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Abstract—This paper presents a novel method for modeling
of interaction among multiple moving objects to detect traffic
accidents. The proposed method to model object interactions is
motivated by the motion of water waves responding to moving
objects on water surface. The shape of the water surface is
modeled in a field form using Gaussian kernels, which is referred
to as the Motion Interaction Field (MIF). By utilizing the
symmetric properties of the MIF, we detect and localize traffic
accidents without solving complex vehicle tracking problems.
Experimental results show that our method outperforms the
existing works in detecting and localizing traffic accidents.

I. INTRODUCTION

In these days, a large number of cameras are being installed

for traffic monitoring purposes since the demand for accident

detection and analysis is being increased. Since recent traffic

surveillance systems mostly rely on human observation, it is

difficult to monitor a large number of camera scenes at the

same time and recognize abnormal events without missing. In

order to overcome this limitation, much efforts have been tried

to develop an automatic detection method via computer vision

and pattern recognition techniques, but the level of current

technique is still limited to be applied in actual environments.

The existing methods for traffic accident detection have been

developed via three approaches: modeling of traffic flow

patterns, analysis of vehicle activities, and modeling of vehicle

interactions.
For modeling of traffic flow patterns, they use a learning

scheme to model the typical patterns of traffic flow according

to traffic rules such as go-straight, U-turn, turn-right, and

so on [1]–[3]. The typical traffic patterns are recognized as

normal events and outliers are treated as abnormal traffic

events. This approach is valid only when the normal pattern

appears at a fixed region repeatedly, so it could not detect

infrequent event such as collision. The analysis of vehicle

activities [4]–[6] is done by using motion features extracted

from moving vehicles after detecting and tracking of vehicles.

The traffic accident can be detected by analyzing pattern

changes such as distance between two vehicles, acceleration

and direction of a vehicle. The technical level of this approach

is not sufficient to be applied to actual environments because

the detection and tracking performance is not satisfactory in

crowded traffic scenes. The approach of interaction modeling

has been inspired by sociological concepts for abnormal event

detection where the social force model [7] and the intelligent

driver model [8] have been used to model the interaction

among vehicles and detect accidents. These methods do not

show sufficient performance because they use only speed

change information. In addition, they require an offline learn-

ing process with a large number of training data.

In this paper, we propose a new field-based method for mod-

eling interactions among multiple moving objects to effectively

detect and localize traffic accident without vehicle tracking

and complex learning process. The proposed interaction model

is inspired by the movement of water surface when multiple

objects are moving on water. When an object moves on water,

it pushes water molecules and creates waves where the water

surface rises up at the front of the object and falls down

at the backside of the object. This natural phenomenon is

modeled in a field form using Gaussian kernels depending

on both the speed and the direction of each moving object.

We refer to this model as the Motion Interaction Field (MIF).

In addition, we develop a criterion to detect traffic accidents

from observing MIF characteristics. Through experiments, we

show our method outperforms the state-of-the-art in detection

and localization of traffic accident in video streams.

II. THE PROPOSED METHOD

The overall scheme of the proposed method is depicted

in Fig. 1. The motion information (speed and direction) of

an object is obtained from recent optical flow algorithm1

[9] based on [10], and the motion information is used to

generate MIF for a scene. A kernel function is generated for

each optical flow instead of object since the segmentation

of an object is not always available in a crowded scene or

requires much computation. The MIF for a scene is built by

superposing the multiple kernel functions generated for each

optical flow. The MIF depicts an overall view of interactions

1The code is available in http://people.csail.mit.edu/celiu/OpticalFlow/
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Fig. 1. The overall framework of the proposed method. Best viewed in color.

among moving objects within a scene. From the MIF, we can

easily grasp the interaction status in a scene, e.g., interaction

intensity, extent of interaction, direction of interaction, and

so on. To detect abnormality, we use a measure calculated

from the shape of MIF, e.g., maximum value(intensity) and

symmetry representing direction and extent of interaction. The

localization of accident region is visualized by blending the

input video and MIF value.

