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(a) Surface M1 with edges from M2  
(notice density of edges from left wing) 

(b) Surface M2 with edges from M1 
(see spike flattened on rear left knee)

(c) M1 normals mapped onto M2 
(lit using 2 antipodal light sources) 

(d) 50% morph 

Figure 1: Inter-surface map for two objects of genus 2, initialized with 8 user-specified feature points. (Symmetric stretch efficiency 0.311).

Abstract 
We consider the problem of creating a map between two arbitrary 
triangle meshes.  Whereas previous approaches compose pa-
rametrizations over a simpler intermediate domain, we directly 
create and optimize a continuous map between the meshes.  Map 
distortion is measured with a new symmetric metric, and is 
minimized during interleaved coarse-to-fine refinement of both 
meshes.  By explicitly favoring low inter-surface distortion, we 
obtain maps that naturally align corresponding shape elements.  
Typically, the user need only specify a handful of feature corre-
spondences for initial registration, and even these constraints can 
be removed during optimization.  Our method robustly satisfies 
hard constraints if desired.  Inter-surface mapping is shown using 
geometric and attribute morphs.  Our general framework can also 
be applied to parametrize surfaces onto simplicial domains, such 
as coarse meshes (for semi-regular remeshing), and octahedron 
and toroidal domains (for geometry image remeshing).  In these 
settings, we obtain better parametrizations than with previous 
specialized techniques, thanks to our fine-grain optimization. 
Keywords: surface parametrization, shape morphing, remeshing. 

1. Introduction 
Surface parametrization refers to mapping a triangle mesh onto a 
simpler domain such as the plane, the sphere, or a coarse sim-
plicial domain.  The parametrization is represented by a map 

D Mφ →  where M is the mesh and D is the simpler domain.  In 
computer graphics, parametrization is central to texture mapping, 
whereby images placed in the domain are sampled on rendered 
surfaces to provide texture detail, place decals, encode shadows, 
record radiance transfer coefficients, etc.  Surface parametriza-
tions also appear in numerous applications, including digital 
geometry processing, morphing, surface editing, object recogni-
tion, and geometry remeshing. 
We address the more general problem of directly constructing a 
continuous bijective map 1 2M M

φ
→

 between two triangle meshes 

M1 and M2 of the same topology.  (Continuity precludes maps 
between surfaces with different genus or number of boundaries.)  
Unlike previous approaches which compose parametrizations of 
M1 and M2 over some intermediate domain (as reviewed in Sec-
tion 2), we directly optimize the quality of the overall map 

1 2M M
φ

→
.  Our method works for arbitrary genus and does not 

require the user to provide a simplicial complex (e.g. [Praun et al 
2001]).  The user may optionally specify corresponding feature 
points on M1 and M2, and our construction guarantees that the 
map satisfies these constraints. 

• 

• 

• 

• 

• 

Some parametrization schemes may require a large set of manu-
ally specified features to guide the parametrization process to a 
good (or even valid) solution.  As we shall show, our mapping 
method is robust even with few feature constraints.  Moreover, 
directly minimizing the distortion of the inter-surface map tends 
to naturally align corresponding shape elements.  Of course, a few 
user-specified constraints are helpful for overall registration and 
for linking semantically related regions. 
Our approach adds a new fundamental tool to the Digital Geome-
try Processing toolbox.  Its main contributions are: 

Inter-surface mapping without any intermediate domain, to 
directly measure the distortion of the overall map. 
Symmetric distortion metric, i.e. invariant to the interchange of 
M1 and M2. 
Symmetric coarse-to-fine optimization algorithm to provide 
robustness and convergence to a good solution. 
Initialization of map to robustly satisfy any user-specified 
feature correspondences. 

Additional scenarios.  While our motivating application is the 
creation of maps between surfaces of comparable complexity, our 
framework can also be used in cases where M1 is a simpler mesh, 
possibly inferred from M2: 

Simplicial parametrization (for semi-regular remeshing): given 
a surface M2 and desired domain vertices on M2, we automati-
cally create domain M1 and a parametrization.  
Octahedral parametrization (for geometry-image remeshing): 
M1 is a regular octahedron, and feature points are unnecessary. 

• 

• Toroidal parametrization (for remeshing of genus-1 shapes). 
Our more general optimization framework actually obtains better 
results than the previous techniques specialized to these scenarios. 

 
870

© 2004 ACM 0730-0301/04/0800-0870 $5.00



 

(2) Even with this initial correspondence, the techniques would 
converge too slowly due to the high complexity of M1. 

2. Related work 
Planar parametrization.  The traditional surface parametrization 
problem considers the case where the domain D is a planar region 

 (see survey in [Floater and Hormann 2003]).  The map 2P R⊂
D Mφ →  is represented by the parametric locations of vertices of M 

within the plane.  Optimization can freely move the vertices 
within the domain as long as bijectivity is maintained. 

