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1.1 Introduction

1Pricing is important for the design, operation, and management of communication
networks. Pricing has been used with two different meanings in the area of commu-
nication networks. One is the “optimization-oriented” pricing for network resource
allocation: it is made popular by Kelly’s seminal work on network congestion control
[2, 3]. For example, the Transmission Control Protocol (TCP) has been successfully
reverse-engineered as a congestion pricing based solution to a network optimization
problem [4,5]. A more general framework of Network Utility Maximization (NUM)
was subsequently developed to forward-engineer many new network protocols (see
a recent survey in [6]). In various NUM formulations, the “optimization-oriented”
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prices often represent the Lagrangian multipliers of various resource constraints and
are used to coordinate different network entities to achieve the maximum system
performance in a distributed fashion. The other is the “economics-based” pricing,
which is used by a network service provider to various objectives including revenue
maximization. The proper design of such a pricing becomes particularly challenging
today due to the exponential growth of data volume and applications in both wireline
and wireless networks. In this chapter, we focus on studying the “economics-based”
pricing schemes for managing communication networks.

Economists have proposed many sophisticated pricing mechanisms to extract sur-
pluses from the consumers and maximize revenue (or profits) for the providers. A
typical example is the optimal nonlinear pricing (e.g., [7, 8]). In practice, however,
we often observe simple pricing schemes deployed by the service providers. Typical
examples include flat-fee pricing and (piecewise) linear usage-based pricing. One
potential reason behind the gap between “theory” and “practice” is that the optimal
pricing schemes derived in economics often has a high implementational complex-
ity. Besides a higher maintenance cost, complex pricing schemes are not “customer-
friendly” and discourage customers from using the services [9, 10]. Furthermore,
achieving the highest possible revenue with complicated pricing schemes requires
knowing the information (identity and preference) of each customer, which can be
challenging in large scale communication networks. It is then natural to ask the
following two questions:

1. How to design simple pricing schemes to achieve the best tradeoff between
complexity and performance?

2. How does the network information structure impact the design of pricing schemes?

This chapter tries to answer the above two questions with some stylized commu-
nication network models. Different from some previous work that considered a flat-
fee pricing scheme where the payment does not depend on the resource consumption
(e.g., [9, 11, 12]), here we study the revenue maximization problem with the linear
usage-based pricing schemes, where a user’s total payment is linearly proportional
to allocated resource. In wireless communication networks, the usage-based pricing
scheme has become increasingly popular due to the rapid growth of wireless data
traffic. In June 2010, AT&T in the US switched from the flat-free based pricing (i.e.,
unlimited data for a fixed fee) to the usage-based pricing schemes for 3G wireless
data [13]. Verizon followed up with similar plans in July 2011. Similar usage-based
pricing plans have been adopted by major Chinese wireless service providers includ-
ing China Mobile and China UniCom. Thus, the research on the usage-based pricing
is of great practical importance.

In this chapter, we consider the revenue maximization problem of a monopolist
service provider facing multiple groups of users. Each user determines its optimal
resource demand to maximize the surplus, which is the difference between its utility
and payment. The service provider chooses the pricing schemes to maximize his
revenue, subject to a limited resource. We consider both complete information and
incomplete information scenarios and design different pricing schemes with different
implementational complexity levels.
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Our main contributions are as follows.

Complete network information: We propose a polynomial algorithm to com-
pute the optimal solution of the partial price differentiation problem, which in-
cludes the complete price differentiation scheme and the single pricing scheme
as special cases. The optimal solution has a threshold structure, which allocates
positive resources with priorities to users with high willingness to pay.

Revenue gain under the complete network information: Compared to the sin-
gle pricing scheme, we identify the two important factors behind the revenue
increase of the (complete and partial) price differentiation schemes: the differ-
entiation gain and the effective market size. The revenue gain is the most sig-
nificant when users with high willingness to pay are minority among the whole
population and total resource is limited but not too small.

Incomplete network information: We design an incentive-compatible scheme
with the goal to achieve the same maximum revenue that can be achieved with
the complete information. We find that if the differences of willingness to pays
of users are larger than some thresholds, this incentive-compatible scheme can
achieve the same maximum revenue. We further characterize the necessary and
sufficient condition for the thresholds.

1.1.1 Related Work

It is often quite chanllenging to design a practical pricing schemes in communication
networks. The main difficulties including dealing with the incomplete information
structure and limiting the implemtational complexity. Under incomplete network
information, customers have the private information that are known by the service
providers. The study of incomplete information is a significant part of microeco-
nomics, especially in several important branches, such as incentive theory [14], in-
formation economics [15], organization theory [16], and contract theory [17]. In
particular, there exists a rich body of literature on monopoly revenue maximization
with incomplete information, e.g., [7,8,18–26]. Mussa and Rosen in [7], and Maskin
and Riley in [8] proposed the optimal price differentiation strategies based on prod-
uct qualities and quantities, respectively. Armstrong in [22], Bakos and Brynjolfsson
in [23], and Geng at el. in [24] studied the optimal multi-product bundling schemes.
Stokey in [18], Baron and Besanko in [19], Hart and Tirole in [20], and Acquisti and
Varian in [21] focused on multi-stage price differentiation. Cabral et al. in [25], and
Aoyagi in [26] studied the pricing and revenue maximization problem with network
externalities. Though these existing results on pricing provide theoretical optimal
solutions under incomplete information, they are seldom directly applied in prac-
tice, mainly due to their high implementational complexity. In a pratical system, a
service provider often need to constrain the number of pricing choices for the cus-
tomers, either due to implementation complexity constraint or user aversion to too
many choices [27].
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However, the issue of optimal pricing design subject to complexity constraint
is less understood in the literature. One related analytical result is reference [9],
where the authers discussed complexity issue in flat-fee pricing. To the best of our
knowledge, our study about partial price differentiation is the first result about the
optimal design of limited price choices in usage-based pricing schemes. It is inter-
esting to compare our results on partial price differentiation with results in [9] and
[28]. Shakkottai et al. in [9] showed that the revenue gain of price differentiation
is small with a flat entry-fee based Paris Metro Pricing (e.g., [29]), and a compli-
cated differentiation strategy may not be worthwhile. Chau et al. [28] further derived
the sufficient conditions of congestion functions that guarantee the viability of these
Paris Metro Pricing schemes. By contrast, our results show that the revenue gain of
price differentiation can be substantial for a usage-based pricing system.

Some recent work of usage-based pricing and revenue management in communi-
cation network includes [30–38]. Basar and Srikant in [30] investigated the band-
width allocation problem in a single link network with the single pricing scheme.
Shen and Basar in [31] extended the study to a more general nonlinear pricing case
with the incomplete network information scenario. They discussed the single pricing
scheme under incomplete information with a continuum distribution of users’ types.
In contrast, our study on the incomplete information focuses on the linear pricing
with a discrete setting of users’ types. We also show that, besides the single pricing
scheme, it is also possible to design differentiation pricing schemes under incom-
plete information. Daoud et al. [32] studied an uplink power allocation problem in a
CDMA system, where the interference among users are the key constraint instead of
the limited total resource considered in this chapter. Jiang et al. in [33], Hande et al.
in [34], and Ha et al. in [35] focused on the study of the time-dependent pricing. He
and Walrand in [36], Shakkottai and Srikant in [37] and Gajic et al. in [38] focused
on the interaction between different service providers embodied in the pricing strate-
gies, rather than the design of the pricing mechanism. Besides, none of the related
work considered the partial differential pricing as in this chapter.

1.2 System Model

We consider a network with a total amount of S limited resource (which can be in
the form of rate, bandwidth, power, time slot, etc.). The resource is allocated by a
monopolistic service provider to a set I = {1, . . . , I} of user groups. Each group
i ∈ I has Ni homogeneous users2 with the same utility function:

ui(si) = θi ln(1 + si), (1.1)

where si is the allocated resource to one user in group i and θi represents the willing-
ness to pay of group i. The logarithmic utility function is commonly used to model
the proportionally fair resource allocation in communication networks (see [30] for

2A special case is Ni=1 for each group, i.e., all users in the network are different.
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detailed explanations). The analysis of the complete information case can also be
extended to more general utility functions (see Appendix A.1). Without loss of gen-
erality, we assume that θ1 > θ2 > · · · > θI . In other words, group 1 contains users
with the highest valuation, and group I contains users with the lowest valuation.

We consider two types of information structures:

1. Complete information: the service provider knows each user’s utility function.
Though the complete information is a very strong assumption, it is the most
frequently studied scenario in the network pricing literature [30–34, 36–38].
The significance of studying the complete information is two-fold. It serves
as the benchmark of practical designs and provides important insights for the
incomplete information analysis.

2. Incomplete information: the service provider knows the total number of groups
I , the number of users in each group Ni, i ∈ I, and the utility function of
each group ui, i ∈ I. It does not know which user belongs to which group.
Such assumption in our discrete setting is analogous to that the service provider
knows only the users’ type distribution in a continuum case. Such statistical
information can be obtained through long term observations of a stationary user
population.

The interaction between the service provider and users can be characterized as a
two-stage Stackelberg model shown in Fig. 1.1. The service provider publishes the
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Figure 1.1 A two-stage Stackelberg model

pricing scheme in Stage 1, and users respond with their demands in Stage 2. The
users want to maximize their surpluses by optimizing their demands according to
the pricing scheme. The service provider wants to maximize its revenue by setting
the right pricing scheme to induce desirable demands from users. Since the service
provider has a limited total resource, it must guarantee that the total demand from
users is no larger than what it can supply.

The details of pricing schemes depend on the information structure of the service
provider. Under complete information, since the service provider can distinguish dif-
ferent groups of users, it announces the pricing and the admission control decisions
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to different groups of users. It can choose from the complete price differentiation
scheme, the single pricing scheme, and the partial price differentiation scheme to
realize a desired trade-off between the implementational complexity and the total
revenue. Under incomplete information, it publishes a common price menu to all
users, and allow users to freely choose a particular price option in this menu. All
these pricing schemes will be discussed one by one in the following sections.

1.3 Complete Price Differentiation under complete information

We first consider the complete information case. Since the service provider knows
the utility and the identity of each user, it is possible to maximize the revenue by
charging a different price to each group of users. The analysis will be based on
backward induction, starting from Stage 2 and then moving to Stage 1.

1.3.1 User’s Surplus Maximization Problem in Stage 2

If a user in group i has been admitted into the network and offered a linear price pi
in Stage 1, then it solves the following surplus maximization problem,

maximize
si≥0

ui(si)− pisi, (1.2)

which leads to the following unique optimal demand

si(pi) =

(
θi
pi

− 1

)+

, where (·)+ ! max(·, 0). (1.3)

Remark 1 The analysis of the Stage 2 user surplus maximization problem is the
same for all pricing schemes. The result in (1.3) will be also used in Sections 1.4,
1.5 and 1.6.

