
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or direct commercial advantage and that copies show this notice on the first page or
initial screen of a display along with the full citation. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New
York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

Inter-Surface Mapping
John Schreiner Arul Asirvatham Emil Praun Hugues Hoppe
University of Utah University of Utah University of Utah Microsoft Research

(a) Surface M1 with edges from M2
(notice density of edges from left wing)

(b) Surface M2 with edges from M1
(see spike flattened on rear left knee)

(c) M1 normals mapped onto M2
(lit using 2 antipodal light sources)

(d) 50% morph

Figure 1: Inter-surface map for two objects of genus 2, initialized with 8 user-specified feature points. (Symmetric stretch efficiency 0.311).

Abstract
We consider the problem of creating a map between two arbitrary
triangle meshes. Whereas previous approaches compose pa-
rametrizations over a simpler intermediate domain, we directly
create and optimize a continuous map between the meshes. Map
distortion is measured with a new symmetric metric, and is
minimized during interleaved coarse-to-fine refinement of both
meshes. By explicitly favoring low inter-surface distortion, we
obtain maps that naturally align corresponding shape elements.
Typically, the user need only specify a handful of feature corre-
spondences for initial registration, and even these constraints can
be removed during optimization. Our method robustly satisfies
hard constraints if desired. Inter-surface mapping is shown using
geometric and attribute morphs. Our general framework can also
be applied to parametrize surfaces onto simplicial domains, such
as coarse meshes (for semi-regular remeshing), and octahedron
and toroidal domains (for geometry image remeshing). In these
settings, we obtain better parametrizations than with previous
specialized techniques, thanks to our fine-grain optimization.
Keywords: surface parametrization, shape morphing, remeshing.

1. Introduction
Surface parametrization refers to mapping a triangle mesh onto a
simpler domain such as the plane, the sphere, or a coarse sim-
plicial domain. The parametrization is represented by a map

D Mφ → where M is the mesh and D is the simpler domain. In
computer graphics, parametrization is central to texture mapping,
whereby images placed in the domain are sampled on rendered
surfaces to provide texture detail, place decals, encode shadows,
record radiance transfer coefficients, etc. Surface parametriza-
tions also appear in numerous applications, including digital
geometry processing, morphing, surface editing, object recogni-
tion, and geometry remeshing.
We address the more general problem of directly constructing a
continuous bijective map 1 2M M

φ
→

 between two triangle meshes

M1 and M2 of the same topology. (Continuity precludes maps
between surfaces with different genus or number of boundaries.)
Unlike previous approaches which compose parametrizations of
M1 and M2 over some intermediate domain (as reviewed in Sec-
tion 2), we directly optimize the quality of the overall map

1 2M M
φ

→
. Our method works for arbitrary genus and does not

require the user to provide a simplicial complex (e.g. [Praun et al
2001]). The user may optionally specify corresponding feature
points on M1 and M2, and our construction guarantees that the
map satisfies these constraints.

•

•

•

•

•

Some parametrization schemes may require a large set of manu-
ally specified features to guide the parametrization process to a
good (or even valid) solution. As we shall show, our mapping
method is robust even with few feature constraints. Moreover,
directly minimizing the distortion of the inter-surface map tends
to naturally align corresponding shape elements. Of course, a few
user-specified constraints are helpful for overall registration and
for linking semantically related regions.
Our approach adds a new fundamental tool to the Digital Geome-
try Processing toolbox. Its main contributions are:

Inter-surface mapping without any intermediate domain, to
directly measure the distortion of the overall map.
Symmetric distortion metric, i.e. invariant to the interchange of
M1 and M2.
Symmetric coarse-to-fine optimization algorithm to provide
robustness and convergence to a good solution.
Initialization of map to robustly satisfy any user-specified
feature correspondences.

Additional scenarios. While our motivating application is the
creation of maps between surfaces of comparable complexity, our
framework can also be used in cases where M1 is a simpler mesh,
possibly inferred from M2:

Simplicial parametrization (for semi-regular remeshing): given
a surface M2 and desired domain vertices on M2, we automati-
cally create domain M1 and a parametrization.
Octahedral parametrization (for geometry-image remeshing):
M1 is a regular octahedron, and feature points are unnecessary.

•

• Toroidal parametrization (for remeshing of genus-1 shapes).
Our more general optimization framework actually obtains better
results than the previous techniques specialized to these scenarios.

870

© 2004 ACM 0730-0301/04/0800-0870 $5.00

(2) Even with this initial correspondence, the techniques would
converge too slowly due to the high complexity of M1.

2. Related work
Planar parametrization. The traditional surface parametrization
problem considers the case where the domain D is a planar region

 (see survey in [Floater and Hormann 2003]). The map 2P R⊂
D Mφ → is represented by the parametric locations of vertices of M

within the plane. Optimization can freely move the vertices
within the domain as long as bijectivity is maintained.

(3) Simplicial parametrization techniques ignore the geometry of
surface M1, since they assume it to be an abstract domain.
Inter-surface mapping. Lee et al [1999] create an inter-surface
map between two surfaces M1, M2 by first constructing simplicial
parametrizations 1 1D M

φ
→

, 2 2D M
φ

→
. Because the domain meshes

D1, D2 are different, user assistance is required to form a good
map between them, and this map construction is not robust.