(3) Simplicial parametrization techniques ignore the geometry of 
surface M1, since they assume it to be an abstract domain. 
Inter-surface mapping.  Lee et al [1999] create an inter-surface 
map between two surfaces M1, M2 by first constructing simplicial 
parametrizations 1 1D M

φ
→

, 2 2D M
φ

→
.  Because the domain meshes 

D1, D2 are different, user assistance is required to form a good 
map between them, and this map construction is not robust. 

B C

A

D E

B C

A

E D

Kraevoy et al [2003] present the Matchmaker scheme for satisfy-
ing corresponding feature point constraints in D and M.  We 
extend their scheme to form a corresponding graph of paths on 
two surfaces M1, M2 of arbitrary genus g, possibly with bounda-
ries. To guarantee the successful termination of the path insertion 
process, we impose ordering constraints on the neighbors of a 
feature vertex, and we trace a spanning tree and 2g non-separating 
cycles before completing the full graph.  Consis-
tent neighbor ordering is necessary to avoid partial 
graphs that are impossible to complete, as shown 
on the right (if D and E link to the same base 
vertex B or C, this will result in flipped triangles; 
if they link to different ones, edges will cross.) 

To overcome this drawback, Praun et al [2001] develop a sim-
plicial parametrization method in which the connectivity of the 
simplicial complex D can be specified a priori.  Given a genus-0 
simplicial complex and desired images of each domain vertex on 
multiple surfaces, they construct consistent parametrizations 

1D M
φ

→
, 2D M
φ

→
 over the shared simplicial domain D. 

Both spherical parametrization and consistent simplicial pa-
rametrization can be used to create a continuous map between two 
surfaces M1 and M2 by forming the composition 2 1

1
D M D M
φ φ−  

(where D is the sphere or simplicial domain, respectively).  
However, using an intermediary domain may result in a poor 
inter-surface map, since each sub-map ignores the non-uniform 
distortion present in the other.  For example, when creating a map 
between a cow and a horse, the cow legs would not be encouraged 
to match up with the horse legs.  While it is possible to manually 
force correspondences of constraints on a dense set of domain 
vertices, a more elegant and flexible solution is to automatically 
favor this correspondence within the distortion metric itself. 

→ →

An important limitation of planar parametrization is that repre-
senting an entire surface requires that it be cut into one or more 
disk-like charts, where each chart is parametrized independently.  
Some techniques cut the surface into a single chart [e.g. Gu et al 
2002; Sheffer et al 2002; Sorkine et al 2002], while others cut it 
into an atlas of charts [e.g. Maillot et al 1993; Sander et al 2001; 
Levy et al 2002; Gu and Yau 2003].  In either case, the cuts break 
the continuity of the parametrization, making it difficult to use a 
planar parametrization approach to construct a continuous map 
between two different surfaces, since their cut structures differ. 

Kraevoy and Sheffer [2004] use the composition 2 1
1

D M D M
φ φ−

→→
 

to remesh M2 using the connectivity of M1 (together with addi-
tional vertices).  They smooth the map using a spring relaxation 
with edge weights related to local remesh error.  Their approach is 
much faster than ours, and produces simpler meshes than our 
method run to full resolution.  However, our coarse-to-fine com-
putation can be stopped at any lower resolution, or the final map 
could be post-simplified considering both mesh geometries.  Since 
their map uses a conformal metric (as in Figures 5, 9, 10), the user 
must associate all interesting model features.  Their scheme is 
robust for genus-zero models; although they demonstrate maps 
between models of nonzero genus, their algorithm may abort and 
ask the user for additional feature constraints. 

Spherical parametrization.  By letting the surface domain D be 
the unit sphere S,  one can directly parametrize a closed genus-
zero surface without any cuts.  Examples of spherical parametri-
zation methods include [Haker et al 2000; Alexa 2002; Gotsman 
et al 2003; Praun and Hoppe 2003]. 
Simplicial parametrization.  Another approach lets the domain 
D be a coarse base mesh.  The surface is partitioned into triangu-
lar regions that are mapped respectively to faces of D [e.g. Eck et 
al 1995; Lee et al 1998; Guskov et al 2000; Praun et al 2001]. 
The challenge in simplicial parametrization is that it is difficult to 
globally optimize the parametrization.  Whereas planar and 
spherical domains are smooth everywhere, simplicial domains 
have sharp edges and vertices.  Since the whole domain cannot be 
simultaneously “unfolded”, most methods iteratively apply a 
linear relaxation to a small group of adjacent faces.  For example, 
Eck et al [1995] iteratively unfold a pair of adjacent domain faces 
and reparametrize the surface neighborhood over the resulting 
quadrilateral. Guskov et al [2000] perform local reparametriza-
tions over 1-ring vertex neighborhoods, with the advantage that 
the images of domain vertices can shift over the surface. 