1.3.2 Service Provider’s Pricing and Admission Control Problem in
Stage 1

In Stage 1, the service provider maximizes its revenue by choosing the price pi and
the number of admitted users ni for each group i subject to the limited total resource
S. The key idea is to perform a Complete Price differentiation (CP ) scheme, i.e.,
charging each group with a different price.

CP : maximize
p≥0,s≥0,n

∑

i∈I
nipisi (1.4)

subject to si =

(
θi
pi

− 1

)+

, i ∈ I, (1.5)

ni ∈ {0, . . . , Ni} , i ∈ I, (1.6)
∑

i∈I
nisi ≤ S. (1.7)
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where p ∆
= {pi, i ∈ I}, s ∆

= {si, i ∈ I}, and n
∆
= {ni, i ∈ I}. We use bold symbols

to denote vectors in the sequel. Constraint (1.5) is the solution of the Stage 2 user sur-
plus maximization problem in (1.3). Constraint (1.6) denotes the admission control
decision, and constraint (1.7) represents the total limited resource in the network.

The CP problem is not straightforward to solve, since it is a non-convex opti-
mization problem with a non-convex objective function (summation of products of
ni and pi), a coupled constraint (1.7), and integer variables n. However, it is possible
to convert it into an equivalent convex formulation through a series of transforma-
tions, and thus the problem can be solved efficiently.

First, we can remove the (·)+ sign in constraint (1.5) by realizing the fact that
there is no need to set pi higher than θi for users in group i; users in group i already
demand zero resource and generate zero revenue when pi = θi. This means that we
can rewrite constraint (1.5) as

pi =
θi

si + 1
and si ≥ 0, i ∈ I. (1.8)

Plugging (1.8) into (1.4), then the objective function becomes
∑
i∈I

ni
θisi
si+1 . We can

further decompose the CP problem in the following two subproblems:

1. Resource allocation: for a fixed admission control decision n, solve for the
optimal resource allocation s.

CP1 : maximize
s≥0

∑

i∈I
ni

θisi
si + 1

subject to
∑

i∈I
nisi ≤ S. (1.9)

Denote the solution of CP1 as s∗ = (s∗i (n), ∀i ∈ I). We further maximize the
revenue of the integer admission control variables n.

2. Admission control:

CP2 : maximize
n

∑

i∈I
ni

θis∗i (n)

s∗i (n) + 1
(1.10)

subject to ni ∈ {0, . . . , Ni} , i ∈ I

Let us first solve the CP1 subproblem in s. Note that it is a convex optimiza-
tion problem. By using Lagrange multiplier technique, we can get the first-order
necessary and sufficient condition:

s∗i (λ) =

(√
θi
λ

− 1

)+

, (1.11)

where λ is the Lagrange multiplier corresponding to the resource constraint (1.9).
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Meanwhile, we note the resource constraint (1.9) must hold with equality, since
the objective is a strictly increasing function in si. Thus, by plugging (1.11) into
(1.9), we have

∑

i∈I
ni

(√
θi
λ

− 1

)+

= S. (1.12)

This weighted water-filling problem (where 1√
λ

can be viewed as the water level) in
general has no closed-form solution for λ. However, we can efficiently determine
the optimal solution λ∗ by exploiting the special structure of our problem. Note that
since θ1 > · · · > θI , then λ∗ must satisfy the following condition:

Kcp∑

i=1

ni

(√
θi
λ∗ − 1

)
= S, (1.13)

for a group index threshold value Kcp satisfying

θKcp

λ∗ > 1 and
θKcp+1

λ∗ ≤ 1. (1.14)

In other words, only groups with index no larger than Kcp will be allocated the posi-
tive resource. This property leads to the following simple Algorithm 1.1 to compute
λ∗ and group index threshold Kcp: we start by assuming Kcp = I and compute λ.
If (1.14) is not satisfied, we decrease Kcp by one and recompute λ until (1.14) is
satisfied.

Algorithm 1.1

Resource-Allocation-CP({ni, θi}i∈I, S):

k ← I, λ(k)←
(∑k

i=1 ni

√
θi

S+
∑k

i=1 ni

)2

while θk ≤ λ(k)

k ← k − 1, λ(k)←
(∑k

i=1 ni

√
θi

S+
∑k

i=1 ni

)2

end while
Kcp ← k, λ∗ ← λ(k)
return (Kcp, λ∗)

End pseudo-code.

Since θ1 > λ(1) =
(

n1
s+n1

)2
θ1, Algorithm 1.1 always converges and returns the

unique values of Kcp and λ∗. The complexity is O(I), i.e., linear in the number of
user groups (not the number of users).

With Kcp and λ∗, the solution of the resource allocation problem can be written
as

s∗i =






√
θi
λ∗ − 1, i = 1, . . . ,Kcp;

0, otherwise.
(1.15)
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For the ease of discussion, we introduce a new notion of the effective market, which
denotes all the groups allocated non-zero resource. For resource allocation subprob-
lem CP1, the threshold Kcp describes the size of the effective market. All groups
with indices no larger than Kcp are effective groups, and users in these groups as
effective users. An example of the effective market is illustrated in Fig. 1.2.
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Figure 1.2 A 6-group example for effective market: the willingness to pays decrease from
group 1 to group 6. The effective market threshold can be obtained by Algorithm 1.1, and is 4
in this example.

Now let us solve the admission control subproblem CP2. Denote the objective

(1.10) as Rcp(n), by (1.15), then Rcp(n)
∆
=

Kcp∑
i=1

ni

(√
θi

λ∗(n) − 1
)√

θiλ∗(n). We

first relax the integer domain constraint of ni as ni ∈ [0, Ni]. Since (1.13), by taking
the derivative of the objective function Rcp(n) with respect to ni, we have

∂Rcp(n)

∂ni
= ni

(√
θi

λ∗(n)
− 1

)
∂
√

θiλ∗(n)

∂ni
, (1.16)

Also from (1.13), we have λ∗ =

(∑Kcp

i=i ni
√
θi

S+
∑Kcp

i=1 ni

)2

, thus ∂
√

λ∗(n)

∂ni
> 0, for i =

1, . . . ,Kcp, and ∂
√

λ∗(n)

∂ni
= 0, for i = Kcp + 1, . . . , I . This means that the ob-

jective Rcp(n) is strictly increasing in ni for all i = 1, . . . ,Kcp, thus it is optimal
to admit all users in the effective market. The admission decisions for groups not in
the effective market is irrelevant to the optimization, since those users consume zero
resource. Therefore, one of the optimal solutions of the CP1 subproblem is n∗

i = Ni

for all i ∈ I . Solving CP1 and CP2 subproblems leads to the optimal solution of
the CP problem:

Theorem 1.1 There exists an optimal solution of the CP problem that satisfies the
following conditions:

All users are admitted: n∗
i = Ni for all i ∈ I.



12 USAGE-BASED PRICING DIFFERENTIATION:INCOMPLETE INFORMATION AND LIMITED PRICING CHOICES

There exist a value λ∗ and a group index threshold Kcp ≤ I , such that only the
top Kcp groups of users receive positive resource allocations,

s∗i =






√
θi
λ∗ − 1, i = 1, . . . ,Kcp;

0, otherwise.

with the prices

p∗i =

{√
θiλ∗, i = 1, . . . ,Kcp;

θi, otherwise.

The values of λ∗ and Kcp can be computed as in Algorithm 1.1 by setting ni =
Ni, for all i ∈ I.

Theorem 1.1 provides the right economic intuition: the service provider maxi-
mizes its revenue by charging a higher price to users with a higher willingness to
pay. It is easy to check that pi > pj for any i < j. The users with low willingness to
pay are excluded from the markets.

1.3.3 Properties

Here we summarize some interesting properties of the optimal complete price differ-
entiation scheme:

1.3.3.1 Threshold structure The threshold based resource allocation means that
higher willingness to pay groups have higher priories of obtaining the resource at the
optimal solution.

To see this clearly, assume the effective market size is K(1) under parameters
{θi, N (1)

i }i∈I and S. Here the superscript (1) denotes the first parameter set. Now
consider another set of parameters {θi, N (2)

i }i∈I and S, where N (2)
i ≥ N (1)

i for
each group i and the new effective market size is K(2). By (1.13), we can see that
K(2) ≤ K(1). Furthermore, we can show that if some high willingness to pay group
has many more users under the latter system parameters, i.e., N (2)

i is much larger
than N (1)

i for some i < K(1), then the effective size will be strictly decreased, i.e.,
K(2) < K(1). In other words, the increase of high willingness to pay users will drive
the low willingness to pay users out of the effective market.

1.3.3.2 Admission control with pricing Theorem 1.1 shows the explicit admis-
sion control is not necessary at the optimal solution. Also from Theorem 1.1, we can
see that when the number of users in any effective group increases, the price p∗i , for
all i ∈ I increases and resource s∗i , for all ∀ i ≤ Kcp decreases. The prices serve
as the indications of the scarcity of the resources and will automatically prevent the
low willingness to pay users to consume the network resource.
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1.4 Single Pricing Scheme

In last section, we showed that the CP scheme is the optimal pricing scheme to
maximize the revenue under complete information. However, such a complicated
pricing scheme is of high implementational complexity. In this section we study the
single pricing scheme. It is clear that the scheme will in general suffer a revenue loss
comparing with the CP scheme. We will try to characterize the impact of various
system parameters on such revenue loss.

1.4.1 Problem Formulation and Solution

Let us first formulate the Single Pricing (SP ) problem.

SP : maximize
p≥0, n

p
∑

i∈I
nisi

subject to si =

(
θi
p
− 1

)+

, i ∈ I

ni ∈ {0, . . . , Ni} , i ∈ I
∑

i∈I
nisi ≤ S.

Comparing with the CP problem in Section 1.3, here the service provider charges a
single price p to all groups of users. After a similar transformation as in Section 1.3,
we can show that the optimal single price satisfies the following the weighted water-
filling condition

∑

i∈I
Ni

(
θi
p
− 1

)+

= S.

Thus we can obtain the following solution that shares a similar structure as complete
price differentiation.

Theorem 1.2 There exists an optimal solution of the SP problem that satisfies the
following conditions:

All users are admitted: n∗
i = Ni, for all i ∈ I.

