (9.1)

where Wmax < ∞ is a positive integer representing the highest finite value that the
player considers allocating for her contention window and the symbol W∞ means
that the player i does not transmit, which is equivalent to Wi =∞; note that the set
Si is finite. The strategy of each player i consists in setting her contention window
Wi ∈ Si to a specific value. As we assume that each player i tries to maximize her
own throughput, we define a player i’s utility function ui to be equal to the enjoyed
throughput τ

(c)
i , that is

ui(W ) = τ
(c)
i (W ) , (9.2)

where W =
(
W1, . . . , W|P |,W|P |+1, . . . , WN

)
, and Wj ∈ Sj , (j ≤ |P |), are strategies

chosen by players j ∈ P , whereas contention windows Wk, (|P |+ 1 ≤ k ≤ N), belong
to the well-behaved nodes. Here the superscript “(c)” denotes a cheater. In the game
theoretic analysis, we will often neglect the well-behaved nodes, so we will often use
W to denote W =

(
W1, . . . ,W|P |

)
. Finally, we denote the game as defined above by

Gcsma/ca =
〈
N,P, (Si)i∈P , (τ (c)

i )i∈P

〉
and call it the CSMA/CA game.

9.3.2 Single Stage Game

We first analyze the problem of misbehaving from the perspective of a single cheater
and then consider more complex scenarios with multiple cheaters in the system. In
this subsection, we consider the interaction of multiple cheaters in a single stage of
the CSMA/CA game Gcsma/ca.

Characterization of the payoff ui(W )

In order to characterize the payoff functions ui(W ) = τ
(c)
i (W ) , i ∈ P , we first

have to understand the relationship between the contention window profiles W =
(W1, · · · ,W|P |, · · · ,WN ) and the resulting payoffs τ

(c)
i (W ). As we assume that a

cheater’s objective is to maximize her throughput (and we assume she always has a
packet to send), she will tend to use the full channel capacity (i.e., the system will
operate at the saturation point).

There are different analytical models and simulation studies of the 802.11 MAC
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layer in saturated condition. One of the most well-known models is the so-called
Bianchi model [52], published in year 2000.13

The main contribution of Bianchi’s model is the analytical calculation of saturation
throughput in a closed-form expression. The model also calculates the probability of
a packet transmission failure due to collision. It assumes that the channel is in ideal
conditions, i.e., there is no hidden terminal and capture effect. We make use of this
model for the saturation throughput of the IEEE 802.11 protocol.

Bianchi uses a two-dimensional Markov chain of m backoff stages in which each
stage represents the backoff time counter of a node, see Figure 9.15. A transition
takes place upon collision and successful transmission, to a “higher”14 stage (e.g.,
from stage i − 1 to stage i in Figure 9.15) and to the lowest stage (i.e., stage 0)
respectively.

This model adopts a discrete and integer time scale. In this time scale, t and t + 1
correspond to the beginning of two consecutive slot times. Each station decrements
its backoff time counter at the beginning of each time slot. Note that as the backoff
time decrement is stopped when the channel is busy, the time interval between t and
t + 1 may be much longer than the defined slot time for 802.11, as it may include a
packet transmission or a collision.

Each state of this bidimensional Markov process is represented by {s(t), b(t)}, where
b(t) is the stochastic process representing the backoff time counter for a given station
and s(t) is the stochastic process representing the backoff stage (0, 1, · · · ,m) of the
station at time t. This model assumes that in each transmission attempt, regardless
of the number of retransmissions suffered, each packet collides with constant and
independent probability p. In other words, p is the probability that, in a time slot,
at least one of the N − 1 remaining stations transmits as well. If at steady state each
remaining station transmits a packet with probability π, p can be written as:

p = 1− (1− π)N−1 (9.3)

Let bi,k = limt−→∞P {s(t) = i, b(t) = k} , i ∈ (0, m), k ∈ (0, CWi − 1) be the sta-
tionary distribution of the chain. A transmission occurs when the backoff time counter
is equal to zero. Thus, we can write the probability that a station transmits in a ran-
domly chosen slot time as:

π =
m∑

i=0

bi,0 (9.4)

13 In 2002, Wu et al. [374] proposed a refinement of Bianchi’s model by considering finite packet
retry limits as defined in the IEEE 802.11 standard. Yet, in order to keep the presentation as
simple as possible, we will stick to Bianchi’s model.

14 Actually it appears lower in the figure.
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Fig. 9.15. Markov chain model of backoff window size in CSMA/CA. In each stage, CWi

is the maximum value for the contention window and is equal to 2iWmin (Note that we
define for convenience CWmin = Wmin and that CWmax is equal to 2mWmin). If a correct
transmission takes place in any (i, 0) state, a random backoff will be chosen between 0 and
CW0 − 1 with probability of 1−p

CW0
. This case is represented by states (0, 0) to (0, CW0 − 1)

in the Markov chain. In the case of collision (e.g., in state (i− 1, 0)), a random backoff will
be chosen (between 0 and CWi − 1, each with probability p/CWi). This case is represented
by states (i, 0) to (i, CWi − 1) in the Markov chain. From [52], c© IEEE, 2000.

For the above Markov chain, it is easy to obtain a closed-form solution for bi,0 as
a function of p. First, we can write the stationary distribution of the chain for bi,0,
bm,0, and bi,k:





bi,0 = pib0,0 0 < i < m

bm,0 = pm

1−pb0,0

bi,k = CWi−k
CWi

bi,0 0 < i < m, 0 < k < CWi − 1
(9.5)

The first and second expressions in (9.5) account from the fact that bi−1,0 · p = bi,0

for 0 < i < m and bm−1,0 · p = (1− p)bm,0. The third equation can be obtained con-
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sidering the fact that
∑m

i=0 bi,0 = b0,0
1−p and taking the chain regularities into account

(for k ∈ (1, CWi − 1)) , that is:

bi,k =
CWi − k

CWi
·




(1− p)
∑m

j=0 bj,0 i = 0
p · bi−1,0 0 < i < m

p · (bm−1,0 + bm,0) i = m

(9.6)

By imposing the normalization condition and considering Equation (9.5), we can
obtain b0,0 as a function of p:

1 =
m∑

i=0

CWi−1∑

k=0

bi,k

=
m∑

i=0

bi,0

CWi−1∑

k=0

CWi − k

CWi

=
m∑

i=0

bi,0
CWi + 1

2
=

m∑

i=0

bi,0
2iWmin + 1

2

= b0,0
Wmin + 1

2
+

m−1∑

i=1

(
b0,0p

i

(
2iWmin + 1

2

))
+

(
b0,0p

m

1− p

)(
2mWmin + 1

2

)

=
b0,0

2

[
Wmin + 1 +

m−1∑

i=1

(
(2p)iWmin + pi

)
+

pm

1− p
(2mWmin + 1)

]

=
b0,0

2

[
Wmin

(
m−1∑

i=0

(2p)i +
(2p)m

1− p

)
+

1
1− p

]

(9.7)

Thus b0,0 can be written as:

b0,0 =
2(1− 2p)(1− p)

(1− 2p)(Wmin + 1) + pWmin(1− (2p)m)
(9.8)

Finally, considering equations (9.4), (9.5), and (9.8), the channel access probability
π of a node is derived as a function of the number of backoff stage levels m, the
minimum contention window value Wmin, and the collision probability p:

π =
m∑

i=0

bi,0 =
b0,0

1− p
=

2(1− 2p)
(1− 2p)(Wmin + 1) + pWmin(1− (2p)m)

=
2

1 + Wmin + pWmin

∑m−1
k=0 (2p)k

(9.9)
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Equations (9.3) and (9.9) form a system of two nonlinear equations that has a
unique solution and can be solved numerically for the values of p and π (e.g., one can
use the solve function in MATLAB to obtain the values for p and π). Once these
probabilities are obtained, the throughput enjoyed by a given node i, which is the
average information payload transmitted in a slot time over the average duration of
a slot time, can be computed as follows:

τi =
E[Payload information transmitted by user i in a slot time]

E[Duration of slot time]

=
P i

sL

P sT s + P cT c + P idT id

(9.10)

where P s
i = πi

∏
j 6=i(1− πj) is the probability that the station i successfully trans-

mits during a random time slot (j 6= i is a shorthand notation for j ∈ {1, . . . , N}\{i});
L is the average packet payload size; P s =

∑N
j=1 P s

j ; T s is the average time needed
to transmit a packet of size L (including the inter-frame spacing periods [52]); P id =∏N

j=1(1 − πj) is the probability of the channel being idle; T id is the duration of the
idle period (a single slot); P c = 1−P id−∑N

j=1 P s
j is the probability of collision; and

T c is the average time spent in the collision. Note that we must have the following
satisfied P s + P c + P id = 1.

T c and T s can be calculated for the basic transmission mode (i.e., no RTS and CTS
packets) with:

{
T s = H + L + SIFS + T id + ACK + DIFS + T id

T c = H + L + DIFS + T id (9.11)

where H, L, and ACK are the transmission times needed to send the packet header,
the payload, and the acknowledgement, respectively.

To describe a network with cheating nodes we use two separate Markov chains. The
first, with m = 0 (no exponential backoff, because cheaters are assumed to fix their
contention windows (Section 9.3.1)), is used to derive the channel access probabilities
π

(c)
i of cheaters i ∈ P . The second chain, with m > 0, is used to derive the access

probabilities π
(w)
j of well-behaved (non cheating) nodes. The conditional collision

probabilities are derived considering both well-behaved and cheating nodes access
probabilities.

Because a cheater i does not respect the backoff procedure of IEEE 802.11 (i.e.,
m = 0), her channel access probability degenerates to

π
(c)
i =

2
Wi + 1

, (9.12)

where Wi is the cheater i’s contention window size. The channel access probability
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for well-behaved nodes, π
(w)
j , is expressed by

π
(w)
j =

2

1 + Wmin + p(w)Wmin

∑m−1
k=0

(
2p(w)

)k
(9.13)

where

p(w) = 1−
(
1− π

(w)
j

)N−|P |−1 ∏

i∈P

(
1− π

(c)
i

)
, (9.14)

Note that (9.14) is the generalization of (9.3) in the presence of cheaters. Note also
that π

(w)
j is the same for all the well-behaved nodes and so we set π

(w)
j = π(w). After

a straightforward algebraic manipulation of expression (9.10), we obtain the following
expression for the throughput τ

(c)
i of a cheater i:

τ
(c)
i =

π
(c)
i c

(1)
i

π
(c)
i c

(2)
i + c

(3)
i

, (9.15)

where

c
(1)
i = p−iL (9.16)

c
(2)
i = p−i(T s − T id)− s−i(T s − T c) (9.17)

c
(3)
i = (1− p−i − s−i)T c + s−iT

s + p−iT
id , (9.18)

where the following substitutions have been used

p−i =
∏

j∈P\{i}

(
1− π

(c)
j

)(
1− π(w)

)N−|P |

s−i =
∑

j∈P\{i}
π

(c)
j

∏

k∈P\{i,j}

(
1− π

(c)
k

)(
1− π(w)

)N−|P |
.

(9.19)

Note here, that the only parameter that a cheating node i has a control over is its own
Wi. By varying Wi, a node changes its own access probability π

(c)
i = f(Wi), as well as

the access probability π(w) = f(W ), (W = (W1, . . . ,Wi, . . . , WN ), Wi = Wmin, i =
{I +1, . . . , N}), of the well-behaved nodes; this follows from expressions (9.12), (9.13)
and (9.14).

As we have seen at the beginning of this chapter, the contention window can take
only a few integer values. However, for mathematical convenience, let us assume for
the moment that Wi for every cheater i ∈ P is a continuous variable. Although the
access probabilities of the well-behaved nodes (and thus the expressions c

(1)
i , c

(2)
i and

c
(3)
i ) depend on π

(c)
i , we neglect this dependence for a first degree analysis. This

approximation allows us to elaborate a closed form expression of the first derivative
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Table 9.2. Simulation parameters

Parameter Value

Topology 100 m× 100 m, random

Receive range 240 m

Propagation Free space

MAC 802.11b

Scheme Basic (No RTS/CTS)

Channel capacity 2 Mbits/s

Traffic sources CBR/UDP, 1050-byte frames every 5 ms (1.68 Mb/s)

of equation (9.15):

∂τ
(c)
i

∂Wi
=

∂τ
(c)
i

∂π
(c)
i

∂π
(c)
i

∂Wi
=

c
(1)
i c

(3)
i(

π
(c)
i c

(2)
i + c

(3)
i

)2

−2
(Wi + 1)2

≤ 0 . (9.20)

If π
(c)
j < 1 for all j ∈ P\{i}, then we have a strict inequality in (9.20). Therefore,

as expected, the received throughput τ
(c)
i is a strictly decreasing function of Wi (for

π
(c)
j < 1, ∀j ∈ P\{i}). Thus, by unilaterally decreasing its own Wi, a selfish node

can increase its received throughput (except if π
(c)
j = 1, for some cheater j 6= i – as

we will see in the following subsection, this case has important implications on the
set of Nash equilibria of the CSMA/CA game). We stress here that this conclusion
would remain the same even if we considered the dependence of c

(1)
i , c

(2)
i and c

(3)
i on

π
(c)
i . In fact, by using this approximation, we actually underestimate the benefits of

the cheater (the cheater gets more throughput in reality).
This claim (and the modified Bianchi’s model) will now be verified by simulations

performed in ns-2 [128]. The simulation setup,15 summarized in Table 9.2, consists
of N = 20 sender nodes. A single node X deliberately departs from the protocol and
tries to misbehave following the cheating model presented in Subsection 9.3.1. The pa-
rameter values for the IEEE 802.11 protocol are chosen according to the IEEE 802.11b
standard [101]. The duration for each simulation run is 50 seconds and the results
are averaged over 5 simulation runs.

Figure 9.16 plots the throughput obtained by cheater X, as well as by each well-
behaved node for different values of WX . Simulation results show a good match with
the analytical results. As can be observed from Figure 9.16, the throughput obtained
by the cheater increases monotonically with the decrease in WX .
15 In the rest of the section, we will only mention the changes that are made from this reference

simulation setup.
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Fig. 9.16. Throughputs for N = 20 nodes, out of which one is a cheater. From [77], c© IEEE,
2005.

Now that we have characterized the cheaters’ payoff functions ui(W ) = τ
(c)
i (W ),

we next study Nash equilibria of the single stage game Gcsma/ca.

Nash Equilibria of the CSMA/CA Game

In this subsection we do not consider well-behaved nodes (i.e., we assume N = |P |).
We will focus only on pure-strategy Nash equilibria, because, as we will soon show,
they exist in Gcsma/ca and we know by game theory that no player can do better than
playing her best response pure-strategies.

We will study the existence of Nash equilibria by making use of the concept of a
player’s best-response function. Let us introduce the following notations:

W−i =
(
W1, . . . ,Wi−1,Wi+1, . . . , W|P |

)

S−i = {S1, . . . , Si−1, Si+1, . . . , S|P |} ,

where Si are the pure-strategy sets of the players (cf. expression (9.1)). We define a
player i’s best-response function bri(W−i) as follows

bri(W−i) =
{

Wi ∈ Si : τ
(c)
i (Wi, W−i) ≥ τ

(c)
i

(
W

′
i , W−i

)
for all W

′
i ∈ Si

}
.

From game theory, we know that a pure-strategy profile W ∗ = (W ∗
1 , . . . , W ∗

|P |) is a
Nash equilibrium if and only if W ∗

i ∈ bri(W ∗
−i) for every player i ∈ P .

Lemma 9.1 For any strategy profile W that constitutes a Nash equilibrium in Gcsma/ca,
∃i ∈ P such that Wi = 1.
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Proof Assume by contradiction that W = (W1, . . . , W|P |) is a Nash equilibrium such
that Wk > 1, ∀k ∈ P . Now, take one player, say i, and consider her best-response
function bri(W−i). As τ

(c)
i is a strictly decreasing function of Wi (equation (9.20) and

Wk > 1⇒ π
(c)
k < 1, ∀k ∈ P (equation (9.12)), it follows readily that the only value of

Wi that satisfies

τ
(c)
i (Wi,W−i) ≥ τ

(c)
i

(
W

′
i ,W−i

)
for all W

′
i ∈ Si ,

is unity, that is bri(W−i) = {1}. By definition, at any Nash equilibrium Wi ∈
bri(W−i), thus we have Wi = 1. However, this contradicts our initial assumption
that Wi > 1, which concludes the proof.

Theorem 9.1 The game Gcsma/ca admits exactly (Wmax + 1)|P | −W
|P |
max Nash equi-

libria.

Proof Assume that for some player i ∈ P we have Wi = 1. Then her access probability
π

(c)
i = 1 and consequently for all players k ∈ P\{i} it follows that τ

(c)
k = 0 for any

value of Wk ∈ Sk (equation (9.15)). Therefore, for any value of Wk ∈ Sk we have
Wk ∈ brk(W−k), where k ∈ P\{i}. This clearly holds for any number of players who
have their contention window set to unity. Combining this with Lemma 9.1, we obtain
the following characterization of Nash equilibria:

(Nash equilibria) At any Nash equilibrium of Gcsma/ca there is at least one
cheater who sets her contention window to unity and all the other cheaters
play any strategy from {1, . . . , Wmax,W∞}.

Finally, the theorem follows by observing that out of the total of (Wmax + 1)|P |

different strategy profiles W = (W1, . . . , W|P |), (Wj ∈ {1, . . . , Wmax,W∞}), exactly
W
|P |
max do not contain any unity element.

It is interesting to observe that the equilibria can be classified in two families. To
describe these, we define the set D = {i : Wi = 1, i ∈ P}.

1st family: |D| = 1, that is there is only one player i ∈ P who plays Wi = 1 and
receives a non-null throughput τ

(c)
i > 0, and τk = 0 for all players k ∈ P\{i}.

2nd family: |D| > 1, that is there is more than one player i ∈ P who play strategy
Wi = 1, in which case τ

(c)
k = 0, for all players k ∈ P .

Note that some Nash equilibria from the first family are also Pareto optimal. For
example, a strategy profile W = (1,W2 = W∞, . . . , W|P | = W∞) is a Pareto optimal
Nash equilibrium, because players in P\{1} do not actually transmit (i.e., Wi =
W∞ = ∞ ⇒ π

(c)
i = 0) and player 1 gets all the system capacity for herself. The

equilibria from the second family are known as the tragedy of the commons [159] in
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economics: the selfish behavior of each player leads to a tremendous misuse of the
public good.

Once an equilibrium has been identified, it is good practice to study its properties.
In this specific case, we would like to know whether the equilibrium would still exist
in case a very small modification is brought to the definition of the game. More
precisely, we would like to check whether the game is essential (see the definition
in Appendix B) or not, and, for this purpose, we will study the robustness of the
equilibrium W = (Wi = 1)i∈P . Let us define an approximate game Ĝcsma/ca to the
original game Gcsma/ca as follows

Ĝcsma/ca = 〈P, (Si)i∈P , (ûi)i∈P 〉 ,

with ûi(W ) = τ
(c)
i (W )−

{
εi, if Wi < W∞;
0, if Wi = W∞

,∀i ∈ P ,

where εi is an infinitesimally small but positive constant (i.e., 0 < εi ¿ 1) that
satisfies the following: τ

(c)
i (W ) > εi, ∀W such that τ

(c)
i (W ) > 0. The existence of

such a constant follows from the fact that the number of nodes in the system is finite
(N <∞).

Intuitively, the cost term εi says that a player prefers not to transmit at all than
to transmit unsuccessfully. Being infinitesimally small, the cost term εi does not
significantly change the player i’s payoff function ui. Let us now look at the equilibria
of the game Ĝcsma/ca.

Theorem 9.2 A strategy profile W is a Nash equilibrium of the game Ĝcsma/ca if and
only if

∃! i ∈ P such that Wi = 1 and Wj = W∞, ∀j ∈ P\{i} .

Proof It is easily seen that Lemma 9.1 applies to game Ĝcsma/ca too. Now, consider
again the case where for some player i ∈ P we have Wi = 1. Then her access
probability π

(c)
i = 1 and consequently for all players k ∈ P\{i} it follows that τ

(c)
k = 0

for any value of Wk ∈ Sk (equation (9.15)). This further implies uk(W ) = −εk ≤ 0.
The best response function for player k in game Ĝcsma/ca is

brk(W−k) =
{

Wk ∈ Sk : ûk (Wk,W−k) ≥ ûk

(
W

′
k,W−k

)
for all W

′
k ∈ Sk

}
.

Then, brk(W−k) = {W∞}, ∀k ∈ P\{i}, as uk(Wk = W∞, W−k) = 0 ≥ −εk. Also,
bri

(
(Wk = W∞)k∈P\{i}

)
= {1} (Lemma 9.1). Therefore, a strategy profile

W =
(
Wi = 1, (Wk = W∞)k∈P\{i}

)
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is a Nash equilibrium. We conclude the proof by observing that this is valid for an
arbitrary player i ∈ P .

Therefore, by an infinitesimally small change in the original game’s payoff functions,
it is possible to create a game with a significantly different set of Nash equilibria: the
set of Nash equilibria of Ĝcsma/ca is a small subset of those of Gcsma/ca. Actually,
all the Nash equilibria in Ĝcsma/ca are Pareto optimal; moreover, the strategy profile
(Wi = 1)i∈P is not even an equilibrium point in Ĝcsma/ca. We conclude the study
of robustness of the Nash equilibria of the original game Gcsma/ca with the following
theorem.

Theorem 9.3 The Nash equilibrium W = (Wi = 1)i∈P of the CSMA/CA game
Gcsma/ca is nonessential (it is not robust), and therefore the CSMA/CA game
Gcsma/ca is nonessential.

Proof Observe first that the Nash equilibrium W = (Wi = 1)i∈P of Gcsma/ca implies
ui(W ) = 0, σi(Wi = 1) = 1 and σi(Wi ∈ Si\{1}) = 0, ∀i ∈ P ; σi(Wi) designates the
probability that player i assigns to strategy Wi ∈ Si. Let us consider the following
equilibrium of game Ĝcsma/ca

Ŵ =
(
Ŵ1 = W∞, Ŵ2 = 1, Ŵ3 = W∞, . . . , Ŵ|P | = W∞

)
.

Note that this implies σ̂i

(
Ŵi = 1

)
= 0, ∀i ∈ P\{2}.

To prove this theorem, we next calculate the distances D(·) and d(·) between the
payoff vectors u and û, and between the strategy vectors σ and σ̂ of the games Gcsma/ca

and Ĝcsma/ca, respectively. Using the definitions introduced in Appendix B, we have

D(u, û) = max
i∈P,W∈×i∈P Si

∣∣ui(W )− ûi(W )
∣∣

≤ max
i∈P,W∈×i∈P Si

εi

= η ,

where η > 0 is an infinitesimally small but positive value; this follows from the
definition of εi. Similarly, for the distance between strategy profiles we have

d(σ, σ̂) = max
i∈P,Wi∈Si

∣∣σi(Wi)− σ̂i(Wi)
∣∣

(1)

≥ max
i∈P,W=(Wi=1)i∈P

∣∣σi(Wi)− σ̂i(Wi)
∣∣

= max
i∈P

∣∣σi(Wi = 1)− σ̂i(Wi = 1)
∣∣

(2)
= 1 ,
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where the inequality (1) follows from the fact that we reduce the maximization domain
and the equality (2) follows from the two fixed Nash equilibria W and Ŵ . But then it
follows immediately from the definition of essential games that the Nash equilibrium
W is not essential (robust) and consequently the game Gcsma/ca is nonessential.

The result of this theorem can be generalized: If at least two greedy players have
set their contention window to 1, none of them benefits from the network, because
all packets collide. But if there is even a minimal cost for transmitting (for example,
because it consumes some of the player’s resources such as her device’s battery, or
because each transmission attempt is charged in some way as it consumes a shared
resource), each greedy player is better off by deviating from that strategy; she will
simply stop attempting to transmit.

Uniqueness, Fairness and Pareto Optimality

We have seen in the earlier subsection that, generally, there exist two families of Nash
equilibria in the Gcsma/ca game. In the first family, there is great unfairness (a single
player gets some positive payoff);as we have seen, some of the equilibria from the first
family are Pareto optimal. The second family contains highly inefficient equilibria
resulting in a zero payoff for every player.

Clearly, none of these families is satisfactory in practice. Therefore, we look for
an alternative solution to Gcsma/ca by allowing the players to agree on the strategies
they will use.

A desirable solution of the CSMA/CA game should exhibit the following three
properties.

(Uniqueness) The solution should be unique. This is to avoid uncertainties with
respect to what solution each player should choose.
(Pareto optimality) The solution should result in a Pareto optimal allocation of
the available bandwidth.
(Fairness) The solution should result in a fair distribution of the system through-
put (there exist many definitions of fairness; in our case, as we assume that all
stations are willing to transmit at a maximum rate, we will consider that fairness
means that all stations enjoy the same throughput).

Intuitively, we want the stations to “naturally agree” on a (common) access proba-
bility such that the radio channel is shared in a way that fulfills the three properties
that we have just mentioned. The computation of such an access probability can be
carried out analytically, but the derivation requires notions of game theory (coopera-
tive games) that go beyond the relatively simple ones we restrict ourselves to in this
book (but the interested reader can refer to [77, 76]). Here we will simply rely on
intuition.
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Fig. 9.17. Throughput vs. contention window size of the cheaters (20 nodes, out of which
10 cheaters) From [77], c© IEEE, 2005.

Consider the case in which N = 20 stations are located in the same collision domain,
out of which |P | = 10 are cheaters. Assume that all cheaters start with a contention
window W of 1 (hence reaching a Family 2 equilibrium). Noticing that the network
does not work, they slowly and simultaneously increase their contention window in
order to let some traffic successfully be transmitted. Quite obviously, the throughput
they enjoy will increase rapidly, while the one of the well-behaved nodes will start
increasing as well, albeit at a lower pace. The channel having a finite capacity, for a
given value of W the throughput enjoyed by the cheaters will reach its maximum. If
they keep increasing their contention window, their throughput will begin declining,
while the one of the well-behaved nodes continues increasing.

This behavior clearly appears in Figure 9.17, which exhibits the average aggregated
throughput (the system throughput) obtained by 10 cheaters, all of which use the
same contention window size; the simulation setup was described in subsection 9.2.
Note that in the simulations, the well-behaved nodes are also taken into account; they,
however, do not affect the qualitative conclusions of this subsection. From this figure
we can see that there exists a unique joint contention window size, which we will call
W ∗, maximizing the system throughput. A similar observation was already made by
Bianchi in [52].

We conclude that the strategy profile (Wi = W ∗)i∈P exhibits all the properties of a
desirable point of operation in the CSMA/CA game Gcsma/ca. In our context, this is
particularly important since (Wi = W ∗)i∈P is not a Nash equilibrium point (because,
W ∗

i > 1, ∀i ∈ P ) and as such is not stable. Therefore, in the following subsection,
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we look at how to make the conjectured Pareto-optimal point (Wi = W ∗)i∈P a Nash
equilibrium point.

9.3.3 Repeated CSMA/CA Game

Having determined the desirable point of operation (Wi = W ∗)i∈P , we now intend to
devise a strategy allowing the players to converge to this point. For this purpose, we
make use of the theory of repeated games. Repeated games capture the idea that a
player can condition her future moves on the previous outcomes in the game. Using
this model, we explain how to make the point (Wi = W ∗)i∈P a Nash equilibrium
of the game G∞csma/ca. We also devise a simple distributed algorithm that leads the
players to this equilibrium point.

Let us stress the fact that, in contrast with Section 9.2, there is no access point in
the problem that we are addressing here, meaning that there is no authority to “catch
the bad guys” (as we discussed in Chapter 3). As a consequence, the nodes must rely
exclusively on themselves to make sure that everyone plays by the rules (whatever
these rules are). As we will show, the enforcement of these rules can be realized by
the threat of peer castigation.

Nash Equilibria of the Repeated Game

Essentially, the repeated CSMA/CA game is defined as the game Gcsma/ca played
repeatedly T times. We consider an infinitely repeated game, that is T → ∞ (the
game is “infinite” in the sense that none of the players knows when it will finish). We
denote the repeated CSMA/CA game by G∞csma/ca. In this new setting, the utility
function of every player i ∈ P becomes16

u∞i = lim inf
T→∞

1
T

T∑
t=1

ut
i(π

t
i , π

t
−i) (9.21)

where ut
i(π

t
i , π

t
−i) denotes a stage t payoff for the player i. One of the reasons

why we do not use the discounting factor, where “impatient” players discount future
payoffs, is that, as we will show in subsection 9.3.4, the players of this game converge
reasonably fast to a game equilibrium. Therefore, it is legitimate to assume that the
players are “completely patient” (no discounting). The approach presented hereafter
follows the principle of the Folk theorem (Appendix B).

For mathematical convenience, we assume the contention window W t
i (and therefore

16 The lim inf in this expression is in response to the fact that some infinite sequences of stage payoffs
do not have well-defined average values. The reader interested in the convergence of such limits
can check for example Fudenberg and Tirole [141], Section 5.1.1.
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also the access probability, πt
i) to be a continuous variable for every player i ∈ P , and

for all t = {1, . . . , T}. Moreover, πt
i ∈ [0, 1], ∀i ∈ P , (t = {1, . . . , T}).

Let us define the following penalty function for every player i ∈ P

pfi(πi, π−i) =
{

ϕi(πi, π−i), πi ∈ (π, 1];
0, πi ∈ [0, π] ,

(9.22)

where π ∈ (0, 1) represents the targeted equilibrium point and ϕi(πi, π−i) satisfies

ϕi(πi, π−i) > 0 and ∂
∂πi

ϕi(πi, π−i) > ∂
∂πi

τ
(c)
i (πi, π−i),

∀πi ∈ (π, 1] and πj < 1 (j ∈ P\{i}) .

(9.23)

Let us further define the players’ per stage payoffs as

ut
i(π

t
i , π

t
−i) = τ (c)t(πt

i , π
t
−i)− pf t

i (π
t
i , π

t
−i), ∀i ∈ P . (9.24)

We note here that any penalizing mechanism used to impose the penalty pf t
i on some

player i, should be designed so that it does not bring any performance degradation to
the players k ∈ P\{i}. A “nice” property of the single-channel single-collision domain
CSMA/CA networks is that at any time instant only one station can successfully
transmit. Therefore, in these networks, we can single out any player for punishment.17

Lemma 9.2 Let πt
j < 1, ∀j ∈ P\{i}. Then, the stage payoff function ut

i(π
t
i , π

t
−i) has

a unique maximizer πt
i = π ∈ (0, 1) for every stage t = {1, . . . , T}.

Proof Since πt
k < 1, ∀k ∈ P\{i}, we have from the equation (9.15)

∂

∂πt
i

τ
(c)t
i (πt

i , π
t
−i) > 0 (9.25)

for πt
i ∈ [0, 1]. Therefore, on the interval [0, π], πt

i = π is the unique maximizer of the
payoff ut

i(π
t
i , π

t
−i). For the remaining interval (π, 1] we have

∂

∂πt
i

ut
i(π

t
i , π

t
−i) =

∂

∂πt
i

τ
(c)t
i (πt

i , π
t
−i)−

∂

∂πi
ϕt

i(π
t
i , π

t
−i)

(1)
< 0 ,

where the inequality (1) follows from the condition (9.23). Therefore, on the interval
(π, 1], ut

i(π
t
i , π

t
−i) is a strictly decreasing function in πt

i , which concludes the proof.

Lemma 9.2 implies that the strategy profile (πt
i = π)i∈P is the unique Nash equi-

librium of the stage game Gcsma/ca played in stage t.
In order to characterize the game, we will now make use of the notion of Subgame

Perfect Nash Equilibrium (SPNE), see Appendix B.
17 In game theory, this property is known as full dimensionality.
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Theorem 9.4 A strategy profile (πt
i = π)i∈P,t={1,...,T} is a subgame perfect Nash

equilibrium (SPNE) of the game G∞csma/ca.

Proof For every k ∈ {1, . . . , T} and every player i ∈ P the following holds

uk,∞
i = lim inf

T→∞
1
T

T∑

t=k

ut
i(π

t
i , π

t
−i)

≤ lim inf
T→∞

1
T

T∑

t=k

max
πt

i∈[0,1]

{
ut

i(π
t
i , π

t
−i)

}

(1)
= ui

(
(πj = π)j∈P

)
,

where (1) follows from Lemma 9.2.
Therefore, by definition, (πt

i = π)i∈P,t={1,...,T} is a SPNE of G∞csma/ca.

Observe that (πt
i = π)i∈P,t={1,...,T} is not the only SPNE under the averaging

criterion given by (9.21). The reason is that any finite number of deviations by some
player i from the equilibrium strategy πt

i = π becomes irrelevant under the averaging
criterion (9.21). Still, the best strategy for player i is πt

i = π, because otherwise her
overall payoff will be strictly smaller than ui

(
(πj = π)j∈P

)
; in G∞csma/ca, any deviation

from π necessarily results in a smaller per stage payoff.
The following corollary is a simple implication of the penalty functions pfi, (i ∈ P ),

defined by (9.22). This result is reminiscent of the Nash Folk theorem.

Corollary 9.1 Any strategy profile (πt
i = π)i∈P,t={1,...,T}, such that π ∈ (0, 1), can

be made a SPNE.

In our context, this result is important as we want to make the Pareto opti-
mal point (Wi = W ∗)i∈P , i.e., the corresponding channel access probability profile(
πi = 2/(1 + W ∗)

)
i∈P

, a Nash equilibrium.
As mentioned at the beginning of this subsection, the nodes can rely only on them-

selves to make sure that the network operates in a desirable way; more specifically,
this means that all the contention windows are (and stay) at value W ∗. In the absence
of any external authority, this means that they must monitor each other and react in
case a node deviates in an unacceptable way; the only practical way to achieve this
is to perform selective jamming, as will be explained in the following subsection.
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Practical penalty function

Let us consider two arbitrary players k and i from set P . Let us assume that player k

calculates the penalty pfi to be inflicted on player i as follows

pfi(πi, π−i) =

{
τ

(c)
i (πi, π−i)− τ

(c)
k (πi, π−i), if τ

(c)
i (πi, π−i) > τ

(c)
k (πi, π−i);

0, otherwise .

(9.26)
It is easily seen that the penalty function (9.26) has essentially the same format as
the penalty function given by (9.22) and (9.23). To see this, using the notation of

the definition in (9.22), we define ϕi(πi, π−i)
def
= τ

(c)
i (πi, π−i) − τ

(c)
k (πi, π−i), where

τ
(c)
i (πi, π−i) > τ

(c)
k (πi, π−i). Observe that the condition τ

(c)
i (πi, π−i) > τ

(c)
k (πi, π−i)

in (9.26) is equivalent to πi > πk when πj < 1, ∀j ∈ P\{i}. Finally, for πj < 1,
∀j ∈ P\{i}, we have

∂

∂πi
ϕi(πi, π−i) =

∂

∂πi
τ

(c)
i (πi, π−i) +

∣∣∣∣
∂

∂πi
τ

(c)
k (πi, π−i)

∣∣∣∣
(1)
>

∂

∂πi
τ

(c)
i (πi, π−i) ,

where (1) follows from the fact that πj < 1, ∀j ∈ P\{i}.
Therefore, we can apply Lemma 9.2 to conclude that the unique maximizer of the

player i’s (single stage) payoff ui(πi, π−i) is πi = πk. In the context of the two players i

and k, a very important property of the penalty function is that it results in the same
throughputs for both player i and player k; i.e., πi = πk implies that players i and k

will receive the same throughputs.
Inspired by the penalty functions (9.26), it is possible to devise a simple penalizing

scheme, in which the packets of a deviating player are selectively jammed for a short
duration of time, T jam, by the other players in the system. By “deviating” we mean
a player that departs from the given equilibrium point. Suppose that a player k ∈ P

detects the presence of a deviating player i ∈ P . Thereafter, if the player k listens to
a transmitted packet corresponding to the player k, it switches to the transmission
mode and jams enough bits so that the packet cannot be properly recovered at the
receiver.

Let the throughput obtained by the two considered players over the last observation
window, T obs, be τ

(c)
i and τ

(c)
k , respectively, where τ

(c)
i > τ

(c)
k . As we have seen

above, the penalty function (9.26) aims at making the throughputs received by the
players i and k equal. We denote with τ

(c)
x (t) the instantaneous throughput of the

given player x. The average throughput received by the players i and k should be the



9.3 Selfish behavior in pure ad hoc networks 319

same over the total time duration of T obs + T jam, that is

1
T obs + T jam

∫ t+T obs+T jam

t

τ
(c)
k (t)dt =

1
T obs + T jam

∫ t+T obs+T jam

t

τ
(c)
i (t)dt

(1)
=

1
T obs + T jam

∫ t+T obs

t

τ
(c)
i (t)dt ,

(9.27)

where (1) follows from the fact that the player k jams the player i during the period
T jam. Let us denote the average throughput over a time period P starting at time
instant t by r(t, P ), that is

r(t, P )
def
=

1
P

∫ t+P

t

r(t)dt.

Then, from the expression (9.27) we obtain

T jam = T obs τ
(c)
i

(
t, T obs

)− τ
(c)
k

(
t, T obs

)

τ
(c)
k (t + T obs, T jam)

. (9.28)

We note that T jam < ∞, except in the case when τ
(c)
k

(
t + T obs, T jam

)
= 0. But

the case τ
(c)
k

(
t + T obs, T jam

)
= 0 never happens under the penalty functions (9.26)

if all the players are rational (and the number of players is finite); by Theorem 9.4
there are strictly better outcomes than zero for every player. It is also interesting
to observe that the deviating player i minimizes T jam by playing πi = 0 during the
period T jam. This is because ∂τ

(c)
k /∂πi < 0, when πj < 1, ∀j ∈ P\{i}, and therefore

τ
(c)
k

(
t + T obs, T jam

)
gets larger.