B C

A

D E

B C

A

E D

Kraevoy et al [2003] present the Matchmaker scheme for satisfy-
ing corresponding feature point constraints in D and M. We
extend their scheme to form a corresponding graph of paths on
two surfaces M1, M2 of arbitrary genus g, possibly with bounda-
ries. To guarantee the successful termination of the path insertion
process, we impose ordering constraints on the neighbors of a
feature vertex, and we trace a spanning tree and 2g non-separating
cycles before completing the full graph. Consis-
tent neighbor ordering is necessary to avoid partial
graphs that are impossible to complete, as shown
on the right (if D and E link to the same base
vertex B or C, this will result in flipped triangles;
if they link to different ones, edges will cross.)

To overcome this drawback, Praun et al [2001] develop a sim-
plicial parametrization method in which the connectivity of the
simplicial complex D can be specified a priori. Given a genus-0
simplicial complex and desired images of each domain vertex on
multiple surfaces, they construct consistent parametrizations

1D M
φ

→
, 2D M
φ

→
 over the shared simplicial domain D.

Both spherical parametrization and consistent simplicial pa-
rametrization can be used to create a continuous map between two
surfaces M1 and M2 by forming the composition 2 1

1
D M D M
φ φ−

(where D is the sphere or simplicial domain, respectively).
However, using an intermediary domain may result in a poor
inter-surface map, since each sub-map ignores the non-uniform
distortion present in the other. For example, when creating a map
between a cow and a horse, the cow legs would not be encouraged
to match up with the horse legs. While it is possible to manually
force correspondences of constraints on a dense set of domain
vertices, a more elegant and flexible solution is to automatically
favor this correspondence within the distortion metric itself.

→ →

An important limitation of planar parametrization is that repre-
senting an entire surface requires that it be cut into one or more
disk-like charts, where each chart is parametrized independently.
Some techniques cut the surface into a single chart [e.g. Gu et al
2002; Sheffer et al 2002; Sorkine et al 2002], while others cut it
into an atlas of charts [e.g. Maillot et al 1993; Sander et al 2001;
Levy et al 2002; Gu and Yau 2003]. In either case, the cuts break
the continuity of the parametrization, making it difficult to use a
planar parametrization approach to construct a continuous map
between two different surfaces, since their cut structures differ.

Kraevoy and Sheffer [2004] use the composition 2 1
1

D M D M
φ φ−

→→

to remesh M2 using the connectivity of M1 (together with addi-
tional vertices). They smooth the map using a spring relaxation
with edge weights related to local remesh error. Their approach is
much faster than ours, and produces simpler meshes than our
method run to full resolution. However, our coarse-to-fine com-
putation can be stopped at any lower resolution, or the final map
could be post-simplified considering both mesh geometries. Since
their map uses a conformal metric (as in Figures 5, 9, 10), the user
must associate all interesting model features. Their scheme is
robust for genus-zero models; although they demonstrate maps
between models of nonzero genus, their algorithm may abort and
ask the user for additional feature constraints.

Spherical parametrization. By letting the surface domain D be
the unit sphere S, one can directly parametrize a closed genus-
zero surface without any cuts. Examples of spherical parametri-
zation methods include [Haker et al 2000; Alexa 2002; Gotsman
et al 2003; Praun and Hoppe 2003].
Simplicial parametrization. Another approach lets the domain
D be a coarse base mesh. The surface is partitioned into triangu-
lar regions that are mapped respectively to faces of D [e.g. Eck et
al 1995; Lee et al 1998; Guskov et al 2000; Praun et al 2001].
The challenge in simplicial parametrization is that it is difficult to
globally optimize the parametrization. Whereas planar and
spherical domains are smooth everywhere, simplicial domains
have sharp edges and vertices. Since the whole domain cannot be
simultaneously “unfolded”, most methods iteratively apply a
linear relaxation to a small group of adjacent faces. For example,
Eck et al [1995] iteratively unfold a pair of adjacent domain faces
and reparametrize the surface neighborhood over the resulting
quadrilateral. Guskov et al [2000] perform local reparametriza-
tions over 1-ring vertex neighborhoods, with the advantage that
the images of domain vertices can shift over the surface.

In this paper, we directly optimize the distortion of the inter-
surface map, and robustly support surfaces of arbitrary genus.

3. Approach overview
Map representation. Our goal is to produce a piecewise-linear
map between two triangulated surfaces. Unlike in planar pa-
rametrization, the linear pieces of the map are finer than the
original mesh faces, as they correspond to triangles of a mutual
tessellation [Turk 1992] (a.k.a. meta-mesh [Lee et al 1999]) of the
two surfaces. Vertices of this meta-mesh include the vertices of
both initial meshes as well as vertices formed by edges of M1

intersecting those of M2. To fully specify the map, for each mesh
vertex we record the face of the other mesh to which it maps,
along with barycentric coordinates within that face, and for each
edge-edge intersection, we record the two ratios formed by the
split point on each edge. Together, the vertex and edge-edge
barycentric coordinates define a set of polygonal sub-regions on
faces of M1 and M2. We define a unique piecewise-linear map by
further triangulating these polygonal regions.

Rather than iteratively optimizing local neighborhoods, Kho-
dakovsky et al [2003] set up a global system where the mesh
edges spanning adjacent domain faces are treated as if the two
faces were locally unfolded into a plane. Solving the global
system provides much faster convergence. Unfortunately, the
domain vertices are fixed during the global system, and must be
relaxed separately using traditional 1-ring relaxation.
The inter-surface mapping problem could be viewed as an in-
stance of simplicial parametrization where the domain is
an unusually complicated simplicial domain. However, existing
simplicial parametrization techniques are not applicable, because:

1D M= On rare occasions, it is necessary to “bend” the image of an edge
of M1 inside a triangle of M2 and vice-versa. We achieve this by
introducing special kink vertices of valence 2 in mesh Mi (Sec-
tion 5). These vertices have a corresponding face and barycentric
coordinates in the other mesh just like regular vertices.