A. Motion Interaction Field

The MIF illustrated as a field form in Fig. 2(c) is a new

aspect distinctive from the existing approaches where the

interaction is described by the particle’s velocity variation

with the advection method(e.g., social force model [7] and

intelligent driver model [8]) in Fig. 2(a) or by the network

of related particles(e.g., interaction energy potential [11]) in

Fig. 2(b). The proposed MIF is designed to mimic the change

of water surfaces when objects are moving on the water. When

two objects become close to each other in a water, the height

of the water surface between the two objects rises up. On the

other hand, when one follows the other in the same direction,

water surface level between the objects does not change. The

former case corresponds to a car collision and the latter case

represents the normal traffic. Hence the MIF mimicking the

water shaping can be expected to be utilized for detection of

abnormal interaction such as car collision.

To construct MIF, we design a kernel function to represent

the intensity of interaction arising from an optical flow in a

moving object. The function value should be proportional to

the speed of object because the object with high speed has

larger interaction force than the low speed objects. However,

only the speed cannot provide complete information on the

abnormality in diverse situations. For example, the collision

of two objects with low speeds is more abnormal than a

single moving object with high speed. For this reason, we also

consider the direction of the objects to measure the interaction

in the perspective of abnormality. That is, our model is

designed so that the interaction intensity between two objects

moving in opposite direction becomes larger than that between

two objects moving in the same direction. For example, two

objects moving to each other as shown in Fig. 3(c), (d) bring

a higher interaction value than two objects going in the same

direction as shown in Fig. 3(a), (b).

To make the kernel function which can describe the char-

acteristics mentioned in the above, we use two Gaussian

(a) (b)

(c) (d)

Fig. 3. Normal interaction and abnormal interaction. (a)-(b) Normal inter-
action and its MIF (c)-(d) Abnormal interaction and its MIF.

functions parameterized with direction and speed of a motion.

With image positions (xi, yi) and the corresponding velocity

(vxi , vyi), the kernel K(x, y;xi, yi) is calculated by subtrac-

tion of two Gaussians with different center positions: one is

(xi + vxi
, yi + vyi

) for forward direction and the other is

(xi − vxi
, yi − vyi

) for backward direction as follows,

(1)
K(x, y;xi, yi) = k(x, y;xi + vxi

, yi + vyi
)

− k(x, y;xi − vxi , yi − vyi),

where k(x, y;xc, yc) is the general 2D Gaussian distribution

with its center (xc, yc) as

k(x, y;xc, yc) = exp

(
−
(
(x− xc)

2

2σ2
x

+
(y − yc)

2

2σ2
y

))
. (2)

Then, we apply this kernel to all moving pixels. If we denote

the MIF as F (x, y) then,

F (x, y) =
∑
xi,yi

K(x, y;xi, yi). (3)

B. Filtering of Normal MIF

The proposed MIF shows different properties depending

on normal/abnormal events in a traffic scene. In the previous

section II-A, our kernel is designed to make the field have a

symmetric structure if traffic situation is normal. Hence the
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Fig. 2. The types for description of interaction. (a) Particle motions in Social force [7] (b) Network of neighbors in Energy potential [11] (c) Motion
interaction field in our method. Best viewed in color.

MIF in a normal region could be filtered out by checking the

symmetry of MIF. The Fig. 3 (b) shows symmetric interaction

(normal case), whereas (d) shows non-symmetric interac-

tion(abnormal case). This symmetry could be recognized by

checking the one-to-one correspondence between the set of

positive regions (red regions) and the set of negative regions

(blue regions) of MIF as shown in Fig. 3. When two cars

move side by side in parallel, the resulting field might be

merged as shown in Fig. 3 (c), but still shows symmetric

property. When multiple cars move one by one in series

with the same direction, the field still remains in symmetry

because the field between cascading cars may be cancelled

out by overlapping of positive and negative kernels. In the

abnormal traffic situation like accident, however, the symmetry

property is broken, which can be utilized as a criterion to

detect occurrence of the abnormal interaction as shown in

Fig. 3(b).