In order to illustrate the performance of the jamming mechanism, we provide here-
after the results of a simulation in ns-2. The simulation setup is the same as in Sub-
section 9.3.2 with N = 20 and |P | = 10. A cheating player, designated as cheater X,
is randomly selected and her contention window size fixed to a value of 10. The
contention window size for all the other cheaters in the system is fixed to the point
W = 30, (i.e., the corresponding π). We use an observation window size, T obs, of 20
seconds. Cheater X gets detected by the other cheaters in the network and is penal-
ized for her deviation. We will describe the detection mechanism in Subsection 9.3.4.
On Figure 9.18(a) we plot the throughput obtained by the cheaters in the system
over time, with and without the penalizing scheme. As can be observed from Fig-
ure 9.18(a), cheater X is detected and is penalized for her deviation. When penalized,
cheater X’s throughput drops to zero. Observe from this figure the dependency of the
period T jam on the observation period T obs; for better system efficiency, T obs should
be kept short (much shorter than 20 seconds as used in the simulations).

Figure 9.18(b) plots the average throughput obtained by cheater X, when it uni-
laterally deviates from the given equilibrium point W = 30. The results are averaged



320 Selfish behavior at the MAC layer of CSMA/CA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

50 100 150 200 250

T
h

ro
u

g
h

p
u

t 
(M

b
it
s
/s

)

Time (s)

Cheater X
Other cheaters

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t 

o
f 

c
h
e

a
te

r 
X

 (
M

b
it
s
/s

)

Contention window (WX) of cheater X

Unique maximizer for cheater X

With jamming
Without jamming

(b)

Fig. 9.18. Realization of the penalty function pfi(πi, π−i) by selective jamming: (a) Through-
puts (payoffs) obtained by the cheaters over time in the presence of the deviating cheater
X and selective jamming mechanism; (b) Unilateral deviation by the cheater X with and
without the penalty mechanism. From [77], c© IEEE, 2005.

over a duration of 1000 seconds. As can be observed from Figure 9.18(b), after the in-
troduction of the detection and penalizing mechanism, cheater X achieves maximum
throughput by operating at the given equilibrium point W , i.e., π, which is consistent
with the result of Lemma 9.2. Thus, any unilateral deviation from this point brings
less payoff to the cheater X. Therefore, by definition, W is a unique Nash equilibrium
of the single stage game.

9.3.4 Implementation

In this subsection, we will provide a comprehensive, distributed and efficient equilib-
rium coordination protocol based on the theoretical insights from Subsection 9.3.3.
We have seen that the key building block for the model of repeated games is the
penalization mechanism. We have already elaborated a practical penalization mecha-
nism in Subsection 9.3.3. The penalization mechanism, however, relies on the ability
of the players to estimate the difference in their payoffs. In order to empower the
players with this ability, we first develop an appropriate detection mechanism. Then,
we describe how the players should react once they are penalized. We call the scheme
followed by the penalized nodes an adaptive strategy. Finally, we put together all the
basic building blocks and simulate the behavior of such a comprehensive coordination
algorithm.

Detection Mechanism In this approach, each cheating node (player) measures the
throughput of all the nodes, including itself. This is indeed feasible due to the broad-
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Fig. 9.19. Performance of cheating detection based on throughput measurements. From [77],
c© IEEE, 2005.

cast nature of the wireless medium. If a cheater observes a difference in throughput
with some other node, it characterizes that node as a deviating cheater. Let τi and
τj be the measured throughput of nodes i and j, respectively. Due to the inherent
short-time unfairness of the IEEE 802.11 MAC protocol [223], and in order to increase
the efficiency of the detection mechanism, we use two parameters: the observation
time-window size T obs and the tolerance margin ε, in percentage of throughput. Af-
ter measuring the throughput of each node for T obs seconds, cheater i concludes that
cheater j is deviating whenever the throughput of node j exceeds the throughput of
node i, that is whenever

τj

τi
> 1 + ε .

This detection mechanism has been implemented in ns-2, with N = |P | = 30
nodes. The contention window size (Wj) of a single node j is varied, and the others’
contention window sizes are set to 30 (i.e., Wk = 30, ∀k ∈ P\{j}).

Figure 9.19 shows the performance of the detection mechanism for different val-
ues of T obs and ε. The probability of false positives corresponds to the detection
probability with Wj = 30; at this point, cheater j uses a contention window value
equal to that of node i, but still obtains a higher throughput, τj/τi = 1.06, due to the
IEEE 802.11 unfairness. Therefore, node j gets detected as deviating with positive
detection probability. To reduce the false positives (at contention window size 30),
we can consider large ε values (> 10%). However, this comes at the expense of lower
detection probabilities if cheater j uses contention window sizes slightly lower than
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30. Similarly, large T obs values (≥ 15s) will reduce the effect of the inherent IEEE
802.11 unfairness, and therefore the corresponding false positives. This also comes at
the expense of lower detection probabilities if cheater j uses contention window sizes
slightly lower than 30. Therefore, choosing appropriate values for T obs and ε is crucial
for both the described detection mechanism and the overall system performance. For
very low contention window sizes of cheater j (Wj ≤ 20), the throughput ratio τj/τi

is much larger than 1 + ε, making the detection of the cheater j’s deviation easy.
As we have seen in the previous section, the detection mechanism DOMINO is

based on calculating the average backoff used by the nodes; it can be used in the case
of heterogeneous conditions among the cheaters in the system. Although DOMINO
is more appropriate for misbehaving detection at the MAC layer, we make use here of
the throughput-based detection, for simplicity of implementation and presentation.

Adaptive Strategy In order to reach the desired operation point, the cheaters make
use of the following adaptive strategy. When cheater i observes that she is being
jammed (penalized) during some period ∆, she gradually increases her contention
window by steps of size γ. Note that a cheater can easily decide whether she is
being jammed by observing her own throughput. The choice of ∆ determines the
efficiency of the system. A high value of ∆ might let a deviating cheater escape from
being penalized. However, choosing a small value of ∆ might magnify the effect of
a possible misdetection by unnecessarily causing a cheater to increase her contention
window size. This will eventually lead the whole system towards an inefficient point
of operation. The choice of the step size, γ, offers a tradeoff between convergence
time and efficiency: If we increase the contention window in large steps, although the
system will stabilize in less time, the point of operation might be far away from the
Pareto-optimal point (W ∗), resulting in an inefficient system and vice-versa.

This adaptive strategy has been implemented in ns-2. The simulation setup is
the same as in the previous subsection (N = 20, |P | = 10,W init = 30). A cheater
is randomly selected, designated as node X, and her initial contention window size
fixed to 10. The contention window size for all the other cheaters in the system is
fixed to W init. We fix ∆ to be 5 seconds and γ to be 5. Figure 9.20(a) plots the
obtained throughput by different cheaters in the system over time. Figure 9.20(b)
plots the evolution of contention window size of node X over time. We can observe
how node X adapts its contention window size by following the adaptive strategy and
eventually converging to a window size of 30, equal to W ∗. Thus the other cheaters in
the system are successful in guiding the deviating cheater to the desired equilibrium
point.

Table 9.3 summarizes the throughput averages obtained by different nodes over a
time interval of 1000 seconds. As can be observed from Table 9.3, the jamming and
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Fig. 9.20. Performance of the system with the adaptive strategy: (a) Throughput of the
cheaters over time; (b) Contention window size of the cheaters over time. From [77], c©
IEEE, 2005.

Table 9.3. Throughput obtained by different nodes (bytes/s)

Strategy

Non-adaptive Adaptive

Cheater X 7650 11577

Other cheaters 7826 11448

Well-behaved nodes 1286 2318

detection mechanism combined with the adaptive strategy, besides being fair to all
the cheaters in the system, is also the most efficient.

Finally, we provide an evaluation of the performance of the adaptive algorithm (in
ns-2) for a scenario consisting of multiple levels of misbehavior in the system. The
simulation setup is the same as above (N = 20, |P | = 10,W ∗ = 30). We randomly
select three cheaters, designated as node X, Y and Z respectively. We fix their
contention window sizes to be 5, 10 and 15, respectively. The contention window size
for all the other cheaters in the system is fixed to W ∗. Table 9.4 summarizes the
average throughput obtained by different nodes over an interval of 1000 seconds. As
can be observed from Table 9.4, the jamming mechanism combined with the adaptive
strategy results in an optimal and fair performance, even with multiple levels of
misbehavior in the system. As we predicted in Subsection 9.3.3, the deviating cheaters
(players) X, Y and Z clearly have an incentive to adapt upon being penalized. In
the same way, each cheater has an incentive to penalize the other cheaters.
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Table 9.4. Throughput obtained by different nodes (bytes/s) with multiple levels of misbe-
havior

Strategy

Non-adaptive Adaptive

Cheater X 2843 10356

Cheater Y 2686 10185

Cheater Z 2565 10239

Other cheaters 2544 10172

Well-behaved nodes 270 1981

Reaching the Pareto-optimal Point Here again, we will rely primarily on intu-
ition. The motivated reader can find a more formal presentation in [76].

An accurate implementation of detection, penalizing and adaptive strategy will lead
the nodes to reach a stage equilibrium point,

(
Wi = W

)
i∈P

.
The following distributed coordination algorithm will fulfill this goal. At the onset

of the system,
(
Wi = W init

)
i∈P

for all cheaters. Every cheater sets up a random
timer (in the simulations this corresponds to a random value between 0 and 20 sec-
onds) to increase her contention window by step size, γ. One of the cheaters, say X,
will eventually increase her contention window size to W init

X + γ. Based on the detec-
tion mechanism (Section 9.3.4), node X will conclude that all other cheaters in the
system are deviating and will begin penalizing them. If a cheater observes that she
is being penalized, she will disable the timer and use the adaptive strategy described
in Section 9.3.4. Eventually the system will stabilize, when Wi = W init

i + γ for all
cheaters.

The cheaters realize that they have reached a new stable point of operation when
they all begin enjoying the same throughput (in the implementation, the cheaters
remain at this stable point for 20 seconds before continuing the search for W ∗). At
this point in time, every cheater i ∈ P compares her throughput at Wi = W init

i + γ

with the throughput at Wi = W init
i ; if she observes a decrease in her throughput,

she will terminate the search for W ∗. Otherwise she again sets up the random timer
to increase her contention window size by γ. Therefore, the proposed distributed
protocol simply “climbs” up the left side of the aggregate throughput curve shown on
Figure 9.17, until it reaches the optimal value W ∗.

This protocol has been implemented in ns-2. The simulation setup consists of 20
nodes and 7 cheaters (N = 20, |P | = 7). The cheaters initialize their contention
window sizes to 5 (

(
W init

i = 5
)
i∈P

). The cheaters continue their search for W ∗ only
if they see an increase of 10% or more in their throughput from the last stable point
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Fig. 9.21. Performance of the distributed coordination protocol, with N = 20 and |P | = 7
: (a) Evolution of the contention windows; (b) Contention window vs. Average throughput
(the axes in (b) are swapped for the convenience of matching them with (a)). From [77], c©
IEEE, 2005.

of operation. Figure 9.21(a) plots the sample evolution of the contention window for
2 cheaters, X and Y , in the system. Note that all of the cheaters follow a similar
pattern and eventually converge to a window size of 20. We are unable to show
their evolution in the same plot as it simply generates overlapping lines. Note also
that the convergence time is relatively short, around 80 seconds for 7 cheaters (from
tstart ≈ 160 to tend ≈ 240; in these simulations we used the warm-up period of around
160 seconds).

Figure 9.21(b) plots the average throughput obtained by the cheaters at different
contention window sizes. As can be seen from Figure 9.21(b), the throughput is maxi-
mized at (Wi = 20)i∈P and the cheaters will stabilize at that value. For completeness,
the “dotted” curves in Figure 9.21 are obtained by deliberately forcing the cheaters
to go beyond (Wi = 20)i∈P .

We next evaluate the performance of the protocol by varying the number of cheaters
in the system. The protocol is run and the window size at which all the cheaters
eventually converge is measured. Thus, according to the protocol, this point of con-
vergence is the Pareto-optimal point of operation. The actual Pareto-optimal point
(W ∗)has been evaluated through ns-2 simulations, under the same network settings.
The Pareto-optimal point (W ∗) is also evaluated analytically, using Bianchi’s model.
Figure 9.22 plots the obtained results. The results are averaged over 5 simulation
runs. The results obtained by the distributed coordination protocol closely match the
analytical results obtained using Bianchi’s model. Note that the minimum resolution
of the distributed coordination protocol is equal to the step size, γ = 5. As can be
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Fig. 9.22. Variation of the Pareto optimal point W ∗ with the number of cheaters. From [77],
c© IEEE, 2005.

seen from Figure 9.22, the discrepancy is bounded by ±γ, which clearly proves the
efficiency of the distributed coordination protocol.

The protocol operates in a completely distributed manner, without requiring any
a priori knowledge about the optimal point of operation or of the total number of
nodes/cheaters in the system. However, we rely on the fact that the numbers of nodes
and of cheaters does not change in the system. In more dynamic networks, where new
nodes/cheaters can enter or existing nodes/cheaters can leave the system, a possible
solution for the cheaters consists in timing out periodically and re-running the whole
protocol from the beginning.

Comment on selective jamming

As we have seen, in this section we have established that selective jamming can be a
useful mechanism, in the sense that it can encourage smart cheaters to demonstrate
restraint in their greedy behavior. This result might sound paradoxical, because jam-
ming is usually considered to be a plague for wireless networks; in addition, jamming
is usually related to malicious, not selfish behavior.

But, as we have seen in Chapter 3, the more the networks are decentralized, the
more they have to rely on rule enforcement mechanisms to ensure the appropriate
behavior of all the nodes; and at the MAC layer of a self-organized network, the only
possible threat is jamming.

Of course, we do not claim that jamming mechanisms ought to be implemented in
upcoming wireless devices. Indeed, as already mentioned, at the time of this writing it
is impossible to determine how selfishness will materialize in practice. The purpose of
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this section is rather to show that (unfortunately) such misdeeds are possible but also
that (fortunately) it is possible to design techniques by which the nodes can monitor
and police each others’ activities.

An additional insight provided by this section is that nodes can cooperatively search
for the optimal operation point of the network. We believe this to be of particular
interest for the study of cognitive radios.

9.4 Summary

This whole chapter was devoted to selfish behavior techniques in CSMA/CA networks,
and to techniques to thwart these misdeeds. We have first considered the case in which
several wireless stations are attached to an Access Point, and one of them deliberately
departs from the normal protocol in order to increase its share of the bandwidth (at
the expense of the other stations). We have provided a detailed description of these
cheating techniques; we have also described a system to be run at the Access Point,
called DOMINO, which is able to detect all these misdeeds.

We have then addressed the problem of cheating in single collision domain
CSMA/CA networks, in the absence of any authority. For this purpose, we have
developed a game-theoretical model and corroborated the analytical conclusions by
appropriate simulations. We have studied several aspects. First, we have described
a formalism for the systematic study of rational cheating in CSMA/CA networks.
Second, we have focused on the simple cases (i) of a single cheater and (ii) of several
cheaters acting without restraint. Third, using the theory of repeated (multi-stage)
games, we have shown how it is possible to transform the Pareto optimal point into a
Subgame Perfect Nash Equilibrium. Finally, we have shown that smart cheaters can
collectively find this point.

9.5 To probe further

Section 9.2 is derived from papers [320, 317]; the reader interested in analytical tech-
niques to compute the values of the nominal actual backoff can refer to them. These
two papers have been inspired by the work of Kyasanur and Vaidya [293] who propose
that the receiver assigns the backoff value to be used by the sender, so the former
can detect any misbehavior of the latter. If the sender deviates from the assigned
value, it will be assigned high backoff values on the next round to compensate its
deviation. Konorski [227] proposes another misbehavior-resilient backoff algorithm.
Both proposals require to change the IEEE 802.11 protocol.

Statistics of wireless use can be found in [38, 230]. We have described the subtle
relationship between the MAC layer and TCP; some authors have also investigated
cheating at the TCP layer, notably Akella et al. [15].
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The detailed analytical treatment of Section 9.3 can be found in [77, 76].
Game theory has been widely applied to the study of the network layer, whereas

only fewer researchers have applied it to the MAC layer. MacKenzie and Wicker [259]
study the problem of selfish users in Aloha from a game-theoretic point of view. They
analyze the stability of the system (Nash equilibrium), and calculate the transmission
probabilities that optimize each node’s throughput. They assume that all nodes have
the same transmission rates and costs. Moreover, every node has an a priori knowl-
edge about the total number of nodes in the system. Altman et al. [21] reconsider
the same Aloha “game” with partial information, where the transmission probabil-
ity is adapted according to collision feedback only. They consider two frameworks:
team work and non-cooperative game. Jin and Kesidis [205] study non-cooperative
equilibria of Aloha networks for heterogeneous users. MacKenzie and Wicker have
also studied the stability of multipacket slotted Aloha with selfish users and perfect
information [260].

Alpcan et al. [19] apply game theory for uplink power control in cellular networks.
In [377], Xiao, Schroff and Chong describe a utility-based power control framework
for a cellular system. In [152], Goodman and Mandayam introduce the concept of
network-assisted power control to equalize signal-to-interference ratio between the
users.

In this chapter (and in all the other chapters of Part III), we assumed a non-
cooperative behavior of the players. In some cases, however, it can be realistic to
assume that players try to find an agreement by bargaining with each other. An
example of that approach is provided by the work of Heather Zheng and her team [305,
394, 80, 393].

Finally, let us mention the work by Zander [385], published as early as 1990, de-
scribing jamming and jamming avoidance in a slotted Aloha network as a zero-sum
game.

9.6 Questions

(a) In IEEE 802.11, why isn’t SIFS=0?
(b) If a hotspot contains both UDP and TCP nodes cheating with backoff, how

does DOMINO detect each of them?
(c) Is IEEE 802.11 fair or unfair? How does this affect DOMINO? Hint: fairness

can be consider either over a short-term or over a long-term interval.
(d) Why can’t a cheater increase her bandwidth share of downlink traffic only by

playing with the MAC layer, as is the case for the uplink traffic?
(e) Why is it more advantageous (for a cheater) to cheat with UDP traffic than

with TCP traffic?
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(f) DOMINO is an external system that makes IEEE 802.11 protocol resilient
to cheating. What are possible modifications that can make IEEE 802.11
inherently resilient to cheating?

(g) Take a look at the IEEE 802.11e standard (to be retrieved from the IEEE Web
site). Is it possible to detect greedy behavior in such networks? Why?

(h) What is the rationale behind the CWi−k
CWi

factor in equation (9.6)?
(i) Prove that the system of two equations (9.3) and (9.9) with unknown variables

π and p has a unique solution.
(j) What would be the modifications in Bianchi’s model if the mobile nodes used

RTS/CTS before transmitting the packets (to avoid the hidden terminal prob-
lem)?

(k) IEEE 802.11 WGs provide a multi-rate physical layer capability which is ob-
tained by employing different sets of modulation and channel coding at PHY
layer. How should Bianchi’s model be modified to consider different data rates?

(l) Does Bianchi’s model take into consideration the wireless channel conditions
for mobile users? How can we incorporate this parameter in Bianchi’s model?

(m) Equation (9.14) calculates the probability of collision for the well behaved
nodes, i.e. π(w). How is this equation obtained?

(n) Equation (9.15) expresses the throughput of one cheater node i. Explain the
meaning of numerator and denominator in this equation.

(o) As it is mentioned in Section 9.3.2, the Pareto optimality can be obtained
directly from Bianchi’s model. Considering equation (9.10), explain how we
can obtain this point directly from Bianchi model?

(p) What is the main purpose of the repeated game definition in Section 9.3.3?
(q) In the definition of approximate game (i.e., ĜCSMA/CA), why is N < ∞ a

condition required for the existence of εi?
(r) Research question: Let us assume that a cheater adopts an on-off strategy:

she cheats, then behaves, then cheats again, and so on. Using game theory,
can you model the resulting game between cheaters and detector (DOMINO)?
Who wins and under what conditions?
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Selfishness in packet forwarding

In the previous chapter, we have studied selfish behavior at the MAC layer. We will
now focus on the network layer. For this purpose, we will consider self-organized
wireless ad hoc networks. As we have explained in Chapter 2, in such networks the
networking services are provided by the nodes themselves. As a fundamental example,
the nodes must make a mutual contribution to packet forwarding in order to ensure
an operable network. If the network is under the control of a single authority, as is the
case for military networks and rescue operations, the nodes cooperate for the critical
purpose of the network. However, if each node is its own authority, cooperation
between the nodes cannot be taken for granted; on the contrary, it is reasonable to
assume that each node has the goal of maximizing its own benefits by enjoying network
services and at the same time minimizing its contribution. This selfish behavior can
significantly damage network performance [72, 263].

In this chapter, we focus on the most resource demanding operation of the network
layer, namely packet forwarding. We address the case of self-organized wireless ad hoc
networks, in order to derive some fundamental results. In particular, we will see that
a network without incentives for cooperation is very likely to collapse. In Chapter 12,
we will describe incentive techniques to solve this problem.

The question underpinning this chapter is the following: When a node is requested
to forward a packet by one of its neighbors, will it do so, if no mechanism is in place to
enforce this cooperative behavior? We define a model in a game theoretic framework
and identify the conditions under which an equilibrium based on cooperation exists.
As the problem is involved, we deliberately restrict ourselves to a static configuration
(this is the reason why we talk here about a “self-organized wireless ad hoc network”
and not about a “self-organized mobile ad hoc network”).

330
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10.1 Game theoretic model of packet forwarding

Let us consider an ad hoc network of n nodes. Let us denote the set of all nodes by
N . Each node has a given power range and two nodes are said to be neighbors if they
reside within the power range of each other. We represent the neighbor relationship
between the nodes with an undirected graph, which we call the connectivity graph.
Each vertex of the connectivity graph corresponds to a node in the network, and two
vertices are connected with an edge if the corresponding nodes are neighbors.

Communication between two non-neighboring nodes is based on multi-hop relaying.
This means that packets from the source to the destination are forwarded by interme-
diate nodes. For a given source and destination, the intermediate nodes are those that
form the shortest path1 between the source and the destination in the connectivity
graph. We call such a chain of nodes (including the source and the destination) a
route. We call the topology of the network with a given set of communicating nodes
a scenario. To simplify the treatment, throughout the chapter we will assume that
each node is the source of a single route.

We use a discrete model of time where time is divided into slots. We assume that
both the connectivity graph and the set of existing routes remain unchanged during a
time slot, whereas changes can happen at the end of each time slot. We assume that
the duration of the time slot is much longer than the time needed to relay a packet
from the source to the destination. This means that a node is able to send several
packets within one time slot. This allows us to abstract away individual packets and
to represent the data traffic in the network with flows. We assume flows at fixed rate,
which means that a source node sends the same amount of traffic in each time slot.
Note, however, that this amount can be different for every source node and every
route.

10.1.1 Forwarding game

We model the operation of the network as a game, which we call the forwarding game.
The players of the forwarding game are the nodes. In each time slot t, each node i

chooses a cooperation level mi(t) ∈ [0, 1], where 0 and 1 represent full defection and
full cooperation, respectively (we use the letter “m” to designate this cooperation
level because it is actually the move of the node in game theoretic parlance). Here,
defection means that the node does not forward traffic for the benefit of other nodes,
whereas cooperation means that it does. Thus, mi(t) represents the fraction of the
traffic routed through i in t that i actually forwards. Note that i has a single coopera-
tion level mi(t), which it applies to every route in which it is involved as a forwarder.

1 In other words, we abstract away the details of the routing protocol, and we model it as a function
that returns the shortest path between the source and the destination. If there are multiple
shortest paths, then one of them is selected at random.
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We prefer to not require the nodes to be able to distinguish the flows that belong to
different routes, because this would require identifying the source-destination pairs
and applying a different cooperation level to each of them; this would probably in-
crease the computation at the nodes significantly.

Let us consider a route with source node s and with ` forwarding nodes f1, f2, . . . , f`.
Let us denote by Ts the constant amount of traffic that s wants to send on the route r

in each time slot. The throughput τ(r, t) experienced by the source s in t is defined as
the fraction of the traffic sent by s (on r) in t that is delivered to the destination. As
we are studying cooperation in packet forwarding, we assume that the main reason
for packet losses in the network is the non-cooperative behavior of the nodes. In
other words, we assume that the network is not congested and that the number of
packets dropped due to the limited capacity of the nodes and the links is negligible.
Hence, τ(r, t) can be computed as the product of Ts and the cooperation levels of all
intermediate nodes:

τ(r, t) = Ts ·
∏̀

k=1

mfk
(t) (10.1)

In addition, we define the normalized throughput τ̂(r, t) as follows:

τ̂(r, t) =
τ(r, t)

Ts
=

∏̀

k=1

mfk
(t) (10.2)

We will use the normalized throughput later as an input of the strategy function of
s.

The benefit bs(t) of s in t depends on the experienced throughput τ(r, t). In
general, bs(t) = Fs(τ(r, t)), where Fs is some non-decreasing function. We further
assume that Fs is concave, differentiable at Ts, and that Fs(0) = 0. We place no
other restrictions on Fs. Note that the function f of different nodes can be different.

The cost cfj (r, t) in t of the j-th intermediate node fj on each route r containing
the forwarding node fj is non-positive and represents the “effort” for node fj to
forward packets on route r during time slot t. It is defined as follows:

cfj (r, t) = −Ts · C · τ̂j(r, t) (10.3)

where C is the cost of forwarding one unit of traffic, and τ̂j(r, t) is the normalized
throughput (on r) in t leaving node j. For simplicity, we assume that the nodes have
the same, fixed transmission power, and therefore C is the same for every node in the
network, and it is independent from r and t. τ̂j(r, t) is computed as the product of
the cooperation levels of the intermediate nodes from f1 up to and including fj :

τ̂j(r, t) =
j∏

k=1

mfk
(t) (10.4)
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In this model, the payoff of the destination is 0. In other words, we assume that only
the source benefits if the traffic reaches the destination (information push). However,
this model can be applied in the reverse case: all the results also hold when only the
destination benefits from receiving traffic. An example of this case is a file download
(information pull).

The total payoff ui(t) of node i in time slot t is then computed as

ui(t) = bi(t) +
∑

r∈Fi(t)

ci(r, t) (10.5)

where Fi(t) is the set of routes in t where i is an intermediate node.

10.1.2 Strategy space

In every time slot, each node i updates its cooperation level using a strategy function
σi. In general, i could choose a cooperation level to be used in time slot t, based on
the information it obtained in all preceding time slots. In order to make the analysis
feasible, we assume that i uses only information that it obtained in the previous time
slot. More specifically, we assume that i chooses its cooperation level mi(t) in time
slot t based on the normalized throughput it experienced in time slot t − 1 on the
route where it is a source:

mi(t) = σi[τ̂(r, t− 1)] (10.6)

where τ̂(r, t− 1) represents the normalized throughput enjoyed by node i in time slot
t− 1.

The strategy of a node i is then defined by its strategy function σi and its initial
cooperation level mi(0).

Note that σi takes as input the normalized throughput and not the total payoff
received by i in the previous time slot. The rationale is that i should react to the be-
havior of the rest of the network, which is represented by the normalized throughput.

There is an infinite number of possible strategies as a response to the observed
traffic τ̂ . Here we highlight only a few of them for illustrative purposes.

• Always Defect (AllD): A node playing this strategy defects in the first time slot
and then uses the strategy function σi(τ̂) = 0.

• Always Cooperate (AllC): A node playing this strategy starts with cooperation and
then uses the strategy function σi(τ̂) = 1.
• Tit-For-Tat (TFT): A node playing this strategy starts with cooperation, and then

mimics the behavior of its opponent in the previous time slot. The strategy function
that corresponds to the TFT strategy is σi(τ̂) = τ̂ .

• Suspicious Tit-For-Tat (S-TFT): A node playing this strategy defects in the first
time slot, and then applies the strategy function σi(τ̂) = τ̂ .
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• Anti Tit-For-Tat (Anti-TFT): A node playing this strategy does exactly the oppo-
site of what its opponent does. In other words, after cooperating in the first time
slot, it applies the strategy function σi(in) = 1− τ̂ .

If the output of the strategy function is independent of its input, then the strategy
is called a non-reactive strategy (e.g., AllD or AllC). If the output depends on the
input, then the strategy is reactive (e.g., TFT or Anti-TFT).

Our model requires that each source be able to observe the throughput in a given
time slot on each of its routes. We assume that this is made possible with high enough
precision by using some higher level control protocol above the network layer.

10.2 Meta-model

In this section, we introduce a meta-model in order to formalize the properties of the
packet forwarding game defined in the previous section. In the meta-model, we focus
on the evolution of the cooperation levels of the nodes; all other details of the model
defined earlier (e.g., amounts of traffic, forwarding costs, and utilities) are abstracted
away. As previously, we will assume that routes remain unchanged during the lifetime
of the network and that each node is the source of only one route.

Let us consider a route r. The payoff received by the source on r depends on the
cooperation levels of the intermediate nodes on r. We represent this dependency
relationship between the nodes with a directed graph, which we call the dependency
graph. Each vertex of the dependency graph corresponds to a network node. There
is a directed edge from vertex i to vertex j, denoted by the ordered pair (i, j), if there
exists a route where i is an intermediate node and j is the source. Intuitively, an edge
(i, j) means that the behavior (cooperation level) of i has an effect on j. The concept
of dependency graph is illustrated in Figure 10.1.

Now we define the automaton Θ that will model the unfolding of the forwarding
game in the meta-model. The automaton is built on the dependency graph. We assign
a machine Mi to every vertex i of the dependency graph and interpret the edges of
the dependency graph as links that connect the machines assigned to the vertices.
Each machine Mi thus has some input and some (possibly 0) output links.

The internal structure of the machine is illustrated in Figure 10.2. Please note that
from now on, whenever appropriate, we will write τ only with its parameter t, because
we have assumed that each node is source of a single route (hence that information
would be redundant). Each machine Mi consists of a multiplication2 gate

∏
followed

by a gate that implements the strategy function σi of node i. The multiplication
2 The multiplication comes from the fact that the experienced normalized throughput for the source

(which is the input of the strategy function of the source) is the product of the cooperation levels
of the forwarders on its route.
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Fig. 10.1. Representation of a network: (a) a graph showing 5 routes and (b) the corre-
sponding dependency graph. From [133], c© IEEE, 2006.

gate
∏

takes the values on the input links and passes their product to the strategy
function gate.3 Finally, the output of the strategy function gate is passed to each
output link of Mi.
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Fig. 10.2. Internal structure of machine Mi. The cooperation level mfk of each relay node
at time t − 1 on the route for which node i is the source contributes to the normalized
throughput τ̂ of node i. The latter determines the cooperation level mi(t) of that node (on
all the routes for which it is a forwarder). From [133], c© IEEE, 2006.

The automaton Θ works in discrete steps. Initially, in step 0, each machine Mi

outputs some initial value mi(0). Then, in step t > 0, each machine computes its
output mi(t) by taking the values that appear on its input links in step t − 1. The
evolution of the values (which, in fact, represent the state of the automaton) on the
output links of the machines models the evolution of the cooperation levels of the
nodes in the network.
3 Note that here σi takes a single real number as input, instead of a vector of real numbers as we

defined earlier, because we assume that each node is source of only one route.
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Fig. 10.3. Model of interaction between node i and the rest of the network represented by
the automaton Θ−i. From [133], c© IEEE, 2006.

In order to study the interaction of node i with the rest of the network, we extract
the gate that implements the strategy function σi from the automaton Θ. What
remains is the automaton without σi, which we denote by Θ−i. Θ−i has an input
and an output link; if we connect these to the output and the input, respectively,
of σi (as illustrated in Figure 10.3), then we get back the original automaton Θ. In
other words, the automaton in Figure 10.3 is another representation of the automaton
in Figure 10.4, which captures the fact that from the viewpoint of node i, the rest
of the network behaves like an automaton: The input of Θ−i is the sequence pi =
mi(0), mi(1), . . . of the cooperation levels of i, and its output is the sequence τ i =
τ̂i(0), τ̂i(1), . . . of the normalized throughput values for i.

By using the system of equations that describe the operation of Θ, we can easily
express any element τ̂i(t) of sequence τ i as some function of the preceding elements
mi(t− 1),mi(t− 2), . . . , mi(0) of sequence mi and the initial values mj(0) (j 6= i) of
the machines within Θ−i. We call such an expression of τ̂i(t) the t-th input/output
formula or the t-th i/o formula of Θ−i, for short. It is important to note that the
i/o formulae of Θ−i can involve any strategy function σj where j 6= i, but they
never involve σi. Considering again the automaton in Figure 10.4, and extracting, for
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Fig. 10.4. Automaton corresponding to the dependency graph of Figure 10.1. From [133],
c© IEEE, 2006.

instance, σA, we can determine the first few i/o formulae of Θ−A as follows:

τ̂A(0) = mC(0) ·mE(0)

τ̂A(1) = σC(mE(0)) · σE(mA(0))

τ̂A(2) = σC(σE(mA(0))) · σE(mA(1))

τ̂A(3) = σC(σE(mA(1))) · σE(mA(2))

. . . . . .

A dependency loop L of node i is a sequence (i, v1), (v1, v2), . . . , (v`−1, v`), (v`, i) of
edges in the dependency graph. The length of a dependency loop L is defined as the
number of edges in L, and it is denoted by |L|. The existence of dependency loops is
important: if node i has no dependency loops, then the cooperation level chosen by
i in a given time slot has no effect on the normalized throughput experienced by i in
future time slots. In the example, nodes B and D have no dependency loops.

There exist two types of dependency loops. These types depend on the strategies
played by the other nodes in the loop. If L is a dependency loop of i, and all other
nodes j 6= i in L play reactive strategies, then L is said to be a reactive dependency
loop of i. If, on the contrary, there exists at least one node j 6= i in L that plays a
non-reactive strategy, then L is called a non-reactive dependency loop of i.

Note: a very convenient property of the model captured by Figure 10.3 is that node
i does not need to authenticate the other nodes: It assesses the way in which it is
served by the rest of the community (or more precisely, by those of the nodes that
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have influence on node i’s own payoff) and reacts accordingly. A drawback is that a
selfish node can take advantage of this phenomenon, as it knows that there will not
be retaliation directed personally towards itself.

10.3 Analytical results

Our goal, in this section, is to find possible Nash equilibria of packet forwarding
strategies. In the next section, we will investigate the probability of fulfillment of the
conditions for possible Nash equilibria in randomly generated scenarios. The existence
of a Nash equilibrium based on cooperation would mean that there are cases in which
cooperation is “naturally” encouraged, i.e. without using incentive mechanisms. In
the following, we use the model and the meta-model that we introduced earlier.

The goal of the nodes is to maximize the payoff that they accumulate over time.
However, the end of the game is unpredictable. Thus, we apply the standard technique
used in the theory of repeated games. We model the finite forwarding game with
an unpredictable end as an infinite game where future payoffs are discounted. The
cumulative payoff ui of a node i is computed as the weighted sum of the payoffs ui(t)
that i obtains in each time slot t:

ui =
∞∑

t=0

[ui(t) · δt] (10.7)

where 0 < δ < 1, hence the weights exponentially decrease with t. The discounting
factor δ represents the degree to which the payoff of each time slot is discounted
relative to the previous time slot.

We denote the route originating at node i by ri and the amount of traffic sent by
i on ri in every time slot by Ti. Recall that Fi denotes the set of routes for which i

is an intermediate node. The cardinality of Fi will be denoted by |Fi|. For any route
r ∈ Fi, we denote the set of intermediate nodes on r upstream from node i (including
node i) by Φ(r, i). Moreover, Φ(r) denotes the set of all forwarder nodes on route r,
and src(r) denotes the source of route r. Finally, the set of nodes that are forwarders
on at least one route is denoted by Φ (i.e., Φ = {i ∈ N : Fi 6= ∅}).

The two following theorems can easily be derived.

Theorem 10.1 If a node i ∈ Φ has no dependency loops, then its best strategy is
AllD.

Proof: Node i wants to maximize its cumulative payoff ui defined in (10.7). In our
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case, ui(t) can be written as:

ui(t) = bi(t) +
∑

r∈Fi

ci(r, t)

= bi(Ti · τ̂i(t))−
∑

r∈Fi

Tsrc(r) · C ·
∏

k∈Φ(r,i)

mk(t)

Given that i has no dependency loops, τ̂i(t) is independent of all the previous coop-
eration levels mi(t′) (t′ < t) of node i. Thus, ui is maximized if mi(t′) = 0 for all
t′ ≥ 0. 2

Theorem 10.2 If a node i ∈ Φ has only non-reactive dependency loops, then its best
strategy is AllD.

Proof: The proof is similar to the proof of Theorem 10.1. Since all dependency loops
of i are non-reactive, its experienced normalized throughput yi is independent of its
own behavior xi. This implies that its best strategy is full defection. 2

From this second theorem, the following corollary follows immediately.

Corollary 10.1 Every node playing AllD is a Nash equilibrium.

In other words, if every node j (j 6= i) plays AllD, then the best response of i to
this is AllD.

If the conditions of Theorems 10.1 and 10.2 do not hold, then we cannot determine
the best strategy of a node i in general, because it very much depends on the particular
scenario (dependency graph) in question and the strategies played by the other nodes.

Now, we will show that, under certain conditions, cooperative equilibria do exist in
the network. In order to do so, we first prove the following lemma:

Lemma 10.1 Consider a node i ∈ Φ and a route r ∈ Fi. If there exists a dependency
loop L of i that contains the edge (i, src(r)) and if all nodes in L (other than i) play
the TFT strategy, then the following holds:

τ̂i(t + λ) ≤
∏

k∈Φ(r,i)

mk(t) (10.8)

where λ = |L| − 1.

The intuition of the proof is provided by Figure 10.5, which illustrates a dependency
loop of length 5 (i.e., λ = 4). According to Lemma 10.1, if nodes v1, v2, v3, and v4

play TFT, then the normalized throughput enjoyed by node i in time slot t + 4 is
upper bounded by its own cooperation level in time slot t. Intuitively, this means
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Fig. 10.5. Example to illustrate the propagation of behavior as expressed in Lemma 10.1.
The considered node is denoted as v0. The throughput τ1(t) of node v1 is upper-bounded
by the move m0(t) of node v0. As node v1 plays TFT, it will choose a cooperation level
m1(t + 1) corresponding to the level of traffic that it has previously enjoyed, namely τ1(t).
From [133], c© IEEE, 2006.

that if node i does not cooperate, then this defection “propagates back” to it on the
dependency loop. The delay of this effect is given by the length of the dependency
loop.

