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Abstract—We study the potential threat for virus spread in
wireless sensor networks (WSNs). Using epidemic theory, we
proposed a new model, called Susceptible-Infective-Recovered
with Maintenance (SIR-M), to characterize the dynamics of the
virus spread process from a single node to the entire network.
By introducing a maintenance mechanism in the sleep mode of
WSNs, the SIR-M model can improve the network’s anti-virus
capability and enable the network to adapt flexibly to different
types of viruses, without incurring additional computational or
signaling overhead. The proposed model can capture both the
spatial and temporal dynamics of the virus spread process. We
derive explicit analytical solutions for the model and discuss some
practical applications of interest. Extensive numerical results
are presented to validate our analysis. The proposed model is
applicable to the design and analysis of information propagation
mechanisms in communication networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) have received extensive

attention due to their great potential in civil and military

applications [1]. A typical network configuration consists of

sensors working unattended and transmitting their observation

values to a processing or control center, the so-called sink

node, which serves as a user interface. The sensor nodes have

limited power and radio communication capabilities. They

can be deployed in inaccessible fields, even extremely hostile

environments. Due to the limited transmission range, data

generated from sensors that are far away from the sink must be

relayed through intermediate nodes; i.e., a source node sends

its data to its neighbor nodes, which in turn send the data

to their respective neighbors. Due to limited power, modern

sensor hardware is usually designed with a low-power sleep

mode (cf. [2], [3]). The nodes periodically put themselves into

sleep mode for a certain length of time, and then return to the

active mode. In this way, significant energy savings can be

achieved while maintaining network connectivity.

Because sensor nodes are resource-constrained, they gener-

ally have weak defense capabilities and are attractive targets

for software attacks (like virus or worm attacks on the Inter-

net), especially when the nodes are deployed in a hostile envi-

ronment. Actually, malicious codes targeting wireless devices

have already started to emerge. For example, the Cabir worm

[4] can repeatedly send itself to Bluetooth-enabled devices
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inside its host’s scanning range. The Mabir worm [5] uses

similar scanning techniques to launch proximity attacks. Thus,

security mechanisms that can defend sensor nodes against

software attacks is of great interest to the sensor network

community.

Since there is a basic similarity between the software

virus spread among wireless devices and the transmission of

epidemic disease in a population, the epidemiological models

extensively used by social researchers (cf. [6]–[10]) can be

applied to study the spread of viruses in wireless networks.

Some related applications of epidemic models in wireless

environments have been discussed in the recent literature [11]–

[15]. In [11], a Susceptible-Infective (SI) epidemic model

was developed for a simple information diffusion algorithm

and the impact of node density on information diffusion

was investigated analytically. In [12], a topologically-aware

worm propagation model (TWPM), which captures both time

and space propagation dynamics, was developed for wireless

sensor networks. In [13], an epidemic model for a mobile

phone virus was developed, which considered the distribution

density, coverage radius, and velocity of the mobile phone. By

applying results on the application of random graphs to social

networks in [9], epidemic theory was applied in [14] to model

the spreading process of compromised nodes and identify key

factors determining potential outbreaks in sensor networks. In

[15], a general framework based on the principles of epidemic

theory was proposed for the vulnerability analysis of current

broadcast protocols in wireless sensor networks. The spreading

rates of the malicious code for three broadcast protocols were

studied and applied to simulation of the proposed framework.

In this paper, we study the potential threat for virus spread in

wireless sensor networks. Using epidemic theory, we propose a

new Susceptible-Infective-Recovered with Maintenance (SIR-

M) model to describe the dynamics of the virus spread process

with respect to time. The virus starts by infecting a single node,

which spreads the virus to its neighbor nodes. The neighbors

repeat the process. By introducing a maintenance mechanism

in the sleep mode of WSNs, our SIR-M model can improve

the network’s anti-virus capability and enable the network to

adapt flexibly to different types of virus, without any additional

computational or signaling overhead. The proposed model can

capture both the spatial and temporal dynamics of the virus

spread process. We derive explicit analytical solutions and



discuss some practical applications of interest. The proposed

model and analysis method are applicable to the design and

analysis of information (including virus) propagation protocols

for communication networks.

The remainder of the paper is organized as follows. Sec-

tion II describes the basics of epidemic theory and virus spread

in a WSN. Section III presents the SIR-M model, including

an analysis of the virus spread behavior and applications of

interest. Section IV presents numerical results and further

enhances the understanding of the analytical results. Finally,

the paper is concluded in Section V.

II. EPIDEMIC THEORY AND WSN MODEL

In this section, we describe the basics of epidemic theory

and virus spread in a WSN.

A. Epidemic Theory

Epidemic theory aims to study the infection outcomes of

a population that possess a susceptibility factor with respect

to the infection [16]. Generally, epidemic theory considers

three variables: agent, host, and environment. Each of these

has many components, however, host-agent interactions vary

greatly, and variations in environmental conditions influence

the interactions in innumerable ways. For example, in the study

of influenza, the agent is the individual who has an influenza

virus. The virus is spread by direct contact, or by way of a

common medium such as water, food, milk, or contaminated

air. When an infectious agent invades a host, the host may get

infected and become an agent. The agent may recover from

the infection by vaccination and become immune to further

infections.