The filtering procedure does a key role in our algorithm to

improve performance in view of anomaly detection accuracy

and anomaly localization ability. In the existing algorithms for

detecting abnormal traffic situation, the abnormality is detected

by using the holistic feature such as histogram on the entire

area. In this case, the coverage of accident region takes a small

portion of scene, so the influence of the normal regions is

dominant in making the holistic feature. Hence this kind of

holistic feature may not be discriminative in detecting local

accident, while the filtering of normal MIF in our algorithm

can focus on the abnormal region and enhance the detection

performance.

Fig. 4 is a graphical explanation to remove the regions

showing symmetry. First, the interaction field is divided into

positive and negative regions by simple segmentation through

thresholding on the field magnitude. To check the one-to-

one correspondence between the set of positive regions and

the set of negative regions, each region chooses the most

similar shaped region with opposite sign(the detailed matching

procedure will be described in the next paragraph). In Fig. 4,

for example, the pair of region 2 and 5 is a one-to-one match

and so the region 2 and 5 are regarded as normal. Although

the pair region 1 and 3 is matched to each other, this pair is

not a one-to-one match because region 4 is also matched to

region 1. According to the matching result, the filtered MIF

Fs is obtained as shown in the fourth column of the Fig. 4.

To drive the matching procedure, we define the similar-

ity between the i-th positive region and the j-th negative

region, where the similarity uses the shape and the degree

of neighbors. If the two regions are not in neighbors, the

similarity is set to zero. In order to find the neighboring

regions, each region is fitted to the circle which covers the

region. If these circles are overlapped, they are defined as

neighboring regions. Fig. 4(b) shows this procedure and the

mathematical expression is defined as following

S(i, j) =

{
Sshape(i, j)

0
if ‖ci − cj‖2 < ri + rj

otherwise.
(4)

where ci, ri and cj , rj are the center positions and radii of

fitted circle of region i and j, respectively.

The shape similarity Sshape(i, j) is defined as differences

of Hu’s image moments [12]. The shape similarity is defined

as

Sshape(i, j) =
∑

k=1,...,7

∣∣∣mi
k −mj

k

∣∣∣, (5)

mi
k = sign(hi

k) · log hi
k, (6)

mj
k = sign(hj

k) · log hj
k, (7)

and hi
k, hj

k are the Hu’s image moments of region i and

j, respectively. Image moment is a weighted average of the

pixel intensities which includes shape properties of the image

such as area, centroid and degree of rotation. Among various

image moments, Hu’s set of moments are most frequently

used as a shape descriptor, because Hu’s set of moments is

invariant under translation, rotation, scale [12]. If the scene

has projective distortion, we cannot use the simple shape

feature like region area because the magnitude of optical flow

is different along the position. On the contrary, Hu’s set of

moments has invariant properties in describing the shape and

it is robust against projective distortion. With this similarity

measure, we find regions which obey the one-to-one match

rule and construct Fs by removing the one-to-one match pair

from MIF F .

C. Abnormality measure using temporal information

1) Temporal Propagation: Using the Fs the degree of

abnormality (abnormal MIF intensity) MF is defined as

MF = max
x,y

Fs(x, y). (8)
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Fig. 4. (a) Overall procedure to check the local symmetry of MIF. First we divide the interaction field into positive and negative regions. Based on the
similarity matrix by equation (4), each region chooses the most similar region with opposite sign. Then, the pair of regions which holds symmetry are filtered
out and Fs is obtained as a result. (b) The method to find the neighboring regions. First, each region is fitted to circle which covers the area. Then, the
neighboring relation is decided by checking if two circles are overlapped. Best viewed in color.

This measure does not contain temporal information because

Fs is obtained from consecutive two frames. Since there is

no motion of car after accident, this measure can detect only

a start time of the accident. To complement this weak point,

the dynamic motion of the MIF intensity is modeled by auto

regression model along the time axis, which reflects the prop-

agation property of water surface. Mathematical expression is

given as

M t
Abn =

{
M t

F + αM t−1
Abn

M t
F

if M t−1
Abn > threshold
otherwise

(9)

where M t
F indicates MF at t-frame, α is the decaying pa-

rameter representing the degree of propagation and the range

of α is 0 to 1. Each frame is then decided as either normal

or abnormal through a threshold on M t
Abn. This equation is

defined as following

Lt =

{
Abnormal
Normal

if M t
Abn > threshold
otherwise

(10)

where Lt is the final label of abnormality at t-frame.