There exist a price p∗ and a group index threshold Ksp ≤ I , such that only the
top Ksp groups of users receive positive resource allocations,

s∗i =

{
θi
p∗ − 1, i = 1, 2, . . . ,Ksp,

0, otherwise,

with the price

p∗ = p(Ksp) =

∑Ksp

i=1 Niθi

S +
∑Ksp

i=1 Ni

.
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The value of Ksp and p∗ can be computed as in Algorithm 1.2.

Algorithm 1.2

Threshold-SP ({Ni, θi}i∈I, S):

k ← I, p(k)←
∑k

i=1 Niθi
S+

∑k
i=1 Ni

while θk ≤ p(k)

k ← k − 1, p(k)←
∑k

i=1 Niθi
S+

∑k
i=1 Ni

end while
Ksp ← k, p∗ ← p(k)

return Ksp, p∗

End pseudo-code.

1.4.2 Properties

The SP scheme shares several similar properties as the CP scheme (Sec. 1.3.3),
including the threshold structure and admission control with pricing. Similarly, we
can define the effective market for the SP scheme.

It is more interesting to notice the differences between these two schemes. To
distinguish solutions, we use the superscript “cp” for the CP scheme, and “sp” for
the SP scheme.

Proposition 1 Under same parameters {Ni, θi}i∈I and S:

1. The effective market of the SP scheme is no larger than the one of the CP
scheme, i.e., Ksp ≤ Kcp.

2. There exists a threshold k̄ ∈ {1, 2 . . . ,Ksp}, such that

Groups with indices less than k̄ (high willingness to pay users) are charged
with higher prices and allocated less resources in the CP scheme, i.e.,
pcpi ≥ p∗ and scpi ≤ sspi , ∀ i ≤ k̄, where the equality holds if only if i = k̄

and θk̄ = p∗2

λ∗ ,

Groups with indices greater than k̄ (low willingness to pay users) are charged
with lower prices and allocated more resources in the CP scheme, i.e.,
pcpi < p∗ and scpi > sspi , ∀ i ≥ k̄.

where p∗ is the optimal single price.

The proof is given in Appendix A.2. An illustrative example is shown in Fig. 1.3 and
Fig. 1.4.

It is easy to understand that the SP scheme makes less revenue, since it is a fea-
sible solution to the CP problem. A little bit more computation sheds more light on
this comparison. We introduce the following notations to streamline the comparison:
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Figure 1.3 Comparison of prices between the CP scheme and the SP scheme
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Figure 1.4 Comparison of resource allocation between the CP scheme and the SP scheme

Neff (k) !
k∑

i=1
Ni: the number of effective users, where k is the size of the

effective market.

γi(k) ! Ni
Neff (k)

, i = 1, 2, . . . , k: the fraction of group i’s users in the effective
market.

s̄(k) ! S
Neff (k)

: the average resource per an effective user.

θ̄(k) !
k∑

i=1
γiθi: the average willingness to pay per an effective user.
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Based on Theorem 1.1, the revenue of the CP scheme is

Rcp(Kcp) = Neff (K
cp)

(
s̄(Kcp)θ̄(Kcp) + g(Kcp)

s̄(Kcp) + 1

)
, (1.17)

where

g(Kcp) =
1

λ∗

Kcp∑

i=1

Kcp∑

j>i

γiγj(p
cp
i − pcpj )2. (1.18)

Based on Theorem 1.2, the revenue of the SP scheme is

Rsp(Ksp) = Neff (K
sp)

(
s̄(Ksp)θ̄(Ksp)

s̄(Ksp) + 1

)
. (1.19)

From (1.17) and (1.19), it is clear to see that Rcp ≥ Rsp due to two factors: one is the
non-negative term in (1.18), the other is Kcp ≥ Ksp: a higher level of differentiation
implies a no smaller effective market. Let us further discuss them in the following
two cases:

If Kcp = Ksp, then the additional term of (1.18) in (1.17) means that Rcp ≥
Rsp. The equality holds if and only if Kcp = 1, in which case g(Kcp) = 0.
Note that in this case, the CP scheme degenerates to the SP scheme. We
name the nonnegative term g(Kcp) in (1.18) as price differentiation gain, as it
measures the average price difference between any effective users in the CP
scheme. The larger the price difference, the larger the gain. When there is no
differentiation in the degenerating case (Kcp = 1), the gain is zero.

If Kcp > Ksp, since the common part of two revenue Neff (K)
(

s̄(K)θ̄(K)
s̄(K)+1

)
=

Sθ̄Neff (K)
S+Neff (K) is a strictly increasing function of Neff (K), price differentiation
makes more revenue even if the positive differentiation gain g(Kcp) is not taken
into consideration. This result is intuitive, that more consumers with purchasing
power always mean more revenue in the service provider’s pocket.

Finally, we note that the CP scheme in Section 1.3 requires the complete net-
work information. The SP scheme here, on the other hand, works in the incomplete
information case as well. This distinction becomes important in Section 1.6.

1.5 Partial Price Differentiation under Complete Information

For a service provider facing thousands of user types, it is often impractical to de-
sign a price choice for each user type. The reasons behind this, as discussed in [10],
are mainly high system overheads and customers’ aversion. However, as we have
shown in Sec. 1.4, the single pricing scheme may suffer a considerable revenue loss.
How to achieve a good tradeoff between the implementational complexity and the
total revenue? In reality, we usually see that the service provider offers only a few
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pricing plans for the entire users population; we term it as the partial price differen-
tiation scheme. In this section, we will answer the following question: if the service
provider is constrained to maintain a limited number of prices, p1, . . . , pJ , J ≤ I ,
then what is the optimal pricing strategy and the maximum revenue? Concretely, the
Partial Price differentiation (PP ) problem is formulated as follows.

PP : maximize
ni,pi,si,pj ,aj

i

∑

i∈I
nipisi

subject to si =

(
θi
pi

− 1

)+

, ∀ i ∈ I, (1.20)

ni ∈ {0, . . . , Ni}, ∀ i ∈ I, (1.21)
∑

i∈I
nisi ≤ S, (1.22)

pi =
∑

j∈J
ajip

j , (1.23)

∑

j∈J
aji = 1, aji ∈ {0, 1}, ∀ i ∈ I. (1.24)

Here J denotes the set {1, 2, . . . , J}. Since we consider the complete information
scenario in this section, the service provider can choose the price charged to each
group, thus constraints (1.20) – (1.22) are the same as in the CP problem. Con-
straints (1.23) and (1.24) mean that pi charged to each group i is one of J choices
from the set {pj , j ∈ J }. For convenience, we define cluster Cj ∆

= {i | aji = 1}, j ∈
J , which is a set of groups charged with the same price pj . We use superscript j to
denote clusters, and subscript i to denote groups through this section. We term the
binary variables a ∆

= {aji , j ∈ J , i ∈ I} as the partition, which determines which
cluster each group belongs to.

The PP problem is a combinatorial optimization problem, and is more difficult
than the previous CP and SP problems. On the other hand, we notice that this PP
problem formulation includes the CP scheme (J = I) and the SP scheme scenario
(J = 1) as special cases. The insights we obtained from solving these two special
cases in Sections 1.3 and 1.4 will be helpful to solve the general PP problem.

1.5.1 Three-level Decomposition

To solve the PP problem, we decompose and tackle it in three levels. In the lowest
level-3, we determine the pricing and resource allocation for each cluster, given a
fixed partition and fixed resource allocation among clusters. In level-2, we compute
the optimal resource allocation among clusters, given a fixed partition. In level-1, we
optimize the partition among groups.

1.5.1.1 Level-3: Pricing and Resource Allocation in Each Cluster For a fix
partition a and a cluster resource allocation s

∆
= {sj}j∈J , we focus the pricing and
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resource allocation problems within each cluster Cj , j ∈ J :

Level-3: maximize
ni,si,pj

∑

i∈Cj

nip
jsi

subject to si =

(
θi
pj

− 1

)+

, ∀ i ∈ Cj ,

ni ≤ Ni, ∀ i ∈ Cj ,
∑

i∈Cj

nisi ≤ sj .

The level-3 subproblem coincides with the SP scheme discussed in Section 1.4,
since all groups within the same cluster Cj are charged with a single price pj . We
can then directly apply the results in Theorem 1.2 to solve the level-3 problem. We
denote the effective market threshold3 for cluster Cj as Kj , which can be computed
in Algorithm 1.2. An illustrative example is shown in Fig. 1.5, where the cluster
contains four groups (group 4, 5, 6 and 7), and the effective market contains groups 4
and 5, thus Kj = 5. The service provider obtains the following maximum revenue
obtained from cluster Cj :

Rj(sj ,a) =
sj
∑

i∈Cj , i≤Kj Niθi

sj +
∑

i∈Cj , i≤Kj Ni
. (1.25)
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Figure 1.5 An illustrative example of Level-3: the cluster contains four groups, group 4, 5,
6 and 7; and the effective market contains group 4 and 5, thus Kj = 5

3Note that we do not assume that the effective market threshold equals to the number of effective groups,
e.g., there are 2 effective groups in Fig. 5, but threshold Kj = 5. Later we will prove that there is unified
threshold for the PP problem. Then by this result, the group index threshold actually coincides with the
number of effective groups.
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Table 1.1 Numerical examples for feasible set size of the partition problem in level-1

Number of groups I = 10 I = 100 I = 1000

Number of prices J = 2 J = 3 J = 2 J = 3 J = 2

S(I, J) 511 9330 6.33825× 1029 8.58963× 1046 5.35754× 10300

C(I − 1, J − 1) 9 36 99 4851 999

1.5.1.2 Level-2: Resource Allocation among Clusters For a fix partition a, we
then consider the resource allocation among clusters.

Level-2: maximize
sj≥0

∑

j∈J
Rj(sj ,a)

subject to
∑

j∈J
sj ≤ S

We will show in Section 1.5.2 that subproblems in level-2 and level-3 can be trans-
formed into a complete price differentiation problem under proper technique condi-
tions. Let us denote the its optimal value as Rpp(a).

1.5.1.3 Level-1: Cluster Partition Finally, we solve the cluster partition problem.

Level-1: maximize
aj
i∈{0,1}

Rpp(a)

subject to
∑

j∈J
aji = 1, i ∈ I.

This partition problem is a combinatorial optimization problem. The size of its fea-

sible set is S(I, J) = 1
J!

J∑
t=1

(−1)J+tC(J, t)tI , Stirling number of the second kind

[40, Chap.13], where C(J, t) is the binomial coefficient. Some numerical examples
are given in the third row in Table 1.1. If the number of prices J is given, the feasible
set size is exponential in the total number of groups I . For our problem, however,
it is possible to reduce the size of the feasible set by exploiting the special problem
structure. More specifically, the group indices in each cluster should be consecutive
at the optimum. This means that the size of the feasible set is C(I − 1, J − 1) as
shown in the last row in Table 1.1, and thus is much smaller than S(I, J).