Immunity may be temporary, long-lasting, even permanent.

Correspondingly, various models exist in epidemic theory that

characterize an infection spread, such as the Susceptible-

Infective-Susceptible (SIS) model (cf. [6]) and the Susceptible-

Infective-Recovered (SIR) model (cf. [7], [15]), and applied

by epidemiologists, social and behavioral scientists in their

respective areas. In the SIS model, a susceptible individual

is infected and then after an incubation period, the individual

becomes susceptible again. In the SIR model, the susceptible

individual is infected, waits for a time period, recovers, and

then becomes immune to further infections.

B. WSN Model

We consider a WSN composed of N stationary and identical

sensors, uniformly randomly distributed with node density

σ over a given geographical area. The sensor nodes are

equipped with omnidirectional antennas that have a maximum

transmission range of r0 (see Fig. 1). Information generated

from a source node can be transmitted to its neighbor nodes

inside its signal transmission range. The neighbor nodes relay

this information to their neighbors.

Assume that a given node in a WSN is infected by a

virus due to attacks. The virus can be spread together with

normal data by the compromised node to its neighbors through

broadcast protocols (cf. [17], [18]) and thus threatens the entire
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Fig. 1. A Model of Virus Spread in a Wireless Sensor Network.

network without a whole-scale physical attack. To prevent an

outbreak of virus propagation in a WSN, network designers

may install appropriate anti-virus software on the sensor nodes

before deploying them in the field. The anti-virus software

operates online and checks the node periodically. New anti-

virus patches may be transmitted to each node by the control

center. Moreover, the control center may also recover some

nodes with abnormal behavior by simply reloading the nodes’

programs.

Sometimes online maintenance may not be enough for a

sensor node to combat the infection, since the sensor node

is resource-limited and an active node is busy interacting

with its neighbors by means of various operations such as

“listen”, “transmit”, “receive”, etc. Modern WSNs typically

schedule the nodes to sleep during certain periods for power

conservation. In sleep mode, a sensor node is inactive with

respect to data transmission. We propose to leverage the sleep

periods to perform further system maintenance functions, such

as in-depth infection check and recovery, or the execution

of more powerful anti-virus software which cannot be run

in the active mode. The proposed scheme does not incur

additional computational burdern, information exchange, or

signaling overhead, but can significantly improve the node’s

anti-virus capability.

Fig. 1 illustrates our proposed virus spread model in a WSN.

Initially, all nodes are referred to as susceptible nodes until a

node (e.g., the center of the circle) is infected by a virus; such

a node is then called an infective node. The infective node,

through the normal operation of a broadcast protocol, proceeds

to spread the virus to its neighboring susceptible nodes, which

are located inside its signal transmission range. The neighbor

nodes are then infected and spread the virus to their neighbors,

and the process continues. From Fig. 1, we observe that when

all the neighboring susceptible nodes around an infective node

are infected, the infective node can not contribute further to

the spread of the infection due to its limited communication



range; thus, the node becomes an invalid node. In Fig. 1, all

of the nodes inside the inner circle are invalid nodes at time

t, i.e., they are not able to spread the virus to the susceptible

nodes on the outside.

Next, we study the dynamics of virus spread with time in

the network area through quantitative modeling and analysis.

III. MODELING AND ANALYSIS

Let S(t), I(t) and R(t) denote the number of susceptible,

infective and recovered (or immune) nodes at time t, respec-

tively. Assume that the total population is a constant N , such

that N = S(t) + I(t) + R(t) for all t.
Since the nodes are uniformly randomly distributed with

density σ, each infected node can contact on the order of

σπr2
0 neighbor nodes. However, contacting a neighbor does

not necessarily lead to a new infective node. Recall that there

are three groups of nodes. Only a susceptible neighbor of the

infected node can become a new infective node. Contacting

an infected neighbor or a recovered neighbor does not change

the state of the system, since such a node is either already

infected or is immune to infection. Due to the assumption

of uniformly distributed node deployment, the fraction of the

infected node’s neighbors that can possibly get infected at time

t can be approximated as S(t)/N .

Let β denote the infection capacity, which represents the

probabilistic rate of getting infected in a contact between

an infective and a susceptible node. Clearly, β depends on

the infectivity of a virus and the communication rate of a

protocol since the virus spreads itself by piggybacking on

normal data through regular communications. Let γ denote

the recovery capacity, which is the probabilistic rate at which

an infective node recovers and becomes immune when the

infective node is in the active mode. Let λa and λm denote the

rates at which a node transitions from the active mode to the

maintenance (sleep) mode, and transitions from maintenance

to active mode, respectively. In the maintenance mode, the

system maintenance program (including more powerful anti-

virus software) is automatically triggered. The susceptible and

recovery nodes will quickly pass the check and go to sleep,

while the infective nodes will take a longer time for treatment.