2) Temporal Constraint in Region Matching: The number

of positive and negative regions might be changed suddenly

due to inaccurate optical flow, which occurs unexpectedly by

using sparse optical flow for real time purpose. In this case, we

regard the obtained MIF is not credible and we maintain the

previous decision on abnormality without further processing

of the region matching. The effectiveness of this constraint is

evaluated through the ROC curve in the experiments.

III. EXPERIMENTS

To validate the effectiveness of our method, we compared

our method against the Intelligence Driver Model(IDM) [8],

which is an interaction based approach without vehicle track-

ing like our method. For comparison, we used the car accident

dataset [8] containing 8 videos with sudden accidents in

traffic. Quantitative evaluation and comparison with IDM are

presented in terms of ROC curve(i.e., true positive ratio versus

false positive ratio) by varying the threshold in (10). We used

fixed parameters in all experiments of the proposed algorithm:

σx = σy = 10, α = 0.8.

Fig. 5 shows the accident detection result of the proposed

method. Columns (a) and (c) of Fig. 5 are sample frames of

normal situations from each accident videos whereas columns

(b) and (d) are the accident detection results of the proposed

method. As shown in Fig. 5, the local region of accident has

been depicted by using the intensity of MIF decided as ab-

normal, which helps us understand the degree of abnormality

and localization of abnormal accident.

Fig. 6 shows the accident localization results by the IDM

and our method. The IDM method uses a watershed segmen-

tation algorithm on gradients of IDM’s abnormality value.

Therefore, several normal regions are erroneously detected as

abnormal region as shown in Fig. 6(a). On the contrary, our

method does not use a segmentation method and just blend the

input frame with the MIF. This simple blending is sufficient to

localize the accident region because MIF has continuos value

and reflects the abnormal degree.

In Fig. 7(a), it shows a false positive example of the IDM

method, which is actually a normal event. However, the false

positive case in our method was the case of high interaction

forecasting accident to be happen even if it was not accident

as shown in Fig. 7(b).

Fig. 8 shows the ROC curves for three methods : Intel-

ligent Driver Model, the proposed method without temporal

constraint in Section II-C2, and the proposed method. The

average area under ROC(AUC) is given in Table I. As shown in

Fig. 8 and Table I, we can see our method is superior to IDM.

As mentioned in Section II-C2, it is shown that the temporal

constraint in region matching reduces the false positives and

improves the performance as shown in ROC curves in Fig. 8.

IV. CONCLUSION

Motivated by the wave of water, we developed a novel

method to depict an interaction among objects and detect
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(a) (b) (c) (d)

Fig. 5. The detection result of car accident dataset. Column (a) and (c) are the sample frames in normal situation of each video. Column (b) and (d) are the
detection results of proposed method when traffic accidents occur. Best viewed in color.

(a) (b)

Fig. 6. The accident localization of each algorithm (a) Intelligent Driver
Model (b) Proposed Method. Best viewed in color.

(a) (b)

Fig. 7. False positive example. (a) Intellient Driver Model (b) Proposed
method. Best viewed in color.

Method Area Under ROC

Intelligent Driver Model [8] 0.6270
Proposed Method without temporal constraint 0.8722

Proposed Method 0.8950

TABLE I
THE PERFORMANCE COMPARISON USING AVERAGE AREA UNDER ROC

accident events in traffic videos. It has been shown the value

and the shape of the proposed motion interaction field could

well describe the key aspects of the interaction among moving

objects. Unlike the existing methods, our method does not use

learning algorithm and can be applied to specific applications

such as detection and localization of the car accidents in traffic

videos. For this purpose, our method shows outperforming

performance compared to the existing methods. For the future

work, an extended version of our method could be tried to

general applications beyond car accidents.
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Fig. 8. The ROC curve result of each video. Blue plot is the result of IDM, Green plot is the result of proposed method without temporal constraint in
Section II-C2 and Red plot is the result of proposed method. Best viewed in color.
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