In this paper, we directly optimize the distortion of the inter-
surface map, and robustly support surfaces of arbitrary genus. 

3. Approach overview 
Map representation. Our goal is to produce a piecewise-linear 
map between two triangulated surfaces.  Unlike in planar pa-
rametrization, the linear pieces of the map are finer than the 
original mesh faces, as they correspond to triangles of a mutual 
tessellation [Turk 1992] (a.k.a. meta-mesh [Lee et al 1999]) of the 
two surfaces. Vertices of this meta-mesh include the vertices of 
both initial meshes as well as vertices formed by edges of M1 

intersecting those of M2.  To fully specify the map, for each mesh 
vertex we record the face of the other mesh to which it maps, 
along with barycentric coordinates within that face, and for each 
edge-edge intersection, we record the two ratios formed by the 
split point on each edge. Together, the vertex and edge-edge 
barycentric coordinates define a set of polygonal sub-regions on 
faces of M1 and M2. We define a unique piecewise-linear map by 
further triangulating these polygonal regions. 

Rather than iteratively optimizing local neighborhoods, Kho-
dakovsky et al [2003] set up a global system where the mesh 
edges spanning adjacent domain faces are treated as if the two 
faces were locally unfolded into a plane.  Solving the global 
system provides much faster convergence.  Unfortunately, the 
domain vertices are fixed during the global system, and must be 
relaxed separately using traditional 1-ring  relaxation. 
The inter-surface mapping problem could be viewed as an in-
stance of simplicial parametrization where the domain  is 
an unusually complicated simplicial domain.  However, existing 
simplicial parametrization techniques are not applicable, because: 

1D M= On rare occasions, it is necessary to “bend” the image of an edge 
of M1 inside a triangle of M2 and vice-versa. We achieve this by 
introducing special kink vertices of valence 2 in mesh Mi (Sec-
tion 5). These vertices have a corresponding face and barycentric 
coordinates in the other mesh just like regular vertices. 

(1) They require an initial correspondence from all vertices of M1 
to surface M2, obtained by the construction of M1 from M2. 
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Algorithm overview.  Our strategy is to use progressive refine-
ment to robustly create and optimize the inter-surface map.  Even 
for planar and spherical parametrizations, which involve smooth 
domains, coarse-to-fine approaches help parametrizations con-
verge to good solutions [Hormann et al 1999b; Sander et al 2002; 
Aksoylu et al 2003].  For inter-surface maps, the lack of domain 
smoothness exacerbates the problem of local minima, further 
motivating progressive refinement. 

4. Initialization of coarse map 
Our goal is to form a consistent partitioning of meshes M1 and M2 
into corresponding triangular patches.  The patch boundaries are 
defined by path networks linking together feature vertices.  These 
feature vertices are optionally specified by the user.  If their 
number is insufficient for the given surface genus (e.g. at least 4 
features for genus 0, more for higher genus), our algorithm auto-
matically inserts additional pairs.  We allow the path connectivity 
to be either specified (as in [Praun et al 2001]) or arbitrary (as in 
[Kraevoy et al 2003]), depending on the application scenario. 

Our method first constructs progressive mesh (PM) representa-
tions of both M1 and M2 [Hoppe 1996].  To simplify the task of 
initializing the inter-surface map (and in fact make this task 
trivial), we constrain the two progressive meshes to have base 
meshes with identical connectivities.  And, to satisfy user-
specified correspondences, feature points are retained as vertices 
in the base meshes.  Consequently the algorithm becomes prova-
bly robust.  A trivial valid map is created initially, and the 
refinement operations always succeed, so that by induction we are 
guaranteed a valid map between the fully refined surfaces. 

Our approach is to link together corresponding feature pairs on 
both meshes using constrained shortest paths, similarly in spirit to 
the methods of Praun et al [2001] and Kraevoy et al [2003].  We 
add paths in a greedy fashion, subject to constraints that ensure 
consistent topology, and using heuristics that avoid swirls.  When 
a maximal graph of non-crossing paths has been created, the two 
surfaces have been partitioned into triangular patches. 
Path tracing.  We trace the shortest path between a pair of feature 
vertices using a Dijkstra search.  The search is constrained to not 
intersect with paths already in the network.  To obtain path net-
works with consistent topologies between the two meshes, we 
must maintain a consistent ordering of the neighbors of each 
vertex.  Therefore an additional constraint on the paths is to start 
and end in corresponding sectors on the two meshes.  (We assume 
that the meshes are orientable.)  When the shortest paths on each 
mesh are not consistent, we trace two candidate pairs of paths, by 
imposing the sectors from M1 on the path on M2, and vice-versa, 
and then pick the best pair. 