Theorem 10.3 The best strategy for a node i ∈ Φ is full cooperation in each time
slot, if the following set of conditions holds:

(a) for every r ∈ Fi, there exists a dependency loop Li,src(r) that contains the edge
(i, src(r));

(b) for every r ∈ Fi,

b′i(Ti) · Ti · δλi,src(r)

|Fi| > Tsrc(r) · c (10.9)

where b′i(Ti) is the value of the derivative4 of bi(τ) at τ = Ti, and λi,src(r) =
|Li,src(r)| − 1; and

4 Recall the assumption that bi is differentiable at Ti.
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(c) every node in Φ (other than i) plays the TFT strategy.

The proof of Theorem 10.3 can be found in [133].
We have derived necessary conditions for spontaneous cooperation from Theo-

rem 10.1 and 10.2. The fulfillment of the three conditions of Theorem 10.3 is sufficient
for cooperation to be the best strategy for node i. We now discuss these three con-
ditions one by one. Condition 1 requires that node i has a dependency loop with all
of the sources for which it forwards packets. Condition 2 means that the maximum
forwarding cost for node i on every route where i is a forwarder must be smaller than
its possible future benefit averaged over the number of routes where i is a forwarder.
Finally, Condition 3 requires that all forwarding nodes in the network (other than
node i) play TFT. This implies that all the dependency loops of node i are reactive.

We note that the reactivity of the dependency loops can be based on other reactive
strategies, different from TFT (for example Anti-TFT), but in that case the analysis
becomes very complex. The analysis of the case in which every node plays TFT is
made possible by the simplicity of the strategy function σ(x) = x, characteristic the
TFT strategy. If all three conditions of Theorem 10.3 are satisfied, then node i has
an incentive to cooperate, otherwise its defective behavior will negatively affect its
own payoff. However, as we will show in Section 10.4, Condition 1 is a very strong
requirement that is virtually never satisfied in randomly generated scenarios.

Both the AllC and TFT strategies result in full cooperation if the conditions of
Theorem 10.3 hold. However, node i should not choose AllC, because AllC is a non-
reactive strategy, and this might cause other nodes to change their strategies to AllD,
as we will show in Section 10.4. Hence, we can derive the following corollary for
cooperative Nash equilibria.

Corollary 10.2 If the first two conditions of Theorem 10.3 hold for every node in Φ,
then all nodes playing TFT is a Nash equilibrium.

In Section 10.4, we will study Condition 1 of Theorem 10.3, more specifically, the
probability that it is satisfied for all nodes in randomly generated scenarios. Now,
we briefly comment on Condition 2. As it can be seen, the following factors make
Condition 2 easier to satisfy:

• Steep utility functions: The steeper the benefit function bi expressing the benefit
(and therefore the function ui expressing the payoff) of node i as a function of the
normalized throughput at τ = Ti is, the larger the value of its derivative is, which,
in turn, makes the left side of (10.9) larger.
• Short dependency loops: In Condition 2, λi,src(r)+1 is the length of any dependency

loop of node i that contains the edge (i, src(r)). Clearly, we are interested in the
shortest of such loops, because the smaller λi,src(r) is, the larger the value of δλi,src(r)
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is, which, in turn, makes the left side of (10.9) larger. It is similarly advantageous
if δ is close to 1, which means, in general, that the probability that the game will
continue is higher and thus possible future payoffs count more.
• Small extent of involvement in forwarding: The left side of (10.9) is increased if the

cardinality of Fi is decreased. In other words, if node i is a forwarder on a smaller
number of routes, then Condition 2 is easier to satisfy for i.

Comments The first two theorems state that if the behavior of node i has no effect
on its experienced normalized throughput, then defection is the best choice for i. In
addition, Corollary 10.1 says that if every node always defects, then this is a Nash
equilibrium. Theorem 10.3 leads to Corollary 10.2, which shows the existence of a
cooperative equilibrium (each node playing TFT) under certain conditions.

set of scenarios,
where every node

playing AllD 
is a Nash equilibrium

(Corollary 1)

set of scenarios,
where cooperation

is based on the condition
expressed in Corollary 2

set of scenarios 
where a Nash equilibrium 

based on cooperation
is not excluded 
by Theorem 1

C2
D C

Fig. 10.6. Classification of scenarios defined by our analytical results. From [133], c© IEEE,
2006.

Figure 10.6 shows a classification of scenarios from the cooperation perspective.
In the figure, set D denotes the set of all possible scenarios; indeed, we know from
Corollary 10.1 that all nodes playing AllD is a Nash equilibrium in any possible
scenario. Set C2 contains the scenarios where the conditions of Corollary 10.2 hold.
Hence, all nodes playing TFT is a Nash equilibrium in every scenario in C2. Finally,
set C contains those scenarios where the condition of Theorem 10.1 does not hold for
any of the nodes in Φ, or, in other words, where every node in Φ has at least one
dependency loop. Determining the Nash equilibria in the scenarios that belong to set
C \ C2 is still an open research problem. In the next section, we will describe our
simulation results that quantify the “size” of the above sets.
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10.4 Simulation results

A set of simulations will now help us to determine the likelihood that the conditions
of the theorems and their corollaries hold. In particular, our goal is to estimate the
probability that the first condition of Theorem 10.3 holds for every node in randomly
generated scenarios.5 In addition, we also estimate the probability that the condition
of Theorem 10.1 does not hold for any of the nodes in randomly generated scenarios.
These probabilities quantify the size of sets C2 and C, respectively.

In these simulations, the nodes are randomly on a toroid area.6 Then, for each
node, a number of destinations is randomly chosen and a route to these destinations
is selected using a shortest path algorithm. If there exist several shortest paths to a
given destination, then one of them is randomly chosen. From the routes, we build
up the dependency graph of the network. The simulation parameters are summarized
in Table 10.1.

Table 10.1. Parameter values for the simulation
Parameter Value
Number of nodes 100, 150, 200
Distribution of the nodes random uniform
Area type Torus
Area size 1500x1500m, 1850x1850m,

2150x2150m
Radio range 200 m
Number of destinations per node 1-10
Route selection shortest path

Note that we increase the network size and the simulation area in parallel in order
to keep the node density at a constant level. All the presented results are the mean
values of 1000 simulation runs.

So far, in this chapter, we have considered that a single route originates from each
node. As the simulations will show, the proportion of scenarios where all nodes
have a dependency loop under this assumption is extremely small. Consequently, the
simulations show also the case in which multiple routes originate from such nodes.
As will be shown, the likelihood for Condition 1 to be fulfilled increases, albeit very
progressively. This is important, because all the results presented in this chapter can
be extended to this case.
5 The second condition of Theorem 10.3 is a numerical one. Whether it is fulfilled or not very

much depends on the actual utility functions and parameter values (e.g., amount of traffic and
discounting factor) used. As, by appropriately setting these parameters, the second condition of
Theorem 10.3 can always be satisfied, in our analysis, we make the optimistic assumption that
this condition holds for every node in Φ.

6 We use this area type to avoid border effects. In a realistic scenario, the toroid area can be
considered as an inner part of a large network.
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In the first set of simulations, we investigate the probability that the first condition
of Theorem 10.3 holds for every node (the size of the set C2 in Figure 10.6). Among
the 1000 scenarios that we generated randomly, we observed that there was not a
single scenario in which the first condition of Theorem 10.3 was satisfied for all nodes.
Thus, we conclude that the probability of a Nash equilibrium based on TFT as defined
in Corollary 10.2 is very small.

In the second set of simulations, we investigate the proportion of random scenarios,
where cooperation of all the nodes is not excluded by Theorem 10.1. Figure 10.7
shows the proportion of scenarios, where each node in Φ has at least one dependency
loop (the scenarios in set C in Figure 10.6) as a function of the number of routes
originating at each node. We can observe that for an increasing number of routes
originating at each node, the proportion of scenarios, where each node has at least
one dependency loop, increases as well. Intuitively, as more routes are introduced in
the network, more edges are added to the dependency graph. Hence, the probability
that a dependency loop exists for each node increases. Furthermore, we can observe
that the proportion of scenarios in which each node has at least one dependency
loop decreases, as the network size increases. This is due to the following reason: the
probability that there exists at least one node for which the condition of Theorem 10.1
holds increases as the number of nodes increases.

Figure 10.7 shows that the proportion of scenarios, where cooperation of all nodes
is not excluded by Theorem 10.1 (set C) becomes significant (with respect to set D)
only for cases in which each node is a source of a large number of routes. This implies
that the necessary condition expressed by Theorem 10.1 is a strong requirement for
cooperation in realistic settings (i.e., for a reasonably low number of routes per node).

Now let us consider the case in which the nodes for which Theorem 10.1 holds begin
to play AllD. This non-cooperative behavior can lead to an “avalanche effect” if the
nodes iteratively optimize their strategies: nodes that defect can cause the defection
of other nodes. We examine this avalanche effect in a simulation setting as follows.

Let us assume that each node is a source on one route. First, we identify the nodes
in the set of forwarders Φ that have AllD as the best strategy due to Theorem 10.1.
We denote the set of these defectors by Z0. Then, we search for sources that are
dependent on the nodes in Z0. We denote the set of these sources by Z+

0 . As the
normalized throughput of the nodes in Z+

0 is less than or equal to the cooperation level
of any of their forwarders (including the nodes in Z0), their best strategy becomes
AllD as well, due to Theorem 10.2. Therefore, we extend the set Z0 of defectors,
and obtain Z1 = Z0 ∪ Z+

0 . We extend the set Zk of defectors iteratively in this way
until no new sources are affected (i.e., Zk ∪ Z+

k = Zk). The remaining set Φ \ Zk

of nodes is not affected by the behavior of the nodes in Zk (and hence the nodes in
Z0); this means that they are potential cooperators. Similarly, we can investigate the
avalanche effect when the nodes are sources of several routes. In this case, we take the
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Fig. 10.7. Proportion of scenarios, where each node that is a forwarder has at least one
dependency loop. From [133], c© IEEE, 2006.

pessimistic assumption that the defection of a forwarder causes the defection of its
sources. Then, we can iterate the search for the nodes that are affected by defection
in the same way as above.

In Figure 10.8, we present the proportion of scenarios, where there exists a subset
of nodes that are not affected by the defective behavior of the initial AllD players. We
can see that this proportion converges rapidly to 1 as the number of routes originating
at each node increases. The intuitive explanation is that increasing the number of
routes per source (i.e., adding edges to the dependency graph) decreases the proba-
bility that Theorem 10.1 holds for a given node. Thus, as the number of routes per
sources increases, the number of forwarders that begin to play AllD decreases, as well
as the number of nodes affected by the avalanche effect.

Additionally, we present in Figure 10.9 the proportion of forwarder nodes that are
not affected by the avalanche effect. The results show that if we increase the number
of routes originating at each node, the average number of unaffected nodes increases
rapidly. For a higher number of routes per node, this increase slows down, but we
can observe that the majority of the nodes are not affected by the defective behavior
of the initial AllD players.
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Fig. 10.8. Proportion of scenarios, where at least one node is not affected by the defective
behavior of the initial nodes. From [133], c© IEEE, 2006.

10.5 Summary

In this chapter, we presented a game theoretic model to investigate the conditions
for cooperation in wireless ad hoc networks, in the absence of incentive mechanisms.
Because of the complexity of the problem, we restricted ourselves to a static net-
work scenario. We then derived conditions for cooperation from the topology of the
network and the existing communication routes. We introduced the concept of de-
pendency graph, based on which we proved several theorems. As one of the results,
we proved that cooperation solely based on the self-interest of the nodes can existin
theory. However, the simulation results show that in practice the conditions of such
cooperation are almost never satisfied. We conclude that there will be, with a very
high probability, some nodes that have AllD as their best strategy and that therefore
these nodes need an incentive to cooperate. We also showed that the behavior of these
defectors affects only a fraction of the nodes in the network; hence, local subsets of
cooperating nodes are not excluded.

10.6 To probe further

Abstracting the network As mentioned, the treatment of this chapter is a simplified
version of [133], which addresses also the more general case of nodes being the source
of multiple routes. An alternative approach is provided by Srinivasan et al. [350]; but
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Fig. 10.9. Average proportion of forwarder nodes that are not affected by the avalanche
effect. From [133], c© IEEE, 2006.

this second approach is more abstract, in the sense that it does not take the topology
of the network into account. The reader interested in this topic can find a detailed
comparison between the two approaches in [133].

Application of game theory to the network layer Game theory has been used
to model network layer issues in fixed networks. Korilis, Lazar and Orda [228] address
the problem of allocating link capacities in routing decisions; in [229], Korilis and Orda
suggest a congestion-based pricing scheme. Roughgarden [328] quantifies the worst-
possible loss in network performance arising from non-cooperative routing behavior.
In [380], Yaiche, Mazumdar and Rosenberg present a game theoretical framework for
bandwidth allocation; they study the centralized problem and show that the solution
can be distributed in a way that leads to a system-wide optimum.

A closely related area is the one of pricing. For fixed networks, Kelly proposes a
scheme for charging and rate control for elastic traffic, particularly well suited for ATM
networks [217]. Qiu and Marbach [314] define a price-based approach for bandwidth
allocation in wireless ad hoc networks.

Reputation Several authors have studied the application of reputation systems to
packet forwarding, see e.g. [66]. The idea is that nodes observe each others’ behav-
ior and retaliate against those exhibiting non-cooperative behavior, for example by
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dropping the packets originating from them. To be effective, these schemes need to
be combined with authentication mechanisms, see Chapter 4.

10.7 Questions

(a) How many dependency loops are there in Figure 10.1?
(b) Assume that in Figure 10.1 node E plays AllD, whereas nodes B, C and D

play TFT. What is the best strategy of node A? Answer the same question for
node A if node C plays AllD and nodes B, D and E play TFT.

(c) Assume that node A in Figure 10.1 falsely detects that node C was dropping
some of its packets. What is the result? (Establish the connection with the
previous question).

(d) Assume that in Figure 10.4 all nodes play TFT. What is the evolution of the
machine outputs in the first 5 rounds? In the first 10 rounds? Answer the
same question if node A starts with the cooperation level mA(t0) = 0.5 (and
all the other nodes with cooperation level mi(t0) = 1).

(e) The defection of some nodes causes the defection of other nodes. Why do we
call this the “avalanche effect”? What kind of implications does it have for the
stability of cooperation?

(f) Throughout this chapter it is assumed that packet dropping is exclusively due
to the selfish behavior of the nodes. Why is this assumption necessary?

(g) What type of games would you use to model the packet forwarding problem if
packet dropping were possible due to link errors or congestion?
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Wireless operators in a shared spectrum

In the previous two chapters, we have focused on the behavior of selfish nodes and
shown how this can be modeled by means of game theory. In this chapter, we will
consider the coexistence of several operators in shared spectrum. We will first discuss
multi-domain sensor networks and then address the more involved case of cellular
operators.

It is important to stress, as we already did at the beginning of Part III, that the cases
presented hereafter must be understood as examples that capture the interactions of
operators in shared spectrum, and not as the scenarios on which the manufacturers
and operators will focus in the future.

11.1 Multi-domain sensor networks

An important design criterion for sensor networks is the minimization of the sensors’
energy consumption. The sensors are often battery powered and it is impractical (and,
in some cases, even impossible) to change or recharge the batteries once the sensors
have been deployed. It is known that the energy required to transmit a data packet
increases (at least) as the square of the distance of the transmission. In practice, this
means that, as far as energy consumption is concerned, it is often more advantageous
to transmit a packet in several small hops than to transmit it in a single large hop.
Hence, if there are numerous sensors near each other, then they could transmit the
packets together and thus increase the lifetime of their batteries radically.

In today’s research of sensor networks it is generally assumed that all the sensors
and base stations belong to a single authority who can control the whole network. In
this section, we depart from this common assumption, and consider sensor networks
that are deployed at the same physical area, but controlled by different authorities. In
such a situation, the sensors belonging to one authority can reduce their transmission
energy even further if their packets are forwarded by sensors that belong to another
authority; an act that we call cooperation. There is a risk, however, that the sensors

349
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belonging to the other authority are not willing to help and they drop the foreign
packets.

We study this problem in a game theoretic setting. The main question we are
interested in is the following: Can cooperation emerge spontaneously in multi-domain
sensor networks based solely on the self-interest of the nodes (or more precisely of the
authorities to which the nodes belong)? To put it in another way: Is the objective of
increasing the lifetime of the network enough to foster cooperation between co-located
sensor networks? The analytical and simulation studies presented in this section show
that in most cases, the answer to these questions is affirmative.

We will first present a simple model, from which we will derive some encouraging
analytical results. We will then show how the model can be extended and present
related simulation results.

11.1.1 Simplified model

We begin to study the problem of spontaneous cooperation in a simplified model. We
assume that there are only two sensor networks that co-exist at the same physical
location and that each consists of a single base station and a single sensor. The
placement of the base stations and the sensors is illustrated in Figure 11.1.

1 1 1

1 1

2
α

Fig. 11.1. Simple sensor network: the distance between a base station and the sensor of the
opponent’s network is equal to 1. The distance between the two sensors is equal to 1, too.
To transmit a packet to its base station, a sensor can either decide for a single hop, which
will cost it an amount of energy of 2α or for 2 hops, in which case the amount of energy
spent by each of the two sensors will be equal to 1α = 1. From [70], with kind permission of
Springer Science and Business Media.

Now, we describe the operation of this simple system. We assume that time is
divided into discrete time slots. In each time slot, each sensor wants to send a single
data packet to its own base station that contains its measurement data. We also
assume that data packets are equal in size.
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The packet can be sent to the base station directly in a single hop, or via the other
sensor in two hops. Thus, at the beginning of each time slot, every sensor has to
decide the following:

• whether to request the other sensor to help in forwarding its own packet
• whether to help in forwarding the other sensor’s packet if it requests help

The decision made by the sensor defines its move in the time slot. Hence, we have
four possible moves, each of which is denoted by a pair of letters as follows:

CC means that the sensor tries to get help from the other sensor and helps if the
other sensor requests it;

CD means that the sensor tries to get help from the other sensor, but it refuses to
help if the other network requests it;

DC means that the sensor does not ask for help but rather sends its packet directly
to its base station; however, it helps if the other sensor requests help;

DD means that the sensor does not ask for help from the other sensor and it refuses
to help if the other network requests it.

C stands for cooperation and D stands for defection. The first letter of the move
defines how the sensor behaves concerning its own packet, whereas the second letter
defines how it behaves when the other sensor’s packet is concerned. For instance,
making the move CD means that the node tries to obtain cooperation when sending
its own packet, but defects when the other sensor asks it to forward its packet.

Each pair of moves has a cost for both sensors, shown in Table 11.1. The costs are
related to the energy consumption of the sensors and they are determined as follows:

• asking the other sensor to forward the packet has a unit cost, because this only
requires sending the packet to a unit distance.

• forwarding the other sensor’s packet also has a unit cost for similar reasons;
• sending the packet directly to the base station has a cost of 2α, where α is the path

loss exponent (with usual values between 2 and 5), because this requires sending
the packet to a distance of two units;
• dropping a packet has no cost.

In reality, the cost of communication not only depends on the distance, but there are
also fixed costs associated with the reception and the transmission of packets. In this
simplified model, we neglect these fixed costs.

The cells of Table 11.1 contain not only the costs for the two sensors, but also indi-
cators of success where “1” means that the packet reached the base station (success)
and “0” means that it did not (failure). As an example, let us consider the pair of
moves CC − CD. In this case, the first sensor tries to send its packet via the other
sensor that drops it, whereas the other sensor’s packet will be sent via the first sensor
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CC CD DC DD
CC 2, 2 ; 1, 1 2, 1 ; 0, 1 1, 1 + 2α; 1, 1 1, 2α ; 0, 1
CD 1, 2 ; 1, 0 1, 1 ; 0, 0 1, 1 + 2α; 1, 1 1, 2α ; 0, 1
DC 1 + 2α, 1; 1, 1 1 + 2α, 1; 1, 1 2α, 2α ; 1, 1 2α, 2α; 1, 1
DD 2α, 1 ; 1, 0 2α, 1 ; 1, 0 2α, 2α ; 1, 1 2α, 2α; 1, 1

Table 11.1. Costs and successes in the simple network (cost of row player, cost of column
player; success of row player, success of column player)

to the base station successfully. Hence, the cost of the first sensor is 2 (1 for asking
for forwarding its own packet and 1 for forwarding the other’s packet), and the cost
of the other sensor is 1 (the cost for asking for forwarding). Moreover, the first sensor
records a failure and the other records a success.

We assume that the sensors record the results (success or failure) of the last few
time slots in a buffer that we call history ; this history is represented as a binary vector
of a fixed length. We assume that each sensor’s next move is a function of its history.
We call this function the strategy of the sensor.

Here we make an important restriction on the strategy space. We assume that each
sensor wants to keep the weight of its history (i.e., the number of successful slots in
the recent past) above a threshold, which we call the reception threshold. Intuitively,
this means that we do not want to allow too many unsuccessful slots in the history,
because that would mean that the base station does not receive measurement data
with a high enough rate (this rate being characteristic of the application). Therefore,
when the weight of the history approaches the reception threshold, the sensor is not
allowed to make risky C∗ moves (i.e., CC and CD), but it is required to send its data
directly to the base station (i.e., to make a D∗ move). This situation is called the
constrained state. Using strategies that suggest D∗ moves in the constrained state
guarantees that the reception threshold is never violated.

Note that a longer history with a lower reception threshold results in a system with
more freedom, whereas a shorter history with a higher threshold results in a much
stricter system.

Each sensor has some initial battery level B. In each time slot, the battery levels of
the sensors decrease. The amount of this decrease depends on the pair of moves made
in the time slot and their associated costs. When a sensor runs out of its battery
energy, it dies. The other sensor can continue to send data to its base station if it
still has some battery energy.

Note that the above mentioned concepts describe together an extensive game, where
the players are the sensors, the possible moves (made simultaneously by both players)
in each round (except for the constrained states) are CC, CD, DC, DD, the infor-
mation sets are defined by the content of the histories, and the set of strategies are



11.1 Multi-domain sensor networks 353

the functions that assign a move to every possible history with the restriction that
only D∗ moves are assigned to a history that represents a constrained state. The
game ends when the batteries of both sensors run out. The payoff for a player is its
lifetime, which is represented by the number of rounds it survived. Lifetime is a good
payoff function because the authorities want to run their network as long as possible
while successfully transmitting a reasonable number of packets.

Once the game is defined, we can look for Nash equilibria with the highest possible
lifetime. It is quite reasonable to choose one of these Nash equilibria as an operating
point in real systems. If there are more than one Nash equilibria, the equilibrium
with the highest lifetimes is chosen.

In order to make the analysis feasible, we further restrict the strategy space. Let
us consider first the two-step strategies. These strategies suggest a fixed move if the
player is not in a constrained state (independently of the actual weight of the history),
and another fixed move if the player is in a constrained state. A two-step strategy
is denoted by m/m′, where m is the move chosen in an unconstrained state and m′

is the move chosen in a constrained state. For instance, the strategy CC/DD selects
CC in an unconstrained state and DD in a constrained state. Therefore, we have
eight two-step strategies, because in a constrained state only D∗ moves are possible.

By performing an exhaustive search on this strategy space (there are 8 × 8 = 64
pairs of strategies to consider), it is possible to identify Nash equilibria. It appears
that CC/DD and CD/DD dominate the other strategies. The CC/DD strategy is
a cooperative strategy, while the CD/DD is an uncooperative one. By eliminating
the dominated strategies, we get a reduced game. The lifetimes of the sensors in this
reduced game are shown in Table 11.2, where ρ denotes the reception threshold and B

denotes the initial battery level. Values ε1 and ε2 come from transient states such as
starting and ending the game. Both are very small positive numbers in most practical
cases (that is for α between 2 and 5, and for reasonably large B).

There are two Nash equilibria: (CC/DD,CC/DD) and (CD/DD, CD/DD).1 The
first one results in full cooperation, whereas the second results in full defection. How-
ever, if ρ > 1

3 (and α ≥ 2, which is a fundamental condition in this model), then the
cooperative equilibrium results in a longer lifetime for both players.

A more interesting class of strategies are the weight aware strategies. These strate-
gies choose the next move as a function of the weight of the history. Thus, a weight
aware strategy can be represented as m1/m2/ . . . /mk, where m1 is the move that is
chosen when the weight of the history is maximal, and mk is chosen when the weight
of the history is just above the reception threshold. k is a parameter whose value de-
pends on the history size and the value of the reception threshold. This class contains
more complex and more reactive strategies.
1 Under very special circumstances, both ε1 and ε2 can be zero, in which case there may be only

one Nash Equilibrium (the cooperative one).
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CC/DD CD/DD

CC/DD B
2

; B
2

B
ρ2α+(1−ρ)

; B
ρ2α+(1−ρ)

+ ε1

CD/DD B
ρ2α+(1−ρ)

+ ε1 ; B
ρ2α+(1−ρ)

B
ρ2α+(1−ρ)

+ ε2 ; B
ρ2α+(1−ρ)

+ ε2

Table 11.2. Best lifetimes with two-step strategies (lifetime for row player; lifetime for column
player), B initial battery, ρ reception threshold, α path loss exponent, ε1,2 payoff from
transient states

After running 20 different exhaustive simulations, with different parameter sets, it
appeared that the strategy that achieves the best Nash equilibrium is always the same:
(CD/CD/ . . . /CD/CC/DD). We call it the smart strategy. The smart strategy tries
to ask for help in the first steps (the CD moves, which are inexpensive moves), but
provides help (the CC move before the DD move) only in a state when the reception
threshold is nearly violated in the hope that its nice behavior will be reciprocated. In
other words, the smart strategy first tries to exploit the other. If this is successful,
then it will never cooperate. But if the other strategy is not exploitable, then it
will change to a cooperative behavior. In the long run, the strategy keeps the actual
weight of the history near to the reception threshold, which means that it cooperates
only as much as necessary. This turns out to be a very effective behavior to save
battery energy and leads to a rational cooperation.

In summary, we can see that in the simplified model, which contains two base sta-
tions and two sensor nodes, cooperative Nash equilibria exist based on smart strategies
that try to optimize the amount of cooperation. In the next section we will investigate
if the same is true in a more general model.

11.1.2 Generalized model

After the encouraging results of the simplified model in Section 11.1.1, we will now
examine much larger and more complex systems. We will make use of a simulator
that corresponds to the model described in the first part of Section 11.1.1 with some
extensions.

The generalized model considers the coexistence of two network operators, each of
them possessing one base station. Each network operator also possesses the same
(high) number of sensors, randomly placed on the playground (with uniform distri-
bution). The possible moves are the same as those in the simplified model, but in the
generalized model each pair of moves has a cost that depends not only on the dis-
tance of the transmissions and the path loss exponent α, but also on some fixed costs
associated with the sending and receiving of packets. The fixed cost of sending and
the fixed cost of receiving are constant values that represent the energy consumption
necessary to connect to the communication channel and to process the packets.
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The principle of routing in the model is finding the minimum energy path towards
the base station [382]. This means that every node has to forward on the path which
has the minimum energy cost among all the possible paths. Every node maintains
three paths: one in its own network (for the defective moves) and two in the global
network (i.e., where all the nodes are possible forwarders). The global network paths
are maintained in order to allow cooperative moves. The two distinct cooperative
paths are towards the two base stations. These three paths can be the same depending
on the placement.

Both networks have a threshold value (success threshold) that defines the minimum
number of packets that the base station has to receive in each time slot, and the time
slot is considered successful only if at least that number of packets reach the base
station. The lifetime of a network is the total number of time slots that elapse until
the weight of the history becomes zero. The objective of the game is to reach the best
possible lifetime under the constraint that the reception threshold of the history has
to be respected.

Example: In an office building it is usual to deploy temperature and movement
sensors. The temperature sensors measure the actual temperature and forward it to
the air conditioning system. The movement sensors gather information about which
zone is visited or abandoned and forward it to the security system. The two systems
ask for information regularly (once every second) but it is not crucial to get the
information in every time slot. The temperature can be controlled and the security
can be guaranteed with enough accuracy if some of the measurements are successful
(let us say three out of the last five). The systems can work properly if they get
enough measurement data in a time slot. Although the sensors are usually deployed
redundantly, a given proportion can execute the task (say 80 % of the sensors). If the
given proportion of data arrives at the control systems, then the missing information
can be deduced.

Two main type of scenarios are investigated. In one of them (common base sce-
nario), there is a single common base station that collects the information from all of
the nodes (independently from the authority they belong to). In the other (separate
base scenario), both networks have their own base stations. In the common base
model, the base station is placed in the middle of the playground, whereas in the
separate bases model, the base stations are the same distance from the theoretical
middle of the playground.

One hundred simulation runs were performed for each parameter setting with dif-
ferent topology. The concrete values for the simulations are shown in Table 11.3. The
values in parenthesis are the defaults. For each run we made an exhaustive search
in the strategy space to find the best strategy pairs (i.e., those that form a Nash
equilibrium and generate the highest lifetimes).

In the extended model, it is not so easy to determine which equilibrium is a co-
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Parameter Value

Number of sensors per domain 10-20-40 (20)
Distribution of the sensors uniformly random
Area size 100x100 m
Position of the base (common base) [50,50]
Position of the bases (separate bases) [45,50] and [55,50]
Initial battery 10 million units
Reception fix cost 3000 units
Sending fix cost 2000 units
Success threshold 0.7-0.8-0.9 (0.8)
Reception threshold 0.6
History length 5
Path loss exponent (α) 2-3-4 (3)

Table 11.3. Parameters for the simulations (the parameters are motivated in the example
and in [341])

operative equilibrium. Two strategies can act in a cooperative way in the case of
one topology and in an uncooperative way in the case of another topology. In other
words, the topology and the strategies both can influence the cooperation. There-
fore, we establish the following classification, based on the observed behavior at Nash
equilibrium.2

• Class 0: None of the players forwards a packet for the other (no cooperation)
• Class 1: One of players forwards some packets for the other (semi cooperation)
• Class 2: Both players forward some packets for the other (full cooperation)

The simulation results are shown in Figures 11.2, 11.3, and 11.4. In each figure, the
left-hand side chart shows the results of the common base scenario, and the right-hand
side chart shows the results of the separate base scenario. On the x axis, we show the
equilibrium classes (0, 1, 2), and on the y axis, the percentage of simulations where
the best Nash equilibria fell in a given equilibrium class.

Figure 11.2 shows how the distribution of the different equilibrium classes depends
on the number of nodes. We can see that in most cases the best Nash equilibria result
in some kind of cooperation, although semi-cooperation has a higher probability than
full cooperation.

Figure 11.3 shows how the distribution of the different equilibrium classes depends
on the path loss exponent α. If α is high, then full cooperation is the best choice,
because it takes more battery energy to send to a far sensor. If full cooperation occurs,
then the average sending distance is smaller, which is very advantageous when the
path loss exponent is large.
2 If the game has more than one Nash equilibrium, then the most cooperative of these equilibria is

considered to determine the class.
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Fig. 11.2. Distribution of equilibrium classes (number of nodes per domain = 10 (black),
20 (gray), 40 (white)). From [70], with kind permission of Springer Science and Business
Media.
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Fig. 11.3. Distribution of equilibrium classes (α = 2 (black), 3 (gray), 4 (white)). From [70],
with kind permission of Springer Science and Business Media.

Figure 11.4 shows how the distribution of the different equilibrium classes depends
on the success threshold. We can see that the success threshold does not have much
influence on the distribution. If the success threshold is higher, than a little more
fully cooperative Nash equilibria occur, but the success threshold seems to be a less
relevant parameter than the path loss exponent or the number of nodes.

As we have seen above, when co-located sensor networks are allowed to collaborate
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Fig. 11.4. Distribution of equilibrium classes (success threshold = 0.7 (black), 0.8 (gray), 0.9
(white)). From [70], with kind permission of Springer Science and Business Media.

in the packet forwarding effort, some form of cooperation can emerge spontaneously,
by which we mean that in the best Nash equilibria, at least one of the networks for-
wards some packets on behalf of the other network. It is clear that this cooperative
behavior is more advantageous (meaning results in a longer lifetime) for the coop-
erating network than a defective behavior, given the strategy of the other network,
because a Nash equilibrium consists of best response strategies. In order to quantify
this advantage, the following experiment was performed. For each simulation run, the
following two values were determined: (i) the networks’ lifetimes when both networks
ignore each other and use only their own nodes for forwarding, and (ii) the networks’
lifetimes in the best Nash equilibrium when the networks are allowed to collaborate.
In both (i) and (ii), the smaller lifetime value (i.e., the lifetime of the network that
is shorter) was taken, and the ratio of the values obtained was computed. Finally,
the ratio values over the 100 simulation runs (for each parameter setting) were aver-
aged. We can interpret the result of this computation as the average gain in lifetime
when the networks are allowed to collaborate compared to the case when they operate
independently from each other.

The results are shown in Table 11.4. Each row of the table belongs to a particular
parameter setting, where all but one of the parameters have the default values shown
in Table 11.3, and the first cell of the row shows the non-default parameter value.
The second and the third columns of the table contain the average gain in lifetime in
the common base and in the separate base scenarios, respectively. As we can see, the
average gain in lifetime can be as high as 34% in the common base scenario and 31%
in the separate base scenario when α = 4.
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Non-default parameter Separate base scenario Common base scenario

- 6.5% 6.1%
n = 10 15.5% 15.6%
n = 40 1.5% 0.6%
ρ = 0.7 4.4% 3.2%
ρ = 0.9 8.7% 7.8%
α = 2 1.9% 2.2%
α = 4 34.7% 31.0%

Table 11.4. Average gain in lifetime in the common base scenario and in the separate base
scenario.

In the case that we have described section, each operator (player) could make
discrete moves (to forward or not to forward; to request collaboration or not). In the
next section, the space of possible moves will be continuous.

11.2 Border games in cellular operators

Today’s cellular networks operate on separate frequency bands to avoid interference
between them. The operators of these networks obtain an exclusive right to use a given
frequency band in their respective country. However, the division based on frequency
bands does not apply across national borders. The operators have to resolve their
conflicts across the borders themselves. One of the issues is when mobile users of one
operator attach to the network of the operator of the other country while still being in
their own country. This problem is referred to as accidental roaming [196, 249]. There
exist many examples of cities residing close to a national border such as Geneva, Basel
or Aachen in Europe; San Diego and Detroit in the USA; or Hongkong and Singapore
in Asia. Often, the operators make mutual agreements to resolve these problems, but
these agreements are difficult to enforce, because they require the mutual cooperation
of the operators.

In this section, we consider the problem of strategic behavior of operators on the
border of their cellular networks. We consider 3G cellular networks, such as the
Universal Mobile Telecommunication System (UMTS), that are based on the Code
Division Multiple Access (CDMA) technology [167, 316, 336].3 Note however, that the
problem we highlight in this section applies to any CDMA network. In these networks,
the base stations emit pilot signals to help users to assess the available channel quality
and to attach to the base station with the best offered quality. According to the
current definition in the UMTS standard, the pilot power for the base stations is
3 In contrast with Chapter 9 in which we provided a thorough introduction to CSMA/CA and IEEE

802.11, we refrain from providing here an equivalent description of CDMA and UMTS, because
this information can be found in the mentioned textbooks.
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determined at the network dimensioning phase and remains fixed afterward. However,
as the number of users changes, the operators may adjust the network parameters.
This slow adaptation of the pilot signal power is part of the network re-dimensioning
process and hence it exists on a large time scale. On the other hand, the technology
enables the base stations to quickly adapt their pilot signals to the actual usage. This
fast adaptation technique is commonly referred to as cell breathing [167, 316, 336].

In this section, we assume that the operators want to adjust the power of the pilot
signal of their base stations to attract more users. Several methods (e.g., cell-breathing
[316, 336]) have been proposed to implement fast adaptation in CDMA networks. In
this section, however, we focus on the slow adaptation problem. We study how the
network operators can fine-tune their pilot power in the presence of other operators
given a certain user distribution. We investigate whether this situation leads to a
game and we study the properties of the equilibria of power control strategies.

11.2.1 Model

We consider a scenario with two cellular network operators A and B. We assume
that their networks are separated by a national border. The operators operate their
network based on the principles of the CDMA method. We assume that the two
operators acquired the same frequency band for their networks in their respective
country. This means that their networks interfere along the border. We assume that
each operator controls a set of base stations (BS) Bi, where i ∈ {A,B}. We refer to the
set of all base stations as B =

⋃
i Bi. We also assume a set of users M equipped with

wireless devices who access the communication network. For the sake of convenience,
we assimilate the operators with their base stations and the users with their devices.
In order to get an insight, we study the case in which each operator has one BS and
we refer to the BS-s by the letters of their operators (i.e., base station A and B). This
single-cell model is often considered in the literature [198, 257]. The network scenario
is shown in Figure 11.5.

We assume that the radios of the base stations and the mobile devices are compat-
ible, meaning that any user is able to access the network via any of the base stations.
We further assume that the antennas of the BS-s and wireless devices are omnidirec-
tional. Note that the results are still valid if the operators use directional antennas
that point towards the national border.

We assume that the users are not associated with any of the operators (i.e., they are
roaming users) and thus they attach to the base station with the best signal quality.

In CDMA networks, power control is used to mitigate the near-far effect [316], to
optimize the transmission power of the devices, and to reduce interference. We focus
on the downlink (or forward link) power control of the pilot signals emitted by the
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Fig. 11.5. Network scenario with two base stations. From [134], c© IEEE, 2007

base stations. The pilot signal helps the wireless devices to perform the following
tasks:

• detection of the available base stations,
• synchronization with them and
• estimation of the channel quality and handover decision based on this estimation.

In particular, we look at how the network operators can determine the pilot signal
power that will potentially attract the highest number of users.