Next we discuss how to solve the three level subproblems. A route map for the
whole solution process is given in Fig. 1.6.

1.5.2 Solving Level-2 and Level-3

The optimal solution (1.25) of the level-3 problem can be equivalently written as

Rj(s,a) =
sj
∑

i∈Cj , i≤Kj Niθi

sj +
∑

i∈Cj , i≤Kj Ni

(a)
=

sjN jθj

sj +N j
, (1.26)
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Figure 1.6 Decomposition and simplification of the general PP problem: The three-level
decomposition structure of thePP problem is shown in the left hand side. After simplifications
in Section 1.5.2 and 1.5.3, the problem will be reduced to structure in right hand side.

where

{
N j =

∑
i∈Cj , i≤Kj Ni,

θj =
∑

i∈Cj , i≤Kj
Niθi
Nj .

(1.27)

The equality (a) in (1.26) means that each cluster Cj can be equivalently treated as
a group with N j homogeneous users with the same willings to pay θj . We name
this equivalent group as a super-group (SG). We summarize the above result as the
following lemma.

Lemma 1 For every cluster Cj and total resource sj , j ∈ J , we can find an equiv-
alent super-group which satisfies conditions in (1.27) and achieves the same revenue
under the SP scheme.

Based on Lemma 1, the level-2 and level-3 subproblems together can be viewed
as the CP problem for super-groups. Since a cluster and its super-group from a
one-to-one mapping, we will use the two words interchangeably in the sequel.

However, simply combining Theorems 1.1 and 1.2 to solve level-2 and level-3
subproblems for a fixed partition a can result in a very high complexity. This is
because the effective markets within each super-group and between super-groups
are coupled together. An illustrative example of this coupling effective market is
shown in Fig. 1.7, where Kc is the threshold between clusters and has three possible
positions (i.e., between group 2 and group 3, between group 5 and group 6, or after
group 6); and K1 and K2 are thresholds within cluster C1 and C2, which have two
or three possible positions, respectively. Thus, there are (2 × 3) × 3 = 18 possible
thresholds possibilities in total.

The key idea resolving this coupling issue is to show that the situation in Fig. 1.7
can not be an optimal solution of the PP problem. The results in Sections 1.3 and
1.4 show that there is a unified threshold at the optimum in both the CP and SP
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Figure 1.7 An example of coupling thresholds.

cases, e.g., Fig. 1.2. Next we will show that a unified single threshold also exists in
the PP case.

Lemma 2 At any optimal solution of the PP scheme, the group indices of the effec-
tive market is consecutive.

The proof of Lemma 2 can be found in Appendix A.3. The intuition is that the
resource should be always allocated to high willingness to pay users at the optimum.
Thus, it is not possible to have Fig. 1.7 at an optimal solution, where high willingness
to pay users in group 2 are allocated zero resource while low willingness to pay users
in group 3 are allocated positive resources.

Based on Lemma 2, we know that there is a unified effective market threshold
for the PP problem, denoted as Kpp. Since all groups with indices larger than Kpp

make zero contribution to the revenue, we can ignore them and only consider the
partition problem for the first Kpp groups. Given a partition that divides the Kpp

groups into J clusters (super-groups), we can apply the CP result in Section 1.3 to
compute the optimal revenue in the level-2 based on Theorem 1.1.

Rpp(a) =
J∑

j=1

N jθj −

(∑J
j=1 N

j
√
θj
)2

S +
∑J

j=1 N
j

=
Kpp∑

i=1

Niθi −

(∑J
j=1 N

j
√
θj
)2

S +
∑Kpp

i=1 Ni

. (1.28)

1.5.3 Solving Level-1

1.5.3.1 With a given effective market threshold Kpp Based on the previous
results, we first simplify the level-1 subproblem, and prove the theorem below.
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Theorem 1.3 For a given threshold Kpp, the optimal partition of the level-1 sub-
problem is the solution of the following optimization problem.

Level-1′ minimize
aj
i ,N

j ,θj

∑

j∈J
N j

√
θj

subject to N j =
∑

i∈Kpp

Nia
j
i , j ∈ J ,

θj =
∑

i∈Kpp

Nia
j
i

N j
θi j ∈ J ,

∑

j∈J
aji = 1, aji ∈ {0, 1} , i ∈ Kpp j∈J ,

θKpp > pJ =
√

θJ (a)λ(a). (1.29)

where Kpp ∆
= {1, 2, . . . ,Kpp}, θJ (a) is the value of average willingness to pay of

the J th group for the partition a, and λ(a) =

(∑
j∈J Nj

√
θj

S+
∑Kpp

i=1 Ni

)2

.

Proof : The objective function and the first three constraints in the level-1 subprob-
lem are easy to understand: if the effective market threshold Kpp is given, then the
objective function of the level-1 subproblem, maximizing Rpp in (1.28) over a, is as
simple as minimizing

∑J
j=1 N

j
√
θj as the level-1 subproblem suggested; the first

three constraints are given by the definition of the partition.
Constraint (1.29) is the threshold condition that supports (1.28), which means that

the least willingness to pay users in the effective market has a positive demand. It
ensures that calculating the revenue by (1.28) is valid. Remember that the solution
of the CP problem of level-2 and level-3 is threshold based, and Lemma 2 indicates
that (1.29) is sufficient for that all groups with willingness larger than group Kpp

can have positive demands. Otherwise, we can construct another partition leading to
a larger revenue (please refer to the proof of Lemma 2), or equivalently leading to a
less objective value of the level-1 subproblem. This leads to a contradiction.

The level-1 subproblem is still a combinatorial optimization problem with a large
feasible set of a (similar as the original level-1). The following result can help us to
reduce the size of the feasible set.

Theorem 1.4 For any effective market size Kpp and number of prices J , an optimal
partition of the PP problem involves consecutive group indices within clusters.

The proof of Theorem 1.4 is given in Appendix A.4. We first prove this result
is true for the level-1 subproblem without constraint (1.29), and further show that
this result will not affected by (1.29). The intuition is that high willingness to pay
users should be allocated positive resources with priority. It implies that groups
with similar willingness to pays should be partitioned in the same cluster, instead of
in several far away clusters. Or equivalently, the group indices within each cluster
should be consecutive.
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We define A as the set of all partitions with consecutive group indices within
each cluster, and v(a) =

∑
j∈J N j

√
θj is the value of objective of the level-1

subproblem for a partition a. Algorithm 1.3 finds the optimal solution of the level-1
subproblem. The main idea for this algorithm is to enumerate every possible partition
in set A, and then check whether the threshold condition (1.29) can be satisfied.
The main part of this algorithm is to enumerate all partitions in set A of C(Kpp −
1, J − 1) feasible partitions. Thus the complexity of Algorithm 1.3 is no more than
O((Kpp)J−1).

Algorithm 1.3

Level-1(Kpp, J):

k ← Kpp, v∗ ←
√∑k

i=1 Ni
∑k

i=1 Niθi, a∗ ← 0

for a ∈ A
if θk >

√
θJ (a)λ(a)

if v(a) < v∗

v∗ ← v(a), a∗ ← a
end if

end if
end for
return a∗

End pseudo-code.

1.5.3.2 Search the optimal effective market threshold Kpp We know the op-
timal market threshold Kpp is upper-bounded, i.e., Kpp ≤ Kcp ≤ I . Thus we can
first run Algorithm 1.1 to calculate the effective market size for the CP scheme Kcp.
Then, we search the optimal Kpp iteratively using Algorithm 1.3 as an inner loop.
We start by letting Kpp = Kcp and run Algorithm 1.3. If there is no solution, we de-
crease Kpp by one and run Algorithm 1.3 again. The algorithm will terminate once
we find an effective market threshold where Algorithm 1.3 has an optimal solution.
Once the optimal threshold and the partition of the clusters are determined, we can
further run Algorithm 1.1 to solve the joint optimal resource allocation and pricing
scheme. The pseudo code is given in Algorithm 1.4 as follows.

Algorithm 1.4

Solving PPD
pi ← θi
(k,λ)⇐ Resource-Allocation-CP({Ni, θi}i∈I,S),
a∗ ⇐ Level-1(k,J)
while a∗ == 0
k ← k − 1
a∗ ⇐ Level-1(k,J)

end while
for j ← 1, . . . J

Nj ←
∑k

i=1 Nia
j
i, θj ←

∑k
i=1

Nia
j
i

Nj θi
end for
(k,λ)⇐ Resource-Allocation-CP({Nj , θj}i∈J , S)
for j ← 1, , . . . J
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pj ←
√
θjλ, sj ←

√
θj

λ − 1

end for
for i← 1, . . . , k
pi ←

∑J
j=1 a

j
i

√
θjλ

end for
return {pi}i∈I

End pseudo-code.

In Algorithm 1.4, it invokes two functions: Resource-Allocation-CP ({Niθi}i∈I , S)
as described in Algorithm 1.1 and Level-1 (k, J) as in Algorithm 1.3.

The above analysis leads to the following theorem:

Theorem 1.5 The solution obtained by Algorithm 1.4 is optimal for the PP prob-
lem.

Proof : It is clear that Algorithm 1.4 enumerates every possible value of the ef-
fective market size for the PP problem Kpp, and for a given Kpp its inner loop
Algorithm 1.3 enumerates every possible partition in set A. Therefore, the result in
Theorem 1.4 follows.

Next we discuss the complexity of Algorithm 1.4. The complexity of Algo-
rithm 1.1 is O(I), and we run it twice in Algorithm 1.4. The worst case complexity
of Algorithm 1.3 is O(IJ−1), and we run it no more than I − J times. Thus the
whole complexity of Algorithm 1.4 is no more than O(IJ), which is polynomial of
I .