The basic steps of our algorithm are: 
(1) Partition the surfaces M1 and M2 into a corresponding set of 

triangular patches, by tracing a set of corresponding paths.  If 
user-specified features are provided, these are chosen as path 
endpoints.  (Section 4) 

(2) Create progressive mesh representations of both M1 and M2, 
using the path networks to constrain the simplifications, result-
ing in two base meshes with identical connectivities. 

(3) Establish a trivial map between the two base meshes: a 1-to-1 
map on vertices, with no edge-to-edge intersections. To allow the creation of a valid path between any pair of features, 

we lazily add extra Steiner vertices in the meshes, as suggested by 
Kraevoy et al [2003].  Our scheme performs Dijkstra searches on 
both the mesh vertices and the edge midpoints.  Since using edge 
midpoints in a path corresponds to adding Steiner vertices, we 
give preference to paths that do not use them. This may lead to 
slightly more jagged paths, but the precise geometry of the paths 
is not critical to the final map, since the paths are not constraints 
— they only guide the construction of compatible PM sequences. 

(4) Iteratively refine the two progressive meshes.  After each 
vertex split, update the inter-surface map and optimize it on 
the local neighborhood.  When both meshes are fully refined, 
we obtain the inter-surface map.  (Section 5) 

Steps 1 and 4 are the most challenging, and are presented in more 
detail in the next two sections.  To create the progressive meshes 
in Step 2, we constrain the edge collapse sequence to preserve the 
topology of the paths, as described by Sander et al [2001].  We 
thus obtain base domains whose edges correspond to original 
paths and whose triangles correspond to original patches (see 

).  Since the two base domains have the same connec-
tivity, the construction of the initial map between them in Step 3 
is trivial. 

Our greedy path-insertion algorithm selects the best pair of 
corresponding paths from a priority queue sorted by the sum of 
path lengths on M1 and M2.  The queue is initially populated by 
tracing paths from each vertex to its 10 closest neighbors.  When 
the best candidate is selected, we check whether it is still valid, 
and if not we recompute it and insert it back in the queue.   

Figure 2

  

 
Given set of feature points, and 

computed paths and patches. 
Resulting base meshes 

Figure 2: Example of consistent partitioning process. 

 
To guarantee the success of the algorithm, we must avoid enclos-
ing any vertex within a path cycle not connected to it.  Praun et al 
[2001] observe that for genus-0 surfaces it is sufficient to first 
build a spanning tree of the feature vertices (before forming any 
cycles).  We generalize this approach to arbitrary genus.  To this 
end, we must distinguish between separating and non-separating 
cycles formed by the paths.  (A separating cycle is one that breaks 
the surface into two disjoint components.)  Our strategy is to first 
build a maximal path network without separating cycles, before 
adding any paths forming separating cycles. 
For a surface of genus g with k feature vertices, the maximal non-
separating graph is the union of a tree spanning all feature points 
and 2g non-separating cycles, and thus has exactly k–1+2g paths.  
This maximal non-separating graph topologically cuts the surface 
into a disc [Gu et al 2002], with all the sectors around feature 
vertices as vertices on the boundary of the disc. The neighbor 
ordering constraint ensures that the ordering of the disc vertices is 
the same for both M1 and M2. In such a configuration, there 
always exists a unique way to link any two vertices (sectors 
adjacent to a feature).  Once such a path is added, each of the two 
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topological discs representing M1 and M2 is further split into two 
discs, which can be then consistently decomposed. 
The new path that needs to be added to split the discs may some-
times link two features that are already connected (by a path in 
different sectors, going across a handle 
of the objects).  In such cases we 
automatically introduce additional 
feature points to support the new path.  
As an example, for the pair of genus-2 
surfaces in , 8 features are specified by 
the user, and 7 additional ones are 
automatically introduced (blue dots in 
the inset close-ups). 
There are two issues related to building the maximal non-
separating graph: avoiding separating cycles, and avoiding swirls. 
Avoiding separating cycles.  If a newly introduced path between 
vertices A and B forms a cycle, we test whether it is separating, 
and if so, we replace the path with one forming a non-separating 
cycle using an algorithm similar to that of Lazarus et al [2001].  
Specifically, we perform two simultaneous breadth-first searches 
starting from the vertices incident to the path AB, on its two sides. 
The searches are constrained by the existing path network and by 
the candidate path AB.  Each visited vertex is tagged with its 
parent (the vertex visited previously to get to it) and with the 
left/right side of AB it connects to. If we ever reach a “left” vertex 
from a “right” tagged one, then the cycle is non-separating. 
Otherwise, we form a new non-separating cycle as follows. The 
boundary of the region visited in the search at a certain time is in 
general composed of several contours that can subsequently split, 
merge, or contract to a point. When contours merge (say at a 
point O), we trace back two paths to the previous split event P, 
using the “parent” fields. From this non-separating cycle between 
P and O we select the vertex X closest to A and B. We measure 
distance by tracing paths XA, XB that (1) do not cross the cycle at 
points other than X, (2) meet the cycle from opposite sides, and 
(3) end at A and B on the same side of the temporary AB path. 
The path AX-XB forms the final path. 
If there are not enough user-provided features to resolve the genus 
of the object, we trace non-separating cycles connecting to one of 
the existing features using a procedure similar to the one above 
(with A=B and no “left”/”right” tags), and create two new feature 
constraints to support the cycle. 
Avoiding swirls.  A swirl is an awkward geometric configuration 
in which paths between feature vertices take unnecessarily long 
routes around other existing paths.  More precisely, the presence 
of corresponding feature constraints establishes homotopy classes 
on the set of inter-surface maps.  Two maps belong to the same 
class if there exists a continuous deformation between them that 
maintains the constraints.  Since swirls correspond to “poor” 
homotopy classes, they cannot be fixed using local continuous 
relaxation [Praun et al 2001].  We have found two heuristics to be 
effective at avoiding swirls. 
The first heuristic is to prefer early connection of feature points at 
mesh extremities. To identify mesh extremities, we compute for 
each feature vertex an average distance to the closest set of 
neighboring features (8 in our implementation). Vertices with a 
high distance (top 25%) are considered extrema. 
The second heuristic is to delay paths that pass on the “wrong 
side” of neighboring features [Praun et al 2001], and when forced 
to choose such a path, to re-route it on the correct side.  For each 
candidate path, we gather a set of neighboring feature vertices (the 
k-closest neighbors of the two endpoints on the two meshes). For 
each of these neighbors we determine on which side of the path it 