CDMA We will now briefly present the physical model of CDMA. As mentioned
earlier, the pilot signal is used to attract users. If several users attach to a given
base station, their transmissions are performed on different channels. In CDMA-
based cellular networks, unlike GSM networks, channels are not separated in different
frequencies, but use different codes. Hence each transmission uses the same frequency
band. In theory, the codes from one base station are orthogonal, meaning that the
transmissions to different receivers do not interfere with each other. In practice,
however, there exists some interference between concurrent transmissions from a given
base station because of multipath propagation. This interference is called the own-cell
interference. In addition, there is an interference caused by the transmissions of other
base stations, called the other-cell interference.

Let us consider the scenario shown in Figure 11.5. According to the physical model
of signal propagation in a CDMA system [167], we can write the signal-to-interference-
plus-noise ratio (SINR) of the pilot signal of base station i ∈ {A,B} to user v ∈ M
as:
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SINRpilot
iv =

Gpilot
p · Pi · d−α

iv

N0 + Ipilot
own + Ipilot

other

(11.1)

where Gpilot
p is the processing gain for the pilot signal, Pi is the power of the trans-

mitted pilot signal of BS i, div is the distance4 between BS i and user v, α is the
path loss exponent, N0 is the noise spectral density, and Ipilot

own as well as Ipilot
other are

the own-cell and the other-cell interferences that affect the pilot signal of BS i.
Let us first express the own-cell interference Ipilot

own :

Ipilot
own = ζ · d−α

iv (
∑

w∈Mi

Tiw) (11.2)

where ζ is the orthogonality factor (also called the own-cell interference factor) that
expresses the non-orthogonality between the different transmissions from BS i. Fur-
thermore,Mi is the set of users at BS i and Tiw is the traffic power assigned to user
w ∈Mi by BS i.

Similarly, we can write the interference Ipilot
other:

Ipilot
other = η ·

∑

j 6=i

d−α
jv (Pj +

∑

w∈Mj

Tjw) (11.3)

where η is the other-to-own-cell interference factor, djv is the distance between BS j

and user v. Furthermore Pj is the pilot signal power of BS j, whereas Mj is the set
of users at BS j and Tjw is the traffic power assigned to user w ∈Mj by BS j.

Similarly to (11.1), we can express the SINR for the traffic signal Tiv:

SINRtr
iv =

Gtr
p · Tiv · d−α

iv

N0 + Itr
own + Itr

other

(11.4)

where Gtr
p is the processing gain for the traffic signal.

Let us write the own-cell interference Itr
own for the traffic signal as:

Itr
own = ζ · d−α

iv (Pi +
∑

w 6=v,w∈Mi

Tiw) (11.5)

and the interference from other BS-s j as:

Itr
other = Ipilot

other = η ·
∑

j 6=i

d−α
jv (Pj +

∑

w∈Mj

Tjw) (11.6)

4 The rigorous reader has probably noticed that this is an abuse of notation (there seems to be an
inconsistency of physical units). The proper interpretation of this writing is the following: div

should be understood as the ratio between the actual distance between i and v and a reference
distance d0.
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Furthermore, we can express the carrier-to-interference ratio (CIR) as a function
of SINR:

CIRpilot
iu =

SINRpilot
iv

Gpilot
p

(11.7)

Similarly, we can write the CIR of the traffic signal:

CIRtr
iv =

SINRtr
iv

Gtr
p

(11.8)

where Gtr
p is the processing gain for the traffic signal from BS i to user v.

UMTS As mentioned, UMTS networks make use of CDMA. In UMTS systems, the
processing gain for the pilot signal is Gpilot

p = 256 ≈ 14.3dB. The processing gain of
the traffic signal Gtr

p depends on the bitrate of the application running on the user
device. In this section, we refer to different types of communication as the traffic type,
namely audio (12.2 kbps), video (144 kbps) and data (384 kbps) flows.5 Accordingly,
we distinguish different requirements for different traffic types typical of UMTS (see
e.g. [167], Table 8.2.1). We summarize these parameters in Table 11.5. These are
empirical values, primarily derived from field tests.

Table 11.5. UMTS parameters

traffic type required SINR processing gain required CIR

pilot ≈ -6 dB 14.3 dB -20 dB
audio, 12.2 kbps 5 dB 25 dB -20 dB
video, 144 kbps 1.5 dB 14.3 dB -12.8 dB
data, 384 kbps 1 dB 10 dB -9 dB

In wireless networks, the regulation authorities impose a transmission power limit
to the devices. In UMTS networks, the base stations must emit their signal below
43dBm = 20W [167]. This limit is called the downlink power budget. In addition,
this power budget must be split between the control channel signals, such as the
pilot signal, and the traffic channel transmissions. The actual utilization of the power
budget is called the load of the base station. As the load increases, the bit-error-
rate (BER) at the user devices increases exponentially [167]. Hence, the BS load is
typically kept such that the BER does not exceed a certain threshold, for example
10−3. We assume here that the BS load is kept below 10W .

In order to determine the average usage of the two networks, a numerical simula-
tor was developed in Matlab. We summarize the parameters of the simulation in
Table 11.6, which is populated notably with values typical of UMTS networks ([167]).

5 For simplicity, we consider only constant bitrate traffic.
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In each simulation run, the users are uniformly distributed. The number of users
that attach to each of the BS-s is estimated, based on the physical model developed
in this section (i.e., using equations (11.1)–(11.8) and the requirements shown in
Table 11.5). This experiment is repeated several times for each power setting thus
providing the average number of users at each BS.

Table 11.6. Simulation parameters.

Parameter Value

simulation area size 1 km2

BS positions (250m,500m) and
(750m,500m)

default distance between BS-s, d 500m
user distribution random uniform
number of simulations 500
default path loss exponent, α 4
BS max power 43dBm = 20W
BS max load 40dBm = 10W
BS standard power, P s 33dBm = 2W
BS min power 20dBm = 0.1 W
power control step size, Pstep 0.1W
orthogonality factor, ζ 0.4
other-to-own-cell interference factor, η 0.4
user traffic types: audio (12.2 kbps)

video (144 kbps)
data (384 kbps)

required CIR (audio, video, data): -20 dB, -12.8dB, -9dB
expected incomes (θaudio, θvideo, θdata): 10, 20, 50 CHF/month

We model competitive power control using game theory. We define a two-player
non-cooperative power control game G with the operators as players. In this game,
the strategies of the operators determine the pilot transmission power of their base
stations. Formally, we can write the strategy of operator i as the pilot signal power
value of its BS:

si = Pi (11.9)

where 0W < Pi < 10W is the pilot signal power of BS i. If they follow the UMTS
standard, the BS-s transmit their pilot signal with approximately 33dBm = 2W . We
denote this standard pilot power by P s. We call the set of strategies of all players a
strategy profile s = {s1, s2}.6 In our game, the players have the same strategy set S.

The operators define their strategies in order to maximize their expected payoff ui:

ui =
∑

v∈Mi

θv (11.10)

6 Note that one can easily extend the definitions in the power control game to several BS-s and
operators.
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where θv is the expected income obtained by serving user v of a certain traffic type.
Suppose that each user has the same traffic type, for example audio. Then the
expected payoff obtained at BS i is:

ui = |Mi| · θaudio (11.11)

We further assume that the income7 per user increases according to the data rate of
the given service, thus θaudio < θvideo < θdata. The expected income is obtained by
performing several simulation runs with various pilot power settings as described in
the previous section. This results in an expected payoff matrix for the two players. We
express the payoffs of the players in Swiss Francs (CHF) to emphasize the monetary
advantage.8

The results are presented using a symmetric scenario of the base stations and as-
suming that the users are uniformly distributed in the simulation area. Note that
the results qualitatively hold for any base station placement and any user distribu-
tion. Naturally, in these cases, the Nash equilibrium strategies and payoffs will be
asymmetric.

11.2.2 Power control game

In this section, we study the behavior of the operators in a single-stage game. We first
assume that one of the operators does not play and show that the other operator has
an incentive to be strategic.9 Second, we consider the case in which both operators
have the possibility to adjust their pilot power and show that they are better off by
doing so.

Only player A is strategic

First, we consider the case where only operator A is strategic and adjusts the pilot
power of its BS to attract more users, whereas operator B operates its BS according
to the standard pilot power of P s = 2W . To quantify the advantage of the strategic
player, we define the concept of normalized payoff difference ∆i.

Definition 11.1 The normalized payoff difference ∆i is the normalized difference
between the maximum payoff of player i and its payoff using the standard power P s

7 Note that the income is defined by the total amount of downloaded data, which can vary according
to the length of communication sessions. If we change these income values, the results only change
quantitatively, but not qualitatively.

8 Please note that, in spite of this monetary expression, the payoff refers to a technical unit of
networking (coverage) and is therefore compliant with the definition of selfish behavior that we
provided in Chapter 3.

9 Due to symmetry, we only show the results for player A.
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Fig. 11.6. Payoffs of the players as a function of the pilot power of player A: (a) for α = 2 and
(b) for α = 4. Normalized payoff difference ∆A as a function of (c) the path loss exponent
α and (d) the distance d between the two BS-s. From [134], c© IEEE, 2007.

assuming that the other player j uses P s.

∆i =
maxsi (ui(si, P

s))− ui(P s, P s)
ui(P s, P s)

(11.12)

Suppose that there are on average 10 users of the data traffic type in the simulation
area. We show the payoffs of players A and B as a function of the pilot signal power
PA as well as the sum of their payoffs in Figure 11.6. Figure 11.6a shows these payoffs
for α = 2, whereas Figure 11.6b presents the same results for α = 4. We observe that
in both cases the operators are able to serve all users in the area using certain power
values. If all users are served, then the game is a zero-sum game: if player A adjusts
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its pilot power and obtains an increase ∆A, the payoff of the non-strategic player B

decreases of the same value ∆A. Furthermore, the payoff function of operator A has
a single maximum point. It is interesting to observe that the maximum payoff point
requires a higher pilot power than P s = 2W . Hence, we conclude that operator A

has an incentive to adjust its pilot signal. Note that the same qualitative results can
be obtained for different user traffic types. Figures 11.6a and b also show that for
high values of PA, the payoff of A declines, because a high value of PA reduces the
capacity of base station A.

The significant difference between Figure 11.6a and Figure 11.6b shows that the
value of the normalized payoff difference ∆A depends on the parameter α. This
dependency is illustrated in Figure 11.6c. One can observe that ∆A increases as α

decreases. The reason is that by low α values, the pilot signals propagate more easily,
giving a higher gain to A if it uses higher pilot power. The value of ∆A also depends
on the distance d between the two BS-s as shown in Figure 11.6d. As the distance
decreases, ∆A increases exponentially. The reason for this increase is the same as
discussed before. In the remainder of the section, the conservative default values
α = 4 and d = 500m are chosen for the simulations. We will see that even with these
conservative values, the players have an incentive to fine-tune their pilot powers.

Both operators are strategic
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Fig. 11.7. Payoff of player A as a function of its pilot power. Both operators are now
strategic, hence this payoff is presented for various values of PB in (a). The complete payoff
surface is shown in (b). From [134], c© IEEE, 2007.

Assume now that both operators adjust their pilot power. We still consider 10 data
users in the simulation area. The payoff of player A as a function of its pilot power PA

is provided in Figure 11.7a, containing the different payoff curves as the pilot power
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of the other BS PB increases. We can observe that each of the payoff functions has a
unique maximum point for PA. Moreover, this maximum point depends on the pilot
power of the other BS, PB . For low values of PB , the maximum payoff value decreases
as PB increases. Figure 11.7b, shows the payoff surface for operator B as a function
of the pilot power values of the two BS-s.
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Fig. 11.8. Best response functions for the two players with (a) 10 data users, (b) 100 data
users. From [134], c© IEEE, 2007.

Using the two payoff surfaces, the best response functions (i.e., the set of maximum
payoff points) for the operators are derived and shown in Figure 11.8 for two different
user densities. We can identify the Nash equilibria in the power control game as shown
in Figures 11.8a for 10 data users and Figures 11.8b for 100 data users. We see that
there exists a unique Nash equilibrium point defined as the crossing point of the two
best response functions. Note that for 10 data users the Nash equilibrium strategy
profile defines PA = PB = 6W , which are higher than the standard pilot powers. For
100 data users the Nash equilibrium strategy profile defines PA = PB = 0.5W . The
reason is that the capacities BS-s saturate by using a relatively small power and hence
there is no motivation for them to go above these pilot power values.

Next, we study the pilot power values in the Nash equilibrium as a function of
the number of users. The results are shown in Figure 11.9. Due to the symmetry in
the user distributions, the Nash equilibrium pilot power is the same for both players.
We observe that the Nash equilibrium pilot powers decrease as the number of users
increases. For high user densities, the Nash equilibrium pilot powers stabilize at the
value of 0.5W .

We then study the efficiency of the system in a Nash equilibrium with respect
to the case in which the players both use the standard power P s. To this end, we
investigate the payoff region, i.e. the payoff values for various pilot power levels. We
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identify the payoffs corresponding to the Nash equilibrium, the standard pilot power
setting using P s and the payoffs that correspond to Pareto-optimal strategy profiles.
In particular, we can define the Pareto boundary as the set of Pareto-optimal payoff
points. In our case, the Pareto-optimal payoff points characterize the system-efficient
solutions.
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Fig. 11.10. Payoff region with all possible payoffs for (a) 10 data users and (b) 100 data users.
The Nash equilibrium, the payoff of the standard powers and all Pareto-optimal points are
highlighted. From [134], c© IEEE, 2007.

Figure 11.10a shows the achieved payoffs as a function of the pilot power values
PA and PB for 10 data users. We observe that in this case the Pareto boundary
defines a straight line, because in a Pareto-optimal strategy profile each user in the
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system is attached to one of the BS-s. Furthermore, the standard pilot powers and
the Nash equilibrium strategy profile result in the same payoffs for the players and in
addition they both lie on the Pareto boundary. This means that the players achieve
a desirable state from the system point of view. Recall, however, that in this case
the Nash equilibrium strategy profile requires higher pilot powers than the standard
setting.

We present the payoffs for 100 data users in Figure 11.10b. In this case the Pareto-
optimal points do not form a straight line anymore, because some users cannot be
served. Another observation is that the Nash equilibrium is still close to Pareto-
optimality, but the standard solution becomes very inefficient.

Following the previous experiment, we formally express the efficiency of the stan-
dard and the Nash equilibrium solutions compared to the best Pareto-optimal point
(i.e., the Pareto-optimal strategy profile in which the sum of the payoffs for the two
players is maximized). To this end, let us define the following two concepts:

Definition 11.2 The price of anarchy [231] is the ratio between the total payoff
achieved by the two players in the best Pareto-optimal point and in the Nash equilib-
rium.

Definition 11.3 The price of conformance is the ratio between the total payoff
achieved by the two players in the best Pareto-optimal point and when using the stan-
dard pilot powers P s (i.e., being non-strategic).

A set of experiments was performed to measure these values for increasing user
densities. Figure 11.11 presents the price of anarchy and the price of conformance
as a function of the user density assuming they have data traffic. We see that both
prices increase as the number of users increases. As we have seen in Figure 11.10a,
both the standard payoff point and the Nash equilibrium achieve Pareto-optimality if
there is a small number of users. Hence, the two prices are very close to one. As the
user density increases, we observe that both prices increase and then stabilize around
a constant value. Note, however, that the price of anarchy stabilizes close to one,
whereas the price of conformance stabilizes around 1.4. This shows that for a high
number of users, the players can achieve a higher payoff if both of them are strategic.

11.2.3 Convergence to a Nash Equilibrium

We have just seen that the expected payoff function for a certain player is continuous
and has a single maximum point. We will now describe a distributed algorithm to
achieve the Nash equilibrium in a given scenario. The algorithm is similar to the
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better-response dynamics [139], i.e., where each player tries to improve her payoff in
each step. We provide the pseudo-code as shown in Algorithm 6.

Test 6 Distributed convergence to the NE
1: for all player i do
2: set pilot power Pi = 0.1W
3: set the direction of optimization diri = +1
4: end for
5: set power control step size Pstep = 0.1W
6: while () do
7: for all player i do
8: update Pi with a probability 0 < q < 1
9: Pi = Pi + diri · Pstep

10: if ui decreased then
11: {the optimization passed the maximum payoff value}
12: diri = −diri
13: end if
14: end for

15: end while

Figure 11.12a shows the evolution of the pilot power values applying Algorithm 6.
We observe that the pilot power values follow the linear increase defined in the algo-
rithm. After reaching the Nash equilibrium pilot power values, the algorithm stabilizes
after certain steps.

Figure 11.12b shows the evolution of the payoffs during the convergence process.
We see that the algorithm deviates from the Nash equilibrium payoffs while the pilot
powers increase. As soon as the pilot powers reach the Nash equilibrium strategies,
the payoffs remain close to the Nash equilibrium payoffs as well.
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11.2.4 Power control game with power cost

We have seen that the operators are able to serve all users in the area if the user
density is low. We observe, however, that the Nash equilibrium pilot powers are
higher than the standard value. Recall that the payoff function defined in (11.10)
does not include the possible cost due to the operation with high pilot power. Let us
now extend the expected payoff function defined in (11.10) to capture this important
aspect. We introduce two cost values for each player. The first cost denoted by Cop

i

represents the operating cost of a BS i. This includes the aging of devices and hence
the maintenance costs. The other cost, Csubj

i , expresses the subjective cost of player i.
This covers every other aspect such as the risk of lawsuits or potential bad reputation
due to high emission power. Without loss of generality, we assume that these costs
are an increasing function of the downlink transmission power of the base stations.

According to the above description, we can extend the notion of expected payoff
as:

ui = (
∑

v∈Mi

θv)− Cop
i − Csubj

i (11.13)

We define a non-cooperative power control game with the new expected payoff
function introduced in (11.13) and denote it by Ĝ. We assume that the players are
able to calculate the Nash equilibrium of the original game G. We define the strategy
in the extended game Ĝ as the choice between the standard power and the Nash
equilibrium strategy P ∗i . Formally, we can write the strategies in Ĝ as:

si = {P s, P ∗i } (11.14)
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Let us call U the expected payoff that the players obtain by serving half of the
total number of users. As we have seen in Section 11.2.2, if the players choose the
Nash equilibrium strategy profile by low user densities, then it requires a higher pilot
power from each operator. Without loss of generality, we denote by C∗ the additional
cost imposed by the Nash equilibrium compared to the standard pilot power setting
P s. The cost C∗ includes both the operating and the subjective costs. Recall that we
defined the normalized payoff difference ∆A in Section 11.2.2. Due to the symmetry
∆A = ∆B and we denote it by ∆. In the extended game Ĝ, we assume that the
normalized payoff difference is higher than the corresponding cost of using higher
pilot power, thus ∆ > C∗.

We present the payoff matrix of the game Ĝ in Table 11.7. In each payoff pair, the
first payoff belongs to player A, whereas the second to player B.

Table 11.7. Payoff matrix of the game Ĝ.

Player B
P s P ∗B

Player A
P s U ,U U −∆,U + ∆− C∗

P ∗A U + ∆− C∗,U −∆ U − C∗,U − C∗

To emphasize the structure of the payoff matrix, let us substitute the values U = 3,
∆ = 2 and C∗ = 1. Inserting these values in Table 11.7, we obtain Table 11.8. From
the payoff matrix, one can realize that the game Ĝ is equivalent to the Forwarder’s
Dilemma and therefore to the Prisoner’s Dilemma. Strategy P s corresponds to coop-
eration, whereas strategy P ∗i corresponds to defection. This means that in the Nash
equilibrium, each player uses high power and the resulting payoffs are lower than if
both had complied.

Table 11.8. The extended power control game Ĝ corresponds to the Prisoner’s Dilemma.

Player B
P s P ∗B

Player A
P s 3,3 1,4
P ∗A 4,1 2,2

11.3 Summary

In this chapter, we studied the behavior of wireless operators having to coexist.
In Section 11.1 we examined whether cooperation is possible without the usage of

incentive mechanisms in multi-domain sensor networks. First, we analyzed a simple
network consisting of two sensors and two base stations and showed that in this simple
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setting, the best Nash equilibria (where the lifetime of the sensors is the highest)
consist of cooperative strategies. Then we generalized the model from two nodes to
many nodes and used a two dimensional layout. We classified equilibria into non-
cooperative, semi-cooperative, and fully cooperative. We showed that in most cases,
the best Nash equilibria belong to the cooperative classes. In particular, when the
path loss exponent is large, full cooperation is the best strategy.

In Section 11.2 we studied the problem of competitive pilot power control in two
CDMA networks that reside on the two sides of a national border, assuming that each
network is comprised of a single base station. We investigated whether the operators
of these networks have an incentive to adjust their pilot signal powers. We first
assumed that only one operator can adjust the pilot signal power of its base station.
We saw that in this case it has an incentive to be strategic and we have quantified
the effect of various parameters on the increase of its payoff. We have also seen that
if both operators are strategic and the user density is low, then being strategic or not
results in similar payoffs. But if the user density is high, then the Nash equilibrium is
more efficient than using the standard pilot powers, which suggests that the operators
have again an incentive to be strategic. Finally, we extended the payoff function to
include the cost of using high pilot powers. We established the analogy between the
power control game with power cost (in case of low user densities) and the Forwarder’s
Dilemma.

11.4 To probe further

Section 11.1 is derived from a paper by Buttyan, Holczer, and Schaffer [70]. Little
attention has been devoted so far to the problem of cooperation between wireless
sensor network operators; the interested reader can find a slightly different approach
in [132].

Section 11.2 is derived from a paper by Felegyhazi et al. [134].
Power control has been extensively studied in the context of cellular networking.

Baccelli et al. [36] consider downlink power allocation and admission control in CDMA
networks relying on stochastic geometry. Hanly and Tse [158] as well as Catrein et
al. [91] consider power control and capacity in CDMA networks. But, there are only
a few papers about pilot power optimization [219, 360].

Game theory is used to study the power control of user devices in wireless networks,
notably in cellular systems as studied in [20, 152, 181, 203, 259, 269, 250, 377] and
[398]. A general framework for resource allocation in wireless network is addressed in
[118].

Recently, the coexistence of multiple Internet Service Providers (ISPs) was studied
by Shakkottai and Srikant in [344]. They consider both transit and customer prices for
the ISPs. They show that if the number of ISPs competing for the same customers is
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large, then it can lead to price wars. In another paper [343], Shakkotai et al. consider
the problem of non-cooperative multi-homing in WLANs. Zemlianov and de Veciana
[388] study a scenario in which users are able to choose between a cellular network
and a Wi-Fi network. They show that congestion sensitive strategies are better than
proximity-based strategies. Félegyházi and Hubaux [131] consider the competition
between different operators in terms of pilot power control of their base stations.
They show that in the pilot power control game a socially desirable Nash equilibrium
exists and that it can be enforced by punishments.

Haykin provides a comprehensive overview [162] of the current tendencies and re-
search challenges in shared spectrum communications in general. One of the chal-
lenges, namely opportunistic spectrum access, is addressed in the paper of Wang et
al. [367].

A discussion about a possible increase of the proportion of the unlicensed spectrum
is available in [49, 129].

11.5 Questions

(a) Why are the lifetimes equal to B/2 in the upper left cell of Table 11.2?
(b) Assume that in Figure 11.1, the distance between the BS to the left and the

sensor next to it is 2 instead of 1 (the other distances are unchanged). Write
the costs similar to Table 11.2. What can you say about cooperation in this
scenario?

(c) In Section 11.1, why is the cooperation gain higher when α is higher?
(d) Why does 11.1 contain the processing gain Gpilot

p ? (Note: this question and
the following two assume some basic background in UMTS).

(e) How is the processing gain Gtr
p calculated for data traffic?

(f) We can observe in Table 11.5 that the required SINR decreases as the data
rate of the traffic increases. Why is the required CIR increasing nevertheless?

(g) Explain why the normalized payoff difference is higher for lower α.
(h) The Pareto boundary in Figure 11.10 is a straight line. Why? What type of

game does this indicate?
(i) In Subsection 11.2.4, we assume that ∆ > C∗. Why is this assumption neces-

sary (look at Table 11.7 for the implications of ∆ = C∗)?
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Secure protocols for behavior enforcement

So far, in Part III of the book, we have shown through examples (MAC layer, packet
forwarding, and coexistence of wireless operators) how to model selfish behavior. We
have also explained how it is possible to enforce a desirable behavior by observing
other players’ behavior. For this purpose, we have made extensive use of game theory.
Yet, the security techniques that we have shown in Part II can also be of help in this
framework; for example, authentication of the wireless nodes is necessary in order to
thwart selfish behavior at the MAC layer.

In Chapter 3, we have explained that it is difficult to provide a fully satisfactory
definition of malicious and selfish behavior, because the two notions are strongly
intertwined. In this chapter, we will make a fundamental additional step and show
how security and game theoretic techniques can be combined to thwart misbehavior
in wireless networks.

In compliance with the other chapters of Part III, we will articulate our development
around an example. As we have seen in Chapter 10, cooperation does not happen
“naturally” for packet forwarding in self-organized ad hoc networks. This means that
cooperation must be encouraged. There are several ways to achieve this goal. One
of them consists in relying on micropayments. In this chapter, we will follow the
micropayment technique developed by Zhong et al. [395].

12.1 System Model

We consider a system very similar to the one of Chapter 10: A set of N nodes
is deployed in a given area. Each node is its own authority and selfishly tries to
maximize its own payoff. In contrast with the previous model, however, we will
now assume that there exists a micropayment system, by which any node performing
packet relaying (for the benefit of an arbitrary source and destination pair) receives
a certain reward. In order to obtain this reward, a relay node has to prove that it
did indeed relay the packets, by providing evidence of this contribution (typically a

376
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posteriori) to the source node of the communication or to a network “bank” (as we
will see, such a bank is needed to resolve possible disputes, meaning that the network
that we consider here is not really self-organized).1 In this way, a source node has to
pay the relay nodes (either directly or indirectly through the micropayment system).
It is also assumed that every node has a (public, private) key pair and that all public
keys are certified. Each node is thus able to established a symmetric key with any
other node of the network.

A further assumption is that each node i has a discrete set Pi of power levels at
which it can transmit. For each ordered pair of nodes (i, j), there is a minimum power
level Pij at which a packet sent by node i can be correctly received by node j. If j

cannot be reached by i, we will write Pij = ∞. The transmission model is therefore
a binary one.

Finally, we consider that the connectivity graph of the network is at least bi-
connected, meaning that the removal of a single edge or vertex does not disconnect
the graph.

Compared with Chapter 10, the approach here is more ambitious: not only do
we consider packet forwarding, but also the process of route selection. Let us call
“AdHocGame” the game modeling this situation: in this game, each player is a node
who can participate in routing and packet forwarding. Let ai designate the action
that node i chooses. In the case of packet forwarding, for each packet the protocol
requires node i to forward, ai can indeed forward it at an appropriate power level, or
withhold it, or replace it with an arbitrary message and transmit the new message at
an arbitrary power level.2 We will denote by a the actions of all nodes and by a−i

the actions of all nodes except node i.
We are now in a position to define the payoff of a node:

ui = bi − ci

where bi stands for node i’s benefit (expressed as a micropayment) for forwarding
the packet and ci for node i’s cost. Only data packets are considered here, as they are
usually larger and much more numerous than control packets. The cost ci represents
the energy consumed in forwarding data packets: when a relaying node forwards at
power level l, the corresponding node cost is l·αi, where αi is a parameter representing
the cost of energy, and is therefore influenced by the remaining battery energy.

It is important to note that both bi and ci depend on the actions of all players.
1 The details of this micropayment system are not provided here; the interested reader can refer to

Section 12.7 for pointers to possible solutions.
2 For the sake of simplicity, the case in which ai sends several arbitrary messages in lieu of one is

not considered in this model.
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Referring to the definition of dominant strategy, we are now in a position to define
the notion of forwarding dominant protocol.

Definition 12.1 In an AdHocGame, a forwarding-dominant protocol is a pro-
tocol in which (i) a subset of the nodes are chosen to form a path from the source to
the destination, (ii) the protocol specifies that the chosen nodes should forward data
packets, and (iii) following the protocol is a dominant action.

The non-existence of Forwarding-dominant protocols for AdHocGames can be demon-
strated (see the questions at the end of this chapter) and underpins the fact that coop-
eration cannot be taken for granted. More precisely, it can be shown that there always
exist instances of AdHocGames for which there is no forwarding-dominant protocol.
This result is consistent with the conclusion of Chapter 10. Hence, a protocol that
makes use of incentives for cooperation is required.

12.2 Cooperation-optimal Protocol

We have seen in Chapter 10 that, in the absence of rewards, cooperation is extremely
unlikely to happen. The question is now how to properly design the rewarding scheme.

Route establishment and packet forwarding occur in two subsequent stages. Ac-
cordingly, each node’s action can be divided into two subactions: its participation in
the route establishment and its decision in terms of packet forwarding.

This can be written as ai = (a(r)
i , a

(f)
i ), where a

(r)
i is node i’s subaction in the

routing stage (what it is supposed to do in the routing stage) and a
(f)
i is node subaction

in the forwarding stage (what each node does in the forwarding stage).
A routing decision R is determined by the routing subactions of all nodes (a(r)).

Consequently, each node’s prospective payoff is determined by the routing decision R
and by the nodes’ actual subactions a(f):

ui = ui(R, a(f))

Definition 12.2 Given a routing decision, the prospective routing payoff of a
node is the payoff that it will achieve under the routing decision, assuming that all
nodes are faithful in the packet forwarding subaction to the one they have declared in
the routing subaction:

u
(R)
i = ui(R, a(r))

.

We are now in a position to introduce the important notion of dominant subaction.
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Definition 12.3 In a routing stage, a dominant subaction of a potential forwarding
node is one that maximizes its prospective payoff, no matter what subactions other
players choose in this stage. Formally, we will say that a

(r)
i is node i’s dominant

subaction in the routing stage if

u
(R)
i (a(r)

i , a
(r)
−i ) ≥ u

(R)
i (ā(r)

i , a
(r)
−i ), ∀ā(r)

i 6= a
(r)
i ,∀a(r)

−i

The previous definition considered a single node. We now use it to introduce a
definition referring to the whole route.

Definition 12.4 A routing protocol is a routing-dominant protocol to the rout-
ing stage if following the protocol is a dominant subaction of each potential forward-
ing node in the routing stage.

Note that it is assumed that the route computation is performed by the destination
of the route, in a reliable way.

The previous definitions referred to the routing stage. Let us now consider the
packet forwarding stage. Figure 12.1 represents packet forwarding as an extensive
game (this game is similar to the Joint Packet Forwarding Game described in Ap-
pendix B).

Node 2

Node 1

Last Node

forward

forward

forward

tamper

tamper

tamper

drop

drop

drop

Fig. 12.1. Game tree representing packet forwarding actions for a given packet along a given
route. From [395], c© ACM, 2005

Definition 12.5 A forwarding protocol is a forwarding-optimal protocol to the
forwarding stage under routing decision R if all packets are forwarded to their
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destinations and following the protocol is a subgame perfect equilibrium under routing
decision R in the forwarding stage.

As mentioned in Appendix B, a subgame perfect equilibrium is a Nash equilibrium
for every subgame. In Figure 12.1, each subtree of the game tree corresponds to a
subgame and each path from the root down to a leaf corresponds to a possible set of
decisions by the nodes in the packet forwarding stage.

We can now combine these definitions in order to encompass both stages:

Definition 12.6 A protocol is a cooperation-optimal protocol to an ad hoc game
if (i) its routing protocol is a routing-dominant protocol to the routing stage and (ii)
for a routing decision R generated by the preceding subactions, its forwarding protocol
is a forwarding-optimal protocol to the forwarding stage under R.

12.3 Protocol for the Routing Stage

The protocol for the routing stage relies on two fundamental operations. The first is
the estimate of how much should be paid for each link of the route. The second is to
make sure that nodes cannot cheat about these estimates.

12.3.1 VCG Payment

A crucial question in a scheme such as this one based on micropayments is to determine
the appropriate reward level for each packet forwarding operation. Of course, the price
should take into account the real burden supported by the forwarding node (e.g., how
much energy it will have to spend to carry out this operation). But it is interesting
to also include in the price a component representing what the price would be if that
node were not included in the route.

In order to do so, we will make use of the well-known VCG mechanism, named
after economists Vickrey, Clarke, and Groves. VCG is a second-best sealed auction.
Its application to ad hoc networks is investigated by Anderegg and Eidenbenz [23].
We summarize here the principles.

Consider a node i intending to transmit a packet to a node j. The transmission
range of node i depends on the transmitting power at which it transmits. As men-
tioned, we call Pij the minimum power at which node j can receive the packet from
node i. Let l be the lowest power value right above Pij . As we have seen, the cost
for node i is then equal to l · αi.

Consider now a source S willing to start a session of packet sending to a destination
D. Assume that the destination is able to collect the cost for each node to reach each
of its neighbors. Let us denote the lowest claimed cost path from source to destination
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by LCP (S, D). Let us also denote the lowest claimed cost path from S to D that
does not include i by LCP (S, D);−i. Then the destination chooses LCP (S, D) as
the packet forwarding path from S to D, and the payment to node i is given by

bi = cost(LCP (S, D;−i))− cost(LCP (S, D)− {i})
where the function cost() sums the costs of all links on a path, and LCP (S, D)−{i}
consists of all the links on the LCP except the one starting from node i.

V2

V
1

V
4

V
3

DS 3

4

15

10

7

5

3

5

3

2

Fig. 12.2. Example of ad hoc wireless network with the cost of each edge. From [23], c©
ACM, 2003

Figure 12.2 shows an example of how payments are calculated. The least cost path
from S to D is:

LCP (S,D) = S, v2, v3, D

with cost(LCP (S,D)) = 5 + 2 + 3 = 10. The least cost path without node v2 is

LCP (S, D;−v2) = S, v1, v4, D

with cost(LCP (S,D);−v2) = 7 + 3 + 4 = 14. Likewise, the least cost path without
node v3 is

LCP (S, D;−v3) = S, v2, v4, D

with cost(LCP (S,D);−v3) = 5+3+4 = 12. From this we obtain the VCG-payments

b2 = 14− 10 + 2 = 6
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b3 = 12− 10 + 3 = 5

.
Hence these values represent the unit payment (the payment for one forwarded data

packet) to nodes v2 and v3, respectively.

12.3.2 Prevent Cheating in Determining the Link Costs

Let us now take a close look at how the cost of transmission can be estimated, as this
operation involves two nodes for each link. Consider two neighboring nodes i and j.
There are two ways for node j to cheat about the power level Pij .

(a) Node j cheats by making Pij greater.
(b) Node j cheats by making Pij smaller.

The first case is not beneficial for node j, because it makes node j less likely to be
part of the chosen route and even if the route is chosen, node j’s remuneration would
be smaller (the proof of this statement is left as an exercise to the reader).

The second case can be avoided by the following cryptographic protocol. The
protocol is an on-demand routing protocol (see Chapter 7 for a definition). For ease
of presentation, assume that Pi = P, ∀i.

Before providing the detailed description of the protocol, we will describe it infor-
mally. The protocol makes use of two messages, TESTSIGNAL and ROUTEINFO.
The former aims at computing the transmission costs between neighboring nodes, and
the latter is used to transmit information to the destination about this cost.3 More
specifically, let us describe how a given node i can become a relay node on a route
between a source S and a destination D. At a given point in time, one of its neighbors
(which can be the source S) begins the process of estimating the power needed to
transmit to i. Let us call U this neighbor node (“U” standing for “upstream”). In
order to do so, node U sends a series of TESTSIGNAL messages at different power
levels (in increasing order). Of course, node i will receive only those of the messages
that have been transmitted with enough power to cover the distance from U to i.

Node i then informs the rest of the network (and thus the destination) of the ob-
served power levels by sending the message ROUTEINFO. In this way, the destination
can build up a matrix of all costs of the links.4

3 This separation in two messages makes the security analysis easier. In practice, the two messages
could potentially be combined, in order to reduce the overhead.

4 This means that the network will have to convey a substantial number of ROUTEINFO message
broadcasts for each of the sessions to be established. But this is typical of route establishment in
reactive routing protocols, as described in Chapter 7. What makes it acceptable is the relatively
small size of these messages.
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In addition, if the received TESTSIGNAL mentioned previously is the first that
node i receives for that specific session, node i has to perform the same operation
that node U did previously, which is begin estimating the power needed to reach its
own neighbors. For this purpose, it will begin sending TESTSIGNAL messages in
ascending order of power.

Of course, both TESTSIGNAL and ROUTEINFO need to be cryptographically
protected, particularly in order to make it impossible for a forwarding node (or for
anyone else) to alter the result of the power level estimation process between each pair
of nodes. The details of how this is achieved are described hereafter. This security
protection illustrates how protocols aimed at stimulating cooperation by means of
micropayments can be secured by appropriate cryptographic protocols.

Source node’s test signals

• Assume Source S starts a session of M packets (all packets are assumed to be of
the same size). It divides the packets into dM/βe blocks, where β is the number of
packets in a block.
• Source S picks a random number r0.
• S computes r = HdM/βe(r0), where H is a one-way function and Hn(X) means

H(H . . . (H(X))), where the number of times the H function is computed is equal
to n.
• For each power level l ∈ P (in increasing order), S transmits (TESTSIGNAL,

[S, D, r], [S, hl]) at power level l, where hl contains an encryption of [S,D, r, l, αS ]
using key kS,D and a MAC of the encryption using the same key.

Intermediate node’s operations Upon receiving a message (TESTSIGNAL,
[S, D, r], [U, h]), from an upstream neighbor U , an intermediate node i does the fol-
lowing.

• It transmits (ROUTEINFO, [S,D, r], [U, i, h′]) at power level Pctr, which is a power
level for control messages such that if it is used by all nodes, the communication
graph is connected. Here h′ = Eki,D (h). This value is very important as it contains
the result of the various signal “probes” realized by TESTSIGNAL. By the way
it is computed, h′ is protected by two keys: kU,D and ki,D, thus thwarting the
possibility for node i to make PUi smaller. For integrity, this message is protected
by a MAC using key ki,D.
• If the TESTSIGNAL is the first one that node i receives for session (S, D, r), then

for each l ∈ P (in increasing order), node i transmits (TESTSIGNAL, [S,D, r],
[i, h′l]) at power level l, where h′l contains an encryption of [S,D, r, l, αS ] using key
ki,D and a MAC of the encryption using the same key.
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Upon receiving a message (ROUTEINFO, [S,D, r], [U, i, h]) for the first time, an
intermediate node j retransmits it.