1.6 Price Differentiation under Incomplete Information

In Sections 1.3, 1.4, and 1.5, we discuss various pricing schemes with different im-
plementational complexity level under complete information, the revenues of which
can be viewed as the benchmark of practical pricing designs. In this section, we fur-
ther study the incomplete information scenario, where the service provider does not
know the group association of each user. The challenge for pricing in this case is that
the service provider needs to provide the right incentive so that a group i user does
not want to pretend to be a user in a different group. It is clear that the CP scheme in
Section 1.3 and the PP scheme in Section 1.5 cannot be directly applied here. The
SP scheme in Section 1.4 is a special case, since it does not require the user-group
association information in the first place and thus can be applied in the incomplete
information scenario directly. On the other hand, we know that the SP scheme may
suffer a considerable revenue loss compared with the CP scheme. Thus it is nat-
ural to ask whether it is possible to design an incentive compatible differentiation
scheme under incomplete information. In this section, we design a quantity-based
price menu to incentivize users to make the right self-selection and to achieve the
same maximum revenue of the CP scheme under complete information with proper
technical conditions. We name it the Incentive Compatible Complete Price differen-
tiation (ICCP ) scheme.
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In the ICCP scheme, the service provider publishes a quantity-based price menu,
which consists of several step functions of resource quantities. Users are allowed
to freely choose their quantities. The aim of this price menu is to make the users
self-differentiated, so that to mimic the same result (the same prices and resource
allocations) of the CP scheme under complete information. Based on Theorem 1.1,
there are only K (without confusion, we remove the superscript “cp” to simplify
the notation) effective groups of users receiving non-zero resource allocations, thus
there are K steps of unit prices, p∗1 > p∗2 > · · · > p∗K in the price menu. These
prices are exactly the same optimal prices that the service provider would charge for
K effective groups as in Theorem 1.1. Note that for the K + 1, . . . , I groups, all the
prices in the menu are too high for them, then they will still demand zero resource.
The quantity is divided into K intervals by K − 1 thresholds, s1th > s2th > · · · >
sK−1
th . The ICCP scheme can specified as follows:

p(s) =






p∗1 when s > s1th
p∗2 when s1th ≥ s > s2th
...
p∗K when sK−1

th ≥ s > 0.

(1.30)

A four-group example is shown in Fig. 1.8.
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Figure 1.8 A four-group example of the ICCP scheme: where the prices p∗1 > p∗2 > p∗3 >
p∗4 are the same as the CP scheme. To mimic the same resource allocation as under the CP
scheme, one necessary (but not sufficient) condition is sj−1

th ≥ s∗j for all j, where s∗j is the
optimal resource allocation of the CP scheme.

Note that in contrast to the usual “volume discount”, here the price is non-decreasing
in quantity. This is motivated by the resource allocation in Theorem 1.1, that a user
with a higher θi is charged a higher price for a larger resource allocation. Thus the
observable quantity can be viewed as an indication of the unobservable users’ will-
ingness to pay, and help to realize price differentiation under incomplete information.

The key challenge in the ICCP scheme is to properly set the quantity thresholds
so that users are perfectly segmented through self-differentiation. This is, however,
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not always possible. Next we derive the necessary and sufficient conditions to guar-
antee the perfect segmentation.

Let us first study the self-selection problem between two groups: group i and
group q with i < q. Later on we will generalize the results to multiple groups. Here
group i has a higher willingness to pay, and will be charged with a higher price p∗i
in the CP case. The incentive compatible constraint is that a high willingness to pay
user can not get more surplus by pretending to be a low willingness to pay user, i.e.,
max

s
Ui(s; p∗i ) ≥ max

s
Ui(s; p∗q), where Ui(s; p) = θi ln(1 + s) − ps is the surplus

of a group i user when it is charged with price p.
Without confusion, we still use s∗i to denote the optimal resource allocation under

the optimal prices in Theorem 1.1, i.e., s∗i = argmax
si≥0

Ui(si; p∗i ). We define si→q as

the quantity satisfying
{
Ui(si→q; p∗q) = Ui(s∗i ; p

∗
i )

si→q < s∗i
. (1.31)

In other words, when a group i user is charged with a lower price p∗q and demands
resource quantity si→q , it achieves the same as the maximum surplus under the opti-
mal price of the CP scheme p∗i , as showed in Fig. 1.9. Since there are two solutions
of the first equation of (1.31), we constraint si→q to be the one that is smaller than
s∗i .

Θiln!1"s"#p$

q%s

resource

surplus

Θiln!1"s"#p$

i %s

si&q s$
i

1 2 3 4
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Figure 1.9 When the threshold sq−1
th < si→q , the group i user can not obtain U(s∗i , p

∗
i ) if it

chooses the lower price pq at a quantity less than sq−1
th . Therefore it will automatically choose

the high price p∗i to maximize its surplus.

To maintain the group i users’ incentive to choose the higher price p∗i instead of
p∗q , we must have sq−1

th ≤ si→q , which means a group i user can not obtain Ui(s∗i , p
∗
i )

if it chooses a quantity less than sq−1
th . In other words, it will automatically choose

the higher (and the desirable) price p∗i to maximize its surplus. On the other hand,
we must have sq−1

th ≥ s∗q in order to maintain the optimal resource allocation and
allow a group q user to choose the right quantity-price combination (illustrated in
Fig. 1.8).

Therefore, it is clear that the necessary and sufficient condition that the ICCP
scheme under incomplete information achieves the same maximum revenue of the
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CP scheme under complete information is

s∗q ≤ si→q, ∀ i < q, ∀ q ∈ {2, . . . ,K}. (1.32)

By solving these inequalities, we can obtain the following theorem (detailed proof in
Appendix A.5).

Theorem 1.6 There exist unique thresholds {t1, . . . ,tK−1}, such that the ICCP
scheme achieves the same maximum revenue as in the complete information case
if √

θq
θq+1

≥ tq for q=1, . . . ,K − 1.

Moreover, tq is the unique solution of the equation

t2 ln t− (t2 − 1) +
t
∑q

k=1 Nk +Nq+1

S +
∑Kcp

k=1 Nk

(t− 1) = 0

over the domain t > 1.

We want to mention that the condition in Theorem 1.6 is necessary and sufficient
for the case of K = 2 effective groups4. For K > 2, Theorem 1.6 is sufficient
but not necessary. The intuition of Theorem 1.6 is that users need to be sufficiently
different to achieve the maximum revenue.

The following result immediately follows Theorem 1.6.

Corollary 1 The tqs in Theorem 1.6 satisfy tq < troot for q = 1, . . . ,K − 1, where
troot ≈ 2.21846 is the larger root of equation t2 ln t− (t2 − 1) = 0.

The Corollary 1 means that the users do not need to be extremely different to
achieve the maximum revenue.

When the conditions in Theorem 1.6 are not satisfied, there may be revenue loss
by using the pricing menu in (1.30). Since it is difficult to explicitly solve the pa-
rameterized transcend equation (1.31), we are not able to characterize the loss in a
closed form yet.

1.6.1 Extensions to Partial Price Differentiation under Incomplete In-
formation

For any given system parameters, we can numerically check whether a partial price
differentiation scheme can achieve the same maximum revenue under both the com-
plete and incomplete information scenarios. The idea is similar as we described in
this section. Since the PP problem can be viewed as the CP problem for all effective
super-groups, then we can check the ICCP bound in Theorem 1.6 for super-groups

4There might be other groups who are not allocated positive resource under the optimal pricing.
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(once the super-group partition is determined by the searching using Algorithm 1.4).
Deriving an analytical sufficient condition (as in Theorem 1.6) for an incentive com-
patible partial price differentiation scheme, however, is highly non-trivial and is part
of our future study.

1.7 Connections with the Classical Price Differentiation Taxonomy

In economics, price differentiation is often categorized by the first/second/third de-
gree price differentiation taxonomy [39]. This taxonomy is often used in the context
of unlimited resources and general pricing functions. The proposed schemes in this
chapter have several key differences from these standard concepts, mainly due to the
assumption of limited total resources and the choice of linear usage-based pricing.

In the first-degree price differentiation, each user is charged a price based on its
willingness to pay. Such a scheme is also called the perfect price differentiation,
as it captures users’ entire surpluses (i.e., leaving users with zero payoffs). For the
complete price differentiation scheme under complete information in Section 1.3, the
service provider does not extract all surpluses from users, mainly due to the choice
of linear price functions. All effective users obtain positive payoffs.

In the second-degree price differentiation, prices are set according to quantities
sold (e.g., the volume discount). The pricing scheme under incomplete information
in Section 1.6 has a similar flavor of quantity-based charging. However, our proposed
pricing scheme charges a higher unit price for a larger quantity purchase, which is
opposite to the usual practice of volume discount. This is due to our motivation of
mimicking the optimal pricing differentiation scheme under the complete informa-
tion. Our focus is to characterize the sufficient conditions, under which the revenue
loss due to incomplete information (also called “information rent” [14, 41]) is zero.

In the third-degree price differentiation, prices are set according to some customer
segmentation. The segmentation is usually made based on users’ certain attributes
such as ages, occupations, and genders. The partial price differentiation scheme
in Section 1.5 is analogous to the third-degree price differentiation, but here the
user segmentation is still based on users’ willingness to pay. The motivation of our
scheme is to reduce the implementational complexity.

1.8 Numerical Results

We provide numerical examples to quantitatively study several key properties of
price differentiation strategies in this section.

1.8.1 When is price differentiation most beneficial?

Definition 1 (Revenue gain) We define the revenue gain G of one pricing scheme
as the ratio of the revenue difference (between this pricing scheme and the single
pricing scheme) normalized by the revenue of single pricing scheme.
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In this subsection, we will study the revenue gain of the CP scheme, i.e., G(N ,θ, S)
∆
=

Rcp−Rsp

Rsp
, where N

∆
= {Ni, ∀i ∈ I} denotes the number of users in each groups,

θ
∆
= {θi, ∀i ∈ I} denotes their willingness to pays, and S is the total resource.

Notice that this gain is the maximum possible differentiation gain among all PP
schemes.

We first study a simple two-group case. According to Theorems 1.1 and 1.2, the
revenue under the SP scheme and the CP scheme can be calculated as follows:

Rsp =






S(N1θ1+N2θ2)
N1+N2+S , 1 ≤ t <

√
S+N1
N1

;

SN1θ1
N1+S , t ≥

√
S+N1
N1

;

and

Rcp =

{
S(N1θ1+N2θ2)+N1N2(

√
θ1−

√
θ2)

2

N1+N2+S , 1 ≤ t < S+N1
N1

;
SN1θ1
N1+S , t ≥ S+N1

N1
;

where t =
√

θ1
θ2

> 1.
The revenue gain will depend on five parameters, S, N1, θ1, N2 and θ2. To

simplify notations, let N = N1 + N2 be the total number of the users, α = N1
N the

percentage of group 1 users, and s̄ = S
N the level of normalized available resource.

Thus the revenue gain can be expressed as

G(t,α, s̄) =






α(1−α)(t−1)2

s̄(1+α(t2−1)) , 1 < t <
√

s̄+α
α ;

(1−α)(s̄+α−tα)2

αs̄(1+s̄)t2 ,
√

s̄+α
α ≤ t ≤ s̄+α

α .
(1.33)

Next we discuss the impact of each parameter.