lies by computing the side on which the shortest route from the 
neighbor to the path meets the path. If the side is different be-
tween the two meshes, then the path is likely to cause a swirl, so it 
is penalized in the pool of candidate paths. If only penalized paths 
are left, we attempt to re-route the lowest-cost path on the correct 
side of the offending neighbor vertex as follows. Shortest paths 
between the offending neighbor and the candidate path endpoints 
are computed (under normal constraints) and temporarily added to 
the path network. The new path is thus forced to go on the correct 
side of the connected component of the offending neighbor. 
Handling surface boundaries.  Our map initialization algorithm 
is easily extended to meshes with boundaries ( ). Each 
boundary contour is triangulated using a single central point. The 
point is treated as a feature vertex, and must be associated with a 
corresponding boundary-center vertex on the other mesh.  Once 
the two path networks are computed, these boundary-center 
vertices are removed along with the faces used to triangulate the 
boundaries. The paths connecting to the boundary centers are 
clipped to the boundary, and these clip points become new feature 
vertices. We then consistently triangulate the resulting non-
triangular patches, and the remaining steps proceed as before. 

Figure 7

5. Coarse-to-fine map optimization 
Like previous work [e.g. Guskov et al 2000; Sander et al 2001], 
we optimize the map by moving one vertex at a time within its 
one-ring neighborhood to decrease the distortion metric. This 
optimization is performed after each vertex split for the new 
vertex and each of its neighbors, and for all mesh vertices when 
their total number has increased by a factor of 1.5. 
Unlike previous methods, we consider the optimization of vertex 
neighborhoods not just of M1 but also of M2.  This convenient 
symmetry is necessary since neither mesh is a special “domain”.  
It also provides finer-grain optimization than previous simplicial 
parametrization methods. 
In our current implementation, we refine only M2 for a number of 
steps, while M1 is held at constant resolution, then swap their roles 
and optimize M1, and then repeat the process. Keeping track of 
only one refining mesh at a time while the other is static results in 
lighter-weight data structures and more manageable code. For the 
scenarios where one of the meshes is very simple (octahedral and 
simplicial parametrizations), the swaps are unnecessary. 

5.1 Vertex optimization 
The main operation considers a vertex  of Mv 2 and optimizes its 
location  on Mv

Ν

1. Let Ν  be the 1-ring neighborhood of  in 
M

( )v v
2, and  be the pre-image of this neighborhood in M( )v 1 under 

the map (Figure 3a-b). The optimization only modifies the map 
inside these corresponding neighborhoods, i.e. by regenerating 
barycentric coordinates for all meta-mesh vertices within the 
interior.  Therefore we can exactly compute the change in overall 
distortion. 
To perform the relaxation, we make use of a temporary 2D pa-
rametrization of the neighborhood  onto a planar polygon 

, constructed as follows (see Figure 3c).  We use a one-ring 
unfolding where  is initially mapped to the origin =(0,0), each 
neighbor  of  is mapped to a point  at a radius equal to the 
path length , and the angle  between successive 
neighbors ,  is proportional to  (scaled such that their 
sum equals 2π). The angle  on M

( )vΝ

ŵ
ˆ ˆ ˆuvw

uvw

ˆ( )vΝ

ˆ( )vΝ

v
v

v̂

( )v

w

û
vw
ŵ

uvw 1 is computed using the 
law of cosines applied to the path lengths uv , , and  (or to 
the respective Euclidean distances if the path lengths do not obey 
the triangle inequality). Importantly, when Ν  is entirely 
contained inside a single face of M

vw wu

(Ν1, the map from  to 
 is an isometry. 