Destination protocol The purpose of all these messages is to allow Destination D

to maintain a cost matrix for each session (S, D, r). Each entry of this matrix is an
array of power levels and cost of energy parameters.

• Upon receiving message (TESTSIGNAL, [S,D, r], [U, h]) from its neighbor U , D

verifies the MAC by means of key kU,D, and converts h to the corresponding power
level l and cost-of energy parameter αU . D records (l, αU ) in the cost matrix for
link (U,D).
• Upon receiving (ROUTEINFO, [S, D, r], [U, i, h]), D decrypts h, verifies the packet’s

MAC by means of key ki,D, and converts h to the corresponding power level l and
cost-of energy parameter αU . D records (l, αU ) in the cost matrix for link (U,D).

Destination processing Once it has collected all link cost information, D builds
up the cost graph and computes the lowest cost path from S to D, using Dijkstra’s
algorithm. It then computes the unit payment for each intermediate node i by means
of the first expression in Section 12.3. All these computations can be carried out in
O(N3).

We are now in a position to formulate the following theorem.

Theorem 12.1 If the destination is able to collect all involved link costs, then the
described routing protocol is a routing-dominant protocol to the routing stage.

The proof of this and of the other theorems of this chapter can be found in [395].

12.4 Protocol for Packet Forwarding

In order to be rewarded, each relay node i must be able to prove that it performed
in the packet forwarding phase as it promised it would in the routing phase, in other
words that a

(f)
i is compliant with a

(r)
i .

Assume for the sake of clarity all links to be bidirectional. After it has success-
fully received a block, the destination gives the relay nodes a confirmation, which
proves that they have successfully transmitted this block. Only after receiving this
confirmation will the relay nodes accept to forward the next block.

This mechanism can be implemented in an efficient way by means of a hash chain.
Let H be a one-way function. The source S picks a random number r0 for a session it
wants to start and, for each of the blocks of the session, computes rm = Hm(r0), where
m is the number of the block. There are in total dM/βe blocks. Let r = rdM/βe. The
source makes r public in an authentic way and computes rdM/βe−m as the confirmation
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of the m-th block and sends it with the last packet of that block. In this way, anyone
(and in particular each relay node) can verify the confirmation by checking whether

Hm(rdM/βe−m) = r

It might happen that the source and an intermediate node disagree on whether
or not a block was successfully transmitted. In order to solve this fair exchange
problem, a possible technique is mutual decision. It enforces cooperation by building
a cryptographic contract between the source and intermediate nodes. To eliminate
the incentive to cheat, as soon as one participant disrespects the terms of the contract,
the system is blocked. The interested reader can check [395] and [200].

12.4.1 Protocol Description

Once it has concluded the routing discovery phase, destination D sends the following
routing decision

([S, D, r], LCP (S, D), PS , {(Pi, bi)})
along the reversed path of LCP (S, D), where i corresponds to all the relay nodes
along that path and Pi (respectively PS) is the power level that node i (respectively
source S) should use to forward (respectively send) data packets and bi is the unit
payment that node i should receive. This message is also digitally signed by D. It is
relayed backwards to the source.

When it receives this message, the source verifies the signature. If it is valid,
it enters in the transmission phase. In this phase, the source and the relay nodes
transmit the data packets at the power levels identified in the routing phase (PS and
Pi, respectively).

The source node sends data packets in blocks (each block containing β packets).
With the last packet of the m-th block, the source sends the confirmation rdM/βe−m,
encrypted with key kS,D. Then it waits for the confirmation before starting to send
the next block.

The relay nodes forward the packets along LCP (S, D) to the destination. At the
end of a block, they wait for the confirmation before they start forwarding the next
block. When the destination has received all the packets in a block, it retrieves by
decryption rdM/βe−m and sends it backwards in clear-text along LCD(S,D). Upon
receiving this confirmation, each relay node verifies that the first expression of Sec-
tion 12.4 holds. If this is the case, it saves this confirmation and forwards it back
along LCP (S, D). Once it receives the confirmation, the source starts sending the
following block.
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Assume that in a given session the last confirmation saved by node i is rdM/βe−m.
Then each relay node j located between S and i (including i) receives a payment of
bj · β ·m from the source by submitting this confirmation (to source S directly or to
the micropayment system (the “bank”)). If some packets in the (m+1)-th block have
been forwarded but the relay nodes have not received the confirmation, they submit
the routing decision to the micropayment system which charges the source Σibi · β in
addition. This amount does not go to the intermediate nodes, but to the system.

We can now formulate the following theorem.

Theorem 12.2 Let R be a routing decision computed by the routing subactions trig-
gered by the protocol described in Section 12.3.2. Assume that, for any node on the
packet forwarding path, the computed payment is greater than the cost. Then the
protocol presented in Section 12.4.1 is a forwarding-optimal protocol to the packet
forwarding stage under R.

From this theorem and Theorem 12.1, we can derive the following result (the con-
nectivity graph is assumed to be bi-connected).

Theorem 12.3 The complete protocol, including the routing protocol (Section 12.3.2)
and the packet forwarding protocol (Section 12.4.1) is a cooperation-optimal protocol
to AdHocGames.

12.5 Discussion

As the careful reader has noticed, the solution described above requires a number
of conditions to be met. For example, mobility should be low enough to allow all
the effort carried out in the routing phase to be recouped in the packet forwarding
phase. Likewise, the radio links must be stable enough so that the required minimum
power estimated by the message TESTSIGNAL in the routing phase still holds in the
packet forwarding phase. In addition, this model does not take possible interference
of transmissions into account.

A further condition is the existence of the micropayment mechanism and of a public-
key infrastructure; both are relatively heavy components, and constitute an additional
burden on the system. Finally, it is important to notice that the described scheme
would not necessarily resist to malicious nodes or to colluding (selfish or malicious)
nodes.

We have described this example and we have mentioned these limitations because
they open a more general question: To what degree should a network be protected
against malice and selfishness? Should for example an ad hoc network be protected at
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all layers? Actually, too much protection can be detrimental to the protection itself
(complexity being at odds with security).

There is of course no ultimate answer to this interrogation: all depends on the
context of the network deployment and on the magnitude of the risk. By writing this
book, it is our hope to have helped the reader to better assess what is feasible, and
at what cost.

12.6 Summary

In this chapter, we have considered the problem of selfishness on both the routing and
packet forwarding phases of an ad hoc network. We have shown how the problem can
be studied by means of game theory. We have also explained how protocols aiming at
stimulating cooperation by means of micropayments can be secured by appropriate
cryptographic protocols.

12.7 To probe further

There are basically two approaches to incite nodes to participate in the network’s
operations: (i) by remunerating honest nodes, using for example a micropayment
scheme, as we have seen in this chapter or (ii) by denying service to misbehaving
nodes by means of a reputation mechanism. We provide here a brief overview of these
approaches.

Several researchers propose schemes that employ micropayments to encourage co-
operation. As mentioned, the approach described in this chapter is the one designed
by Zhong et al. [395]. This work is inspired notably by a previous work by Zhong,
Yang and Chen [396], where an off-line central authority collects receipts from the
nodes that relay packets and remunerates them based on these receipts. They rely
on public key cryptography to process each packet. A follow-up work is the one by
Wang et al. [395], which describes optimal unicast routing systems in non-cooperative
wireless networks.

An additional source of inspiration is the contribution by Anderegg and Eiden-
benz [23]. A solution somewhat similar to the one presented in that paper is proposed
by Eidenbenz, Resta, and Santi [123]. Another solution, presented by Buttyan and
Hubaux [72, 74], is based on a virtual currency, called a nuglet : If a node wants to
send its own packets, it has to pay for it, whereas if the node forwards a packet for the
benefit of another node, it is rewarded. However, some mechanisms of this solution
(e.g., the generation and management of nuglets) still need to be further investigated.
Finally, let us mention that the mobility of nodes can have a negative effect on an
incentive mechanism, as pointed out by Figueiredo, Garetto, and Towsley [136].

The application of micropayment systems to hybrid ad hoc networks is investigated
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by Lamparter, Paul, and Westhoff [244]. Other solutions have been developed by
Jakobsson et al. [201] and by Ben Salem et al. [45]. The former is improved by
G. Avoine in [32]. Additional research on this topic (both from the points of view
of malice and selfishness) has been carried out by Carbunar, Ioannidis, and Nita-
Rotaru [88].

We already mentioned reputation systems in Chapter 7. The application of such
systems has also been studied in other frameworks. Studies such as [169], [323] and
[324] consider the effect of online reputation systems [107] on e-marketing and trading
communities such as eBay. Reputation mechanisms are also used to foster cooperation
in peer-to-peer networks [109] and in WiFi [48].

In [304], Patel and Crowcroft propose a ticket based system that allows mobile
users to connect to foreign service providers: The user contacts a ticket server to
acquire a ticket, requests a service from a service server and uses the ticket to pay
for that service. In [122], Efstathiou and Polyzos present a Peer-to-Peer Wireless
Network Confederation (P2PWNC) where the roaming problem is considered as a
peer-to-peer resource sharing problem. They propose a solution where a WISP has to
allow the foreign users to access its hot spots in order to allow its own users to connect
to foreign WISPs’ hot spots. This solution however suffers of the same problem as
[304], i.e., there is no guarantee of a good QoS provision.

12.8 Questions

(a) In this question, we prove by contradiction the non-existence of Forwarding-
Dominant protocols for AdHocGames. In other words, when each node is its
own authority, cooperation between the nodes cannot be taken for granted.
The proof formally justifies the need of incentives for cooperation in the design
of packet forwarding protocols in AdHocGames.

Assume that there exists a Forwarding-Dominant protocol for AdHocGames.

(1) Suppose that reliable overhearing is available and that there exists a
link (i, j) such that

Pi,j <∞

Pi,k =∞, ∀k 6= j

How does this assumption affect the network connectivity? Draw a
simple scenario with three nodes i, j and k.

(2) As the nodes’ behavior is not coerced by a tamper-proof device, node j

can have the following strategy: It forwards all packets it receives from
node i except the packet with serial number 0.
What is node i’s best action to maximize its payoff ui(ai, a−i)? Express
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the solution in terms of bi(ai, a−i) and ci(ai, a−i). Show the contradic-
tion with the Forwarding-Dominant protocol definition.

(3) Now we want to assess the relevance of the assumption of the exis-
tence of such link (i, j). We replace it by assuming instead that reli-
able overhearing is not available anymore. Does the non-existence of
Forwarding-Dominant protocol still stand?

(4) Finally, consider that reliable overhearing is again available and assume
instead that nodes use the minimum requested transmission power to
reach destination. Does the proof still stand? Conclude on the theorem
general applicability.

(b) If the system admits a Forwarding-Dominant protocol, then it converges to
a unique solution. Explain why this property makes Forwarding-Dominant
protocols more desirable than protocols that achieve Nash Equilibrium.

(c) Section 12.3.1 introduces the VCG payment scheme. We use Figure 12.2 to
illustrate the properties of the VCG protocol.

(1) Assume that the nodes independently compute their packet forwarding
cost. Explain why VCG is truthful (or strategy proof), i.e. provides an
incentive to the nodes to declare their true cost of forwarding.

(2) Assume now that the packet forwarding cost over a link is computed
via a protocol between the nodes at both ends of the link (i.e. mutual
computation).
Consider the following scenario: v2 cheats in the link cost establishment
protocol and increases the cost of v2 → v3 to 5 while the real cost is 2.
How does this affect v2’s and v3’s rewards? Does the cheating influence
the probability of belonging to the LCP?

(3) What happens if v3 reacts by decreasing the cost of v2 → v3 to 3 ?
Conclude on the truthfulness of VCG with such a link cost establishment
protocol.

(4) Explain how the secure link cost protocol depicted in Section 12.3.2
makes VCG truthful.

(5) Finally, consider the following scenario. The cost of the link S → v1 is
increased to 50.
Compute v2’s price and explain its increase. Describe a scenario in
which the cost of link S → v1 might have increased in such proportions.
Conclude on the impact of the topology on the rewarding price.

(d) In the packet forwarding protocol of Section 12.4, it is possible that the source
and an intermediate node disagree on whether or not the block has been suc-
cessfully transmitted.
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(1) Section 12.4.1 details how block confirmation is implemented using a
reverse Hash Chain. Why is the confirmation value encrypted and sent
in the last packet of each block?

(2) What happens if the source does not append the confirmation to the
last packet of a block?

(3) How does this mutual decision protocol eliminate the incentive to cheat?

(e) In Section 12.4 it is mentioned that r is made public in an authentic way.
Please identify what misbehavior would become feasible for the source if the
authenticity of r could not be verified.



Appendix A

Introduction to cryptographic algorithms
and protocols

A.1 Introduction

Security of information and communication systems is concerned with the prevention
or the detection (if prevention is not possible or too costly) of attacks, where an
attack is meant to be a deliberate attempt to compromise the system. A system is
compromised if it reaches a non-desirable state or it behaves in a non-desirable way,
and where the latter can be the result of the former.

A system can also reach a non-desirable state or behave in a non-desirable manner
due to some random faults. Random faults, however, are usually less sophisticated
than attacks, hence coping with attacks is more difficult. For instance, a Cyclic
Redundancy Code (CRC) can detect random errors in a transmitted message well
enough, but it is ineffective in detecting deliberate modifications, because an attacker
can compute the correct CRC value for the modified message.

Stealing a password file and cracking passwords off-line is an example of an attack.
In this case, the attacker tries to put the system into a non-desirable state where some
passwords are known not only to the corresponding legitimate users, but also to the
attacker. This allows the attacker to login in the name of a legitimate user and to
use the privileges of that user to perform some operations in the system. This then
allows the attacker to further compromise the system. For instance, the attacker can
modify or delete some important configuration files, which can lead to a non-desirable
behavior of the system.

In general, attacks can be classified into two categories: passive attacks and active
attacks. In a passive attack, the attacker does not actively interfere with the operation
of the system, but she only passively monitors it. Examples of passive attacks are
eavesdropping and traffic analysis. In contrast to this, in an active attack, the attacker
intervenes in the operation of the system. Examples of active attacks include the
modification, interception, forgery, and replay of messages, jamming, tampering with
devices. As a matter of fact, passive attacks are difficult to detect, whereas active
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attacks are difficult to prevent. Hence, the usual security objective is to prevent
passive attacks and detect active ones.

In information and communication systems, security objectives can be achieved by
physical protection and algorithmic measures. An example of physical protection is
when a server is locked in a room under continuous video surveillance. Another ex-
ample is when a device is placed inside some tamper resistant packaging (e.g., smart
cards). Physical protection is very effective, but it is often very expensive as well. In
addition, it is not always applicable. In particular, in the case of wireless communi-
cations, the access to the wireless channel cannot be prevented by physical means.
When physical protection is not feasible or very expensive, algorithmic measures can
be used. Most of these algorithmic measures are based on cryptographic algorithms
and on protocols that allow for secure communications over insecure channels at the
cost of physically protecting a limited amount of key material only.

Usually, physical protection and algorithmic measures are combined in order to
achieve the security objectives of the system. This combination depends not only on
the technical requirements and constraints, but also on the available budget. In other
words, we are interested in a combination that ensures the required level of security
at the lowest possible cost.

In addition to the technical aspects (i.e., physical protection and algorithmic mea-
sures), the security of a system also depends on some human factors. Even the best
cryptographic algorithms are ineffective if the keys are leaked. People should be ed-
ucated to care about the security of the systems that they use, just like they are
educated to protect their homes and other physical assets. In addition, appropriate
procedures must be in place and must somehow be enforced, such as requiring users
to choose hard-to-guess passwords and to change them from time to time.

In this appendix, we will focus on the algorithmic measures. We first introduce some
basic cryptographic algorithms and protocols used in information and communication
systems in general, then we describe some special algorithms that appear to be useful
in upcoming wireless networks. Our presentation is brief; the interested reader can
find more information about cryptographic algorithms and protocols by following the
references given at the end of this appendix in Section A.9.

We recommend that before proceeding with this appendix, the reader take a look
at the common security objectives described in Section 1.2. The following algorithms
and protocols are meant to achieve those objectives.

A.2 Encryption

Encryption is a widely used security mechanism. Its primary purpose is to provide
confidentiality services, but it can also be applied to provide authentication and in-
tegrity services.
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Fig. A.1. Classical model of encryption.

The classical model of encryption is illustrated in Figure A.1. In this model, a
sender wants to send a message m to a receiver over an insecure channel that can
be eavesdropped by an adversary. To prevent access to the content of the message,
the sender encrypts it using an encryption algorithm E and an encryption key K.
The encrypted message EK(m) is called the ciphertext and the clear message m is
called the plaintext. At the receiving side, the receiver decrypts the ciphertext with a
decryption algorithm D and a decryption key K ′ and obtains the original plaintext.

The goal of the adversary is to find a way to systematically decrypt encrypted
messages. One basic assumption, called Kerckhoff’s principle, is that the adversary
has full knowledge about the operation of the encryption and the decryption algo-
rithms. Hence, in order to be able to systematically decrypt encrypted messages, it
is sufficient for the adversary to obtain the decryption key. If the adversary finds an
efficient method for determining the decryption key, then we say that the encryption
scheme is broken.

The following adversary models are distinguished, depending on the amount and
type of information available to the adversary:

• Ciphertext-only attack: In this model, the adversary can only observe cipher-
texts produced by the same encryption key. The adversary’s goal is to determine
the corresponding decryption key.
• Known plaintext attack: In this model, the adversary can obtain corresponding

plaintext-ciphertext pairs. In all these pairs, the ciphertext is produced from the
plaintext with the same encryption key. The adversary’s goal is to determine the
corresponding decryption key.

• Chosen plaintext attack: In this model, the adversary can choose plaintexts
and obtain the corresponding ciphertexts. This can be modeled by assuming that
the adversary has access to an encryption oracle that encrypts any set of plaintexts
submitted to it with the same key. The adversary is allowed to choose a set of
plaintexts, submit it to the oracle and receive the corresponding ciphertexts. The
adversary’s goal is to determine the decryption key that corresponds to the oracle’s
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encryption key. In practice, any component of the system that performs encryption
and whose input can be manipulated can be used as an encryption oracle. A typical
example is a smart card used for encryption based authentication.

In an adaptive variant of this attack, the adversary is allowed to interact with
the oracle in multiple rounds and choose, based on the previous responses of the
oracle, the next plaintext to be submitted to the oracle.
• Chosen ciphertext attack: This model is similar to the previous one, but instead

of an encryption oracle, the adversary is assumed to have access to a decryption
oracle. The adversary can submit ciphertexts to the oracle and receive the corre-
sponding plaintexts. In this case, the adversary’s goal is to find the decryption key
used by the oracle. This attack has an adaptive variant, too.
• Related key attack: In this model, the adversary can obtain ciphertexts, or

plaintext-ciphertext pairs that are produced with different encryption keys, but all
these keys are related in a known way to a specific encryption key. The adversary’s
goal is to determine the decryption key that corresponds to this specific encryption
key.

We say that an encryption scheme is secure in a given adversary model if it is
computationally infeasible for the adversary to determine the target decryption key
under the assumptions of the given model. For many encryption schemes used in
practice, no proof that they are secure exists. These schemes are used, nevertheless,
because they are efficient and they resist all known attacks. Some encryption schemes
are provably secure, however these schemes are often inefficient.

There are two basic types of encryption schemes: symmetric-key and asymmetric-
key encryption. In the case of symmetric-key encryption, the encryption key K and
the decryption key K ′ are the same (hence the name), or they can be computed from
each other easily. In the case of asymmetric-key encryption, the encryption and the
decryption keys are different, and computing the decryption key from the encryption
key is difficult. In the remainder of this section, we describe the properties of both
types of encryption schemes in more details.

A.2.1 Symmetric-key encryption

Symmetric-key encryption itself has two types: stream encryption and block encryp-
tion. Stream ciphers operate on individual characters of the plaintext, whereas block
ciphers process the plaintext in larger blocks of characters. This distinction between
stream ciphers and block ciphers, however, is not very sharp: We can consider the
blocks processed by a block cipher as large characters, or similarly, the characters
processed by a stream cipher as tiny blocks. Nevertheless, the internal design and op-
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eration of stream ciphers and that of block ciphers are remarkably different, therefore
they are usually discussed as two distinct types of symmetric-key encryption.

Stream ciphers

The heart of a stream cipher is the key stream generator that is used to produce a
long sequence of (pseudo-)random characters that are combined with the characters of
the plaintext in order to produce the characters of the ciphertext. In most cases, the
characters of the key stream are simply XORed to the characters of the plaintext, one
after the other. At the receiver side, the same key stream generator is used (recall that
we are discussing symmetric-key encryption), thus the same key stream is produced
as the one used by the sender. In order to obtain the characters of the plaintext, the
characters of the key stream are XORed to the characters of the ciphertext.

A very well-known stream cipher is the one-time pad , where the key stream con-
sists of truly random characters obtained, for instance, from some physical process.
Perhaps, the fame of the one-time pad stems from the fact that it was proven to
be unconditionally secure (against ciphertext-only attacks) by Shannon in 1949 [346].
Unconditional security means that an eavesdropper learns no information (in an infor-
mation theoretical sense) about the plaintext from the observed ciphertext. In other
words, when an eavesdropper observes a ciphertext, all possible plaintexts that can
correspond to that ciphertext are equally likely to be the message sent by the sender.
Shannon also proved that a necessary condition for a cipher to be unconditionally
secure is that the length of its key is at least as large as the compressed plaintext.1

This means that the one-time pad can require a large amount of key material to be
passed securely to the receiver side, which severely limits its use in many practical
applications.

Practical stream ciphers use pseudo-random key stream generators to produce the
key stream from a small, random seed. In this case, only the small seed needs to
be securely passed to the receiver, who can then use the same pseudo-random key
stream generator as the sender to produce the same key stream as the one used
for encryption. For historical reasons, many practical stream ciphers are designed
for hardware implementation and for real-time applications, such as encrypted voice
communications. Many of these ciphers use linear feedback shift registers (LFSR)
as their basic building block. However, there exist some stream ciphers that are
optimized for software implementation. An example is the RC4 stream cipher [335],
which is the default cipher in the Web security protocol called Secure Socket Layer
(SSL), and it is also the cipher used in the WiFi security protocol called Wired
Equivalent Privacy (WEP).

A stream cipher is called synchronous if the key stream is generated independently
1 More precisely, a necessary condition is that the entropy of the key must not be smaller than the

entropy of the plaintext.
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from the plaintext or the ciphertext. Both the one-time pad and RC4 are synchronous
stream ciphers. The advantage of synchronous stream ciphers is that they have no
error propagation, which means that if a ciphertext character is received erroneously
due to some noise in the transmission channel, then this affects only the corresponding
plaintext character when the ciphertext is decrypted. More precisely, the correspond-
ing plaintext character will have bit errors at the same positions where the errors
occur in the ciphertext character; all the other characters will be decoded correctly.
The disadvantage of synchronous stream ciphers is that they cannot tolerate the loss
of ciphertext characters during transmission. If a ciphertext character is lost, then the
sender and the receiver lose synchrony, which means that the receiver starts XORing
“wrong” key stream characters to the received ciphertext characters. As a result,
the receiver decodes the ciphertext characters that follow the lost character into a
sequence of random characters. Hence, in the case of synchronous stream ciphers, we
must ensure that de-synchronization errors are detected and, if necessary, additional
mechanisms should be in place to re-synchronize the sender and the receiver.

Another class of stream ciphers is called self-synchronizing ciphers. In the case
of self-synchronizing ciphers, the internal state of the key stream generator depends
on the last few, say `, ciphertext characters that have been sent by the sender (and
received by the receiver). The advantage of this is that even if a ciphertext character is
lost during transmission, after receiving ` consecutive ciphertext characters correctly,
the internal state of the key stream generator at the receiver will be correct, and thus,
the subsequent ciphertext characters are decoded correctly. In other words, no special
re-synchronization is needed between the sender and the receiver, but the receiver re-
synchronizes itself automatically. However, the disadvantage of these kind of ciphers
is that they have a larger error propagation than synchronous stream ciphers. The
reason is that when a ciphertext character is received with an error, this erroneous
character will affect the internal state of the key stream generator in the following
` rounds, thus the corresponding and the next ` plaintext characters are decrypted
erroneously.

Both types of stream ciphers are used in practice. The choice largely depends
on the application environment. For instance, self-synchronizing stream ciphers are
advantageous in applications that have strict real-time constraints and that tolerate
bursty errors (e.g., voice). Synchronous stream ciphers are a good choice when the
channel is noisy and no error correction code is applied on the encrypted data (e.g.,
for efficiency reasons).

Block ciphers

Symmetric-key block ciphers are very widely used cryptographic primitives. Besides
their obvious use for encryption, they are also often used as building blocks in pseudo-
random number generators, hash functions, and message authentication codes. In
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addition, they are extensively used in entity authentication and key establishment
protocols.

A block cipher is a function that takes two inputs, an n-bit plaintext block and a k-
bit key, and it produces an n-bit ciphertext block. For a given key K, the block cipher
can be considered to be a single variable function EK : {0, 1}n → {0, 1}n. For each
key K, function EK must be invertible in order to be able to reconstruct the plaintext
blocks from the ciphertext blocks. This means that EK must be a permutation over
the space of the n-bit vectors. The inverse of EK is denoted by DK , and we have
DK(EK(x)) = x for every plaintext block x and key K.

Designing secure block ciphers is a difficult task. One common approach is to use
several rounds of rather simple operations, such as small size substitutions (i.e., look-
up tables) and large bit-permutations. Many well-known block ciphers are based on
this approach. Examples include the Data Encryption Standard (DES) [6], and its
successor, the Advanced Encryption Standard (AES)[5]. If it is done carefully, then
the application of several rounds of simple operations can finally result in a complex
transformation. In the case of block ciphers, the resulting transformation should
satisfy the following criteria:

• Completeness: Each bit of the output block depends on each bit of the input
block and on each bit of the key.
• Avalanche effect: If one bit is changed in the input block, then each bit in the

output block changes with probability 1
2 . In other words, this means that changing

one bit in the input block will change approximately half of the bits in the output
block. Similarly, changing one key bit should result in the change of approximately
half of the bits in the output block.
• Statistical independence: There should not be any statistical relationship be-

tween the input and the output blocks. In other words, they should appear to be
statistically independent.

The key size k of the block cipher has paramount importance with respect to
the security of the cipher. If the key is too short, then the cipher is susceptible
to an exhaustive key search attack. In this attack, the adversary first obtains a few
plaintext-ciphertext block pairs (x1, y1), (x2, y2), . . ., where in each pair, the ciphertext
block is produced from the corresponding plaintext block using the same key K. Then,
the adversary tries all possible keys until she finds K that encrypts every plaintext
block xi into the corresponding ciphertext block yi. More precisely, for each candidate
key K̃, the adversary does the following: She computes y′1 = EK̃(x1). If y′1 6= y1, then
K̃ cannot be the right key, so it can be thrown away. If y′1 = y1, then the adversary
computes y′i = EK̃(xi) for the remainder of the available plaintext blocks {xi : i > 1}.
If for some i, y′i 6= yi, then K̃ is thrown away, otherwise (i.e., if K̃ works for all
available pairs of plaintext-ciphertext blocks) the adversary accepts K̃ as the right
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key. The accepted key cannot really be the right one (which follows from the fact
that a plaintext block can be mapped into the same ciphertext block under different
keys), however, the probability of the error decreases rapidly with the number of the
available plaintext-ciphertext block pairs. A similar attack works in the case when the
adversary does not have plaintext-ciphertext block pairs, but she has only ciphertext
blocks, and the plaintext blocks have a redundant structure (e.g., they contain parity
bits) known to the adversary.

On average, in the exhaustive key search attack, the adversary finds the key after
testing half of the key space. This means that the average complexity of the exhaustive
key search attack is 1

2 ·2k = 2k−1. In view of this, it is clear that the key size k should
be as large as possible. But, in order to reduce the amount of bits that need to be
securely transmitted to the receiver to enable the decryption of encrypted messages,
we would like the key to be as short as possible. The commonly accepted trade-off
today, at the time of this writing, is k = 128.

It must be emphasized that having a large key size is only a necessary condition for
the security of a block cipher, but it is not sufficient. The reason is that the cipher
can be broken due to the weaknesses in its internal (algebraic) structure, even if it
uses large keys. As an example, let us consider DES. The key length of DES is 56 bits,
which means that the average complexity of the näıve exhaustive key search attack
against DES is 255. However, this can immediately be reduced to 254 due to a special
algebraic property of DES, called the complementation property [268]. In addition,
there are more sophisticated attacks against DES that try to exploit other weaknesses
in its internal structure. Those most powerful attacks are called differential and linear
cryptanalysis, the complexities of which are around 247 and 243, respectively.

Block cipher modes

As we have described before, a block cipher produces an n-bit output block from
an n-bit input block. However, messages to be encrypted are usually longer (e.g.,
files) or shorter (e.g., characters) than one block. In order to solve this problem,
various operational modes have been invented for block ciphers that make it possible
to encrypt plaintexts of any size efficiently.

The simplest mode is called Electronic Code Book (ECB) mode. In this mode, a
large message is divided into blocks, and each block is encrypted with the block cipher
independently from the other blocks. This mode has many disadvantages, mainly that
it does not hide the statistics of the input blocks. In particular, the same input block
is always encrypted into the same output block or, in other words, if two blocks are
equal in the plaintext, then the corresponding blocks will be equal in the ciphertext.
Another drawback is that the blocks of the ciphertext can be reordered or deleted,
or new blocks can be inserted from another ciphertext that has been produced with
the same key, and these modifications do not affect the decryption of the ciphertext.
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For this reason, the ECB mode is not recommended to be used for large messages; its
common use is for the encryption of single blocks, such as passwords or session keys.

Large plaintexts are usually encrypted in Cipher Block Chaining (CBC) mode. In
this mode, the plaintext message is divided into blocks, and the i-th ciphertext block
Ci is computed from the i-th plaintext block Pi and the (i − 1)-st ciphertext block
Ci−1 as Ci = EK(Pi ⊕ Ci−1), where ⊕ denotes the bitwise XOR operation. As in
the case of the first block, there is not any preceding ciphertext block yet, the first
ciphertext block C1 is computed as C1 = EK(P1⊕IV ), where IV stands for an Initial
Vector (IV) that must be supplied as an additional input to the encryption (and to
the decryption). The operation of the CBC mode is illustrated in Figure A.2.E K E K E K. . .P 1 P 2 P N

C 1 C 2 C N � 1 C NI V
Fig. A.2. Using a block cipher in CBC mode.

The advantage of the CBC mode is that each ciphertext block depends on the
corresponding and all preceding plaintext blocks. As a consequence, the reordering,
deletion, and insertion of ciphertext blocks affects noticeably their decryption.2 More-
over, XORing the plaintext blocks with the preceding ciphertext blocks before their
encryption hides the statistical properties of the plaintext blocks. In particular, two
equal plaintext blocks are very unlikely to be encrypted into the same ciphertext
blocks, because this would require that the preceding ciphertext blocks are equal too.
In addition, encrypting the same plaintext message with different IVs would result in
different ciphertexts.

It can happen that the length of the plaintext message is not the multiple of the
block size of the cipher. In this case, the last block of the message is shorter than the
block size. In order to solve this problem, the plaintext message must be padded before
encryption. The padding scheme should ensure that at the receiver side, the padding
can be recognized unambiguously and removed after decryption. One commonly used
2 Nevertheless, encryption in CBC mode does not provide reliable integrity protection in general.

For that purpose, standard message authentication codes or digital signatures should be used.
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padding scheme is that the last byte of the padding contains the binary representation
of the length of the padding. This allows the receiver to remove the padding easily.
Note that using this padding scheme means that messages are padded even if their
length is the multiple of the block size (in that case, a full padding block is added to
the message). The other padding bytes can be all zeros, random bytes, or they can
be all equal to the last padding byte (i.e., the length of the padding).

The padding increases the length of the messages, but in some applications this is
not desirable. In sensor networks, for instance, where short messages are communi-
cated over wireless links, the padding can be a considerable communication overhead
that can shorten the lifetime of the battery powered sensor nodes. Fortunately, there
exists padding schemes that do not increase the length of the messages. A simple
approach is to encrypt the penultimate ciphertext block again and use the result as
a key stream to encrypt the last, short-end block by XORing it with the necessary
number of key stream bits.

Block ciphers can also be converted into stream ciphers. This is useful when short
messages, characters, or even bits need to be encrypted as they arrive (e.g., in real-
time applications). In each of the modes that convert a block cipher into a stream
cipher, the block cipher is used to produce a key stream, which is then XORed to
the plaintext characters. The key stream is generated by iteratively encrypting and
updating some internal state. The various modes differ only in the way in which this
internal state is updated.

In the Output Feedback (OFB) mode, the internal state is stored in a register the
size of which is equal to the block length of the block cipher. In each iteration step,
the content of the register is encrypted and updated with the result of the encryption.
Thus, the internal state is independent from the plaintext and the ciphertext char-
acters, which means that the block cipher in OFB mode operates as a synchronous
stream cipher. The operation of the OFB mode is illustrated in Figure A.3.

The Cipher Feedback (CFB) mode is very similar to the OFB mode, but instead
of the output of the block cipher, the last ciphertext character is used to update the
internal state. This is done by shifting the last ciphertext character into the register
that stores the internal state. The result is a self-synchronizing stream cipher. The
operation of the CFB mode is illustrated in Figure A.4.

Yet another mode that converts the block cipher into a stream cipher is the Counter
(CTR) mode (see Figure A.5 for illustration). In this mode, the internal state is a
counter, which is incremented in each iteration. As the state is independent of the
plaintext and the ciphertext characters, this results in a synchronous stream cipher,
similar to the OFB mode.

The CTR mode, however, has certain advantages compared with the OFB mode.
One of these advantages is that the CTR mode supports the decryption of the cipher-
text characters in a random access manner. In order to decrypt the i-th character,
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Fig. A.3. Using a block cipher in OFB mode.E K+p i s e l e c t s b i t ss h i f t r e g i s t e r ( n b i t s )
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Fig. A.4. Using a block cipher in CFB mode.

we need to set the internal state to the i-th state. In CTR mode, this can be done
easily by setting the value of the counter appropriately. In contrast to this, in OFB
mode, the i-th state can only be reached by starting from the initial state and calling
the block cipher i − 1 times. For similar reasons, decryption in CTR mode can be
parallelized, whereas decryption in OFB mode can be performed only in a sequential
manner.

A.2.2 Asymmetric-key encryption

As we have mentioned earlier, in the case of asymmetric-key encryption, the encryp-
tion key K and the decryption key K ′ are different; moreover, computing K ′ from K

is practically infeasible. The benefit is that the encryption key K can be made public
without revealing the decryption key K ′. For this reason, the encryption key is often
called public key and the decryption key is called private key . Once K is made pub-
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Fig. A.5. Using a block cipher in CTR mode.

lic, anybody can encrypt messages with it, whereas only the entity that possesses K ′

can decrypt those messages. Thus, in contrast to symmetric-key encryption schemes,
where a shared secret key must be established between the parties before they can
begin communicating securely, for asymmetric-key encryption no such key establish-
ment phase is needed. This is particularly advantageous in the case of asynchronous
communications, such as electronic mail, when the parties are not necessarily on-line
at the same time, hence they cannot interactively setup a shared secret. Not requiring
a key establishment phase before beginning to communicate can also be advantageous
in wireless networks because it saves bandwidth and makes it possible to communicate
even if the fixed infrastructure is not available, and on-line key distribution servers
cannot be accessed.

An asymmetric-key encryption scheme3 consists of three algorithms: a key-pair
generation algorithm, an encryption algorithm, and a decryption algorithm. The
key-pair generation algorithm is used to create the public key and the corresponding
private key of each entity in the system. The encryption algorithm takes a message
to be encrypted and the public key of the intended recipient, and it produces the
encrypted messages. We usually denote the encryption of a message m with a public
key K as EK(m). The decryption algorithm takes the encrypted message and the
private key of the recipient, and it recovers the plaintext message.

The security of asymmetric-key encryption schemes is usually based on some well-
known or widely believed hard problems, such as factoring large integers, computing
discrete logarithms, decoding linear codes, or the subset sum problem. More precisely,
the difficulty of breaking the encryption scheme is traced back to the difficulty of
solving the underlying hard problem.

An example of a very widely used asymmetric-key encryption scheme is the RSA
3 Asymmetric-key encryption schemes are also called asymmetric-key cryptosystems in the litera-

ture.
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scheme [327]. We do not describe its operation here, because it can be found in
any textbook on cryptography. We do mention, however, that the security of the
RSA scheme is based on the difficulty of factoring large integers. Another well-known
asymmetric-key encryption scheme is the ElGamal scheme [124]; its security is based
on the difficulty of the discrete logarithm problem in finite fields. We must also
mention the Elliptic Curve Cryptosystems (ECC), which are modifications of other
schemes (e.g., the ElGamal scheme) in such a way they work in the domain of elliptic
curves rather than in finite fields defined by large primes. The advantage of the ECC
schemes is that they use much smaller keys than traditional asymmetric-key schemes
but achieve the same level of security. Hence, their use can be beneficial in resource
constrained environments, such as smart cards and sensor networks.

There is a general attack on asymmetric-key encryption schemes, which is feasible
when the plaintext space (i.e., the set of possible plaintext messages) is small. Let us
assume that the adversary observes a ciphertext c = EK(m), and she has previously
obtained (from the context of the application or by some other means) some knowledge
about the set M of the possible plaintexts. If M is small, then the adversary can try
to encrypt every message in M with the publicly known key K until she finds the
message m that maps into c.

The usual way to prevent this attack is to randomize the encryption. In the case
of RSA, for instance, some random bytes are added to the plaintext message before
encryption through the application of the PKCS #1 formatting rules [1]. The format-
ting rules also ensure that when the message is decrypted, the recipient can recognize
and discard those random bytes.