(1) They require an initial correspondence from all vertices of M1
to surface M2, obtained by the construction of M1 from M2.

871

Algorithm overview. Our strategy is to use progressive refine-
ment to robustly create and optimize the inter-surface map. Even
for planar and spherical parametrizations, which involve smooth
domains, coarse-to-fine approaches help parametrizations con-
verge to good solutions [Hormann et al 1999b; Sander et al 2002;
Aksoylu et al 2003]. For inter-surface maps, the lack of domain
smoothness exacerbates the problem of local minima, further
motivating progressive refinement.

4. Initialization of coarse map
Our goal is to form a consistent partitioning of meshes M1 and M2
into corresponding triangular patches. The patch boundaries are
defined by path networks linking together feature vertices. These
feature vertices are optionally specified by the user. If their
number is insufficient for the given surface genus (e.g. at least 4
features for genus 0, more for higher genus), our algorithm auto-
matically inserts additional pairs. We allow the path connectivity
to be either specified (as in [Praun et al 2001]) or arbitrary (as in
[Kraevoy et al 2003]), depending on the application scenario.

Our method first constructs progressive mesh (PM) representa-
tions of both M1 and M2 [Hoppe 1996]. To simplify the task of
initializing the inter-surface map (and in fact make this task
trivial), we constrain the two progressive meshes to have base
meshes with identical connectivities. And, to satisfy user-
specified correspondences, feature points are retained as vertices
in the base meshes. Consequently the algorithm becomes prova-
bly robust. A trivial valid map is created initially, and the
refinement operations always succeed, so that by induction we are
guaranteed a valid map between the fully refined surfaces.

Our approach is to link together corresponding feature pairs on
both meshes using constrained shortest paths, similarly in spirit to
the methods of Praun et al [2001] and Kraevoy et al [2003]. We
add paths in a greedy fashion, subject to constraints that ensure
consistent topology, and using heuristics that avoid swirls. When
a maximal graph of non-crossing paths has been created, the two
surfaces have been partitioned into triangular patches.
Path tracing. We trace the shortest path between a pair of feature
vertices using a Dijkstra search. The search is constrained to not
intersect with paths already in the network. To obtain path net-
works with consistent topologies between the two meshes, we
must maintain a consistent ordering of the neighbors of each
vertex. Therefore an additional constraint on the paths is to start
and end in corresponding sectors on the two meshes. (We assume
that the meshes are orientable.) When the shortest paths on each
mesh are not consistent, we trace two candidate pairs of paths, by
imposing the sectors from M1 on the path on M2, and vice-versa,
and then pick the best pair.

The basic steps of our algorithm are:
(1) Partition the surfaces M1 and M2 into a corresponding set of

triangular patches, by tracing a set of corresponding paths. If
user-specified features are provided, these are chosen as path
endpoints. (Section 4)

(2) Create progressive mesh representations of both M1 and M2,
using the path networks to constrain the simplifications, result-
ing in two base meshes with identical connectivities.

(3) Establish a trivial map between the two base meshes: a 1-to-1
map on vertices, with no edge-to-edge intersections. To allow the creation of a valid path between any pair of features,

we lazily add extra Steiner vertices in the meshes, as suggested by
Kraevoy et al [2003]. Our scheme performs Dijkstra searches on
both the mesh vertices and the edge midpoints. Since using edge
midpoints in a path corresponds to adding Steiner vertices, we
give preference to paths that do not use them. This may lead to
slightly more jagged paths, but the precise geometry of the paths
is not critical to the final map, since the paths are not constraints
— they only guide the construction of compatible PM sequences.

(4) Iteratively refine the two progressive meshes. After each
vertex split, update the inter-surface map and optimize it on
the local neighborhood. When both meshes are fully refined,
we obtain the inter-surface map. (Section 5)

Steps 1 and 4 are the most challenging, and are presented in more
detail in the next two sections. To create the progressive meshes
in Step 2, we constrain the edge collapse sequence to preserve the
topology of the paths, as described by Sander et al [2001]. We
thus obtain base domains whose edges correspond to original
paths and whose triangles correspond to original patches (see

). Since the two base domains have the same connec-
tivity, the construction of the initial map between them in Step 3
is trivial.

Our greedy path-insertion algorithm selects the best pair of
corresponding paths from a priority queue sorted by the sum of
path lengths on M1 and M2. The queue is initially populated by
tracing paths from each vertex to its 10 closest neighbors. When
the best candidate is selected, we check whether it is still valid,
and if not we recompute it and insert it back in the queue.

Figure 2

Given set of feature points, and

computed paths and patches.
Resulting base meshes

Figure 2: Example of consistent partitioning process.