Observation 1 In terms of the parameter t, G monotonically increases in
(
1,
√

s̄+α
α

)

and decrease in
[√

k+α
α , k+α

α

)
. The maximum is obtained at tG−max =

√
k+α
α ,

when the resource allocated to the group 2 user just becomes zero in the SP scheme.

One example is showed in Fig.1.10.
It is clear that the revenue gain is not monotonic in the willingness to pay ra-

tio. Its behavior can be divided into three regions: the increasing Region (1) with

t ∈
(
1,
√

s̄+α
α

)
, the decreasing Region (2) with t ∈

[√
k+α
α , k+α

α

)
, and the zero

Region (3) with t ≥ k+α
α .

It is also interesting to note that three regions are closed related to the effective
market sizes: Ksp = Kcp = 2 in Region (1); Ksp = 1 and Kcp = 2 in Region
(2); and Kcp = Ksp = 1 in Region (3) where the CP scheme degenerates to the
SP scheme. The peak point of the revenue gain correspond to the place where the
effective market of the SP Scheme changes.
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Figure 1.10 One example of the revenue gain G(t, 0.01, 0.2) for the CP scheme. It is
clear that the revenue gain can be divided into three regions. Region(1), increasing region,
where Kcp = Ksp = 2, and the revenue gain comes from the differentiation gain. Region(2),
decreasing region, whereKcp = 2, Ksp = 1, and the revenue gain comes from larger effective
market and differentiation gain. Region(3), zero region, where Kcp = Ksp = 1, and is a
degenerating case where two pricing scheme coincide.

Intuitively, the CP scheme increases the revenue by charging the high willingness
groups with high prices, thus the revenue gain increases first when the difference of
willingness to pays increase. However, when the difference of willingness to pay
is very large, the CP scheme obtain most revenue from the high willingness to pay
users, while the SP scheme declines the low willingness to pay users but serves the
high willingness to pays only. Both schemes lead to similar resource allocation in
this region, and thus the revenue gain decreases as the difference of willingness to
pays increases.

Figure 1.10 shows the revenue gain under usage-based pricing can be very high
in some scenario, e.g., over 50% in this example. We can define this peak revenue
gain as

Gmax(α, s̄)=max
t≥1

G(t,α, s̄)=
(α−1)(

√
s̄+α−

√
α)2

s̄(1 + s̄)
.

Figure 1.11 is shown how Gmax changes in s̄ with different parameters α.

Observation 2 For a fixed s̄, Gmax(α, s̄) monotonically decreases in α .

When α is small, which means high willingness to pay users are minorities in the
effective market, the advantage of price differentiation is very evident. As shown in
Fig. 1.11, when α = 0.1, the maximum possible revenue gain can be over than 20%;
and when α = 0.01, this gain can be even higher than 50%. However, when high
willingness to pay users are majority, the price differentiation gain is very limited,
for example, the gain is no larger than 8% and 2% for α = 0.5 and 0.9, respectively.
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Figure 1.11 For a fixed s̄, Gmax(α, s̄) monotonically increases in α. For a fixed α,
Gmax(α, s̄) first increases in s̄, and then decreases in s̄

Intuitively, high willingness to pay users are the most profitable users in the mar-
ket. Ignoring them is detrimental in terms of revenue even if they only occupy a
small fraction of the population. Since the SP scheme is set based on the average
willingness to pay of the effective market, the high willingness to pay users will be
ignored (in the sense of not charging the desirable high price) when α is small. In
contrast, ignoring the low willingness to pay users when α is large is not a big issue.

Observation 3 For parameter k, Gmax(α, s̄) is not a monotonic function in s̄. Its
shape looks like a skewed bell. The gain is either small when s̄ is very small or very
large.

Small s̄ means that resource is very limited, and both schemes allocates the re-
source to high willingness to pay users (see the discussion of the threshold structure
in Sections 1.3 and 1.4), and thus there is not much difference between two pricing
schemes. While s̄ is very large, i.e., the resource is abundant, the prices and the re-
source allocation with or without differentiation become similar (which can be easily
checked from formulations in Theorems 1.1 and 1.2). In these two scenarios, sim-
ilar resource allocations lead to similar revenues. These explains the bell shape for
parameter s̄.

We find that the revenue gain can be very high under two conditions based on
the above observations. First, the high willingness to pay users are minorities in the
effective market. Second, the total resource is comparatively limited.

For cases with three or more groups, the analytical study becomes much more
challenging due to many more parameters. Moreover, the complex threshold struc-
ture of the effective market makes the problem even complicated. We will present
some numerical studies to illustrate some interesting insights.
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For illustration convenience, we choose a three-group example and three different
sets of parameters as shown in Table 1.8.1. To limit the dimension of the problem, we
set the parameters such that the total number of users and the average willingness to
pay (i.e., θ̄ =

∑3
i=1 Niθi/(

∑3
i=1 Ni)) of all users are the same across three different

parameter settings. This ensures that the SP scheme achieves the same revenue
in three different cases when resource is abundant. Figure 1.12 illustrates how the
differentiation gain changing changes in resource S.

Table 1.2 Parameter settings of a three-group example

θ1 N1 θ2 N2 θ3 N3 θ̄

Case 1 9 10 3 10 1 80 2
Case 2 3 33 2 33 1 34 2
Case 3 2.2 80 1.5 10 1 10 2
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Figure 1.12 An example of the revenue gain of the three-group market with the same average
willingness to pay

Similar as the analytical study of the two-group case, Fig. 1.12 shows that the
revenue gain is large only when the high willingness to pay users are minorities
(e.g. case 1) in the effective market and the resource is limited but not too small
(100 ≤ S ≤ 150 in all three cases). When resource S is large enough (e.g., ≥ 150),
the gain will gradually diminish to zero as the resource increases. For each curve
in Fig. 1.12, there are two peak points. Each peak point represents a change of the
effective market threshold in the SP scheme, i.e., when the resource allocation to
a group becomes zero. In numerical studies of networks with I > 3 groups (not
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shown in this chapter), we have observed the similar conditions for achieving a large
differentiation gain and the phenomenon of I − 1 peak points.

1.8.2 What is the best tradeoff of Partial Price Differentiation?

In Section 1.5, we design Algorithm 1.4 that optimally solves the PP problem with
a polynomial complexity. Here we study the tradeoff between total revenue and
implementational complexity.

To illustrate the tradeoff, we consider a five-group example with parameters shown
in Table 1.3. Note that high willingness to pay users are minorities here. Figure 1.13
shows the revenue gain G as a function of total resource S under different PP
schemes (including CP scheme as a special case), and Fig. 1.14 shows how the
effective market thresholds change with the total resource.

Table 1.3 Parameter setting of a five-group example

group index i 1 2 3 4 5
θi 16 8 4 2 1
Ni 2 3 5 10 80

We enlarge Fig. 1.13 and Fig. 1.14 within the range of S ∈ [0, 50], which is the
most complex and interesting part due to several peak points. Similar as Fig. 1.12,
we observe I − 1 = 4 peak points for each curve in Fig. 1.13. Each peak point again
represents a change of effective market threshold of the single pricing scheme, as we
can easily verify by comparing Fig. 1.14 with Fig. 1.13.

As the resource S increases from 0, all gains in Fig. 1.13 first overlap with each
other, then the two-price scheme (blue curve) separates from the others at S = 3.41,
after that the three-price scheme (purple curve) separates at S = 8.89, and finally
the four-price scheme (dark yellow curve) separates at near S = 20.84. These phe-
nomena are due to the threshold structure of the PP scheme. When the resource is
very limited, the effective markets under all pricing scheme include only one group
with the highest willingness to pay, and all pricing schemes coincide with the SP
scheme. As the resource increases, the effective market enlarges from two groups
to finally five groups. The change of the effective market threshold can be directly
observed in Fig. 1.14. Comparing across different curves in Fig. 1.14, we find that
the effective market size is non-decreasing with the number of prices for the same
resource S. This agrees with our intuition in Section 1.4.2, which states that the size
of effective market indicates the degree of differentiation.

Figure 1.13 provides the service provider a global picture of choosing the most
proper pricing scheme according to achieve the desirable financial target under a
certain parameter setting. For example, if the total resource S = 100, the two-
price scheme seems to be a sweet spot, as it achieves a differential gain of 14.8%
comparing to the SP scheme and is only 2.4% worse than the CP scheme with five
prices.

shuqinl


shuqinl


shuqinl
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Figure 1.13 Revenue gain of a five-group example under different price differentiation
schemes
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Figure 1.14 Corresponding thresholds of effective markets of Fig. 1.13’s example

1.9 Conclusion

In this chapter, we study the revenue-maximizing problem for a monopoly service
provider under both complete and incomplete network information. Under complete
information, our focus is to investigate the tradeoff between the total revenue and the
implementational complexity (measured in the number of pricing choices available
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for users). Among the three pricing differentiation schemes we proposed (i.e., com-
plete, single, and partial), the partial price differentiation is the most general one and
includes the other two as special cases. By exploiting the unique problem structure,
we designed an algorithm that computes the optimal partial pricing scheme in poly-
nomial time, and numerically quantize the tradeoff between implementational com-
plexity and total revenue. Under incomplete information, designing an incentive-
compatible differentiation pricing scheme is difficult in general. We show that when
the users are significantly different, it is possible to design a quantity-based pricing
scheme that achieves the same maximum revenue as under complete information.
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Appendix

A.1 Complete Price Differentiation under complete information with
General Utility Functions

In this section, we extend the solution of complete price differentiation problem to
general form of increasing and concave utility functions ui(si). We denote Ri(si)
as the revenue collected from one user in group i. Based on the stackelberg model,
the prices satisfy pi = u′

i(si), si ≥ 0 i ∈ I, thus

Ri(si) = u′
i(si)si, si ≥ 0. (A.1)
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Therefore, we can rewrite the Complete Price differentiation problem with Gen-
eral utility function (CPG) as follows.

CPG : maximize
s≥0,n

∑

i∈I
niRi(si)

subject to ni ∈ {0, . . . , Ni} , i ∈ I (A.2)
∑

i∈I
nisi ≤ S (A.3)

By similar solving technique in Sec. III, we can solve CPG Problem by decom-
posing it into two subproblems: resource allocation subproblem CPG1, and admis-
sion control subproblem CPG2. In subproblem CPG1, for given n, we solve

CPG1 : maximize
s≥0

∑

i∈I
niRi(si)

subject to
∑

i∈I
nisi ≤ S

After solving the optimal resource allocation s∗i (n), i ∈ I, we further solve admis-
sion control subproblem:

CPG2 : maximize
n

∑

i∈I
niRi(s

∗
i (n))

subject to : ni ∈ {0, . . . , Ni}.