The ElGamal encryption scheme uses another approach: it is designed to be a ran-
domized encryption scheme in the first place. Now, we briefly describe how the ElGa-
mal scheme works. The key generation algorithm chooses a large prime p. This deter-
mines a multiplicative group, denoted by Z∗p , which consists of the set {1, 2, . . . , p−1}
as elements, and the modulo p multiplication as the operator. Then, the algorithm
continues by choosing a generator element g of Z∗p . Being a generator element means
that by iteratively powering g modulo p, one can generate the entire set of elements
of Z∗p (i.e., {g0, g1, . . . , gp−2} = {1, 2, . . . , p − 1}). Finally, the algorithm randomly
chooses an integer a (1 ≤ a ≤ p−2), and it computes A = ga mod p. The private key
is a, and the public key is (p, g, A).

A message m is encrypted as follows: The encryption algorithm randomly chooses
an integer r (1 ≤ r ≤ p − 2), and it computes R = gr mod p and C = m · Ar mod
p. The ciphertext is the pair (R, C). The encryption is randomized, because due
to the random integer r, the same plaintext message is encrypted into a different
ciphertext each time the encryption algorithm is called. The ciphertext is decrypted
by computing Rp−1−a mod p = g−ar mod p = A−r mod p and C ·A−r mod p = m.

Another general attack against asymmetric-key schemes consists in substituting the
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public key of an honest entity with that of the adversary. As we mentioned before,
encryption keys can be made publicly available, for instance, by placing them in a
publicly accessible directory. However, if the integrity of this directory is not ensured,
then the adversary can replace the public key of an entity with her own public key.
Then, if someone wants to send an encrypted message to that entity, she will use the
public key of the adversary instead of the public key of the entity, and therefore, the
adversary will be able to decrypt the message. In order to prevent this and similar
attacks, the general requirement is to ensure the authenticity of the public keys. The
most common approach to do this is to distribute public keys in certificates that
bind the public key to the name of its owner by the digital signature of a trusted
third party called the Certification Authority (CA). Digital signatures are addressed
in Section A.5 of this appendix.

The management of certificates is a complex task that needs a considerable infras-
tructure, especially in large scale applications. This infrastructure is often referred to
as the Public Key Infrastructure, or shortly PKI . The services provided by the PKI
cover the whole life cycle of the certificates, including their issuance, distribution,
suspension, and revocation. A detailed description of all these services is out of the
scope of this appendix; the interested reader can find more information in [13].

Asymmetric-key encryption schemes are roughly three orders of magnitude less
efficient than symmetric-key encryption schemes. Therefore, they are rarely used
to encrypt large messages. Instead, those messages are typically encrypted with a
symmetric-key cipher and a randomly generated symmetric key that is then encrypted
with the asymmetric-key cipher and the public key of the intended recipient. The
encrypted message and the encrypted symmetric key is sent together to the recipient.
This hybrid encryption technique is called the digital envelop, and it is illustrated in
Figure A.6.

A.3 Hash functions

Hash functions take messages of arbitrary length as input and they produce outputs of
a fixed length. The output of the hash function is called the hash value of the message
or the message digest. By definition, there are infinitely many messages that have
the same hash value (with respect to a given hash function). However, in the case of
strong cryptographic hash functions, it is practically infeasible to find two messages
that map into the same hash value. Therefore, the hash value of the message can
represent the message for any practical purposes. The advantage of this is that hash
values are shorter than messages. Thus, computationally intensive operations (e.g., a
digital signature) can be performed on the hash value of the message instead of the
message itself.

Hash functions are used in many applications. As mentioned above, they can be
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Fig. A.6. Digital envelop: asymmetric-key encryption is used to encrypt a randomly gener-
ated symmetric key, which, in turn, is used to encrypt the message with a symmetric-key
cipher. PRNG: Pseudo-random number generator.

used in digital signature applications in order to reduce the size of the data to be
signed. They can also be used to implement commitment schemes (see e.g., the MAD
protocol in Subsection 6.2.2), one-time passwords [245], and micro-payment protocols
[326]. Hash functions can be used to prove the knowledge of a value to someone
who also knows that value without revealing the value itself to anybody else. This
is useful, for instance, in achieving session key confirmation. Hash functions are also
applicable in resource constrained wireless networks (e.g., in sensor networks) for
broadcast authentication with the TESLA protocol (see Section A.8 for details).

Let us now take a closer look at the properties that a cryptographic hash function
should satisfy. First of all, it is desirable that the hash value can be computed
efficiently (otherwise we would not gain anything by using the hash value instead of
the message itself). In addition, the following properties are usually required for a
hash function h:

• Collision resistance: Collision resistance means that it is hard to find two inputs
x and x′ such that h(x) = h(x′). Such a pair of inputs is called a collision pair, or
shortly a collision, hence the name of the property.
• Weak collision resistance: Weak collision resistance means that given an input

x, it is hard to find another input x′ such that h(x′) = h(x). This property is
sometimes also called second pre-image resistance.
• One-way property: The hash function is said to be one-way hash function if for

any hash value y (for which no pre-image is known a priori), it is hard to find an
input message x such that h(x) = y. This property is sometimes called pre-image
resistance.
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Among the three properties, collision resistance is the strongest, by which we mean
that it implies both the weak collision resistance and the one-way properties [356].
Hence, hash functions are usually designed for collision resistance, which ensures that
they satisfy the other two properties as well.

An important notion in the context of hash functions is the birthday paradox . The
birthday paradox can be explained as follows: Let us consider a set of N elements
and assume that we randomly choose elements from this set with replacement. The
question we are interested in is the following: After how many trials we can expect
that we choose an element that was already chosen before? According to the birthday
paradox, such a repetition can be expected with a probability greater than half after
around

√
N trials. The paradox is that we would expect that many more trials are

needed.
For a given hash function h, the set of N elements is the set of the possible hash

values (i.e., N = 2n, where n is the output size of h). A trial is that we randomly
select an input and we compute its hash value. Due to the birthday paradox, we
expect that after selecting around

√
N = 2n/2 random inputs, we find an input that

maps into a hash value that was already computed before. In other words, we can
find a collision with rather high probability just by hashing 2n/2 random inputs. It
follows that the output size n is an important parameter that should not be too small.
At the time of this writing, n = 160 is considered to be acceptable, which means that
the complexity of the above described birthday attack is 280.

The birthday attack on hash functions is the equivalent of the exhaustive key search
attack in the case of block ciphers. We saw that choosing a large key size is a necessary
condition for the security of a block cipher, otherwise the cipher is susceptible to an
exhaustive key search attack. Similarly, choosing a large output size is a necessary
condition for the security of a hash function, otherwise it cannot resist the birthday
attack. However, we also saw that a large key size in itself cannot be sufficient to
ensure that a block cipher is secure. Similarly, hash functions can be broken by
exploiting their algebraic properties even if their output size is large enough.

Most hash functions used in practice are iterative hash functions. The operation
of iterative hash functions is illustrated in Figure A.7. The heart of an iterative
hash function is its compression function, which is denoted by f in the figure. The
compression function takes an input of length b + n bits and it produces an output
of length n bits. The compression function is applied iteratively to hash any input
message of arbitrary length. This is done in the following way: The input is broken
up into blocks of length b bits. If the length of the message is not a multiple of b, then
the message is padded with zeros. Each block is input to the compression function
together with the output of the previous iteration to produce the output of the current
iteration. In the first iteration, the first input block is processed together with a fix
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initial value CV0. The output of the last iteration is the output of the hash function
(i.e., the hash value of the input message).

f

M1

. . .

M = M1 || M2 || ... || Mk

h(M)CV0
f

M2

f

Mk

(b bits)

(n bits) (n bits)

(b bits) (b bits)

(n bits) (n bits)

h

Fig. A.7. The operation of iterative hash functions.

Instead of padding with zeros, we can use a padding that contains the binary
representation of the length of the message being hashed. This is often called Merkle-
D̊amgard strengthening. If this kind of padding is used, then it can be proven formally
that the collision resistance of the compression function implies the collision resistance
of the hash function.

Iterative hash functions can be constructed from block ciphers by using the block
cipher to implement the compression function. One problem with this approach is that
the output length of the block cipher would not be sufficiently large for hash functions.
For instance, if we used AES, then the output length of the hash function would
only be 128 bits, which is considered to be too short to ensure collision resistance.
Therefore, it is preferable to use dedicated hash functions (i.e., hash functions that
use compression functions that were designed for being compression functions in the
first place). A commonly used iterated hash function of this kind is the SHA-1 hash
function [3].

A.4 Message authentication codes

Message authentication codes (MACs) are used to provide message integrity and
authentication services. The idea is to compute a MAC value from a message and
then to send the message and its MAC value together to the receiver. The receiver
can use the redundancy provided by the MAC value to verify if the received message
is the same as the one that was sent. More precisely, the receiver computes the MAC
value of the received message and compares it to the MAC value that was received
together with the message. If the two MAC values are equal, then the message is
considered to be intact and authentic.

These operational principles of MACs are similar to those of error detecting codes.
The difference is that MACs are intended for the detection of intentional modifications
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of messages, whereas error detection codes are used for detecting random errors. In
order to be able to detect intensional modifications, the computation of the MAC
value involves some secret that is known only to the sender and the receiver. Error
detection codes do not need such a secret.

MAC values are computed with MAC functions. A MAC function takes two in-
puts, a message of arbitrary length and a secret key, and it produces a fixed length
MAC value. In order to be useful, MAC function should have the following security
properties:

• Key non-recovery: Key non-recovery means that it is hard to compute the secret
key from observed (message, MAC value) pairs.

• Computation resistance: Computation resistance means that even if many (mes-
sage, MAC value) pairs are observed, it is hard to compute an as yet unobserved
(message, MAC value) pair that verifies correctly.

Clearly, computation resistance implies key non-recovery, because if key non-recovery
does not hold, then the adversary can first compute the secret key, and then use it to
compute a valid MAC value for any message.

MAC functions can be built from block ciphers. A common approach is to use
the block cipher in CBC mode (with a block of zeros as IV) to encrypt the message,
and then to take the last encrypted block as the MAC value of the message. This
scheme is called CBC-MAC [2], and it is illustrated in Figure A.8. CBC-MAC has
some known weaknesses. To overcome those, it is recommended to involve the length
of the message in the CBC-MAC computation (e.g., by attaching a message header
that contains the message length).

EK EK EK. . .

m1 m2 mN

CBC-MACK(m)

0

m = m1 || m2 || ... || mN

Fig. A.8. Computation of the CBC-MAC value.

Another approach to constructing MAC functions is to use a hash function as the
main building block. After all, hash functions are very similar to MAC functions in
the sense that both types of functions produce a fixed length output from an arbitrary
length input. An example of this approach is HMAC [234], which is a very widely
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used hash based MAC function. The operation of HMAC is so simple, that it fits
in one line: HMAC (m) = h(K+ ⊕ OP ‖ h(K+ ⊕ IP ‖ m)), where h is an iterative
hash function, K+ is the MAC key padded with zeros to the length of the input block
size b of the hash function, OP and IP are pre-defined constants of size b, m is the
message, and ‖ denotes concatenation. The size of the HMAC value is equal to the
output size of the hash function h.

A.5 Digital signatures

Digital signatures are very similar to MAC values: they are attached to messages to
ensure their integrity and authenticity. In addition to these services, digital signatures
also provide non-repudiation of message origin. Note that a valid MAC value attached
to a received message does not allow the receiver to prove to a third party where the
message comes from. The reason is that the receiver knows the secret key that was
used to compute the MAC value of the message, hence she could have generated this
message - MAC value pair herself. As the source of the message cannot be proven to
a third party, the sender can deny that she sent the message. With digital signatures,
this is not possible: A digital signature is generated with the help of a private key
that is known to a single entity and, therefore, it cannot be repudiated.

From the above description, it follows that digital signature schemes are based
on asymmetric-key cryptography. A digital signature scheme consists of a key-pair
generation function, a signing function, and a verification function. The key-pair
generation function is used to generate the public key and the private key of the
entities. The signing function takes the message to be signed and the private key of
the signer, and it produces the digital signature. The verification function takes the
message, the signature, and the public key of the signer, and it outputs “accept” if
the signature has been produced on the message with the private key corresponding
to the given public key; otherwise it outputs “reject”.

Successfully attacking a digital signature scheme means that the adversary can
somehow obtain the private signing key of an entity or that she finds a method to forge
signatures on messages without the signing key. For this purpose, the adversary can
use the legitimate signer as an oracle to obtain valid signatures on some messages, and
then, based on the obtained information, she computes the private key or generates
the signature of a message that has never been submitted to the oracle. The usage
of the oracle can be one-shot or interactive; the latter is called an adaptive chosen
message attack .

As digital signature schemes use asymmetric cryptography, they are orders of mag-
nitude less efficient than MAC functions. For this reason, we would like to limit
the length of their input. The commonly used approach, called the hash-and-sign
paradigm, is to sign the hash value of a message instead of the full message. As
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we have seen previously, this requires the hash function to satisfy certain properties.
The hash-and-sign paradigm works as follows: The message is first hashed, and the
signature is computed on the hash value using the private key of the signer and the
singing function of the signature scheme. Then, the signature is attached to the orig-
inal message. When the signature is verified, the verifier first computes the hash of
the message and then verifies the signature using the public key of the signer and the
signature verification algorithm.

It is of paramount importance regarding the security of the hash-and-sign approach
that the hash function satisfies the collision resistance property (see Section A.3). If h

was not collision resistant, then the adversary could find two messages m and m′ such
that h(m) = h(m′). Now, the adversary can somehow obtain the signature σ(h(m))
for m from the legitimate signer, and this will be a valid signature for m′ too.

Well-known signature schemes include the RSA and the ElGamal signatures. The
security of the former is based on the difficulty of factoring large integers, whereas
the latter is based on the difficulty of computing a discrete logarithm. The ElGamal
scheme serves as the basis of the Digital Signature Algorithm (DSA) [4], a standard-
ized signature scheme that is very widely used in practice. DSA can be implemented
over elliptic curves; this is called ECDSA [376]. The advantage of ECDSA is its re-
duced signature length (typically 320 bits) compared to the signature length of DSA
(typically 1024 bits). Thus, using ECDSA results in a considerably smaller communi-
cation overhead than using DSA, which is an important aspect to consider in wireless
networks of battery-powered devices.

A.6 Session key establishment protocols

Symmetric-key cryptographic primitives (symmetric-key ciphers and MAC functions)
require that the communicating parties share a secret key. Shared secrets can be
established between parties in various ways. For instance, the secret key can be
exchanged manually between the parties, when they meet in person. This is a secure
approach, but it does not scale, and it is not always practical to require a physical
meeting before the parties can communicate securely over the network.

A scalable and practical approach to establish a shared secret between two (or
more) remote parties is to use a session key establishment protocol. Such a protocol
allows the parties to setup a shared key via the network in an on-demand manner.
The typical scenario is the following: When the parties start a new communication
session, they run the session key establishment protocol and set up a shared key that
they use throughout the session (hence the name session key). When the session is
closed, the key is deleted. When they start a new session again, they establish a new
session key, and so on.

Session keys are advantageous for many reasons. First of all, using short-term



A.6 Session key establishment protocols 411

session keys limits the amount of ciphertexts produced with the same key, and thus
makes cryptanalytical attacks more difficult. Another benefit is that if a session key is
compromised, it affects only the session in which that key was used; the other sessions
are not necessarily affected. Yet another advantage is that keys are created only when
they are really needed, which limits the amount of key material that needs to be kept
secret at any given time.

Broadly speaking, session key establishment protocols fall into two classes: key
transport protocols and key agreement protocols. In the case of key transport pro-
tocols, the session key is created by one of the protocol participants, and then it is
transferred in a secure way to the parties that need it. Hence, the party that creates
the session key can fully control its value. In the case of key agreement protocols, ev-
ery protocol participant contributes a key share, and the parties compute the session
key from these key shares. Now, no party has full control over the value of the session
key, which depends on the contributions of the other parties.

Key transport protocols usually rely on some long-term key material already in-
stalled in the system for the secure transfer of the freshly generated session keys.
There are two cases: either long-term symmetric keys or long-term asymmetric keys
are used. In the former case, typically, there is an on-line server, called the key dis-
tribution center (KDC), in the system that already shares a long-term symmetric key
with every user of the system. The KDC is involved in every run of the key transport
protocol, and the long-term symmetric keys are used to secure the transport of the
session keys to the users. When long-term asymmetric-keys are used, there is no need
for on-line servers. In this case, the security of the key transport protocol can be en-
sured with the usage of the long-term public and private keys of the users themselves.
However, off-line servers are still needed for the certification of the public keys. These
are commonly called Certification Authorities (CAs). Key agreement protocols are
typically based on asymmetric-key cryptography, hence they need the same kind of
infrastructure as asymmetric-key based key transport protocols.

Besides being key transport or key agreement protocols, session key establishment
protocols can be further classified according to the services provided to the protocol
participants. There are two main services that a key establishment protocol must
provide: key authentication and key freshness. There are two types of key authen-
tication: implicit and explicit. Explicit key authentication is a stronger service that
provides implicit key authentication and key confirmation. We explain these notions
in more details:

• Implicit key authentication: If this service is provided by the key establishment
protocol to a party, then after a successful execution of the protocol, the party can
be assured that the established session key can only be known by another well
identified party (the intended communication partner) and to some trusted third
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Fig. A.9. Operation of the Wide Mouth Frog protocol

parties (e.g., to the KDC). The party cannot be sure, however, that the other party
does possess the session key.

• Key confirmation: Key confirmation is used to convince a party that the other
party possesses the established session key. This can be achieved by sending the
hash value of the session key to the party, or using the session key to encrypt a
known message.

• Explicit key authentication: A key establishment protocol provides explicit key
authentication if it provides both implicit key authentication and key conformation.
• Key freshness: If this service is provided by the key establishment protocol to a

party, then the party can be assured that the established session key is fresh, which
means that it has never been used as a session key before.

Any of these services can be provided to one of the protocol participants or to both
of them. In addition, some protocols provide a different type of key authentication
to each participant.

We will now illustrate the concepts introduced through some examples. In particu-
lar, we describe and informally analyze a symmetric-key based key transport protocol,
an asymmetric-key based key transport protocol, and a key agreement protocol.

Our first example is a symmetric-key based key transport protocol called the Wide
Mouth Frog protocol [67]. In this protocol, there are three participants: two main
parties that want to establish a session key between themselves and a KDC server.
The main parties are denoted by A and B, and the server is denoted by S. It is
assumed that A and B already share a long-term symmetric key with S. These keys
are denoted by KAS and KBS , respectively. The main idea of the protocol is that
A generates the session key, denoted by K, and transfers it to B via the server S.
During the transfer, K is encrypted with the long-term keys KAS and KBS . The
protocol uses timestamps to ensure key freshness.

The operation of the Wide Mouth Frog protocol is illustrated in Figure A.9. A

generates the session key K, and encrypts it together with the identifier of B and
the current timestamp TA. The resulting ciphertext EKAS

(B‖K‖TA) is sent to S
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together with the identifier of A. Based on the clear identifier in the message, S

looks up the key KAS shared with A and decrypts the message. At this point, it sees
that A wants to establish the session key K with B. S verifies that TA is sufficiently
close to the current time. If so, S encrypts K together with the identifier of A and a
new timestamp TS with the key KBS that it shares with B. The resulting ciphertext
EKBS

(A‖K‖TS) is sent to B. Upon reception of this message, B decrypts it and
verifies if TS is fresh enough. If so, then B accepts the key K as a fresh session key
shared with A.

For A, the protocol provides implicit key authentication. This can be explained as
follows: K is transferred under the protection of the keys KAS and KBS . Moreover,
S is trusted to pass on K only to B. Hence, A can be assured that only B and S can
have access to K. However, she cannot be sure that B received K, as she does not
receive any acknowledgement in the protocol. In addition, the protocol ensures key
freshness for A. The reason is that A generates K and, therefore she knows that it is
fresh.

For B, the protocol provides explicit key authentication. In order to see this, we
have to show that the protocol provides both implicit key authentication and key
confirmation for B. Implicit key authentication can be explained in the same way
as above. Key confirmation is provided because B knows that A generated K, and
therefore, she must possess it, and because B trusts S that it indeed received K from
A.

Seemingly, the protocol also provides key freshness to B due to the use of the
timestamps; but in fact, it does not. An attacker can fool B into accepting an old
session key as follows: The attacker quickly replays to S the second message of the
protocol, extended with the identifier of B. S interprets this as the first message of
a new protocol run, in which B wants to setup a key with A. If the replay is fast
enough, then the timestamp TS in the message is still acceptable for S. Hence, S

responds with EKAS
(B‖K‖T ′S), where T ′S > TS . The attacker intercepts this message

and replays it to S again, now extended with the identifier of A. For similar reasons
as explained before, S responds with EKBS (A‖K‖T ′′S ), where T ′′S > T ′S , and so on.
The attacker can continue replaying messages to S for an arbitrarily long time and
use S as an oracle to refresh the timestamp attached to the old key K. At some point
T in time, the attacker will receive EKBS

(A‖K‖T ) from S, where T À TS , and she
can send this message to B. B will accept the key K, although by this time K is
quite old (and possibly compromised). It is rather easy to fix the Wide Mouth Frog
protocol so that it resists this attack, and we leave this to the reader as an exercise.

Many other symmetric-key based key transport protocols have been proposed in
the literature. Giving a comprehensive overview of these protocols is well beyond the
scope of this appendix. However, we want to emphasize two things here. First, it is
not always the case that one of the main parties generates the session key, like in the
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Fig. A.10. An asymmetric-key based key transport protocol, where the session key is en-
crypted with the public key of the intended receiver, and then, signed by the sender. Key
freshness is achieved by use of a timestamp.

Wide Mount Frog protocol. Indeed, in most of the protocols, the KDC generates the
session key (upon request) and transfers it to both main parties. Second, key freshness
is not always achieved with the help of timestamps, but rather by means of nonces.
Nonces are “numbers that are used only once”. Very often, nonces are implemented
as freshly generated, unpredictable random numbers, chosen from a large space, so
that it is very unlikely that they repeat. The typical usage of such nonces is the
following: One party generates a nonce and sends it to the other party. The other
party includes the nonce in its response (e.g., encrypts the nonce and the session key
together). When the first party receives the response, she waits for her nonce to be
sent back. If so, then she knows that the response must have been generated after
sending the nonce in the first message. If not too much time has elapsed between the
two messages, then the first party can consider the content of the response (including
the session key) to be fresh.

Our second example is an asymmetric-key based key transport protocol, illustrated
in Figure A.10. The protocol has two parties, A and B. It is assumed that each
party knows the public key of the other party. A generates a session key K and
encrypts it with the public key KB of B. Then, A signs the identifier of B, the
encrypted session key, and a timestamp T . The encrypted session key EKB (K) and
the signature SA(B‖EKB (K)‖T ) is sent to B. B first verifies the timestamp and then
verifies the signature of A. Afterwards, she decrypts the encrypted session key and
obtains K.

This protocol provides implicit key authentication for A, because she knows that
only B can decrypt a message that is encrypted with the public key KB . For B, the
protocol provides explicit key authentication, because the signature of A proves that
K was generated by A, and the identifier of B within the signature proves that K was
indeed intended for B; moreover, B knows that A possesses K because she generated
it. Key freshness for A is trivial, and key freshness for B is ensured by the timestamp,
which is also covered by the signature.

Our third example is the well-known Diffie-Hellman protocol [112]. This is a key
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A B
Known parameters: p and g Known parameters: p and g

Pick a random x (1 ≤ x ≤ p− 2)
X=gx mod p-

Pick a random y (1 ≤ y ≤ p− 2)
Y =gy mod p¾

Compute Y x mod p = gxy mod p Compute Xy mod p = gxy mod p

Fig. A.11. Operation of the Diffie-Hellman protocol.

agreement protocol, the security of which is based on the difficulty of computing
discrete logarithms. The protocol is illustrated in Figure A.11, and its operation is
explained as follows: The protocol has two parties, A and B. Both parties know
the public parameters of the system: a large prime number p and a generator g

(2 ≤ g ≤ p − 2) of the multiplicative group Z∗p (see the description of the ElGamal
encryption scheme in Section A.2 for the definition of these terms). A generates a
random number x (1 ≤ x ≤ p − 2), computes X = gx mod p, and sends X to B.
Similarly, B generates a random number y (1 ≤ y ≤ p− 2), computes Y = gy mod p,
and sends Y to A. Then, A and B can both compute the shared secret gxy mod p by
computing Y x mod p and Xy mod p, respectively.

The Diffie-Hellman protocol is an elegantly simple protocol, but it has a serious
problem: it does not provide key authentication at all. This means that the parties
do not really know with whom they establish the shared secret key gxy mod p. In-
terestingly, key freshness is still ensured for both parties, as the key depends on the
parties’ contributions. And if a party generates a fresh random number, then the
resulting key will be fresh too.

The Diffie-Hellman protocol can be extended in various ways to provide key authen-
tication services. One approach is to use digital signatures; an authenticated variant
of the Diffie-Hellman protocol that follows this approach is called Station-to-Station
protocol. Another approach is based on the comparision of short strings as described
in Section 5.4.

A.7 Pseudo-random number generators

As we have seen, many cryptographic algorithms and protocols require the generation
of random values, such as keys and nonces. However, the default random number
generators that are provided as part of the various programming languages, such as
C and Java, are not appropriate for cryptographic purposes. Although these random
number generators have good statistical properties, and the sequence of values that
they produce indeed appears to be random, their output is often predictable; whereas
keys and nonces need to be unpredictable.
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An ideal cryptographic random number generator produces truly unpredictable
values. In practice, we are often satisfied with a random number generator that is
not truly unpredictable, but it is practically infeasible to distinguish it from a truly
unpredictable random number generator. Such a practical random number generator
is called pseudo-random number generator, or PRNG for short.

A PRNG works, typically, as follows: The PRNG has an internal state assumed
to be unknown to the adversary. The PRNG produces its next output as a one-way
function of its internal state, and then it updates its internal state in a deterministic
manner. In addition, the PRNG is continuously fed with samples of physical processes,
such as clock values, key stroke timings, mouse positions, and disk access times. Each
of these samples typically contain only a few bits of randomness, so many of them
need to be collected in a so-called entropy pool. When the PRNG estimates that a
sufficient amount of random samples have been collected in the pool, it hashes the
content of the pool and uses the result to update its internal state. This operation is
often referred to as re-keying.

Good PRNGs are designed in such a way that they satisfy the following properties:

• The adversary cannot compute the internal state of the PRNG, even if she has
observed many outputs of the PRNG.

• The adversary cannot compute the next output of the PRNG, even if she has
observed many previous outputs of the PRNG.

• If the adversary can observe or even manipulate the input samples that are fed in the
PRNG, but she does not know the internal state of the PRNG, then the adversary
cannot compute the next output and the next internal state of the PRNG.

• If the adversary has somehow learned the internal state of the PRNG, but she
cannot observe the input samples that are fed in the PRNG, then the adversary
cannot figure out the internal state of the PRNG after the re-keying operation.

An example of a widely used PRNG is the ANSI X9.17 [375] algorithm.

A.8 Advanced authentication techniques

In this section, we describe some authentication techniques that can be useful in up-
coming wireless networks, in particular, in resource constrained applications. More
precisely, we describe the concepts of hash chains, Merkle-trees, and the TESLA
protocol. Hash chains and Merkle-trees can be used to amortize the cost of a dig-
ital signature over several transactions, whereas the TESLA protocol can be used
for authenticating broadcast messages efficiently using simple symmetric-key MAC
functions.
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A.8.1 Hash chains

A hash chain is a sequence of hash values that are computed by iteratively calling a
one-way hash function on an initial value. Let us denote the initial value by v0 and
the hash function by h. Then, the i-th element vi of the hash chain is computed as
vi = h(vi−1) = h(i)(v0).

An important property of the hash chain is that its elements can be easily computed
in one direction, but not in the reverse direction. In other words, if someone knows vi,
then she can compute any vj = h(j−i)(vi) for any j > i, but she cannot compute any
vk for k < i. This property stems from the one-way property of the hash function.

A hash chain can be used for repeated authentications at the cost of a single digital
signature (and at the cost of the computation and storage of the hash chain, of course).
For this purpose, the entity that wants to authenticate itself first computes a hash
chain v0, v1, . . . , vn of length n, and digitally signs the last element vn. By doing this,
the entity commits to the hash chain. The digital signature can be verified by anyone
using the public signature verification key of the entity. Later on, the entity can
authenticate itself repeatedly (at most n times) by revealing the elements of the hash
chain in reverse order. More precisely, at the i-th authentication, the entity reveals
vn−i. The verifier can hash this value i times and check if the result matches vn that
has been signed by the entity. Alternatively, the verifier can remember the last used
hash chain element vn−i+1, and she can verify vn−i with a single hash computation.

In the above described repeated authentication scheme, hash chain elements are
used and accepted only once. This ensures that when vn−i is accepted, the elements
vn−i+1, . . . , vn−1 can no longer be used. In addition, due to the one-way property of
the hash chain, the elements vn−i−1, . . . , v0 that can still be used for authentication
cannot be computed by anybody else but the entity that knows v0. This assures the
verifier that if she sees any of the elements vn−i−1, . . . , v0, then it must have been
revealed by the entity that committed to the hash chain with its signature.

Finally, we note that hash chains can be stored efficiently with a storage complexity
that is logarithmic in the length n of the hash chain. The reader is referred to [102]
for the details.

A.8.2 Merkle trees

A property that limits the application of hash chains in some applications is that the
elements can only be revealed sequentially. Merkle-trees overcome this problem by
allowing for the pre-authentication of a set of values with a single digital signature
(like in the case of hash chains) and for the revelation of those values in any order
(unlike in the case of hash chains).

The operation of Merkle-trees can be summarized as follows: Let the set of values
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that we want to authenticate be v1, v2, . . . , v2` . First of all, we hash each value vi

into v′i with a one-way hash function. Then, we assign the hashed values to the leaves
of a binary tree. Moreover, to each internal vertex u of this tree, we assign a value
that is computed as the hash of the values assigned to the two children of u. Finally,
we digitally sign the value assigned to the root of the tree. Later, when we want
to authenticate any of the values vi, we reveal vi and all the values assigned to the
siblings of the vertices on the path from v′i to the root. The verifier can hash these
values in the appropriate order and compare the result to the value assigned to the
root (and signed digitally previously). If the two values match, then the value vi

that has just been revealed from the tree is accepted by the verifier as authentic (i.e.,
coming from the same entity who computed the tree and digitally signed the root).
These operating principles are illustrated in Figure A.12.

v1 v2 v3 v4 v5 v6 v7 v8

v1' = h(v1) v2' = h(v2) v3' = h(v3) v4' = h(v4) v5' = h(v5) v6' = h(v6) v7' = h(v7) v8' = h(v8)

u12 = h(v1' || v2') u34 = h(v3' || v4') u56 = h(v5' || v6') u78 = h(v7' || v8')

u1234 = h(u12 || u34) u5678 = h(u56 || u78)

u0 = h(u1234 || u5678)

Fig. A.12. Illustration of the operating principles of Merkle-trees. The hash value of the
values we want to authenticate are assigned to the leaves of the tree. The value assigned to
an internal vertex of the tree is computed as the hash value of the values assigned to the
children of that vertex. The value assigned to the root is signed and distributed. When
authenticating a value, we reveal the value itself, and the values assigned to the siblings of
the vertices on the path from the revealed leaf to the root. For instance, the figure shows
that value v3 is authenticated by revealing v3, v′4, u12, and u5678 (the black vertices). The
verifier can compute h(h(u12‖h(h(v3)‖v′4))‖u5678) and compare the result to the value u0

assigned to the root. If there is a match, then v3 is authenticated.

Note that due to the one-way property of the hash function, we cannot use the re-
vealed value vi and the values assigned to the siblings to compute an as yet unrevealed
value vj . This ensures that the values can be revealed in any order.



A.8 Advanced authentication techniques 419

A.8.3 Broadcast authentication with TESLA

Wireless communication has a broadcast nature: a message transmitted by a wireless
device is received by many (potentially all) other wireless devices in the power range
of the first device. Many protocols take advantage of this broadcast property. A fre-
quently recurring problem in this context is that of authenticating broadcast messages.
The requirement of broadcast authentication is that messages can be authenticated
by their senders in such a way that all receivers can verify them.

The “standard” solution to the broadcast authentication problem is to use digi-
tal signatures. By definition, the digital signature of the sender can be verified by
all other devices, with the help of the public signature verification key of the sender.
However, in some resource constrained environments (e.g., in RFID systems or in sen-
sor networks), it could be infeasible to implement a digital signature scheme. Hence,
we need an alternative solution to the broadcast authentication problem that prefer-
ably uses only symmetric-key cryptographic primitives. A promising candidate is the
TESLA protocol [309] that provides services that are similar to those provided by
digital signatures, but it uses only hash functions and symmetric-key MAC functions.
The trade-off is that the services provided by TESLA are delayed, meaning that the
authenticity of messages cannot be verified immediately upon their reception.

The main idea of the TESLA protocol is simple, yet powerful. Each sender has a
one-way key chain (i.e., a hash chain where the elements are used as cryptographic
keys) and a key disclosure schedule according to which the sender releases the elements
of this key chain. The elements of the key chain are released in reverse order, as with
normal hash chains. When authenticating a broadcast message, the sender computes
a MAC value for the message using a key K from her key chain that is not expected
to be disclosed by the time the message is received by the receivers. Hence, when the
message is received, the receivers cannot verify its MAC value, because they do not
know K yet. Therefore, the receivers cache the message, and wait until the sender
releases K. When this happens, every receiver can verify the MAC value. As the
receivers know that no one but the sender knew K when the message was received,
they are assured that the message was indeed sent by the sender.

The receivers must be able to verify that the key disclosed by the sender belongs
to her key chain. This can be ensured in a similar way with hash chains. In other
words, the last element of the key chain can be authenticated and distributed to every
receiver. The authentication of the last element of the key chain can be based on a
digital signature, or on a separate MAC value computed for each receiver (assuming
that the sender shares a symmetric key with every receiver).

In addition, when receiving a message, the receivers must be able to verify that the
key that was used to compute the MAC value has not been disclosed yet. For this



420 Introduction to cryptographic algorithms and protocols

reason, the receivers must know the key disclosure schedule of the sender, and their
clocks must be loosely synchronized with the clock of the sender.

Due to the way the key chain is constructed, when a key Ki is disclosed, anybody
can compute all the previously disclosed keys Kj (j > i). Thus, if a receiver missed
the reception of a key Kj (e.g., due to some interference), then she can still compute
Kj later, when any key Ki (i < j) is released. This ensures the robustness of the
protocol, even in a lossy environment.

A.9 To probe further

The ultimate source of information about the operation of cryptographic algorithms
and protocols is the Handbook of Applied Cryptography [268] written by Menezes,
van Oorschot, and Vanstone. The reader can find there the descriptions of most of
the cryptographic schemes that we have mentioned as examples in this appendix.
Another popular source of information on cryptographic algorithms and protocols is
the book of Schneier [335], which includes the source code of many cryptographic
algorithms in C. There are also many good textbooks on cryptography where the
main concepts are explained in a scholarly manner. An example is the textbook by
Stinson [356], which is used as the basis for undergraduate Cryptography courses at
many universities around the world.

A comprehensive treatment of authentication and session key establishment proto-
cols can be found in the book of Boyd and Mathuria [62].

The TESLA protocol has been published by Perrig, Canetti, Tygar, and Song in
[309]. A similar idea was described earlier by Cheung in [97]. More details on the
application of hash chains and Merkle-trees in wireless networks can be found in [177].

Finally, we must note that at the time of this writing SHA-1 is about to be broken.
This means that apparently there is a way to generate collisions against SHA-1 with
much less effort than that of the birthday attack. The interested reader is referred to
[369, 368] for the details.

A.10 Questions

(a) How does the exhaustive key search attack work when the adversary can ob-
tain only ciphertexts, but she knows that the plaintext messages have some
redundancy (e.g., contain parity bits)?

(b) In the case of the ElGamal encryption, why is it important that each message
is encrypted with a different random number r?

(c) Why does collision resistance imply weak collision resistance? Try to prove it.
(d) Why is it important that the length of the message is included in the CBC-
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MAC computation? How would MAC forgery be possible if the length was not
included?

(e) Try to correct the Wide Mouth Frog protocol so that it resists the attack
described in Section A.6.

(f) What are the advantages and disadvantages of nonces compared to times-
tamps?



Appendix B

A tutorial on game theory for wireless
networks

B.1 Introduction

As we have mentioned in Chapter 3, the way of the future for the proper operation of
wireless networks consists in the deployment of appropriate rule enforcement mecha-
nisms. These mechanisms should prevent or discourage malicious and selfish behavior.
The design of the latter can tremendously benefit from game theoretic modeling.

Game theory [141, 147, 291] is a discipline aimed at modeling situations in which
decision-makers have to make specific actions that have mutual, possibly conflicting,
consequences. It has been used primarily in economics, in order to model competition
between companies: for example, should a given company enter a new market, con-
sidering that its competitors could make similar (or different) moves? Game theory
has also been applied to other areas, including politics and biology.1

In wireless networks, the players can be either wireless stations striving to obtain as
much possible bandwidth from the (shared) medium; or they can be wireless operators
aimed at increasing their market share or their revenue. It is clear that in both cases,
the actions of a given player can affect other players, sometimes in a negative way.

In this tutorial, we carefully explain how situations of this kind can be modeled
by making use of game theory; for the sake of simplicity, we restrict ourselves in this
appendix to the case in which the players are wireless stations (the reader interested
in the interactions between operators should refer to Chapter 11). By leveraging on
four simple running examples, we introduce the most fundamental concepts of non-
cooperative game theory.2 This approach should help students and scholars to quickly
master this fascinating analytical tool without having to read the existing lengthy,
1 The name of “game theory” itself can be slightly misleading, as it can be associated with parlor

games such as chess and checkers. Yet, this connection is not completely erroneous, as parlor
games do have the notion of players, payoffs, and strategies - concepts that we will introduce
shortly.

2 Another branch of game theory focuses on “cooperative games”; these games require additional
signalization or agreements between the decision-makers and hence a solution based on them
might be more difficult to realize.