To guarantee the success of the algorithm, we must avoid enclos-
ing any vertex within a path cycle not connected to it. Praun et al
[2001] observe that for genus-0 surfaces it is sufficient to first
build a spanning tree of the feature vertices (before forming any
cycles). We generalize this approach to arbitrary genus. To this
end, we must distinguish between separating and non-separating
cycles formed by the paths. (A separating cycle is one that breaks
the surface into two disjoint components.) Our strategy is to first
build a maximal path network without separating cycles, before
adding any paths forming separating cycles.
For a surface of genus g with k feature vertices, the maximal non-
separating graph is the union of a tree spanning all feature points
and 2g non-separating cycles, and thus has exactly k–1+2g paths.
This maximal non-separating graph topologically cuts the surface
into a disc [Gu et al 2002], with all the sectors around feature
vertices as vertices on the boundary of the disc. The neighbor
ordering constraint ensures that the ordering of the disc vertices is
the same for both M1 and M2. In such a configuration, there
always exists a unique way to link any two vertices (sectors
adjacent to a feature). Once such a path is added, each of the two

872

topological discs representing M1 and M2 is further split into two
discs, which can be then consistently decomposed.
The new path that needs to be added to split the discs may some-
times link two features that are already connected (by a path in
different sectors, going across a handle
of the objects). In such cases we
automatically introduce additional
feature points to support the new path.
As an example, for the pair of genus-2
surfaces in , 8 features are specified by
the user, and 7 additional ones are
automatically introduced (blue dots in
the inset close-ups).
There are two issues related to building the maximal non-
separating graph: avoiding separating cycles, and avoiding swirls.
Avoiding separating cycles. If a newly introduced path between
vertices A and B forms a cycle, we test whether it is separating,
and if so, we replace the path with one forming a non-separating
cycle using an algorithm similar to that of Lazarus et al [2001].
Specifically, we perform two simultaneous breadth-first searches
starting from the vertices incident to the path AB, on its two sides.
The searches are constrained by the existing path network and by
the candidate path AB. Each visited vertex is tagged with its
parent (the vertex visited previously to get to it) and with the
left/right side of AB it connects to. If we ever reach a “left” vertex
from a “right” tagged one, then the cycle is non-separating.
Otherwise, we form a new non-separating cycle as follows. The
boundary of the region visited in the search at a certain time is in
general composed of several contours that can subsequently split,
merge, or contract to a point. When contours merge (say at a
point O), we trace back two paths to the previous split event P,
using the “parent” fields. From this non-separating cycle between
P and O we select the vertex X closest to A and B. We measure
distance by tracing paths XA, XB that (1) do not cross the cycle at
points other than X, (2) meet the cycle from opposite sides, and
(3) end at A and B on the same side of the temporary AB path.
The path AX-XB forms the final path.
If there are not enough user-provided features to resolve the genus
of the object, we trace non-separating cycles connecting to one of
the existing features using a procedure similar to the one above
(with A=B and no “left”/”right” tags), and create two new feature
constraints to support the cycle.
Avoiding swirls. A swirl is an awkward geometric configuration
in which paths between feature vertices take unnecessarily long
routes around other existing paths. More precisely, the presence
of corresponding feature constraints establishes homotopy classes
on the set of inter-surface maps. Two maps belong to the same
class if there exists a continuous deformation between them that
maintains the constraints. Since swirls correspond to “poor”
homotopy classes, they cannot be fixed using local continuous
relaxation [Praun et al 2001]. We have found two heuristics to be
effective at avoiding swirls.
The first heuristic is to prefer early connection of feature points at
mesh extremities. To identify mesh extremities, we compute for
each feature vertex an average distance to the closest set of
neighboring features (8 in our implementation). Vertices with a
high distance (top 25%) are considered extrema.
The second heuristic is to delay paths that pass on the “wrong
side” of neighboring features [Praun et al 2001], and when forced
to choose such a path, to re-route it on the correct side. For each
candidate path, we gather a set of neighboring feature vertices (the
k-closest neighbors of the two endpoints on the two meshes). For
each of these neighbors we determine on which side of the path it

lies by computing the side on which the shortest route from the
neighbor to the path meets the path. If the side is different be-
tween the two meshes, then the path is likely to cause a swirl, so it
is penalized in the pool of candidate paths. If only penalized paths
are left, we attempt to re-route the lowest-cost path on the correct
side of the offending neighbor vertex as follows. Shortest paths
between the offending neighbor and the candidate path endpoints
are computed (under normal constraints) and temporarily added to
the path network. The new path is thus forced to go on the correct
side of the connected component of the offending neighbor.
Handling surface boundaries. Our map initialization algorithm
is easily extended to meshes with boundaries (). Each
boundary contour is triangulated using a single central point. The
point is treated as a feature vertex, and must be associated with a
corresponding boundary-center vertex on the other mesh. Once
the two path networks are computed, these boundary-center
vertices are removed along with the faces used to triangulate the
boundaries. The paths connecting to the boundary centers are
clipped to the boundary, and these clip points become new feature
vertices. We then consistently triangulate the resulting non-
triangular patches, and the remaining steps proceed as before.

Figure 7

5. Coarse-to-fine map optimization
Like previous work [e.g. Guskov et al 2000; Sander et al 2001],
we optimize the map by moving one vertex at a time within its
one-ring neighborhood to decrease the distortion metric. This
optimization is performed after each vertex split for the new
vertex and each of its neighbors, and for all mesh vertices when
their total number has increased by a factor of 1.5.
Unlike previous methods, we consider the optimization of vertex
neighborhoods not just of M1 but also of M2. This convenient
symmetry is necessary since neither mesh is a special “domain”.
It also provides finer-grain optimization than previous simplicial
parametrization methods.
In our current implementation, we refine only M2 for a number of
steps, while M1 is held at constant resolution, then swap their roles
and optimize M1, and then repeat the process. Keeping track of
only one refining mesh at a time while the other is static results in
lighter-weight data structures and more manageable code. For the
scenarios where one of the meshes is very simple (octahedral and
simplicial parametrizations), the swaps are unnecessary.