)v
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Once we have computed the boundary of the polygon Ν , we 
delete all the edges incident to  and the corresponding paths 
incident to  (along with all their intersection points on edges of 
M

ˆ( )v

ˆ( )v

v̂
v

1).  We use the mean-value parametrization scheme of Floater 
[2003] to relax the 2D locations inside Ν  of the vertices of Mˆ( )v 1 
contained within Ν .  Since the boundary of  can be 
concave, flips can occur, or some interior pieces can be non-
convex. In those rare cases, we re-map the boundary to a convex 
circle-inscribed polygon [Guskov et al 2000], and repeat the 
relaxation, this time guaranteeing no folds. 

( )v Ν

Next, we optimize the location of  using repeated line searches 
as in [Sander et al 2001].  In these searches, we keep v  within the 
kernel of polygon  to preserve map bijectivity. For each 
location of , we redraw its incident edges, and map these back 
to M

v̂

(

( )v

ˆ

( )→ →

ˆ( )vΝ
v̂

1 using the map Ν  (Figure 3d).  We apply 
Constrained Delaunay Triangulation (CDT) to any non-triangular 
(boundary-adjacent) pieces of .  For all resulting triangle 
pieces, we compose the linear maps  to 
compute the Jacobian used in measuring overall map distortion. 

ˆ( ) )v →Ν

Ν

v

v

  

(a) ; initial 

 

 
(c) 

Figure 3: Illustration of neighborhoods in vertex optimization. 

  

Figure 4. A kink vertex (red, right) is required since a direct 
segment along  (dotted) goes on the wrong side of . 
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ings when constructing the neighborhood , the final 
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temporary vertices of M2 with valence 2, and are removed when 
next optimizing v  or w .  (When swapping M2 and M1, one of 
these optimizations is forced, in order to remove the kinks). 

.2 Distortion metric 
Many paramet ation distor n measures have been proposed, 
including angle-preservation (conformal map) [Eck et al 1995; 
Hormann et al 1999a; Levy et al 2002; Desbrun et al 2002], area-
preservatio thalic map) [Desbrun et al 2002], and stretch 
minimization [Sander et al 2001].  Often, these metrics can be 
expressed in terms of the singular values Γ,γ of the map Jaco-
bian J  (i.e. Γ2 and γ2 are eigenvalues of the metric tensor TJ J ). 
Most previous distortion metrics are asymmetric, in the sense that 
optimizing φ  and optimizing 1φ−  would not result in the same 
map.  Two exceptions are the ( γ

γ
Γ

Γ+ ) metric of Hormann et al 
[1999a] and the 1max( , )Γ  metric of Sorkine et al [2002], w

 
ˆ( )v
v̂w in

γ
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( )2 1

1 2

2 2
2 2 2

1 1
( ) ( )
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A A
A A
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= + + + Γ 
 

 

where A denotes area, is a triangular piece of ( )vΝ , T  is a 
triangular piece of ( )v , and  Γ and γ are the singular values of 

hich 
e  invariant to the substitution have the key property that th

( ) 1 1γΓ ↔, ( , )γ Γ . 
It is likely feasible to create symmetrized versions of many prior 
metrics, including the popular discrete conformal map.  We have 
chosen to symmetrize the L2 stretch of Sander et al [2001] because 
it smoothly penalizes scale distortion.  We do this by summing 
direct and inverse L2 stretch: 

2 2 2 1 2 2 2 2 1 2( ) ( ) ( )L T L M M L M M= → + →

2

stretch stretch

Γ

 

w~M1 A A

T  
Ν

 of the comthe Jacobian J posed map between ur 

 symmetric stretch efficiency, which 
is defined simply as 

T  and T .  O

of major geometric fea res.  As an example, in Figure 5 the 
whole head of each al is mapped to a small disc on the neck 
of the other. 

particular definition has the key property of being invariant to the 
scale of either model.  Note that the symmetric formulation 
obviates the need for a regularizing term as was used in [Praun 
and Hoppe 2003]. 
For our results, we report the

2 22 (
T

)L T∑  and has an upper bound of 1. 
We also experime  symmetric conformal metric.  
However, such a distortion metric is less sensitive to changes in 
geometry, and therefore does not lead to natural correspondence 

tu
anim

nted with a

Figure 5. Use of a conformal metric results in a poor inter-
surface map. 
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6. Applications and results 