We are especially interested in the case that constraint (A.3) is active in CPG
Problem, which means the resource bound is tight in the considered problem; oth-
erwise, CPG Problem degenerates to a revenue maximization without any bounded
resource constraint. We can prove the following results.

Proposition 2 If the resource constraint (A.3) is active in the optimal solution of the
CPG Problem (or CPG1 Subproblem), then one of optimal solutions of CPG2 Sub-
problem is

n∗
i = Ni, i ∈ I. (A.4)

Proof : We first release the variable ni to real number, and calculate the first deriva-
tive as follows:

∂Ri

∂ni
= Ri(s

∗
i ) + ni

∂Ri(s∗i )

∂si

∂s∗i
∂ni

, i ∈ I. (A.5)

Plugging (A.1), R′
i(si) = u′′

i (si) si + u′
i(si), and we have

∂Ri

∂ni
= u′

i(s
∗
i )

(
s∗i + ni

∂s∗i
∂ni

)
+ ni u

′′
i (s

∗
i ) s

∗
i
∂s∗i
∂ni

, i ∈ I. (A.6)

Since the resource constraint (A.3) is active in the optimal solution of CPG1 Sub-
problem, that is,

∑
i∈I

nisi = S, by taking derivative of ni in both sides of it, we have:

s∗i + ni
∂s∗i
∂ni

= 0. (A.7)
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Substituting (A.7) into (A.6), since we assume the utility function ui(si) is in-
creasing and concave function, then we have

∂Ri

∂ni
= −u′′

i (s
∗
i ) s

∗
i
2 ≥ 0, i ∈ K. (A.8)

Thus we can conclude that one of optimal solutions for CPG2 Subproblem is
n∗
i = Ni, i ∈ I.

Proposition 2 points out that when the resource constraint (A.3) is active, the
CPG Problem can be greatly simplified: its solution can be obtained by solving
CPG Subproblem with parameters ni = Ni, i = 1, . . . , I . The following proposi-
tion provides a sufficient condition that the resource constraint (A.3) is active.

Proposition 3 If u′′
i (si)si + ui(si) > 0, si ≥ 0, i ∈ I, then the resource constraint

is active at the optimal solution.

Proof : Let λ and µi, i ∈ I, be the Lagrange multiplier of constraint (A.3) and
si ≥ 0, i ∈ I respectively, thus the KKT conditions of CGP1 Subproblem is given
as follows:

ni
∂Ri(s∗i )

∂si
− niλ

∗ + µ∗
i = 0, i ∈ I;

λ∗

(
∑

i∈I
nis

∗
i − S

)
= 0;

µ∗
i s

∗
i = 0;

λ∗ ≥ 0;

µ∗
i ≥ 0, i ∈ I;
s∗i ≥ 0, i ∈ I.

We denote K := {i | s∗i > 0}, and K̄ := {i | s∗i = 0}.
For i ∈ K:

∂Ri(s∗i )

∂si
= λ∗, i ∈ I; (A.9)

λ∗

(
∑

i∈K
nis

∗
i − S

)
= 0. (A.10)

For i ∈ K̄:

∂Ri(0)

∂si
≤ λ∗, i ∈ I; (A.11)

Since u′′
i (si)si + ui(si) > 0, si ≥ 0, i ∈ I and (A.9), we have

λ∗ =
∂Ri(s∗i )

∂si
= u′′

i (s
∗
i )s

∗
i + ui(s

∗
i ) > 0.
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By (A.10), we must have
∑

i∈I nis∗i − S = 0, that the resource constraint is
active at the optimal solution.

Next, let us discuss how to calculate the optimal solution. To guarantee unique-
ness resource allocation solution, we assume that revenue in is a strictly concave
function of the demand5, i.e., ∂2Ri(si)

∂s2i
< 0, i ∈ I. Thus we have the following

theorem.

Theorem A.7 If ∂2Ri(si)
∂s2i

< 0, i ∈ I, then there exists an optimal solution of
CGP Problem as follows:

All users are admitted: n∗
i = Ni for all i ∈ I.

There exist a value λ∗ and a group index threshold Kcp ≤ I , such that only the
top Kcp groups of users receive positive resource allocations,

s∗i =

{
∂Ri
∂si

−1
(λ∗), i ∈ K ;

0, otherwise.
(A.12)

where values of λ∗ and effective market K can be computed as in Algorithm
A.5.

In Algorithm A.5, we use notation f−1 denotes its inverse function, and rearrange
the group index satisfying ∂R(1)

∂s(1)

−1
(0) ≥ ∂R(2)

∂s(2)

−1
(0) ≥ · · · ≥ ∂R(I)

∂s(I)

−1
(0).

Algorithm 1.5

Threshold-General-Utility

k ← I, λ← ∂R(k)

∂s(k)

−1
(0)

while
k∑

i=1
n(i)

(
∂R(i)

∂s(i)

−1
(λ)

)+

≥ S,

k ← k − 1

λ← ∂R(k)

∂s(k)

−1
(0)

end while
return K = {(1), (2), . . . , (k)}

End pseudo-code.

Remark 2 The complexity of Algorithm A.5 is also O(I), i.e., linear in the number
of user groups (not the number of users).

Remark 3 There are several functions satisfying the technical conditions in Theo-
rem A.7, e.g., the standard α-fairness functions

ui(si) =

{
(1− α)−1s1−α

i , 0 ≤ α < 1;

log si, α = 1.

5This assumption has been frequently used in the revenue management literature [42].
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A.2 Proof of Proposition 1

Proof : We first focus on the key water-filling problems that we solve for the two
pricing schemes (the CP scheme on the LHS and the SP scheme on the RHS):

∑

i∈I
Ni

(√
θi
λ∗ − 1

)+

= S =
∑

i∈I
Ni

(
θi
p∗

− 1

)+

(A.13)

Let θ = p∗2

λ∗ be the solution of the equation of
√

θ
λ∗ = θ

p∗ . By comparing it with
θi, i ∈ I, there are three cases:

Case 1:

θ > θ1 ⇒
√

θi
λ∗ =

√
θi
√
θ

p∗ > θi
p∗ , ∀ i ∈ I.

This case can not be possible. Since if every term in the left summation is
strictly larger than its counterpart in the right summation, then (A.13) can not
hold.

Case 2: θI ≥ θ ⇒
√

θi
λ∗ =

√
θi
√
θ

p∗ ≤ θi
p∗ , ∀ i ∈ I. Similarly as Case 1, it

can not hold, either.

Case 3: ∃ k, s.t. 1 ≤ k < I and θk ≥ θ ≥ θk+1

⇒






√
θi
λ∗ =

√
θi
√
θ

p∗
≤ θi

p∗
, i = 1, 2, . . . , k;

︸ ︷︷ ︸
The equality holds only when θ = θk and i = k.

√
θi
λ∗ =

√
θi
√
θ

p∗
≥ θi

p∗
, i = k + 1, . . . , I.

︸ ︷︷ ︸
The equality holds only when θ = θk+1 and i = k + 1.

Similar argument as the above two case, we have Kcp ≥ k and Ksp ≥ k,
otherwise (A.13) can not hold. Further, Kcp ≥ Ksp, since if θKsp

p∗ − 1 > 0,

then
√

θKcp

λ∗ − 1 > 0.

By Theorems 1.1 and 1.2, we prove the proposition.

A.3 Proof of Lemma 2

We can first prove the following lemma.

Lemma 3 Suppose an effective market of the single pricing scheme is denoted as
K = {1, 2, . . . ,K}. If we add a new group v of Nv users with θv > θK , then the
revenue strictly increases.



42 USAGE-BASED PRICING DIFFERENTIATION:INCOMPLETE INFORMATION AND LIMITED PRICING CHOICES

Proof : We denote the single price before joining group v is p, the price after joining
group v is p′, the effective market become K′. By Theorem 1.2, we have

p =

∑K
i=1 Niθi

S +
∑K

i=1 Ni

with θK > p and θK+1 ≤ p.

Since the optimal revenue is obtained by selling out the total resource S, thus to
prove the total revenue strictly increases if and only if we can prove p′ > p. We
consider the following two cases.

If after group v joining in, the new effective market satisfies K′ = K∪{v}, then
we have

p′ =

∑K
i=1 Niθi +Nvθv

S +
∑K

i=1 Ni +Nv

.

Since θv > θK > p, we have p′ > p, due to the following simple fact.

Fact 1 For any a1, b1, a2, b2 > 0, the following two inequality are equivalent:

a1
b1

≥ a2
b2

⇔ a1
b1

≥ a1 + a2
b1 + b2

≥ a2
b2

. (A.14)

If after group v joining in, the new effective market shrinks, namely, K′ ⊂
K ∪ {v}, K′ .= K ∪ {v}, then we have p′ > θK > p.

By the above Lemma 3, we further prove Lemma 2.

Proof : We prove Lemma 2 by contradiction. Suppose that the group indices of
the effective market under the optimal partition a is not consecutive. Suppose that
group i is not an effective group, and there exists some group j, j > i, which is
an effective group. We consider a new partition a′ by putting group i into the clus-
ter to which group j belongs, and keeping other groups unchanged. According to
Lemma 3, the revenue under partition a′ is greater than that under partition a, thus
partition a is not optimal. This contradicts to our assumption and thus completes the
proof.

A.4 Proof of Theorem 1.4

For convenience, we use the notation (· · · ∪ · · · | · · · ∪ · · · | · · · ) to denote a partition
with the groups between bars connected with “∪” representing a cluster, e.g., three
partitions for J = 2,Kpp = 3 are (1|2 ∪ 3), (1 ∪ 2 | 3) and (1 ∪ 3 | 2). In addition,
we introduce the compound group to simplify the notation of complex clusters with
multiple groups. A cluster containing group i can be simply represented as Pre(i)∪
i ∪ Post(i), where Pre(i) (or Post(i)) refers as a compound group composing of
all the groups with willingness to pay larger (or smaller) than that of group i in the
cluster. Note that the compound groups can be empty in certain cases.
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Before we prove the general case in Theorem 1.4, we first prove the results is true
for the following two special cases in Lemma 4 and Lemma 5.

Lemma 4 For a three-group effective market with two prices, i.e., Kpp = 3, J = 2,
an optimal partition involves consecutive group indices within clusters.

Proof : There are three partitions for Kpp = 3, J = 2, and only (1 ∪ 3 | 2) is
with discontinuous group index within clusters. To show our result, we only need to
prove one of partitions with group consecutive is better than (1∪ 3 | 2). We have two
main steps in this proof, first we prove this result is true for PP problem without
consider Constraint (1.29). Further, we show that Constraint (1.29) will not affect
the optimality of partitions with consecutive group indices within each cluster.