5.1 Vertex optimization
The main operation considers a vertex of Mv 2 and optimizes its
location on Mv

Ν

1. Let Ν be the 1-ring neighborhood of in
M

()v v
2, and be the pre-image of this neighborhood in M()v 1 under

the map (Figure 3a-b). The optimization only modifies the map
inside these corresponding neighborhoods, i.e. by regenerating
barycentric coordinates for all meta-mesh vertices within the
interior. Therefore we can exactly compute the change in overall
distortion.
To perform the relaxation, we make use of a temporary 2D pa-
rametrization of the neighborhood onto a planar polygon

, constructed as follows (see Figure 3c). We use a one-ring
unfolding where is initially mapped to the origin =(0,0), each
neighbor of is mapped to a point at a radius equal to the
path length , and the angle between successive
neighbors , is proportional to (scaled such that their
sum equals 2π). The angle on M

()vΝ

ŵ
ˆ ˆ ˆuvw

uvw

ˆ()vΝ

ˆ()vΝ

v
v

v̂

()v

w

û
vw
ŵ

uvw 1 is computed using the
law of cosines applied to the path lengths uv , , and (or to
the respective Euclidean distances if the path lengths do not obey
the triangle inequality). Importantly, when Ν is entirely
contained inside a single face of M

vw wu

(Ν1, the map from to
 is an isometry.

)v

873

v u

w
M2

u
w

^

^

old v ^

v ^
R2 I

v ^
u

w
^

^
R2

v ~

~

~

u

wM1

v ~
u ~

w ~ M1

1()v M⊂Ν v 2() ⊂Ν v M

2ˆ()v R⊂Ν v

w

Once we have computed the boundary of the polygon Ν , we
delete all the edges incident to and the corresponding paths
incident to (along with all their intersection points on edges of
M

ˆ()v

ˆ()v

v̂
v

1). We use the mean-value parametrization scheme of Floater
[2003] to relax the 2D locations inside Ν of the vertices of Mˆ()v 1
contained within Ν . Since the boundary of can be
concave, flips can occur, or some interior pieces can be non-
convex. In those rare cases, we re-map the boundary to a convex
circle-inscribed polygon [Guskov et al 2000], and repeat the
relaxation, this time guaranteeing no folds.

()v Ν

Next, we optimize the location of using repeated line searches
as in [Sander et al 2001]. In these searches, we keep v within the
kernel of polygon to preserve map bijectivity. For each
location of , we redraw its incident edges, and map these back
to M

v̂

(

()v

ˆ

()→ →

ˆ()vΝ
v̂

1 using the map Ν (Figure 3d). We apply
Constrained Delaunay Triangulation (CDT) to any non-triangular
(boundary-adjacent) pieces of . For all resulting triangle
pieces, we compose the linear maps to
compute the Jacobian used in measuring overall map distortion.

ˆ())v →Ν

Ν

v

v

(a) ; initial

(c)

Figure 3: Illustration of neighborhoods in vertex optimization.

Figure 4. A kink vertex (red, right) is required since a direct
segment along (dotted) goes on the wrong side of .

Kin einer verti sary
to cre n rare c ink” the
im 1, by

1. ation
map its in . We

 by ons with
 points to

ve raight-
line segm een the tw pped intersection points may not
be contain de the piece (Figure 4). In these rare cases, we

e l
a p e as

5
riz tio

n (au

ˆ() ()v vΝ Ν Ν

We retain the location of that achieves lowest distortion. Note
that due to the initial relaxation and deletion of edge-edge cross-
ings when constructing the neighborhood , the final
distortion may be larger than that before neighborhood optimiza-
tion. In this case, we discard the whole operation.

v̂

ˆ()vΝ

(b)

(d) 1()v M⊂Ν ; new

v ~
u ~

 vw u

 the CDT diagonals of the concave piece to support additiona
k points in the ath vw . These kinks are represent d

k vertices. Just as St
a a valid bijectio i

age of an edge of M2
intersections with edges of M

 of a vertex, we must
p an edge ˆ to a path
es of Ν

 using the split ratios on their
es of ()vΝ on M1 may

ces e someti neces
a we need to “k

 breaking it at points other than
After optimizing t

cident edges back to M1

 finding its tersecti
intersection

 supporting segments. Since the
concave vertices, the st

 ar
ses

mes
te n,

on M
he 2D loc

v̂
ma
piec
M1

piec

us
bre

vw
 in 2D, and mapping these

 ha
o maent bet

ed insi

temporary vertices of M2 with valence 2, and are removed when
next optimizing v or w . (When swapping M2 and M1, one of
these optimizations is forced, in order to remove the kinks).

.2 Distortion metric
Many paramet ation distor n measures have been proposed,
including angle-preservation (conformal map) [Eck et al 1995;
Hormann et al 1999a; Levy et al 2002; Desbrun et al 2002], area-
preservatio thalic map) [Desbrun et al 2002], and stretch
minimization [Sander et al 2001]. Often, these metrics can be
expressed in terms of the singular values Γ,γ of the map Jaco-
bian J (i.e. Γ2 and γ2 are eigenvalues of the metric tensor TJ J).
Most previous distortion metrics are asymmetric, in the sense that
optimizing φ and optimizing 1φ− would not result in the same
map. Two exceptions are the (γ

γ
Γ

Γ+) metric of Hormann et al
[1999a] and the 1max(,)Γ metric of Sorkine et al [2002], w

ˆ()v
v̂w in

γ
y are

()2 1

1 2

2 2
2 2 2

1 1
() ()

M M
TT

M M

A A
A A

γ
γ

= + + + Γ

where A denotes area, is a triangular piece of ()vΝ , T is a
triangular piece of ()v , and Γ and γ are the singular values of

hich
e invariant to the substitution have the key property that th

() 1 1γΓ ↔, (,)γ Γ .
It is likely feasible to create symmetrized versions of many prior
metrics, including the popular discrete conformal map. We have
chosen to symmetrize the L2 stretch of Sander et al [2001] because
it smoothly penalizes scale distortion. We do this by summing
direct and inverse L2 stretch:

2 2 2 1 2 2 2 2 1 2() () ()L T L M M L M M= → + →

2

stretch stretch

Γ

w~M1 A A

T
Ν

 of the comthe Jacobian J posed map between ur

 symmetric stretch efficiency, which
is defined simply as

T and T . O

of major geometric fea res. As an example, in Figure 5 the
whole head of each al is mapped to a small disc on the neck
of the other.

particular definition has the key property of being invariant to the
scale of either model. Note that the symmetric formulation
obviates the need for a regularizing term as was used in [Praun
and Hoppe 2003].
For our results, we report the

2 22 (
T

)L T∑ and has an upper bound of 1.
We also experime symmetric conformal metric.
However, such a distortion metric is less sensitive to changes in
geometry, and therefore does not lead to natural correspondence

tu
anim

nted with a

Figure 5. Use of a conformal metric results in a poor inter-
surface map.

874

6. Applications and results

6.1 Inter-surface mapping
Figures 8, 6, and 1 show mappings between pairs of surfaces of
genus 0, 1, and 2 respectively. The horse-cow map in Figure 8
uses 4 feature correspondences, the teapot-cup map in Figure 6
uses 22 feature points (red dots), and the dragon-feline map in
uses 8 user-specified points and 7 automatically added.
Generally, the constraint points are used to initialize the map, and
are then dropped during the coarse-to-fine optimization, to im-
prove map smoothness. To see what can happen when the
constraints are held fixed, let us consider the teapot-cup map of

lid, it tries to flow around the feature con-
straints located on the teapot rim, causing distortion (Figure 6a).
In contrast, it unfolds nicely when the constraints are relaxed
(Figure 6c). If one did desire the cup and teapot rims to remain in
correspondence, it would be best achieved by introducing con-
straint paths (instead of constraint points). For objects that are
geometrically similar, such as the heads in Figure 7, point features
introduce little distortion.
Figure 8 shows that with only four feature points placed on the
hooves of the cow and horse models, we obtain a map where all
the important features correspond to each other, as demonstrated
by the morph. (If features did not match, they would appear
doubled.) Not only did our optimization automatically match the
two heads without any user-provided features in their vicinity, but
it also matched smaller features such as the horse’s ears to the
cow’s horns (as shown in the close-up). Maps obtained by com-
posing two separate parametrizations to simple domains (planar,
spherical, or simplicial) cannot easily match features in the ab-
sence of user constraints, since this information is only available
in the combined map. Figure 9a shows that even with 17 feature
points (two on the eyes) the composed map does not achieve the
quality of our inter-surface map. Notice the presence of doubled
features, such as nostrils, both pairs of ears and the cow’s horns.

Figure 6. Because the interior of the cup has much more surface
area than the teapot

M1 50% morph M2 Close-up

Figure 7. Map between two meshes with boundaries. The
close-up on the eye shows low distortion around the feature point
(M1 edges over M2 geometry). (Symmetric stretch efficiency 0.967).

horse base cow base 50% morph

Figure 8: Cow-horse inter-surface map using only 4 features.

(a) composition of 2 simplicial maps (b) direct inter-surface map

Figure 9. The inter-surface map automatically favors shape
correspondence, unlike the composition of two separate sim-
plicial parametrizations, as shown in these morphs. (The
simplicial map uses the 17 feature points shown in Figure 2.)
(Symmetric stretch efficiencies: (a) 0.416, (b) 0.442).

6.2 Simplicial parametrization
In this scenario, M1 is an abstract domain whose triangle faces are
conceptually all equilateral. Although such a domain lacks an
isometric embedding in R3, this is not a problem for the algorithm.
During the construction of the local neighborhood in
Section 5.1, the faces in are simply taken to be eq l.
Among previous simplicial parametrization methods, the most
advanced is the Globally Smooth Parametrization (GSP) work of
Khodakovsky et al [2003], which attains smoothness across
domain edges. However, it compresses the parametrization in the
vicinity of low-valence irregular vertices, and stretches it near
high-valence irregular vertices. As Figure 10 shows, our maps are
visually smooth everywhere, and the extraordinary domain verti-
ces have much less influence on the parametrization uniformity.

ˆ()vΝ
uilatera()vΝ

Figure 6. Inter-surface map between two genus-1 objects.
(a,b) use fixed constraints while (c,d) drop the constraints after
initialization. (a,c) cup edges on teapot. (b) teapot edges on cup.
(d) 50% morph. (Sym. stretch efficiencies: (a,b) 0.471, (c,d) 0.598).

875

Figure 10. Comparison of semi-regular remeshing using GSP

ctahedral parametrization. As shown in Table 1, the parametri-
zation stretch efficiency is improved in all cases, and the

eometric accuracy of the remeshes (as measured with PSNR) is
also improved for models with many extremities.

e
let the toroidal domain be represented by a mesh M1 with 9

vertices and 18 triangles. As in simplicial
parametrization, the domain M1 does not
have a global isometric embedding in R3,
but again we can use the local geometry
of the domain when constructing the
neighborhoods ˆ()v in
Section 5.1. In , ngles in

re al trian-

o initialize the parametrization, the user specifies 9 feature
points on the input mesh M2, to correspond with the domain mesh
vertices. To allow maximum freedom for the map, these feature
points do not act as constraints during coarse-to-fine optimization.
Figure 11 shows some example results.
There has been little work on toroidal parametrizations of arbi-
trary genus-1 surfaces, which is surprising since the domain is the
most “Euclidean” of all closed surface topologies. Gu and Yau
[2003] demonstrate their global conformal approach on genus-1
surfaces. Compared to their results, ours exhibit less scale-
distortion due to the use of a stretch functional.