422
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economics-oriented books; it should also assist them in better understanding Part III
of this book and in modeling problems of their own. As game theory is still rarely
taught in engineering and computer science curricula, we assume the reader to have
no (or very little) background in this field; therefore, we take a basic and intuitive
approach.

In the examples that we will develop, the players of the game are devices willing to
transmit or receive data (e.g., packets). They have to cope with a limited transmission
resource (i.e., the radio spectrum), meaning that they have conflicting interests. In
an attempt to resolve this conflict, they can make certain moves such as transmitting
now or later; changing their transmission channel; or adapting their transmission rate.

Of course, each device is used by a (human) user, who could give it to another user,
but for the sake of simplicity we will consider that each device is bound to a given
user. It makes more sense to consider that the device (and not the human user) is
the player, because the decisions that the device makes are conditioned by the way
the device is programmed. We will thus use the two terms “device” and “player”
interchangeably.

In compliance with the practice of game theory, we assume that the players are
rational , which means that they try to maximize their payoff or alternatively to
minimize their costs.3 This assumption of rationality is often questionable, given
for example the altruistic behavior of some animals, but we believe that most of
the interactions (even those that seem to be irrational) can be captured using the
concept of rationality, with the appropriate adjustment of the payoff function. In
order to maximize their payoff, the players act according to their strategies. The
strategy of a player can be a single move (as we will see in Section B.2) or a set of
moves during the game (as we present in Section B.4).

In this tutorial, we devote particular attention to the selection of the examples so
that they match our focus on wireless networks. For the sake of clarity (and in com-
pliance with traditional examples), we define these examples for two decision-makers,
hence the corresponding games are two-player games. Note that the applications of
game theory extend beyond two-player games. In most networking problems, there
are several participants.

We took an intuitive top-down approach in the protocol stack to select the examples
in wireless networking as follows. Let us first assume that the time is divided into
time slots and each device can make one move in each time slot.

(a) In the first game called the Forwarder’s Dilemma4, we assume that there exist

3 In game theory, one usually uses the concept of payoff maximization, whereas the cost min-
imization comes from control theory. As it is more appropriate for this tutorial, we use the
payoff maximization objective.

4 We have chosen this name as a tribute to the famous Prisoner’s Dilemma game in the classic
Game Theory literature [35, 147, 141, 291].
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p1 p2 r1r2

Fig. B.1. The Forwarder’s Dilemma game.

p1 p2 rse

Fig. B.2. The Joint Packet Forwarding Game.

two devices as players, p1 and p2. Each of them wants to send a packet to
her receiver, r1 and r2 respectively, in each time slot using the other player
as a forwarder. We assume that the communication between a player and her
receiver is possible only if the other player forwards the packet. We show the
Forwarder’s Dilemma scenario in Figure B.1. If player p1 forwards the packet
of p2, it costs player p1 a fixed cost 0 < c << 1, which represents the energy
and computation spent for the forwarding action. By doing so, she enables
the communication between p2 and r2, which gives p2 a benefit5 1. The payoff
is the difference of the benefit and the cost. We assume that the game is
symmetric and the same reasoning applies to the forwarding move of player
p2. The dilemma is the following: Each player is tempted to drop the packet
she should forward, as this would save some of her resources; but if the other
player reasons in the same way, then the packet that the first player wanted
to be relayed will be dropped. However, they could do better by mutually
relaying each other’s packet. Hence the dilemma.

(b) In the second example, we present a scenario, in which a sender se wants to
send a packet to her receiver r in each time slot. To this end, she needs both
devices p1 and p2 to forward for her. Thus, we call this game the Joint Packet
Forwarding Game. Similarly to the previous example, there is a forwarding
cost 0 < c << 1 if a player forwards the packet of the sender. If both players
forward, then they each receive a benefit of 1 (e.g., from the sender or the
receiver). We show this packet forwarding scenario in Figure B.2.

5 Many authors, especially in Computer Science, tend to call this value the “utility”. We refrain
from doing so, because in Game Theory the function expressing the way the payoff is computed
is called the “utility function”.
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(c) The third example, called Multiple Access Game6, introduces the problem of
medium access. Assume that there are two players p1 and p2 who want to send
some packets to their receivers r1 and r2 using a shared medium. We assume
that the players have a packet to send in each time slot and they can decide to
transmit it or not. Suppose furthermore that p1, p2, r1 and r2 are in the power
range of each other, hence their transmissions mutually interfere. If player p1

transmits her packet, she incurs a transmission cost of 0 < c << 1, similarly
to the previous examples. The packet transmission is successful if p2 does not
transmit (stays quiet) in that given time slot, otherwise there is a collision. If
there is no collision, player p1 gets a benefit of 1 from the successful packet
transmission.

(d) In the last example, we assume that player p1 wants to transmit a packet in each
time slot to a receiver r1. In this example, we assume that the wireless medium
is split into two channels ch1 and ch2 according to the Frequency Division
Multiple Access (FDMA) principle [316, 336]. The objective of the malicious
player p2 is to prevent player p1 from a successful transmission by transmitting
on the same channel in the given time slot. In wireless communication, this is
called jamming, hence we refer to this game as the Jamming Game.7 Clearly,
the objective of p1 is to succeed in spite of the presence of p2. Accordingly,
she receives a payoff 1 if the attacker cannot jam her transmission and she
receives a payoff of −1 if the attacker jams her packet. The payoffs for the
attacker p2 are the opposite of those of player p1. We assume that p1 and r1

are synchronized, which means that r1 can always receive the packet, unless it
is destroyed by the malicious player p2. Note that we neglect the transmission
cost c, because it applies to each payoff (i.e., the payoffs would be 1 − c and
−1− c) and does not change the conclusions drawn from this game.

We deliberately chose these examples to represent a wide range of problems over
different protocol layers (as shown in Figure B.3). There are indeed fundamental
differences between these games. The Forwarder’s Dilemma is a symmetric nonzero-
sum game, because the players can mutually increase their payoffs by cooperating
(i.e., from zero to 1 − c). The conflict of interest is that they have to provide the
packet forwarding service for each other. Similarly, the players have to establish the
packet forwarding service in the Joint Packet Forwarding Game, but they are not in
a symmetric situation anymore. The Multiple Access Game is also a nonzero-sum
game, but the players have to share a common resource, the wireless medium, instead
of providing it. Finally, the Jamming Game is a zero-sum game because the benefit
6 In the classic game theory textbooks, this type of game is referred to as the “Hawk-Dove” game,

or sometimes the “Chicken” game.
7 In the classic game theory literature, this game corresponds to the game of “Matching Pennies.”
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physical layer

medium access layer

networking layer

upper layers

Jamming Game

Joint Packet 
Forwarding Game

Multiple Access Game

Forwarder's Dilemma

Fig. B.3. Classification of the examples according to protocol layers.

of one player represents the loss of the other player, meaning that
∑

i∈N (benefiti −
costi) = 0. These properties lead to different games and hence to different strategic
analyses, as we will explain in the next section.

B.2 Static games

In this section, we assume that there exists only one time slot, which means that the
players have only one move as a strategy. In the game-theoretic terms this is called a
static game. We will demonstrate how game theory can be used to analyze the games
introduced before and to identify the possible outcomes of the strategic interactions
of the players.

B.2.1 Static games in strategic form

We define a game G = (P, S, U) in strategic form (or normal form) by the following
three elements. P is the set of players. As mentioned, we restrict ourselves to two
players p1, p2 ∈ P in our examples, but we present each definition such that it holds
for any number of players. For convenience, we will designate by subscript −i all
the players belonging to P except i himself. These players are often designated as
being the opponents of i. In our games, player i has one opponent referred to as j. Si

corresponds to the pure-strategy of player i. This means that the strategy assigns zero
probability to all moves, except one (i.e., it clearly determines the move to make). We
will see in Section B.2.4, that the players can also use mixed strategies, meaning that
they choose different moves with different probabilities. We designate the joint set of
the strategy spaces of all players as follows S = S1× · · ·×S|P |. We will represent the
pure-strategy space of the opponents of player i by S−i = S\Si. The set of chosen
strategies constitutes a strategy profile s = {s1, s2}. Note that our examples have two
players and thus we refer to the strategy profile of the opponents as s−i = sj ∈ S.
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The payoff ui(s) (also written ui(s1, s2)) expresses the benefit of player i given the
strategy profile s.8 In the examples of this Appendix, we have U = {u1(s), u2(s)}.

At this point of the discussion, it is very important to explicitly state that we
consider the game to be with complete information.

Definition B.1 A game with complete information is a game in which each player
has full knowledge of all aspects of the game.

In particular, complete information means that the players know each element in
the game definition: (i) who the other players are, (ii) what their possible strategies
are and (iii) what payoff will result for each player for any combination of moves.
One should be careful not to confuse the concept of complete information with the
concept of perfect information, a concept we will present in detail in Section B.3.3.

Let us first study the Forwarder’s Dilemma in a static game. As mentioned before,
in a static game there is only one time slot. The players can decide to forward (F )
the packet of the other player or to drop it (D); this decision represents the strategy
of the player. As mentioned earlier, this is a nonzero-sum game, because by helping
each other to forward, they can achieve an outcome that is better for both players
than mutual dropping.

Matrices provide a convenient representation of strategic-form games with two play-
ers. We can represent the Forwarder’s Dilemma game as shown in Table B.1. In this
table, p1 is the row player and p2 is the column player. Each cell of the matrix corre-
sponds to a possible combination of the strategies of the players and contains a pair
of values representing the payoffs of players p1 and p2, respectively.

p2

F D

p1
F (1-C,1-C) (-C,1)
D (1,-C) (0,0)

Table B.1. The Forwarder’s Dilemma game in strategic form, where p1 is the row player and
p2 is the column player. Each of the players has two strategies: to forward (F ) or to drop
(D) the packet of the other player. In each cell, the first value is the utility of player p1,
whereas the second is the utility of player p2.

B.2.2 Iterated dominance

Once the game is expressed in strategic form, it is usually interesting to solve it. Solv-
ing a game means predicting the strategy of each player, considering the information
8 As we already mentioned, the payoff is the result of the computation of a “utility function”, which

is the reason why it is usually designated by letter u. Note that the utility functions might be
different for the two players, as for example in the Jamming Game.
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the game offers and assuming that the players are rational. There are several possible
ways to solve a game; the simplest one consists in relying on strict dominance.

Definition B.2 Strategy s
′
i of player i is said to be strictly dominated by her

strategy si if,

ui(s
′
i, s−i) < ui(si, s−i),∀s−i ∈ S−i (B.1)

Coming back to the example of Table B.1, we solve the game by iterated strict dom-
inance (i.e., by iteratively eliminating strictly dominated strategies). If we consider
the situation from the point of view of player p1, then it appears that for her the F

strategy is strictly dominated by the D strategy (indeed, 1 − c < 1; −c < 0). This
means that we can eliminate the first row of the matrix, because a rational player p1

will never choose this strategy. A similar reasoning, now from the point of view of
player p2, leads to the elimination of the first column of the matrix. As a result, the
solution of the game is (D, D) and the payoff is (0, 0). This can seem quite paradox-
ical, as the pair (F , F ) would have led to a better payoff for each of the players. It is
the lack of trust between the players that leads to this suboptimal solution.9

Some games cannot be solved by the technique of iterated strict dominance. Let
us now study the Joint Packet Forwarding Game. The two devices have to decide
whether to forward the packet simultaneously, before the source actually sends it.10

Table B.2 shows the strategic form.

p2

F D

p1
F (1-C,1-C) (-C,0)
D (0,0) (0,0)

Table B.2. The Joint Packet Forwarding Game in strategic form. The players have two
strategies: to forward (F ) or to drop (D) the packet sent by the sender. Both players p1 and
p2 get a benefit, but only if each of them forwards the packet.

In the Joint Packet Forwarding Game, none of the strategies of any player strictly
dominates the other. If player p1 drops the packet, then the move of player p2 is
indifferent and thus we cannot eliminate her strategy D based on strict dominance.
To overcome the requirements defined by strict dominance, we define the concept of
weak dominance.
9 Unfortunately, we can find many examples of this situation in the history of mankind, such as the

arms race between countries.
10 In Section B.3, we will show that the game-theoretic model and its solution changes if we consider

a sequential move of the players (i.e., if player p2 knows the move of player p1 at the moment she
makes a move).
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Definition B.3 Strategy s
′
i of player i is said to be weakly dominated by her

strategy si if,

ui(s
′
i, s−i) ≤ ui(si, s−i),∀s−i ∈ S−i (B.2)

with strict inequality for at least one s−i ∈ S−i.

Using the concept of weak dominance, one can notice that the strategy D of player
p2 is weakly dominated by the strategy F . One can perform an elimination based on
iterated weak dominance, which results in the strategy profile (F , F ). Note, however,
that the solution of the iterated strict dominance technique is unique, whereas the
solution of the iterated weak dominance technique might depend on the sequence of
eliminating weakly dominated strategies, as explained at the end of Section B.2.3.

It is also important to emphasize that the iterated elimination techniques are very
useful, even if they do not result in a single strategy profile. These techniques can
be used to reduce the size of the strategy space (i.e., the size of the strategic-form
matrix) and thus to ease the solution process.

B.2.3 Nash equilibrium

In general, the majority of the games cannot be solved by the iterated dominance
techniques. As an example, let us consider the Multiple Access Game introduced at
the beginning. Each of the players has two possible strategies: either transmit (T )
or not transmit (and thus stay quiet) (Q). As the channel is shared, a simultaneous
transmission of both players leads to a collision. The game is represented in strategic
form in Table B.3.

p2

Q T

p1
Q (0,0) (0,1-c)
T (1-c,0) (-c,-c)

Table B.3. The Multiple Access Game in strategic form. The two moves for each player are:
transmit (T ) or be quiet (Q).

It can immediately be seen that no strategy is dominated in this game. To solve
the game, let us introduce the concept of best response. If player p1 transmits, then
the best response of player p2 is to be quiet. Conversely, if player p2 is quiet, then p1

is better off transmitting a packet. We can express the best response of player i to
an opponents’ strategy vector s−i as follows.

Definition B.4 The best response bri(s−i) of player i to the profile of strategies
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s−i is a strategy si such that:

bri(s−i) = arg max
si∈Si

ui(si, s−i) (B.3)

One can see that if two strategies are mutual best responses to each other, then
no player has incentive to deviate from the given strategy profile. In the Multiple
Access Game, two strategy profiles exist with the above property: (Q, T ) and (T , Q).
To identify such strategy profiles in general, Nash introduced the concept of Nash
equilibrium in his seminal paper [280]. We can formally define the concept of Nash
equilibrium (NE) as follows.

Definition B.5 The pure-strategy profile s∗ constitutes a Nash equilibrium if, for
each player i,

ui(s∗i , s
∗
−i) ≥ ui(si, s

∗
−i), ∀si ∈ Si (B.4)

This means that in a Nash equilibrium, none of the users can unilaterally change
her strategy to increase her payoff. Alternatively, a Nash equilibrium is a strategy
profile comprised of mutual best responses of the players.

A Nash equilibrium is strict [161] if we have:

ui(s∗i , s
∗
−i) > ui(si, s

∗
−i), ∀si ∈ Si (B.5)

It is easy to check that (D, D) is a Nash equilibrium in the Forwarder’s Dilemma
game represented in Table B.1. This corresponds to the solution obtained by iterated
strict dominance. This result is true in general: Any solution derived by iterated strict
dominance is a Nash equilibrium. The proof of this statement is presented notably in
[141]. In the Multiple Access Game, however, the iterated dominance techniques do
not help us derive the solutions. Fortunately, using the concept of Nash equilibrium,
we can identify the two pure-strategy Nash equilibria: (Q, T ) and (T , Q). Note that
there can be more than one best response bri(s−i). For example in the Joint Packet
Forwarding Game presented in Table B.2, player p2 has two best responses (D or F)
to the move D of player p1. Multiple best responses are the reason why the solutions
of the iterated weak dominance technique in a given game might depend on the order
of elimination.

B.2.4 Mixed strategies

In the examples so far, we have considered only pure strategies, meaning that the
players clearly decide on one behavior or another. But in general, a player can decide
to play each of these pure strategies with some probabilities. Referring to our context,
this means for example that a node decides to transmit sometimes, but not always.
In game-theoretic terms such a behavior is called a mixed strategy.
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Definition B.6 The mixed strategy σi(si), or for short σi, of player i is a proba-
bility distribution over her pure strategies si ∈ Si.

Accordingly, we will denote the mixed strategy space of player i by Σi, where
σi ∈ Σi. Hence, the notion of profile, which we defined earlier for pure strategies,
is now characterized by the probability distribution assigned by each player to her
pure strategies: σ = σ1, ..., σ|P |, where |P | is the cardinality of P . As in the case of
pure strategies, we denote the strategy profile of the opponents by σ−i. For a finite
strategy space, i.e. for so called finite games11 [141], the payoff of each player i to
profile σ is then given by:

ui(σ) =
∑

si∈Si

σi(si)ui(si, σ−i) (B.6)

Each of the concepts that we have considered so far for pure strategies can also be
defined for mixed strategies. As there is no significant difference in these definitions,
we refrain from repeating them for mixed strategies.

Let us first study the Multiple Access Game. We call x the probability with which
player p1 decides to transmit, and y the equivalent probability for p2 (this means that
p1 and p2 stay quiet with probability 1− x and 1− y, respectively).

The payoff of player p1 is:

u1 = x(1− y)(1− c)− xyc = x(1− c− y) (B.7)

Likewise, we have:

u2 = y(1− c− x) (B.8)

As usual, the players want to maximize their payoffs. Let us first derive the best
response of p2 for each strategy of p1. In (B.8), if x < 1 − c, then (1 − c − x)
is positive, and u2 is maximized by setting y to the highest possible value, namely
y = 1. Conversely, if x > 1 − c, u2 is maximized by setting y = 0 (these two cases
will bring us back to the two pure-strategy equilibria that we have already identified).
More interesting is the last case, namely x = 1− c, because here u2 does not depend
on y anymore (and is always equal to 0); hence, any strategy of p2 (meaning any
value of y) is a best response. The game being symmetric, reversing the roles of the
two players leads of course to the same result. This means that (x = 1− c, y = 1− c)
is a mixed-strategy Nash equilibrium for the Multiple Access Game.

We can graphically represent the best responses of the two players (Figure B.4).
In the graphical representation, we refer to the set of best response values as the
11 The general formula for infinite strategy space is slightly more complicated. The reader can find

it in [141] or [291].
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x

y

1

1

1-c

1-c0

Fig. B.4. Best response functions in the Multiple Access Game. The best response function
of player p1 (x as a function of y) is represented by the dashed line; that of player p2 (y as a
function of x) is represented by the solid one. The two dots at the edges indicate the two pure
strategy Nash equilibria and the one in the middle shows the mixed strategy equilibrium.

best response function.12 Relying on the concept of mutual best responses, one can
identify the Nash equilibria as the crossing points of these best response “functions”.

Note that the number of Nash equilibria varies from game to game. There are
games with no pure strategy Nash equilibrium, such as the Jamming Game. We show
the strategic form of this game in Table B.4.

p2 (jammer)
ch1 ch2

p1 (sender)
ch1 (-1,1) (1,-1)
ch2 (1,-1) (-1,1)

Table B.4. The Jamming Game in strategic form.

The reader can easily verify that the Jamming Game cannot be solved by iterated
strict dominance. Moreover, this game does not even admit a pure-strategy Nash
equilibrium. In fact, there exists only a mixed-strategy Nash equilibrium in this
game that dictates each player to play a uniformly random distribution strategy (i.e.,
select one of the channels with probability 0.5).

The importance of mixed strategies is further reinforced by the following theorem
of Nash [280]. This theorem is a crucial existence result in game theory. The proof
uses the Brouwer-Kakutani fixed-point theorem and is provided in [147] for example.

12 From the calculus point of view, the set of best response values is not necessarily a function, be-
cause there might be several best responses to a given opponent strategy profile; yet the expression
“best response function” is widely used in game theory.
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Theorem B.1 (Nash, 1950) Every finite strategic-form game has a mixed-strategy
Nash equilibrium.

B.2.5 Equilibrium selection

As we have seen so far, the first step in solving a game is to investigate the existence
of Nash equilibria. Theorem B.1 states that in a broad class of games there always
exists at least one mixed-strategy Nash equilibrium. However, in some cases, such
as in the Jamming Game, there exists no pure-strategy Nash equilibrium. Once we
have verified that a Nash equilibrium exists, we have to determine if it is a unique
equilibrium point. If there is a unique Nash equilibrium, then we have to study its
efficiency. Efficiency can also be used to select the most appropriate solutions from
several Nash equilibria. Equilibrium selection means that the users have identified
the desired Nash equilibrium profiles, but they also have to coordinate which one
to choose. For example in the Multiple Access Game, both players are aware that
there exist three Nash equilibria with different payoffs, but both of them try to be
“the winner” by deciding to transmit (in the expectation that the other player will
be quiet). Hence, their actions result in a profile which is not a Nash equilibrium.
The topic of equilibrium selection is one of the hot research fields in game theory
[140, 332].

B.2.6 Essential games and robust equilibria

In practice it is unlikely that the game modeler will have specified payoff functions
that are perfectly correct. Hence a crucial question is whether equilibrium predictions
of the modeled game with payoffs u are approximate equilibrium predictions of the
“real” game with nearby payoffs û. We now define the notion of proximity in finite
games ([141] Section 12.1.2). Let

u = (ui(s))i∈I,s∈S

and

û = (ûi(s))i∈I,s∈S

denote two payoff profiles, and let

σ = (σi(si))i∈I,si∈Si

and

σ̂ = (σ̂i(si))i∈I,si∈Si
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denote two mixed strategy profiles. Let

D(u, û) = max
i∈I,s∈S

|ui(s)− ûi(s)| (B.9)

and

d(σ, σ̂) = max
i∈I,si∈Si

|σi(si)− σ̂i(si)| . (B.10)

Definition B.7 A Nash equilibrium σ of game u is essential or robust if for any
ε > 0 there exists η > 0, such that for any û such that D(u, û) < η there exists a
Nash equilibrium σ̂ of game û such that d(σ, σ̂) < ε. A game u is essential if all its
equilibrium points are essential.

B.2.7 Pareto-optimality

So far, we have seen how to identify Nash equilibria. We have also seen that there
might be several Nash equilibria, as for example in the Joint Packet Forwarding Game.
One method to identify the desired equilibrium point in a game is to compare strategy
profiles using the concept of Pareto-optimality. To introduce this concept, let us first
define Pareto-superiority.

Definition B.8 The strategy profile s is Pareto-superior to the strategy profile s
′

if for any player i ∈ N :

ui(si, s−i) ≥ ui(s
′
i, s

′
−i) (B.11)

with strict inequality for at least one player.

In other words, the strategy profile s is Pareto-superior to the strategy profile s
′
,

if there exists at least one player j, who can increase her payoff having the strategy
profile s compared to her payoff in the profile s

′
, whereas the payoff of other players

does not decrease. The strategy profile s
′
is defined as Pareto-inferior to the strategy

profile s. Note that the players might need to change their strategies simultaneously
to reach the Pareto-superior strategy profile s.

Based on the concept of Pareto-superiority, we can identify the most efficient strat-
egy profile or profiles.

Definition B.9 The strategy profile spo is Pareto-optimal if there exists no other
strategy profile that is Pareto-superior to spo.

Using the concept of Pareto-optimality, we can distinguish the Nash equilibria,
where any improvement on a player’s payoff hurts at least one other player. Hence,
these Nash equilibria are more system-efficient than the others. Note that we cannot
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define spo as the strategy profile that is Pareto-superior to all other strategy profiles,
because a game can have several Pareto-optimal strategy profiles. It is important to
stress that a Pareto-optimal strategy profile is not necessarily a Nash equilibrium.

We can now use the concept of Pareto-optimality to study the efficiency of pure-
strategy Nash equilibria in our running examples.

• In the Forwarder’s Dilemma game, the Nash equilibrium (D, D) is not Pareto-
optimal. The strategy profile (F , F ) is Pareto-optimal, but not a Nash equilibrium.

• In the Joint Packet Forwarding game, both strategy profiles (F , F ) and (D, D) are
Nash equilibria, out of them only (F , F ) is Pareto-optimal.

• In the Multiple Access Game, both pure-strategy profiles (T , Q) and (Q, T ) are
Nash equilibria and Pareto-optimal.
• In the Jamming game, there exists no pure-strategy Nash equilibrium, and all

pure-strategy profiles are Pareto-optimal.

We have seen that the Multiple Access Game (with mixed strategies) has three
Nash equilibria. It is worth mentioning that the mixed strategy Nash equilibrium
σ = (p = 1 − c, q = 1 − c) results in the expected payoffs (0, 0). Hence, this mixed
strategy Nash equilibrium is Pareto-inferior to the two pure-strategy Nash equilibria.
In fact, it can be shown in general that there does not exist a mixed-strategy profile
that is Pareto-superior to all pure-strategy profiles, because any mixed-strategy of a
player i is a linear combination of her pure-strategies with positive coefficients that
sum up to one.

B.3 Dynamic games

In the strategic-form representation it is usually assumed that the players make their
moves simultaneously without knowing what the other player does. This might be a
reasonable assumption in some problems, for example in the Multiple Access Game. In
most of the games, however, the players might have a sequential interaction, meaning
that the move of one player is conditioned on the move of the other player (i.e., the
second mover knows the move of the first mover before making her decision). These
games are called dynamic games [42] and we can represent them in an extensive form.
We say that a game is with perfect information if the players have a perfect knowledge
of all previous moves in the game at any moment they have to make a new move.

B.3.1 Extensive form with perfect information

In the extensive form, the game is represented as a tree, where the root of the tree is
the start of the game and shown with an empty circle. We refer to one level of the tree
as a stage. The nodes of a tree, denoted by a filled circle, show the possible unfolding
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of the game, meaning that they represent the sequence relation of the moves of the
players. This sequence of moves defines a path in the tree and is referred to as the
history h of the game. It is generally assumed that a single player can move when
the game is at a given node.13 This player is represented as a label on the node.
Note that this is indeed a tree, thus each node is a complete description of the path
preceding it (i.e., each node has a unique history). The moves that lead to a given
node are represented on each branch of the tree. Each terminal node (i.e., leaf) of
the tree defines a potential end of the game called outcome and it is assigned the
corresponding payoffs. In addition, we consider finite-horizon games, which means
that there exist a finite number of stages.

Note that the extensive form is a more convenient representation, but basically
every extensive form can be transformed to a strategic form and vice versa. However,
unlike strategic-form games, extensive-form games can be used to describe sequential
interactions more easily. In extensive form, the strategy of player i assigns a move
mi(h) to every non-terminal node in the game tree with the history h. For simplicity,
we use pure strategies in this section. The definition of Nash equilibrium is basically
the same as the one provided in Definition B.5.

To illustrate these concepts, let us consider the Sequential Multiple Access Game.
This is a modified version of the Multiple Access Game supposing that the two trans-
mitters p1 and p2 are not perfectly synchronized, which means that p1 always moves
first (i.e., transmits or not) and p2 observes the move of p1 before making her own
move.14 We show this extensive form game with perfect information in Figure B.5.
In this game, the strategies of player p1 are to transmit (T ) or be quiet (Q). But the
strategy of player p2 has to define a move given the previous move for player p1. Thus,
the possible strategies of p2 are TT , TQ, QT and QQ, where for example TQ means
that player p2 transmits if p1 transmits and she remains quiet if p1 remains quiet.
Thus, we can identify the pure-strategy Nash equilibria in the Sequential Multiple
Access Game. It appears that there exist three pure-strategy Nash equilibria: (T ,
QT ), (T , QQ), and (Q, TT ).

At this stage, it is useful to introduce an important existence theorem [239]. The
intuition of the proof is provided in [141].

Theorem B.2 (Kuhn, 1953) Every finite extensive-form game of perfect informa-
tion has a pure-strategy Nash equilibrium.
13 Osborne and Rubinstein [291] define a game, where a set of players can move in one node. Also,

there exist specific examples in [141], in which different players move in the same stage. For the
clarity of presentation, we do not discuss these specific examples in this tutorial.

14 In fact, this is called the carrier sense and it is the basic technique to resolve contention in the
CSMA/CA protocols [316, 336].
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p1

T

T

Q

Q

(-c,-c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

Fig. B.5. The Sequential Multiple Access Game in extensive form.

The proof relies on the concept of backward induction, which we introduce in the
following.

B.3.2 Backward induction and Stackelberg equilibrium

We have seen that there exist three Nash equilibria in the Sequential Multiple Access
Game. For example, if player p2 plays the strategy TT , then the best response of
player p1 is to play Q. We notice, however, that the claim of player p2 to play TT

is an incredible (or empty) threat. Indeed, TT is not the best strategy of player p2 if
player p1 chooses T in the first round.

We can eliminate equilibria based on such incredible threats using the technique of
backward induction. Let us first solve the Sequential Multiple Access Game presented
in Figure B.5 with the backward induction method as shown in Figure B.6.

p1

T

T

Q

Q

(-c,-c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

Fig. B.6. The backward induction solution of the Sequential Multiple Access Game in ex-
tensive form.

The Sequential Multiple Access Game is a finite game with complete information.
Hence, player p2 knows that she is the player that has the last move. For each
possible history, she predicts her best move. For example, if the history is h = T

in the game, then player p2 concludes that the move Q results in the best payoff for
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her in the last stage. Similarly, player p2 defines T as her best move following the
move Q of player p1. In Figure B.6, we represent these best choices with thick solid
lines in the last game row. Given all the best moves of player p2 in the last stage,
player p1 calculates her best moves as well. In fact, each reasoning step reduces the
extensive form game by one stage. Following this backward reasoning, we arrive at
the beginning of the game (the root of the extensive-form tree). The continuous thick
line from the root to one of the leaves in the tree gives us the backward induction
solution. In the Sequential Multiple Access Game, we can identify the backward
induction solution as h = {T, Q}. Backward induction can be applied to any finite
game of perfect information. This technique assumes that the players can reliably
forecast the behavior of other players and that they believe that the other can do
the same. Note, however, that this argument might be less compelling for longer
extensive-form games due to the complexity of prediction.

Note that the technique of backward induction is analogous to the technique of
iterated strict dominance in strategic-form games. It is an elimination method to
reduce the game. Furthermore, the backward induction procedure is a technique to
identify Stackelberg equilibria in the extensive-form game. Let us call the first mover
the leader and the second mover the follower.15 Then, we can define a Stackelberg
equilibrium as follows.

Definition B.10 The strategy profile s is a Stackelberg equilibrium with player
p1 as the leader and player p2 as the follower if player p1 maximizes her payoff subject
to the constraint that player p2 chooses according to her best response function.

Let us now derive the Stackelberg equilibrium in the Sequential Multiple Access
Game by considering how the leader p1 argues. If p1 chooses T , then the best response
for p2 is to play QQ or QT , which results in the payoff of 1− c for p1. However, if p1

chooses Q, then the best response of p2 is TQ or TT , which results in the payoff of zero
for leader p1. Hence, p1 will choose T and (T , QT ) or (T , QQ) are the Stackelberg
equilibria in the Sequential Multiple Access Game. We can immediately establish the
connection between this reasoning and the backward induction procedure.

We have seen in the above example that the leader can exploit her advantage if the
two players have conflicting goals: in this game, the leader can enforce the equilibrium
beneficial to himself.

Let us now briefly discuss the extensive form of the other three wireless networking
examples with sequential moves. In the extensive-form version of the Forwarder’s
Dilemma, the conclusions do not change. Both players will drop each others’ packets.
In the extensive form of the Joint Packet Forwarding Game, if player p1 chooses D,
15 Note that in the general description of the Stackelberg game, there might be several followers, but

there is always a single leader.
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then the move of player p2 is irrelevant. Hence by induction, we can deduce that the
Stackelberg equilibrium is (F , F ). Finally, in the Jamming Game, let us assume that
p1 is the leader and the jammer p2 is the follower. In this case, the jammer can easily
observe the move of p1 and jam. Hence, being the leader does not necessarily result
in an advantage.

B.3.3 Imperfect information and subgame perfect equilibria

In this section, we will extend the notions of history and information. As we have
seen, in the game with perfect information, the players always know the moves of
all other players when they have to make their moves. However, in the examples
with simultaneous moves (e.g., the static games in Section B.2), the players have an
imperfect information about the unfolding of the game. To define perfect information
more precisely, let us first introduce the notion of information set h(n), i.e. the
amount of information the players have at the moment they choose their moves in a
given node n. The information set h(n) is a partition of the nodes in the game tree.
The intuition of the information set is that a player being in node n of the tree is
uncertain if she is really in node n or in some other node n

′ ∈ h(n). We can now
formally define the concept of perfect information.16

Definition B.11 The players have a perfect information in the game if every
information set is a singleton (meaning that each player always knows the previous
moves of all players when she has to make her move).

It is not a coincidence that we use the same notation for the information set as
for the history. In fact, the concept of information set is a generalized version of the
concept of history.

To illustrate these concepts, let us first consider the extensive form of the original
Multiple Access Game shown in Figure B.7. Recall that this is a game with imperfect
information. The dashed line represents the information set of player p2 at the time
she has to make her move. The set of nodes in the game tree circumvented by the
dashed line means that player p2 does not know whether player p1 is going to transmit
or not at the time she makes her own move, i.e. that they make simultaneous moves.

The strategy of player i assigns a move mi(h(n)) to every non-terminal node n

in the game tree with the information set h(n). Again, we deliberately restrict the
strategy space of the players to pure strategies, but the reasoning holds for mixed
16 Note that two well-established textbooks on game theory, [141] and [291], have different definitions

of perfect information. We use the interpretation of [141], which we believe is more intuitive. The
authors of [291] define, in Chapter 6 of their book, a game with simultaneous moves also as a
game with perfect information, where the players are substituted with a set of players, who make
their moves. Accordingly, there seems to be no consensus in the research community either.
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Q

(-c,-c) (1-c,0) (0,1-c)
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(0,0)

p2 p2

Fig. B.7. The original Multiple Access Game in extensive form. It is a game with imperfect
information.

strategies as well [141, 291]. The possible strategies of each player in the Multiple
Access Game are to transmit (T ) or be quiet (Q). As we have seen before, both (T ,
Q) and (Q, T ) are pure-strategy Nash equilibria. Note that in this game, player p2

cannot condition her move on the move of player p1.
As we have seen in Section B.3.2, backward induction and the concept of Stackelberg

equilibrium can be used to eliminate incredible threats. Unfortunately, the elimination
technique based on backward induction cannot always be used. To illustrate this, let
us construct the game called Multiple Access Game with Retransmissions and solve
it in the pure strategy space. In this game, the players play the Sequential Multiple
Access Game, and they play the Multiple Access Game if there was a collision (i.e.,
they both tried to transmit). We show the extensive form in Figure B.8.

p1

T

T

Q

Q

(1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

p1

T

T

Q

Q

(-2c,-2c)

(1-2c,-c)

(-c,1-2c)

T Q

(-c,-c)

p2 p2

Fig. B.8. The Multiple Access Game with Retransmissions in extensive form. It is also a
game with imperfect information.
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Note that the players have many more strategies than before. Player p1 has four
strategies, because there exist two information sets, where she has to move; and she
has two possible moves at each of these information sets. For example, the strategy
s1 = TQ means that player p1 transmits at the beginning and she does not in the
second Multiple Access Game. Similarly, player p2 has 23 = 8 strategies, but they are
less trivial to identify. For example, each move in the strategy s2 = QTT means the
following: (i) the first move means that player p2 stays quiet if player p1 transmitted,
or (ii) p2 transmits if p1 was quiet and (iii) p2 transmits in the last stage if they both
transmitted in the first two stages. This example highlights an important point: The
strategy defines the moves for a player for every information set in the game, even
for those information sets that are not reached if the strategy is played. The common
interpretation of this property is that the players may not be able to perfectly observe
the moves of each other and thus the game may evolve along a path that was not
expected. Alternatively, the players may have incomplete information, meaning that
they have certain beliefs about the payoffs of other players and hence, they may try
to solve the game on this basis. These beliefs may not be precise and so the unfolding
of the game may be different from the predicted unfolding. Game theory covers these
concepts in the notion of Bayesian games [141], but we do not present this topic in
our tutorial due to space constraints.

It is easy to see that the Multiple Access Game with Retransmissions cannot be
analyzed using backward induction, because the Multiple Access Game in the second
stage is of imperfect information. To overcome this problem, Selten introduced a
concept called subgame perfection in [337, 161]. In Figure B.8, the Multiple Access
Game in the second stage is a proper subgame of the Multiple Access Game with
Retransmissions. Let us now give the formal definition of a proper subgame.

Definition B.12 The game G
′

is a proper subgame of an extensive-form game
G if it consists of a single node in the extensive-form tree and all of its successors
until the leaves. Formally, if a node n ∈ G

′
and n

′ ∈ h(n), then n
′ ∈ G

′
. The

information sets and payoffs of the subgame G
′
are inherited from the original game

G: This means that n and n
′

are in the same information set in G
′

if they are in
the same information set in G; and the payoff function of G

′
is the restriction of the

original payoff function to G
′
.

Now let us formally define the concept of subgame perfection. This definition
reduces to backward induction in finite games with perfect information.

Definition B.13 The strategy profile s is a Subgame Perfect Nash Equilibrium
of a finite extensive-form game G if it is a Nash equilibrium of any proper subgame
G
′
of the original game G.
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In other words, in a subgame perfect equilibrium, there is no information set in
which a player i can gain by deviating from her subgame perfect equilibrium strategy.
This is called the one-deviation property in game-theoretic terms. A reader familiar
with dynamic programming may wonder about the analogy between the optimization
in game theory and in dynamic programming [44]. Indeed, the one-deviation property
corresponds to the principle of optimality in dynamic programming, which is based on
backward induction. Hence, we can give an alternative definition of subgame-perfect
equilibria using the one-deviation property.

Definition B.14 The strategy profile s is a Subgame Perfect Nash Equilib-
rium of a finite extensive-form game G if no player i can gain by deviating from her
subgame-perfect strategy s∗i in a single stage and conform to it otherwise.