Step 1: (Without Constraint (1.29))
Without considering Constraint (1.29), we want show that a1 = (1 ∪ 2 | 3) is

always better than a2 = (1 ∪ 3 | 2). Mathematically, what we try to prove is:

v(a2) > v(a1). (A.15)

where v(a2) = (N1+N3)
√

N1θ1+N3θ3
N1+N3

+N2
√
θ2, and v(a1) = (N1+N2)

√
N1θ1+N2θ2

N1+N2
+

N3
√
θ3. With the new notation

∆V (i, j) := (Ni +Nj)

√
Niθi +Njθj
Ni +Nj

−Ni

√
θi −Nj

√
θj ,

it is easy to see that (A.15) is equivalent to the following inequality:

∆V (1, 3) > ∆V (1, 2). (A.16)

We prove the inequality (A.16) by considering the following two cases.
a) If N1 ≤ N2, we define a function of x as follows,

g(j;x) :=(Nj+N1)

√
Njθj+N1(θj+x)

Nj +N1
−N1

√
θj+x−Nj

√
θj .

It is easy to check that

g(j;x)|x=θ1−θj = ∆V (1, j), and g(j;x)|x=0 = 0;

and if x > 0, then

g′(j;x)=
∂g(j;x)

∂x
=

N1

2



 1√
Njθj+N1(θj+x)

Nj+N1

− 1√
θj + x



>0,

and
∂g′(j;x)

∂θj
=

N1

4



 1

(θj + x)1.5
− 1(

Njθj+N1(θj+x)
Nj+N1

)
1.5



<0.
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Since θ2 > θ3, it immediately follows that

g′(3;x) ≥ N1

2



 1√
N3θ2+N1(θ2+x)

N1+N3

− 1√
θ2 + x



 ,

Since N2 ≥ N1, then we have

g′(3;x) ≥ N1

2



 1√
N3θ2+N1(θ2+x)

N1+N3

− 1√
θ2 + x



≥ g′(2;x),

Thus, it follows

∆V (1, 3) =

∫ θ1−θ3

0
g′(3;x)dx >

∫ θ1−θ2

0
g′(2;x)dx = ∆V (1, 2),

i.e., (A.16) is obtained.
Let us see a special case of (A.16). When N1 = N2, then

∆V (1, 2)=(N1+N1)

√
N1θ2+N1θ1
N1 +N1

−N1

√
θ1−N1

√
θ2,

then we have

∆V (1, 3)>(N1+N1)

√
N1θ2+N1θ1
N1 +N1

−N1

√
θ1−N1

√
θ2. (A.17)

Notice that although (A.17) is defined with the assumption that N1 ≤ N2, it also
holds for the case N1 > N2 as (A.17) does not contain the parameter N2. This result
will be used in the proof later.

b) If N1 > N2, we define a function of m as

f(m) := (N1 +m)

√
N1θ1 +mθ2
N1 +m

−N1

√
θ1 −m

√
θ2.

It is easy to obtain that

df(m)

dm
=

(√
N1θ1+mθ2

N1+m −
√
θ2
)2

2
√

N1θ1+mθ2
N1+m

> 0,

i.e., the function f is an increasing function of m.
Thus it follows that

∆V (1, 2) = f(N2) < f(N1)
(a)
< ∆V (1, 3),

where (a) results from (A.17), the right hand side of which is equal to f(N1).
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Step 2: (Checking Constraint (1.29))
We want to prove that a1 satisfying Constraint (1.29) is the sufficient condition

of a2 satisfying (1.29).
Consider if a1 does not satisfy (1.29), it means

√
θ3 ≤

√
λ(a1) =

√
v(a1)

S +
∑3

i=1 Ni

.

By the result in Step 1, we know that v(a1) < v(a2), then we have

√
θ3 <

√
λ(a2) =

√
v(a2)

S +
∑3

i=1 Ni

,

and further

θ3 <
√
θ3λ(a2) <

√
N3θ3 +N1θ1
N1 +N3

λ(a2) =
√
θ1λ(a2).

It means a2 can not satisfy (1.29) either. Thus we see that constraint (1.29) actually
does not affect the result in Step 1. In conclusion, we show that in a simple case with
Kpp = 3, J = 2, an optimal partition involves consecutive group indices within
clusters.

Further, based on Lemma 4 we prove another simple special case.

Lemma 5 For a four-group effective market with two prices, i.e., Kpp = 4, J = 2,
an optimal partition involves consecutive group indices within clusters.

Proof : For Kpp = 4 and J = 2 case, there are total seven possible partitions.
Three among them are with consecutive group index, (1 | 2 ∪ 3 ∪ 4), (1 ∪ 2 | 3 ∪ 4)
and (1 ∪ 2 ∪ 3 | 4). We denote a set composed by these three partitions as Σc. We
need to show the remaining four partitions are no better than some partition in Σc.
To show this, we only need to transform them to some three-group case and apply
the result of Lemma 4.

Case 1: (1 ∪ 4, 2 ∪ 3) is not optimal since we can prove (1 ∪ 2 ∪ 3, 4) ∈ Σc is
better. To show it, we take 2 ∪ 3 as a whole, then by Lemma 4, it follows that
∆V (1, 4) > ∆V (1, 2 ∪ 3).

Case 2: (2, 1 ∪ 3 ∪ 4) is not optimal, since we can prove (1 ∪ 2, 3 ∪ 4) ∈ Σc

is better. To show it, we take 3 ∪ 4 as a whole, then by Lemma 4, it follows
∆V (1, 3 ∪ 4) > ∆V (1, 2).

Case 3: (3, 1 ∪ 2 ∪ 4) is not optimal, since we can prove (1 ∪ 2 ∪ 3, 4) ∈ Σc is
better. To show it, we take 1 ∪ 2 as a whole, then by Lemma 4, it follows that
∆V (1 ∪ 2, 4) > ∆V (1 ∪ 2, 3).

Case 4: (1 ∪ 3, 2 ∪ 4) is not optimal, since we can prove (1 ∪ 2 ∪ 3, 4) ∈ Σc

is better. To show it, by Lemma 4, it follows that ∆V (2, 4) > ∆V (2, 3), and
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that ∆V (1, 3)
(b)
> ∆V (1, 2 ∪ 3). Here inequality (b) is also easily obtained, if

we notice that θ1 > θ2∪3 > θ3, thus group 2 ∪ 3 can be also treated as the role
of group 2 in Lemma 4.

Now Let us prove Theorem 1.4. For convenience, we introduce the notation Com-
pound group, such as Pre(i) or Post(i), which represents some part of a cluster with
ordered group indices. For a group i in some cluster, Pre(i) (or Post(i)) refers as
a compound group composing of all the groups with willingness to pay larger (or
smaller) than that of group i. For example, in a cluster 1 ∪ 2 ∪ 3 ∪ 5 ∪ 7 ∪ 8,
Pre(3) = 1 ∪ 2, Post(3) = 5 ∪ 7 ∪ 8. Note that compound groups can be empty,
denoted as ∅. In last example, Pre(1) = Post(8) = ∅. Since all the groups within
the compound group belong to one cluster, we can apply Lemma 2. For example,
with the previous cluster setting, NPre(3) = N1+N2, and θPre(3) =

N1θ1+N2θ2
N1+N2

. By
this equivalence rule, a compound group actually has not much difference with one
original group. The conclusions of Lemma 4 and Lemma 5 can be easily extended
to compound groups.

Proof : Without loss of generality, suppose that the group indices order within each
cluster is increasing.

Now consider one partition with discontinuous group indices within some clus-
ters. We can check the group indices continuity for every single group. For example,
a group c belonging to a cluster C, and its next neighbor in this cluster is group d, if
c− d = 1, then the group indices until c are consecutive, and if c− d > 1, then the
group indices are discontinuous, and we find a gap between c and d.

Suppose that checking group indices continuity for each group following the in-
creasing indices order (or equivalently decreasing willingness to pay order) from
group 1 to group Kpp. We do not find any gap until group u1 in cluster U . We de-
note group u1 next neighbor in cluster U is group u2. Since there is a gap between u1

and u2, there exists a group v in another cluster V and satisfying v = u1 + 1 < u2.
Now we can construct a better partition by rearranging the two clusters U and V ,
while keeping other clusters unchanged. We can view U as (Pre(u2) ∪ Post(u1)),
and V as (v ∪ Post(v)), since there is no group before v in super-group V , oth-
erwise it contradicts with the fact that we do not find any gap until group u1. It
is easy to show that there is some new partition better than the original one by
Lemma 4 and Lemma 5. There are two cases depending on whether Post(v) is
empty or not. If Post(v) = ∅, according to Lemma 4, we find another parti-
tion with U ′ = Pre(u2) ∪ v, V ′ = Post(u1) better than the original U and V .
If Post(v) .= ∅, no matter θPost(v) is larger than θPost(u2) or not, according to
Lemma 5, it is easy to construct other partitions better than the original U and V ,
since the compound groups in these original clusters (U = (Pre(u2) ∪ Post(u1)),
and V = (v∪Post(v))) does not satisfy property of consecutive group indices within
each cluster.
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In conclusion, we show that for general cases, if there is any gap in the partition,
then we can construct another partition that is better, which is equivalent to that the
optimal partition must satisfy consecutive group indices within each cluster.

A.5 Proof of Theorem 1.6

Proof : Since Ui(s, pq) is a strictly increasing function in the interval [0, s∗i ], then
(1.32) holds, if and only if the following inequality holds:

Ui(s
∗
q , pq) ≤ Ui(si→q, pq), ∀i < q. (A.18)

Since t1q > · · · > tKq , (A.18) can be simplified to

t2q−1q ln tq−1q − (t2q−1q − 1) +

∑K
k=1 Nktkq∑K
k=1 Nk + S

(tq−1q − 1) ≥ 0, (A.19)

where tiq =
√

θi
θq

. With a slight abuse of notation, we abbreviate tq−1q as tq , (q =

2, . . . ,K) in the sequel. It is easy to see that the following inequality is the necessary
and sufficient condition of (A.19) for q = 2, and sufficient condition of (A.19) for
q > 2:

t2q ln tq − (t2q − 1) +
tq
∑q−1

k=1 Nk +Nq∑K
k=1 Nk + S

(tq − 1) ≥ 0. (A.20)

Let g(t) be the left hand side of the inequality (A.20). It is easy to check that g(t)
is a convex function, with g(1) = 0, g(∞) = ∞ and g′(1) < 0. So there exists a
root tq > 1. When t > tq , the inequality (A.20) holds, thus (A.18) holds, and the
conclusion in Theorem 1.6 follows.