(middle) and our method (right), using the same set of base
domain patches (left). (One-way stretch efficiencies: bunny 0.800,
0.915; David 0.761, 0.902).

6.3 Octahedral parametrization
Praun and Hoppe [2003] use a sphere
as an intermediate domain to pa-
rametrize a surface onto an octahedron,
for subsequent geometry image
remeshing. By directly optimizing the
octahedron-to-surface m obtain
improved results. The inset figure
shows the Venus head as a geometry
image obtained by unfolding an

ap, we

Surfaces mapped into toroidal
domain (with 2-sided lighting)

Remeshed surfac
(all vertices have v

o

g

6.4 Toroidal parametrization
A natural domain for genus-1 surfaces is the toroidal unit square.
It is formed by identifying the square’s boundaries left-to-right
and top-to-bottom. To apply our framework to this scenario, w

) a ways right es

les, and their configuration is such that
()vΝ is planar. Thus, the local map

ˆ() ()v v→Ν Ν is always an isometry.

B C
Toroidal domain

 tessellation

A A

AA

D

E

DF G

H I

CB

E()vΝ
this case

 and Ν
 the tria
isoscel(vΝ

g

T

es
alence exactly 4)

Figure 11. Examples of toroidal parametrization and remeshing.
 arm 0.582).

oa
ed u

One-way
L2 stretch efficiency

Remesh PSNR
(dB) Model

D→S→M2 D→M2
 D→S→M2 D→M2

Venus 0.943 0.947 83.4 83.2
Bunny 0.706 0.717 80.0 79.9

Gargoyle 0.643 0.679 79.2 79.3
Armadillo 0.454 0.528 72.0 73.0

Horse 0.363 0.398 76.9 77.7
Cow 0.405 0.440 74.9 77.0

tyrannosaurus 0.360 0.418 73.6 74.5

Table 1. Comparison of octahedral remeshing using spherical
parametrization (D→S→M2) [Praun and Hoppe 2003], and
using our direct map onto octahedron domain D.

(One-way stretch efficiencies: teapot 0.458, rocker

7. Discussion
An earlier implementation of our method followed a more tradi-
tional parametrization appr ch, with a static domain and only
one mesh being optimiz sing a coarse-to-fine algorithm. To
initialize the map we used conformal maps to establish correspon-
dences between the domain vertices and the large base domain
faces of the progressive mesh. This method presented two diffi-
culties: (1) some patches were too large to robustly parametrize
using a single linear system and (2) having formed this initial
map, there was no way to effecti ove it (since it was
“stuck” at a fine level). Our symmetric coarse-to-fine approach
overcomes both these difficulties.

vely impr

876

An important property of directly optimizing the map between
two surfaces is that the correspondence of geometrically similar
features is encouraged within the distortion metric itself, thereby
requiring fewer manually specified features. For example, only 4
features are sufficient to obtain a good map between the cow and
the horse. These 4 features on the hooves are needed to prevent a
combinatorial optimization, i.e. which cow leg corresponds to
which horse leg. Our mapping problem shares similarities with
the problem of obtaining a rigid correspondence between two
objects. Mesh registration energy functionals typically have many
local minima and thus require initial user guidance, but impor-
tantly they have a deep energy well near the global solution.
The major difference between our symmetric coarse-to-fine
refinement process and previous simplicial parametrization
methods is the opportunity for fine-grain optimization. Simplicial
parametrization methods apply linear relaxation operations across
coarse domain faces, whereas we apply non-linear optimization
on individual vertices of both meshes.
While our method achieves impressive results for a large class of
applications, its main current limitation is execution time. The
mutual tessellation is more complex than either of the inpu
m
C
i
s toroidal parametrization scenarios,
where M1 is coarse, it takes about 20 minutes to create the map.

ation could theoreti-

a
o

mation [Sander
et al 2002] to obtain better configurations at low resolutions.
Huge meshes could be sing a h fter
runni SM a ood ap,
we could define th plicial map composition,
since the simplicial pieces may l u oid
numerical problems and geomet l mis .
One applic nter- map uto-
mat fer g c tex tween models. ay
allo extur sis u er surfaces as exemplars.
An interesting open question i to e
handl models. Simultaneously op ng an -all
map would not scale, while us mo dom uld
lo s o ly op inte ce m
Another area of future work is computing maps with singularities
t
g
a

Acknowledgements
ichelangelo Project at

, P. 2003. Multilevel
 J. Sci. Comput.
hing. Computer Graph-

, 173-
. Intrinsic parameteriza-

tion orum, 17(2), 167-174.
 L

STU sis of shes.
ACM SIGGR

FLOATER, M. 20 . CAGD, 20(1), 19-27.

eometry images. ACM SIG-

IS, R., SAPIRO, G.,
AND HALLE, M. 2000. Conformal surface parametrization for texture
mapping. IEEE TVCG, 6(2), 181-189.

HOPPE, H. 1996. Progressive meshes. ACM SIGGRAPH, 99-108.
HORMANN, K., AND GREINER, G. 1999a. MIPS: An efficient global

parametrization method. Curve and Surface Design, 153-162.
HORMANN, K., GREINER, G., AND CAMPAGNA, S. 1999b. Hierarchical

parametrization of triangulated surfaces. Vision, Modeling, and Visu-
alization, 219-226.