Subgame perfection provides a method to solve the Multiple Access Game with
Retransmissions. We can simply replace the Multiple Access Game subgame (the
second one with simultaneous moves) with one of her pure-strategy Nash equilibria.
Hence, we can obtain one of the game trees presented in Figure B.9. Solving the
reduced games with backward induction, we can derive the following solutions. In the
game shown in Figure B.9a, we have the subgame perfect equilibrium (QQ, TTT ).
In Figure B.9b we obtain the subgame perfect equilibria (TT , Q ∗Q), where ∗ means
any move from {T, Q}.

p1

T

T

Q

Q

(-c,1-2c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

p1

T

T

Q

Q

(1-2c,-c) (1-c,0) (0,1-c)

T Q

(0,0)

p2 p2

a) b)

Fig. B.9. Application of subgame perfection to the Multiple Access Game with Retransmis-
sions. In a) the proper subgame is replaced by one of the Nash equilibria of that game,
namely (Q, T ). Solution b) represents the case, where the subgame is replaced by the
other Nash equilibrium (T , Q). The thick lines show the result of the backward induction
procedure on the reduced game trees.

Because any game is a proper subgame of itself, a subgame-perfect equilibrium is
necessarily a Nash equilibrium, but there might be Nash equilibria in G that are not
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subgame-perfect. In fact, the concept of Nash equilibrium does not require that the
one-deviation property holds.

B.4 Repeated games

So far, we have assumed that the players interact only once and we have modeled
this interaction in a static game in strategic form in Section B.2 and partially in Sec-
tion B.3. In addition, we have seen the Multiple Access Game with Retransmissions,
which was a first example to illustrate repeated games, although the number of stages
was quite limited. As we have seen in Section B.3, the extensive form provides a more
convenient representation for sequential interactions. In this section, we assume that
the players interact several times and hence we model their interaction using a re-
peated game. The analysis of repeated games in extensive form is basically the same
as presented in Section B.3, hence we focus on the strategic form in this section. To be
more precise, we consider repeated games with observable actions and perfect recall :
This means that each player knows all moves of others, and that each player knows
her own previous moves at each stage in the repeated game.

B.4.1 Basic concepts

In repeated games, the players interact several times. Each interaction is called a
stage. Note that the concept of stage is similar to the one in extensive form, but here
we assume that the players make their moves simultaneously in each stage. The set
of players is defined similarly to the static game presented in Section B.2.1.

As a running example, let us consider the Repeated Forwarder’s Dilemma that
consists in the repetition of the Forwarder’s Dilemma stage game. In such a repeated
game, all past moves are common knowledge at each stage t. The set of the past
moves at stage t is commonly referred to as the history h(t) of the game. We call it a
history (and not an information set), because it is uniquely defined at the beginning
of each stage. Let us denote the move of player i in stage t by mi(t). We can formally
write the history h(t) as follows:

h(t) = {(m1(t), . . . , m|N |(t)), . . . , (m1(0), . . . ,m|N |(0))} (B.12)

For example, at the beginning of the third stage of the Repeated Forwarder’s Dilemma,
if both players have always cooperated so far, the history is h(2) = {(F, F ), (F, F )}.

The strategy si defines a move for player i in the next stage t + 1 for each history
h(t) of the game.17 In other words, the move of player i at stage t + 1 is defined as:

mi(t + 1) = si(h(t)) (B.13)

17 Recall that in the static game, the strategy was a single move.
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Note that the initial history h(0) is the empty set. The strategy si of player i must
define a move mi(0) for the initially empty history, which is called the initial move.
For a moment, suppose that the Repeated Forwarder’s Dilemma has only two stages.
Then one example strategy of each player is FFDFD, where the entries of the strategy
define the following behavior:(i) Forward in the first stage, i.e. as an initial move,
(ii) Forward if the history was h(1) = {(F, F )}, (iii) Drop if the history was h(1) =
{(F, D)}, (iv) Forward if the history was h(1) = {(D, F )}, and (v) Drop if the history
was h(1) = {(D, D)}. We notice the strategy space grows very quickly as the number
of stages increases: In the two-stage Repeated Forwarder’s Dilemma, we have |S| =
25 = 32 strategies for each player. Hence in repeated games, it is typically infeasible
to make an exhaustive search for the best strategy and hence for Nash equilibria.

The payoff in the repeated game might change as well. In repeated games, the
users typically want to maximize their payoff for the whole duration T of the game.
Hence, they maximize:

ui =
T∑

t=0

ui(t, s) (B.14)

In some cases, the objective of the players in the repeated game can be to maximize
their payoffs only for the next stage (i.e., as if they played a static game). We refer
to these games as myopic games as the players are short-sighted optimizers. If the
players maximize their total payoff during the game, we call it a long-sighted game.

Recall that we refer to a finite game if the number of stages T is finite. Otherwise,
we call it an infinite game. We will see in Section B.4.3 that we can also model finite
games with an unknown number of stages T by means of infinite games.

B.4.2 Nash equilibria in finite games

Let us first solve the finite Repeated Forwarder’s Dilemma using the concept of Nash
equilibrium. Assume that each player is long-sighted and wants to maximize her
total payoff. As we have seen, it is computationally infeasible to calculate the Nash
equilibria based on strategies that are mutual best responses to each other as the
number of stages increases. Nevertheless, we can apply the concept of backward
induction that we have presented in Section B.3.2. Because the game is of complete
information, the players know the end of it (they know T ). Now, in the last stage
game, they both conclude that their dominant strategy is to drop the opponent’s
packet (i.e., to play D). Given this argument, their best strategy is to play D in
the penultimate stage. Following the same argument, this technique of backward
induction dictates that the players should choose a strategy that plays D in every
stage.

As mentioned, the strategy space increases exponentially with the length of the
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game. Hence, one usually restricts the strategy space to a reasonable subset. A
widely used family of strategies is the strategies of history-1 . These strategies take
only the moves of the opponents in the previous stage into account (meaning that
they are “forgetful” strategies, because they “forget” the previous behavior of the
opponents). In the games we have considered thus far, we have two players and hence
the history-1 strategy of player i in the repeated game can be expressed by the initial
move mi(0) and the following strategy function:

mi(t + 1) = si(mj(t)) (B.15)

Accordingly, we can define the strategies in the Repeated Forwarder’s Dilemma as
detailed in Table B.5. Note that this definition of strategies can enable a feasible
analysis, even in the presence of a large number of stages.

m1(0) m1(t)|m2(t) = F m1(t)|m2(t) = D strategy function s1 name of the strategy

D D D m1(t + 1) = D Always Defect (All-D)

D F D m1(t + 1) = m2(t) Suspicious Tit-For-Tat (STFT)

D D F m1(t + 1) = m2(t) Suspicious Anti Tit-For-Tat (SATFT)

D F F m1(t + 1) = F Suspicious Always Cooperate (S-All-C)

F D D m1(t + 1) = D Nice Always Defect (Nice-All-D)

F F D m1(t + 1) = m2(t) Tit-For-Tat (TFT)

F D F m1(t + 1) = m2(t) Anti Tit-For-Tat (ATFT)

F F F m1(t + 1) = F Always Cooperate (All-C)

Table B.5. History-1 strategies of player 1 in the Repeated Forwarder’s Dilemma. The entries
in the first three columns represent: the initial move of player p1, a move of player p1 to
a previous move m2(t) = F of player p2, and the move of p1 as a response to m2(t) = D.

The bar represents the alternative move (e.g., F = D). As an example, let us highlight the
TFT strategy that begins the game with forwarding (i.e., cooperation) and then copies the
behavior of the opponent in the previous stage.

We can observe that in some strategies, such as All-D or All-C, the player does
not condition her next move on the previous move of the opponent. We refer to
these strategies as non-reactive strategies. Analogously, the strategies that take the
opponents’ behavior into account are called reactive strategies (for example, TFT or
STFT).

Let us now analyze the Repeated Forwarder’s Dilemma assuming that the players
use the history-1 strategies. The conclusion is the same as the one derived for the
single stage game.

Theorem B.3 In the Repeated Forwarder’s Dilemma, the strategy profile (All-D,
All-D) is a Nash equilibrium.

Although not proven formally, the justification of the above theorem is provided
in [35].
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B.4.3 Infinite repeated games with discounting

In the game theory literature, infinite games with discounting are used to model a
finite game in which the players are not aware of the duration of the game. Clearly,
this is often the case in strategic interactions, in particular in networking operations.
In order to model the unpredictable end of the game, one decreases the value of
future stage payoffs. This technique is called discounting. In such a game, the players
maximize their discounted total payoff :

ui =
∞∑

t=0

ui(t, s) · δt (B.16)

where δ denotes the discounting factor . The discounting factor δ determines the
decrease of the value for future payoffs, where 0 < δ < 1 (in general, we can assume
that δ is close to one). The discounted total payoff expressed in (B.16) is often
normalized, and thus we call it the normalized payoff for short:

ui = (1− δ) ·
∞∑

t=0

ui(t, s)δt (B.17)

The role of the factor 1 − δ is to let the stage payoff of the repeated game be
expressed in the same unit as the static (stage) game. Indeed, with this definition, if
the stage payoff ui(t, s) = 1 for all t = 0, 1, ..., then the normalized payoff is equal to
1, because

∑∞
t=0 δt = 1

1−δ .
We have seen that the Nash equilibrium in the finite Repeated Forwarder’s Dilemma

was a non-cooperative one. Yet, this rather negative conclusion should not affect our
morale: in most networking problems, it is reasonable to assume that the number of
iterations (e.g., of packet transmissions) is very large and a priori unknown to the
players. Therefore, as discussed above, games are usually assumed to have an infinite
number of repetitions. And, as we will see, infinitely repeated games can lead to more
cooperative behavior.

Consider the history-1 strategies All-C and All-D for the players in the Repeated
Forwarder’s Dilemma. Thanks to the normalization in (B.17), the corresponding
normalized utilities are exactly those presented in Table B.1. A conclusion similar to
the one we drew in Section B.4.2 can be directly derived at this time. The strategy
profile (All-D, All-D) is a Nash equilibrium: If the opponent always defects, the best
response is All-D. A sketch of proof is provided (for the Prisoner’s Dilemma) in [141].

To identify other Nash equilibria, let us first define the Trigger strategy. If a player
i plays Trigger, then she forwards in the first stage and continues to forward as long
as the other player j does not drop. As soon as the opponent j drops her packet,
player i drops all packets for the rest of the game. Note that Trigger is not a history-1
strategy. The Trigger strategy applies the general technique of punishments.
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If no players drops a packet, the payoffs corresponds to (F , F ) in Table B.1, meaning
that it is equal to 1− c for each player. If a player i plays mi(t) = D at stage t, her
payoff will be higher at this stage (because she will not have to face the cost of
forwarding), but it will be zero for all the subsequent stages, as player j will then
always drop. The normalized payoff of player i will be equal to:

(1− δ)
[
(1 + δ + ... + δt−1)(1− c) + δt · 1]

= 1− c + δt(c− δ) (B.18)

As c < δ (remember that, in general, c is very close to zero, whereas δ is very close
to one), the last term is negative and the payoff is therefore smaller than 1−c. In other
words, even a single defection leads to a payoff that is smaller than the one provided
by All-C. Hence, a player is better off always forwarding in this infinite game, in spite
of the fact that, as we have seen, the stage game only has (D, D) as an equilibrium
point. It can be easily proven that (Trigger, Trigger) is a Nash equilibrium and that
it is also Pareto-optimal (the intuition for the latter is the following: there is no way
for a player to go above her normalized payoff of 1−c without hurting her opponent’s
payoff). Note that by similar arguments, one can show that (TFT, TFT) is also a
Pareto-optimal Nash equilibrium, because it results in the payoff 1− c for each of the
players.

It is important to mention that the players cannot predict the end of the game
and hence they cannot exploit this information. As mentioned in [141], reducing the
information or the strategic options (i.e., decreasing her own payoff) of a player might
lead to a better outcome in the game. This uncertainty is the reason the cooperative
equilibrium appears in the infinitely repeated version of the Forwarder’s Dilemma
game.

B.4.4 The Folk theorem

We will now explore further the mutual influence of the players’ strategies on their
payoffs. We will begin by defining the notion of minmax value (sometimes called the
reservation utility). The minmax value is the lowest stage payoff that the opponents
of player i can force her to obtain with punishments, provided that i plays the best
response against them; more formally, it is defined as follows:

ui = min
s−i

[
max

si

ui(si, s−i)
]

(B.19)

This is the lowest stage payoff that the opponents can enforce on player i. Let
us denote by smin = {si,min, s−i,min} the strategy profile for which the minimum is
reached in (B.19). We call the s−i,min the minmax profile against player i within the
stage game.
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It is easy to see that player pi can obtain at least her minmax value ui in any stage
and hence we call feasible payoffs the payoffs higher than the minmax payoff. In
the Repeated Forwarder’s Dilemma, the feasible payoffs for any player p1 are higher
than 0. Indeed, by playing s1=All-D, she is assured to obtain at least that value, no
matter what the strategy of p2 can be. A similar argument applies to player p2. Let
us graphically represent the feasible payoffs in Figure B.10. We highlight the convex
hull of payoffs that are strictly non-negative for both players as the set of feasible
payoffs.

u2

(1-c,1-c)

u1

1

1

(1,-c)

(-c,1)

(0,0)

feasible payoffs

Fig. B.10. The feasible payoffs in the Repeated Forwarder’s Dilemma.

The notion of minmax that we have just defined refers to the stage game, but it has
a very interesting application in the repeated game, as the following theorem shows.

Theorem B.4 Player i’s normalized payoff is at least equal to ui in any equilibrium
of the infinitely repeated game, regardless of the level of the discount factor.

The intuition can be obtained again from the Repeated Forwarder’s Dilemma: a
player playing All-D will obtain a (normalized) payoff of at least 0. The theorem is
proven in [141].

We are now in a position to introduce a fundamental result that is of high relevance
to our framework: the Folk Theorem.18

Theorem B.5 (Folk Theorem) For every feasible payoff vector u = {ui}i with

18 This denomination of “folk” stems from the fact that this theorem was part of the oral tradition
of game theorists, before it was formalized. Strictly speaking, we present the folk theorem for the
discounting criterion. There exist different versions of the folk theorem, each is proved by different
authors (as they are listed in [291] at end of Chapter 8).
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ui > ui, there exists a discounting factor δ < 1 such that for all δ ∈ (δ, 1) there is a
Nash equilibrium with payoffs u.

The intuition is that if the game is long enough (meaning that δ is sufficiently close
to 1), the gain obtained by a player by deviating once is outweighed by the loss in
every subsequent period, this loss being due to the punishment (minmax) strategy of
the other players.

Actually, we have already seen the application of this theorem in the infinite Re-
peated Forwarder’s Dilemma: A player is deterred from deviating, because the short
term gain obtained by the deviation (1 instead of 1−c) is outweighed by the risk of be-
ing minmaxed (for example using the Trigger strategy) by the other player (provided
that c < δ).

The Repeated Forwarder’s Dilemma is a two-player game, yet the Folk theorem
applies to games with more players as well.

B.5 Discussion

One of the criticisms of game theory, as applied to the modeling of human decisions, is
that human beings are rarely fully rational. Therefore, modeling the decision process
by means of a few equations and parameters is questionable. In wireless networks,
the (human) users do not interact with each other on such a fine-grained basis as
forwarding one packet or accessing the channel once. Typically, they (or the device
manufacturer, or the network operator, if any) program their devices to follow a
protocol (i.e., a strategy) and it is reasonable to assume that they rarely reprogram
their devices. Hence, such a device can be modeled as a rational decision maker. From
this point of view, the application of game theory is easier to justify for (wireless)
networking than, say, for economics, where the players are human beings.

Yet, there are several reasons the application of game theory to wireless networks
can be criticized. We detail them here, as they are usually never mentioned (for
understandable reasons...) in research papers.

benefit and cost The first issue is the notion of benefit: For example, how important
is it for a given user that a given packet is properly sent or received? This very much
depends on the situation: the packet can be a crucial message, or could just convey
a tiny portion of a figure appearing in a game. Likewise, the sensitivity to delay can
also vary dramatically from situation to situation.

Similarly, the definition of cost might be a complex issue as well. In our examples
(and in many examples of application of game theory to wireless networks), the cost
usually represents the energy consumption of the devices. In some cases, however, a
device can be power-plugged, thus its “cost” could be neglected. Likewise, a device
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whose battery is almost depleted should probably have a different evaluation of cost
than when her battery is full. Furthermore, cost can include other considerations
than energy, such as the previously mentioned delay or the consumed bandwidth.
Expressing this diversity properly in the game models is still an open research issue.

Pricing and mechanism design Mechanism design is concerned with the ques-
tion of leading the players to a desirable equilibrium by changing (designing) some
parameters of the game. In particular, pricing is considered to be a good technique
to regulate the usage of a scarce resource by adjusting the costs of the players. Many
network researchers have contributed to this field. These contributions provide a
better understanding of specific networking mechanisms.

Yet it is not clear today, even for wired networks, how relevant these contributions
are going to be in practice. Usually the pricing schemes used in reality by operators
are very coarse-grained; operators tend to charge based on investment and personnel
costs and on the pricing strategy of their competitors, and not on the instantaneous
congestion of the network. If a part of the network is frequently congested, they will
increase the capacity (deploy more base stations, more optical fibers, more switches)
rather than throttle the user consumption by pricing. From this point of view, pricing
is completely different from the cases in which it is very difficult to increase the
available capacity, as is the case for example in a road network.

Hence, an area where pricing has more practical relevance is probably for service
provisioning among operators (e.g., renting transmission capacity); but very little has
been published so far on this topic.

Infinite games As mentioned, games in networking are usually assumed to be infi-
nite, in order to capture the idea that a given player does not know when the interac-
tion with another player will stop. This is, however, not perfectly true: for example,
a given player could “know” that she is about to be turned off and moved away (e.g.,
its owner is about to finish a given session for which the player has been attached
at a given access point). Yet we believe this not to be a real problem: Indeed, the
required “knowledge” is clearly related to the application layer, whereas the games
we are considering involve networking mechanisms (and thus are typically related to
the MAC and network layers).

Discounting factor As we have seen, in the case of infinitely repeated games, it
is common practice to make use of the discounting factor. This notion is based on
applications of game theory to economics: a given capital at time t0 has “more value”
than the same amount at a later time t1 because, between t0 and t1, this capital can
generate some (hopefully positive) interest. At first sight, transposing this notion into
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the realm of networking makes sense: A user wants to send (or to receive) information
as soon as she expresses the wish to do so; in other words, now is better than later.

But this may be a very rough approximation, and the comment we made about
the benefit can be applied here as well : The willingness to wait before transmitting
a packet heavily depends on the current situation of the user and on the content of
the packet. In addition, in some applications such as audio or video streaming, the
network can forecast how the demand will evolve.

A more satisfactory interpretation of the discounting factor in our framework is
related to the uncertainty that there will be a subsequent iteration of the stage game;
for example, connectivity to an access point can be lost. With this interpretation in
mind, the discounting factor represents the probability that the current round is not
the last one.

It is important to notice that the average discounted payoff is not the only way
to express the payoff in an infinitely repeated game. Osborne and Rubinstein [291]
discuss other techniques, such as “Limit of means” and “Overtaking”. None of them,
however, captures the notion of users’ impatience. In our opinion, they are therefore
less appropriate for our purpose.

Reputation In some cases, a player can include the reputation of another player in
order to anticipate her moves; for example, a player observed to be non-cooperative
frequently in the past is likely to continue to be so in the future. If the game models
individual packet transmissions, this attitude would correspond to the suspicion that
another player has been programmed in a highly “selfish” way. These issues go beyond
the scope of this tutorial. For a discussion of these aspects, the reader is referred for
example to Chapter 9 of the book by Fudenberg and Tirole [141].

Subgame perfection The concept of subgame perfection has often been criticized
with arguments based on equilibrium selection (recall the issue from Section B.2.5).
Many researchers pointed out that if several Nash equilibria exist in a given subgame,
the players might not be able to determine how to play. As an example, they might
both play T in the Multiple Access Game with Retransmissions in the second subgame
as well. This disagreement can result in an outcome that is not an equilibrium.

Information In this tutorial, we have studied games with complete information.
This means that each player knows the identity of other players, their strategy func-
tions and the resulting payoffs or outcomes. In addition, we consider games with
observable actions and perfect recall. In wireless networking, these assumptions might
not hold: For example, due to the unexpected changes of the radio channel, a given
player may erroneously reach the conclusion that another player is behaving selfishly.
This can trigger the punishment (assuming there is one), leading to the risk of further
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retaliation, and so on. This means that, for any design of a self-enforcement protocol,
special care must be devoted to the assessment of the amount and accuracy of the
information that each player can obtain. The application of games with incomplete
and imperfect information is an emerging field in wireless networking, with very few
papers published so far.

Computational complexity Even if all the necessary information is available, com-
puting the Nash equilibria can be very complex and thus beyond the capabilities of
low-tier devices.

Mobility In highly mobile scenarios, the “players” have very short interaction time.
In a vehicular network, for example, two given vehicles can be in power range of each
other just for a fraction of a second over their whole lifetime. In such a case, the very
notion of game might not make sense.

Cooperative vs. non-cooperative games In this tutorial, we assume that each
player is a selfish individual, who is engaged in a non-cooperative game with other
players. We do not cover the concept of cooperative games, where the players might
have an agreement on how to play the game. Cooperative games include the issues
of bargaining and coalition formation. These topics are very interesting and some of
the problems found in wireless networks can be modeled using these concepts. The
interested reader is referred to [291].

B.6 Summary

In this tutorial, we showed how non-cooperative game theory can be applied to wire-
less networking. Using four simple examples, we explained how to capture wireless
networking problems in a corresponding game, and we analyzed them to predict the
behavior of players. We deliberately focused on the basic notions of non-cooperative
game theory and studied games with complete information. We modeled devices
as players, but there can be problems where the players are other participants, e.g.
network operators, as explained in Chapter 11.

B.7 To probe further

The first textbook in this area was written by von Neumann and Morgenstern, in
1944 [276]. A few years later, John Nash made a number of additional contributions
[280, 281], the cornerstone of which is the famous Nash equilibrium. Since then, many
other researchers have contributed to the field, and within a few decades game theory
has become a very active discipline; it is routinely taught in economics curricula.



B.8 Questions 453

Game theory specialists (including Nash) have recently been awarded Nobel prizes in
economics. An amazingly large number of game theory textbooks has been produced,
but all of them consider economics as the premier application area (and all their
concrete examples are inspired by that field).

This tutorial is based on three classic textbooks and we mention them here in
ascending order of complexity. Gibbons [147] provides a very nice, easy-to-read in-
troduction to non-cooperative game theory with many examples. Osborne and Ru-
binstein [291] introduce the game-theoretic concepts very precisely, yet this book is
more difficult to read because of the more formal development. This is the only book
out of these three that covers cooperative game theory as well. Finally, Fudenberg
and Tirole’s [141] book covers many advanced topics, in addition to the basic ones.

Not surprisingly, game theory has already been applied to networking, in most
cases to solve routing and resource allocation problems in a competitive environment.
We refer the reader to the “To probe further” sections of Chapters 9, 10, and 11 for
references.

A subset of these papers is included in [22]. Recently, game theory was also applied
to wireless communication (some of the papers are referenced in [351]). A recent
tutorial of game theory for wireless engineers is [258]; it provides a synthesis of lectures
on this topic.

B.8 Questions

(a) Write the extensive form of the Joint Packet Forwarding Game.
(b) Let us now consider a modified version of the Joint Packet Forwarding Game.

Suppose that player p1 can reach the destination at the cost of 2c. In this case,
she is the only one who receives the reward of 1. Hence, player p1 has the
choice to drop (D), forward to player p2 (F

′
), or forward to the destination

(F
′′
).

(1) Write the normal form of this modified game. Identify the Nash equi-
libria. Which equilibrium is Pareto-optimal?

(2) Write the extensive form. Which equilibrium is subgame perfect?

(c) In this problem, we will model the connectivity between devices as a game.
Consider the network presented in Figure B.11.

Suppose that the source S wants to send a packet to the destination D, but
it needs the help of the forwarders to do this (one or both of them). Forwarder
i has two possible moves: (a) set its power level to Pi = 0 or (b) set its power
level to Pi = P . If either of the forwarders chooses P , then it connects S with
D. If the connection is established, then both forwarder nodes get a reward
of 1 (meaning a reward of 1 for each of them), no matter who established the
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F1

F2S

D

P

P

Fig. B.11. Connectivity Game 1 with two potential forwarder nodes.

connection. But forwarding has a cost: the forwarder who chooses the power
level P has to pay the cost 2c. We assume that 2c < 1. Let us call this game
the Connectivity Game 1.

(1) Suppose that F1 chooses its power level first (F2 decides after). The
extensive-form of this game is provided in Figure B.12. Write the payoffs
on the leaves (bottom end dots) of the tree. Given that F1 is the leader,
show the Stackelberg equilibria in this game.

F1

F2

0

00

P

PP

Fig. B.12. Extensive-form of the Connectivity Game 1.
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(2) Write the corresponding normal form of the same game (in a matrix).
Identify the Nash equilibria and the Pareto-optimal strategy profiles.

(3) Let us now assume that the forwarders can use 3 power levels: Pi = 0, P
2 ,

or P . With the new power level P
2 they can only reach their immediate

neighbors, meaning that with P1 = P
2 the node F1 can reach only S

and F2. Similarly, if P2 = P
2 , the node F2 reaches only F1 and D.

Clearly, both of them have to choose a power level Pi ≥ P
2 to get

the reward 1 each. Choosing P
2 costs only c. The new game (called

Connectivity Game 2) is shown in Figure B.13. Show the normal form
of the Connectivity Game 2. Which are the Nash equilibria? Which are
the Pareto-optimal strategy profiles (states)?

F1

F2S

D

P

P

P/2

P/2

Fig. B.13. Connectivity Game 2 with two potential forwarder nodes.

(4) Let us now define a variant of the Connectivity Game 2, in which the
players have to share the reward of 1 proportionally to their contribu-
tion. For example, if P1 = P

2 and P2 = P , then F1 gets 1
3 and F2 gets

2
3 . Let us call this variant the Connectivity Game 3. Write the matrix
representation of the normal form of the Connectivity Game 3. Show
the Nash equilibria in the Connectivity Game 3 assuming that the cost
is very small (for example c = 0.05). Show the Pareto-optimal states.

(5) Assume now that in the Connectivity Game 3, c = 1
4 . Fill the normal-
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form matrix numerically. Identify Nash equilibria and Pareto-optimal
states. Compare the results with the results of the previous question.

(6) Assume now that in the Connectivity Game 3, c = 1
6 . Fill the normal-

form matrix numerically. Identify Nash equilibria and Pareto-optimal
states. Compare the results with the results of the previous two ques-
tions.

(d) What is the difference between games of imperfect and incomplete information?
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[184] J.-P. Hubaux, S. Čapkun, and J. Luo. The security and privacy of smart vehicles. IEEE

Security and Privacy Magazine, 2(3):49–55, 2004.
[185] IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) spec-

ifications. IEEE Standard 802.11, 1999.
[186] IEEE. Port-based network access control. IEEE Standard 802.1X, 2001.
[187] IEEE. Medium Access Control (MAC) security enhancements. IEEE Standard Amend-

ment 802.11i, 2004.
[188] IEEE. Physical and medium access control layers for combined fixed and mobile oper-

ation in licensed bands. IEEE Standard Amendment 802.16e, December 2005.
[189] IEEE 802.11 WG. ANSI/IEEE Std 802.11:Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) En-
hancements for Quality of Service (QoS) IEEE 802.11/D2.0. IEEE, 2001.

[190] IEEE 802.11 WG part 11a. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, High-speed Physical Layer in the 5 GHz Band, 1999.

[191] IEEE 802.11 WG part 11b. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, Higher Speed PHY Layer Extension in the 2.4 GHz Band,
1999.

[192] IEEE 802.11 WG part 11e/D4.3, Draft supplement to part 11: Wireless Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control
(MAC) Enhancements for Quality of Service (QoS) IEEE Std. 802.11e/D4.3. IEEE,
2003.

[193] IEEE 802.11 WG part 11g. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, Further Higher Speed Physical Layer Extension in the 2.4
GHz Band, 2003.

[194] IEEE 802.11e WG. Amendment : Medium Access Control (MAC) Quality of Service
(QoS) Enhancements, January 2005.

[195] IEEE P1609.2 Version 1 - Standard for Wireless Access in Vehicular Environments -
Security Services for Applications and Management Messages (In development). 2006.

[196] INTUG. International mobile roaming. An INTUG response to the DG Information
Society Second Phase Consultation on Roaming Charges April 2006, May 2006.

[197] R. Jain. The art of computer systems performance analysis. John Wiley and Sons, 1991.
[198] W. C. Jakes, editor. Microwave Mobile Communications. John Wiley & Sons, Inc. –

IEEE Press, 1994.
[199] M. Jakobsson. Payments and Diffie-Hellman key exchange (presentation slides). Private

communication with M. Jakobsson.
[200] M. Jakobsson. Ripping coins for a fair exchange. In Advances in cryptology. EURO-

CRYPT, 1995.
[201] M. Jakobsson, J.-P. Hubaux, and L. Buttyán. A micropayment scheme encouraging

collaboration in multi-hop cellular networks. In Financial Crypto, La Guadeloupe,
France, January 2003.

[202] M. Jakobsson and S. Wetzel. Security weaknesses in Bluetooth. In Progress in Cryptology
- CT-RSA 2001: The Cryptographers’ Track at RSA Conference 2001, pages 176 –, San
Francisco, CA, USA, April 2001.

[203] H. Ji and C.-Y. Huang. Non-cooperative uplink power control in cellular radio systems.
Wireless Networks (WINET), 46(3):233–240, 1998.

[204] T. Jiang and J. S. Baras. Trust evaluation in anarchy: A case study on autonomous
networks. In Proceedings of IEEE Infocom’06, Barcelona, Spain, 2006.

[205] Y. Jin and G. Kesidis. Equilibria of a noncooperative game for heterogeneous users of
an ALOHA network. IEEE Comm. Letters, 6, 2002.

[206] Y. Jin and G. Kesidis. Nash equilibria of a generic networking game with applications



467

to circuit-switched networks. In Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), San Francisco, USA, March-April 2003.

[207] R. Johari and J. N. Tsitsiklis. Routing and peering in a competitive Internet. In
Conference on Decision and Control, December 2004.

[208] D. Johnson and D. Maltz. Dynamic source and routing in ad hoc wireless networks. In
T. Imilienski and H. Korth, editors, Mobile Computing. Kluwer Academic Publishers,
1996.

[209] D. Johnston and J. Walker. Overview of IEEE 802.16 security. IEEE Security and
Privacy Magazine, 2(3):40–48, May-June 2004.

[210] A. Juels. Minimalist cryptography for low-cost RFID tags. In International Conference
on Security in Communication Networks (SCN), 2004.

[211] A. Juels. RFID security and privacy: A research survey. Technical report, RSA Labo-
ratories, September 2005.

[212] A. Juels and R. Pappu. Squealing Euros: Privacy protection in RFID-enabled ban-
knotes. In Rebecca N. Wright, editor, Proceedings of the Financial Cryptography Con-
ference, volume 2742 of Lecture Notes in Computer Science, pages 103–121, Le Gosier,
Guadeloupe, French West Indies, January 2003. IFCA, Springer-Verlag.

[213] A. Juels, R. Rivest, and M. Szydlo. The blocker tag: Selective blocking of RFID
tags for consumer privacy. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 103–111, Washington, DC, USA, October 2003.

[214] F. Kargl, A. Geiß, S. Schlott, and M. Weber. Secure dynamic source routing. In
Proceedings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS), 2005.

[215] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: attacks and
countermeasures. Elsevier’s AdHoc Networks Journal, Special Issue on Sensor Network
Applications and Protocols, 1(2–3):293–315, September 2003.

[216] B. Karp and H. T. Kung. Greedy perimeter stateless routing for wireless networks.
In Proceedings of the ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), Boston, Massachusetts, USA, August 2000.

[217] F. Kelly. Charging and rate control for elastic traffic. European Transactions on
Telecommunications, 8, 1997.

[218] Z. Kfir and A. Wool. Picking virtual pockets using relay attacks on contactless smart
card systems. In Proceedings of the IEEE/Create-Net Conference on Security and Pri-
vacy in Communication Networks (SecureComm), 2005.

[219] D. Kim, Y. Chang, and J. W. Lee. Pilot power control and service coverage support
in CDMA mobile systems. In Proceedings of IEEE Vehicular Technology Conference
(VTC’99), pages 1464–1468, 1999.

[220] Y.-B. Ko and N. H. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks.
Wireless Networks, 6(4):307–321, 2000.

[221] M. Kodialam and T. Nandagopal. Characterizing the capacity region in multi-radio
multi-channel wireless mesh networks. In Proceedings of the ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom), Cologne, Germany, 2005.

[222] R. Kohlas and U. Maurer. Confidence valuation in a public-key infrastructure based
on uncertain evidence. In Proceedings of PKC’00, volume 1751 of Lecture Notes in
Computer Science. Springer-Verlag, 2000.

[223] C. E. Koksal, H. Kassab, and H. Balakrishnan. An analysis of short-term fairness in
wireless media access protocols. In Proceedings of ACM Sigmetrics, Santa Clara, CA,
USA, 2000.

[224] J. Kong and X. Hong. ANODR: Anonymous on-demand routing with untraceable routes
for mobile ad-hoc networks. In Proceedings of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), 2003.



468

[225] J. Kong, X. Hong, and M. Gerla. Modeling ad-hoc rushing attack in a negligibility-
based security framework. In Proceedings of the ACM Workshop on Wireless Security
(WiSe), Los Angeles, CA, USA, 2006.

[226] J. Kong, Z. Ji, W. Wang, M. Gerla, and R. Bagrodia. On wormhole attacks in underwa-
ter sensor networks: A two-tier localization approach. Technical Report CSD-TR040051,
UCLA Computer Science Department, December 2004.

[227] J. Konorski. Multiple access in ad hoc wireless LANs with noncooperative stations. In
NETWORKING, volume 2345 of LNCS, Pisa, Italy, Springer, 2002.

[228] Y. Korilis, A. Lazar, and A. Orda. Architecting noncooperative networks. IEEE Jour-
nal on Selected Areas in Communications (JSAC), Special Issue on Advances in the
Fundamentals of Networking, 13(7), Sep. 1995.

[229] Y. Korilis and A. Orda. Incentive compatible pricing strategies for QoS routing. In
Proceedings of the IEEE Conference on Computer Communications (INFOCOM), New
York, NY, USA, March 1999.

[230] D. Kotz and K. Essien. Analysis of a campus-wide wireless network. In Proceedings of
the ACM/IEEE International Conference on Mobile Computing and Networking (Mo-
biCom), Atlanta, Georgia, USA, Sept. 2002.

[231] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th
Annual Symposium on Theoretical Aspects of Computer Science (STACS’99), March
1999.

[232] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In
Proceedings of the Canadian Conference on Computational Geometry, August 1999.

[233] H. Krawczyk. SIGMA. http://www.ee.technion.ac.il/ hugo/sigma.html.
[234] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed hashing for message authen-

tication. Internet RFC 2104, February 1997.
[235] P. Kruus, D. Sterne, R. Gopaul, M. Heyman, B. Rivera, P. Budulas, B. Luu, T. Johnson,

N. Ivanic, and G. Lawler. In-band wormholes and countermeasures in OLSR networks.
In Proceedings of the IEEE/Create-Net Conference on Security and Privacy in Commu-
nication Networks (SecureComm), Baltimore, MD, USA, August 2006.
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SMT, see Secure Message Transmission
SPNE, see Subgame Perfect Nash Equilibrium
SRP, see Secure Routing Protocol
SSL, 395
Stackelberg equilibrium, 438
Stage, 443
Stateless address allocation, 91
Static games, 426
Statistical independence, 397
Statistically secure, 220
Strategic form, 426
Strategy, 423, 443
Strategy profile, 426
Stream ciphers, 395
Strict dominance, 428
Subgame Perfect Nash Equilibrium, 316, 317,

441
Subscriber Identity Module, 9
Suspicious Tit-For-Tat, 333
Sybil attack, 92
Symmetric-key, 394

Tag-to-reader eavesdropping range, 242
TAPs, see Transit Access Points
Temporal Key Integrity Protocol, 20, 24
TESLA, 106, 203, 204, 405, 419
TESLA with Instant Key-disclosure, 153
TFT, see Tit-For-Tat
TIK, see TESLA with Instant Key-disclosure
TinyOS beaconing, 225
Tit-For-Tat, 333
TKIP, see Temporal Key Integrity Protocol
TLS, see Transport Layer Security
Topology-based protocols, 169
Tracking, 241
Traffic analysis, 37
Tragedy of the commons, 310
Transit Access Points, 35
Transport Layer Security, 21
Trigger strategy, 446
Trust, 73
Tunneling, 184, 197
Tunneling attack, 145

ULDs, see User-level descriptors
Ultra Wide Band, 68
UMTS, 11
Underlay systems, 68
Uniqueness, 313
Universal Mobile Telecommunication System,

359
Unlinkability, 238
Unobservability, 239
Untraceability, 238
User-level descriptors, 85
UWB, see Ultra Wide Band
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vCards, 120
VCG, see Vickrey, Clarke, and Groves
Vehicular networks, 38
Vehicular Public Key Infrastructure, 65
Vickrey, Clarke, and Groves, 380
VPKI, see Vehicular Public Key Infrastructure

Watchdog, 212
Weak collision resistance, 405
Weak dominance, 428
Well-behaved nodes, 302
WEP, see Wired Equivalent Privacy
WHS, see Wireless Hot Spot
Wide Mouth Frog protocol, 412
WiFi LANs, 14
WiFi Protected Access, 20
Wired Equivalent Privacy, 14
Wireless ad hoc networks, 36
Wireless Hot Spot, 35
Wireless Mesh Networks, 35
WMNs, see Wireless Mesh Networks
Wormhole, 142
WPA, see WiFi Protected Access

Zero-sum game, 425