6.1 Inter-surface mapping 
Figures 8, 6, and 1 show mappings between pairs of surfaces of 
genus 0, 1, and 2 respectively.  The horse-cow map in Figure 8 
uses 4 feature correspondences, the  teapot-cup map in Figure 6 
uses 22 feature points (red dots), and the dragon-feline map in  
uses 8 user-specified points and 7 automatically added. 
Generally, the constraint points are used to initialize the map, and 
are then dropped during the coarse-to-fine optimization, to im-
prove map smoothness.  To see what can happen when the 
constraints are held fixed, let us consider the teapot-cup map of 

lid, it tries to flow around the feature con-
straints  located on the teapot rim, causing distortion (Figure 6a).  
In contrast, it unfolds nicely when the constraints are relaxed 
(Figure 6c).  If one did desire the cup and teapot rims to remain in 
correspondence, it would be best achieved by introducing con-
straint paths (instead of constraint points).  For objects that are 
geometrically similar, such as the heads in Figure 7, point features 
introduce little distortion. 
Figure 8 shows that with only four feature points placed on the 
hooves of the cow and horse models, we obtain a map where all 
the important features correspond to each other, as demonstrated 
by the morph.  (If features did not match, they would appear 
doubled.)  Not only did our optimization automatically match the 
two heads without any user-provided features in their vicinity, but 
it also matched smaller features such as the horse’s ears to the 
cow’s horns (as shown in the close-up).  Maps obtained by com-
posing two separate parametrizations to simple domains (planar, 
spherical, or simplicial) cannot easily match features in the ab-
sence of user constraints, since this information is only available 
in the combined map.  Figure 9a shows that even with 17 feature 
points (two on the eyes) the composed map does not achieve the 
quality of our inter-surface map.  Notice the presence of doubled 
features, such as nostrils, both pairs of ears and the cow’s horns. 
 
 

Figure 6.  Because the interior of the cup has much more surface 
area than the teapot 

 
M1 50% morph M2 Close-up 

Figure 7. Map between two meshes with boundaries.  The 
close-up on the eye shows low distortion around the feature point
(M1 edges over M2 geometry). (Symmetric stretch efficiency 0.967). 

 

 
horse base cow base 50% morph 

Figure 8: Cow-horse inter-surface map using only 4 features. 

 
(a) composition of 2 simplicial maps (b) direct inter-surface map 

Figure 9. The inter-surface map automatically favors shape 
correspondence, unlike the composition of two separate sim-
plicial parametrizations, as shown in these morphs.  (The 
simplicial map uses the 17 feature points shown in Figure 2.)
(Symmetric stretch efficiencies: (a) 0.416, (b) 0.442). 

6.2 Simplicial parametrization 
In this scenario, M1 is an abstract domain whose triangle faces are 
conceptually all equilateral.  Although such a domain lacks an 
isometric embedding in R3, this is not a problem for the algorithm.  
During the construction of the local neighborhood  in 
Section 5.1, the faces in  are simply taken to be eq l. 
Among previous simplicial parametrization methods, the most 
advanced is the Globally Smooth Parametrization (GSP) work of 
Khodakovsky et al [2003], which attains smoothness across 
domain edges.  However, it compresses the parametrization in the 
vicinity of low-valence irregular vertices, and stretches it near 
high-valence irregular vertices.  As Figure 10 shows, our maps are 
visually smooth everywhere, and the extraordinary domain verti-
ces have much less influence on the parametrization uniformity. 

ˆ( )vΝ
uilatera( )vΝ

Figure 6. Inter-surface map between two genus-1 objects.
(a,b) use fixed constraints while (c,d) drop the constraints after 
initialization.  (a,c) cup edges on teapot. (b) teapot edges on cup. 
(d) 50% morph.  (Sym. stretch efficiencies: (a,b) 0.471, (c,d) 0.598). 
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Figure 10. Comparison of semi-regular remeshing using GSP 

ctahedral parametrization.  As shown in Table 1, the parametri-
zation stretch efficiency is improved in all cases, and the 

eometric accuracy of the remeshes (as measured with PSNR) is 
also improved for models with many extremities. 

e 
let the toroidal domain be represented by a mesh M1 with 9 

vertices and 18 triangles.  As in simplicial 
parametrization, the domain M1 does not 
have a global isometric embedding in R3, 
but again we can use the local geometry 
of the domain when constructing the 
neighborhoods ˆ( )v  in 
Section 5.1.  In , ngles in

re al trian-

o initialize the parametrization, the user specifies 9 feature 
points on the input mesh M2, to correspond with the domain mesh 
vertices.  To allow maximum freedom for the map, these feature 
points do not act as constraints during coarse-to-fine optimization.  
Figure 11 shows some example results. 
There has been little work on toroidal parametrizations of arbi-
trary genus-1 surfaces, which is surprising since the domain is the 
most “Euclidean” of all closed surface topologies.  Gu and Yau 
[2003] demonstrate their global conformal approach on genus-1 
surfaces.  Compared to their results, ours exhibit less scale-
distortion due to the use of a stretch functional. 