KHODAKOVSKY, A., LITKE, N., AND SCHRÖDER, P. 2003. Globally smooth
parameterizations with low distortion. ACM SIGGRAPH, 350-357.

KRAEVOY, V., SHEFFER, A., AND GOTSMAN, C. 2003. Matchmaker:
constructing constrained texture maps. ACM SIGGRAPH, 326-333.

KRAEVOY, V., AND SHEFFER, A. 2004. Cross-parameterization and
compatible remeshing of 3D models. ACM SIGGRAPH.

LAZARUS, F., POCCHIOLA, M., VEGTER, G., AND VERROUST, A. 2001.
Computing a canonical polygonal schema of an orientable triangulated
surface. ACM Symposium on Computational Geometry, 80-89.

LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN, D.
1998. MAPS: Multiresolution adaptive parametrization of surfaces.
ACM SIGGRAPH, 95-104.

LEE, A., DOBKIN, D., SWELDENS, W., AND SCHRÖDER, P. 1999.
Multiresolution mesh morphing. ACM SIGGRAPH, 343-350.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares
conformal maps for automatic texture atlas generation. ACM SIG-
GRAPH, 362-371.

M ROUST, A texture
7-

P

PRAUN AND OPPE remesh-
ing. ACM SIGGRAPH, 340-349.

 GORTLER, S., AND HOPPE, H. 2001. Texture

t
eshes, and managing it during optimization is time-consuming.
urrently our implementation takes a couple of hours to create

nter-surface maps between meshes of ~64K faces. For the
implicial, octahedral, and

The space complexity of the mutual tessell
2cally be O(n) for a pathological wors

models it is about 8n, i.e. a small factor
from the two meshes. In practice, memory
issue.
Another conceptual drawback of our c
(though not of the method in general) is th
structure, which only allows one of the m
time. A truly symmetrical implement
interleaved refinement of both meshes w

8. Future work
There are several avenues for future work. To improve speed we
envision using fine-to-coarse propagation of infor

t case, but for ordinary
more than the 2n vertices

 usage has not been an

urrent implementation
e asymmetry of the data
eshes to be refined at a

tion allowing fine-grain
uld be more elegant.

 handled u
lg

ybrid strategy; a
mid-resolution mng our I orithm to create a g

e finer map using sim
 be smal and flat eno gh to av
ric detai match

exciting ation is the use of i surface s to a
ically trans
w surface t

eometri
e synthe

ture be
sing oth

This m

s how xtend our method to
e multiple timizi all-to

ing one del as ain wo
se some benefit f direct timizing r-surfa aps.

o allow correspondences between objects with different topolo-
ies. User input may be required to associate topological features
nd introduce singularities on some of the meshes.

We thank Cyberware and the Digital M
Stanford University for the 3D models, and Andrei Khodakovsky
for sharing his Globally Smooth Parametrization data.

References
AKSOYLU, B., KHODAKOVSKY, A., AND SCHRÖDER

solvers for unstructured surface meshes. SIAM
ALEXA, M. 2002. Recent advances in mesh morp

ics Forum, 21(2) 196.
DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002

s of surface meshes. Computer Graphics F
ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H.,

ETZLE, W. 1995. Multiresolution analy
APH, 173-182.
03. Mean value coordinates

OUNSBERY, M., AND
arbitrary me

FLOATER, M., AND HORMANN, K. 2003. Recent advances in surface
parameterization. Multiresolution in Geometric Modeling Workshop.

GOTSMAN, C., GU, X., AND SHEFFER, A. 2003. Fundamentals of spherical
parameterization for 3D meshes. ACM SIGGRAPH, 358-363.

LER, S. J., HOPPE, H. 2002. GGU, X., GORT

RAUN, E., SWELDENS, W., AND SCHRÖDER, P. 2001. Consistent mesh
parametrizations. ACM SIGGRAPH, 179-184.

, E., H , H. 2003. Spherical parametrization and

AILLOT, J., YAHIA, H., AND VER
mapping. ACM SIGGRAPH, 2

. 1993. Interactive
34.

GRAPH, 355-361.
GU, X., YAU, S. 2003. Global conformal surface parameterization. Sympo-

sium on Geometry Processing, 127-137.
GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND SCHRÖDER, P. 2000.

Normal meshes. ACM SIGGRAPH, 95-102.
HAKER, S., ANGENENT, S., TANNENBAUM, S., KIKIN

SANDER, P., SNYDER, J.,
mapping progressive meshes. ACM SIGGRAPH, 409-416.

SANDER, P., GORTLER, S., SNYDER, J., AND HOPPE, H. 2002. Signal-
specialized parametrization. Eurographics Workshop on Rendering,
87-100.

SHEFFER, A., AND HART, J. 2002. Seamster: Inconspicuous low-distortion
texture seam layout. IEEE Visualization, 291-298.

SORKINE, O., COHEN-OR, D., GOLDENTHAL, R., AND LISCHINSKI, D. 2002.
Bounded-distortion piecewise mesh parametrization. IEEE Visualiza-
tion, 355-362.

TURK, G. 1992. Re-tiling polygonal surfaces. ACM SIGGRAPH, 55-64.

877

	Abstract
	Introduction
	Related work
	Approach overview
	Initialization of coarse map
	Coarse-to-fine map optimization
	Vertex optimization
	Distortion metric

	Applications and results
	Inter-surface mapping
	Simplicial parametrization
	Octahedral parametrization
	Toroidal parametrization

	Discussion
	Future work
	Acknowledgements
	References