(middle) and our method (right), using the same set of base 
domain patches (left).  (One-way stretch efficiencies: bunny 0.800, 
0.915;  David 0.761, 0.902). 

6.3 Octahedral parametrization 
Praun and Hoppe [2003] use a sphere 
as an intermediate domain to pa-
rametrize a surface onto an octahedron, 
for subsequent geometry image 
remeshing.  By directly optimizing the 
octahedron-to-surface m  obtain 
improved results.  The inset figure 
shows the Venus head as a geometry 
image obtained by unfolding an 

ap, we

 
Surfaces mapped into toroidal 
domain (with 2-sided lighting) 

Remeshed surfac
(all vertices have v

o

g

6.4 Toroidal parametrization  
A natural domain for genus-1 surfaces is the toroidal unit square.  
It is formed by identifying the square’s boundaries left-to-right 
and top-to-bottom.  To apply our framework to this scenario, w

 
)  a ways right es 

les, and their configuration is such that 
( )vΝ  is planar.  Thus, the local map 

ˆ( ) ( )v v→Ν Ν  is always an isometry. 
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Figure 11. Examples of toroidal parametrization and remeshing.
 arm 0.582). 

oa
ed u  

One-way 
L2 stretch efficiency 

Remesh PSNR 
(dB) Model 

D→S→M2 D→M2
 D→S→M2 D→M2 

Venus 0.943 0.947 83.4 83.2 
Bunny 0.706 0.717 80.0 79.9 

Gargoyle 0.643 0.679 79.2 79.3 
Armadillo 0.454 0.528 72.0 73.0 

Horse 0.363 0.398 76.9 77.7 
Cow 0.405 0.440 74.9 77.0 

tyrannosaurus 0.360 0.418 73.6 74.5 

Table 1.  Comparison of octahedral remeshing using spherical
parametrization (D→S→M2) [Praun and Hoppe 2003], and
using our direct map onto octahedron domain D. 

(One-way stretch efficiencies: teapot 0.458, rocker

7. Discussion 
An earlier implementation of our method followed a more tradi-
tional parametrization appr ch, with a static domain and only 
one mesh being optimiz sing a coarse-to-fine algorithm. To
initialize the map we used conformal maps to establish correspon-
dences between the domain vertices and the large base domain 
faces of the progressive mesh.  This method presented two diffi-
culties: (1) some patches were too large to robustly parametrize 
using a single linear system and (2) having formed this initial 
map, there was no way to effecti ove it (since it was 
“stuck” at a fine level).  Our symmetric coarse-to-fine approach 
overcomes both these difficulties. 

vely impr
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An important property of directly optimizing the map between 
two surfaces is that the correspondence of geometrically similar 
features is encouraged within the distortion metric itself, thereby 
requiring fewer manually specified features.  For example, only 4 
features are sufficient to obtain a good map between the cow and 
the horse.  These 4 features on the hooves are needed to prevent a 
combinatorial optimization, i.e. which cow leg corresponds to 
which horse leg.  Our mapping problem shares similarities with 
the problem of obtaining a rigid correspondence between two 
objects.  Mesh registration energy functionals typically have many 
local minima and thus require initial user guidance, but impor-
tantly they have a deep energy well near the global solution. 
The major difference between our symmetric coarse-to-fine 
refinement process and previous simplicial parametrization 
methods is the opportunity for fine-grain optimization.  Simplicial 
parametrization methods apply linear relaxation operations across 
coarse domain faces, whereas we apply non-linear optimization 
on individual vertices of both meshes. 
While our method achieves impressive results for a large class of 
applications, its main current limitation is execution time.  The 
mutual tessellation is more complex than either of the inpu
m
C
i
s  toroidal parametrization scenarios, 
where M1 is coarse, it takes about 20 minutes to create the map.  

ation could theoreti-
 

 

a  
o

mation [Sander 
et al 2002] to obtain better configurations at low resolutions.  
Huge meshes could be sing a h fter 
runni SM a ood ap, 
we could define th plicial map composition, 
since the simplicial pieces may l u oid 
numerical problems and geomet l mis . 
One applic nter-  map uto-
mat fer g c tex tween models.  ay 
allo extur sis u er surfaces as exemplars. 
An interesting open question i to e
handl  models.  Simultaneously op ng an -all 
map would not scale, while us  mo dom uld 
lo s o ly op  inte ce m
Another area of future work is computing maps with singularities 
t
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