Depending on the predefined time period of maintenance (or

sleep), a fraction of the maintained infective nodes, denoted

by p, will be cured and become recovery nodes upon resuming

the active mode. The remainder of the nodes will remain in

the group of infective nodes. We refer to this modified SIR

model as the SIR-M model (i.e., SIR with Maintenance).

The basic differential equations that describe the rate of

change of susceptible, infective, and recovered nodes are given

by

dS(t)
dt

=−βI(t)
σπr2

0

N
S(t) + λaS(t)− λmS(t), (1)

dI(t)
dt

=βI(t)
σπr2

0

N
S(t)+(1−p)λmI(t)−λaI(t)−γI(t), (2)

dR(t)
dt

= γI(t) + pλmI(t) + λaR(t)− λmR(t), (3)

with the initial conditions

S(0) = N − 1, I(0) = 1, and R(0) = 0. (4)

To keep the total number of nodes stable, we assume that a

balance is maintained between the rate going into the main-

tenance mode and the rate resuming from the maintenance

mode, i.e., λa = λm. Thus, the above equations are simplified

as:

dS(t)
dt

= −βI(t)
σπr2

0

N
S(t), (5)

dI(t)
dt

= βI(t)
σπr2

0

N
S(t)− (pλa + γ)I(t), (6)

dR(t)
dt

= γI(t) + pλaI(t), (7)

where γ and pλa are refer to active and inactive recovery

capacity, respectively.

In Fig. 1, the infection spreads to a radius of r(t) at time t,
and the nodes inside the inner circle contribute no further to

infection. Thus, the number of susceptible and infective nodes

are given, respectively, as

S(t) = N − σπr(t)2,

I(t) = σπr(t)2 − σπ[r(t)− r0]2 − pλaI(t).

From the above equations we obtain

I(t) � 2r0
√

σπ

1 + pλa

√
N − S(t) as r(t) � r0. (8)

Applying (8) to (5) and considering the initial condition (4),

we have

S(t) = N −N

(
2

1 + A0e−A1t
− 1

)2

, (9)

where A0 =
√

N−1√
N+1

, and A1 = 2β(r0
√

σπ)3

(1+pλa)
√

N
.

From (5) and (6), we obtain

dI

dS
= −1 +

(pλa + γ) ·N
β · σπr2

0

1
S

. (10)

Using the initial condition, we derive

I(t) = N − S(t)− ρN

βσπr2
0

ln
(

N − 1
S(t)

)
, (11)

where ρ � γ + pλa is called the total recovery capacity.

Substituting (9) into (11), we obtain the expression of I(t)
with respect to time t. Finally, R(t) is obtained directly as

R(t) =
ρN

βσπr2
0

ln
(

N − 1
S(t)

)
. (12)

We have obtained the dynamics of I(t), S(t), and R(t) with

respect to time t. Next, we use the analytic results to discuss

some practical applications of interest.



A. Maximum number of infective nodes

When a node gets infected, it spreads the infection through

regular communication protocols. Consequently, the number

of infective nodes will gradually increase. At the same time,

the active and inactive recovery mechanisms in the SIR-M

model will contribute to a decrease in the number of infective

nodes. Thus, there should be a point in time when a maximum

value, Im, of I(t) is achieved.

Setting dI
dS = 0 in(10), we obtain

S(t) =
ρN

βσπr2
0

. (13)

Since d2I
dS2 = − ρN

βσπr2
0

1
S2 < 0, I(t) achieves a maximum value

when S(t) = ρN
βσπr2

0
. Combining (9) and (13), we have

t =
1

A1
ln

(
A0

A2 − 1

)
, (14)

where A2 � 2

1+
√

1−ρ/(βσπr2
0)

. Thus, (14) determines the time

at which I(t) achieves the maximum value Im.

B. Avoiding network failure due to virus spread

In general, a large-scale dense WSN has relatively high

network survivability. Such a WSN usually has the capability

to fulfill its mission in the presence of some degree of even

serious threats such as attacks, failures, or accidents. However,

when many nodes become infected, the network may cease to

operate normally, resulting in a condition known as network
failure. Here, we define the network to be in a failure state

when the number of infected nodes is greater than a threshold,

say IF , 0 < IF ≤ N , i.e., I(t) > IF . In other words, to avoid

the network failure, the following condition must be satisfied:

Im ≤ IF . (15)

From (11) and (13), we obtain

ρ

β

N

σπr2
0

[
1− ln

(
ρ

β

N

(N − 1)σπr2
0

)]
≥ N − IF . (16)

The above inequality (16) is called the network operation con-

dition. Given the values of a certain set of network parameters,

this condition can be satisfied by adjusting the values of the

other parameters, thus avoiding network failure. For example,

if N , IF , β are given, we can adjust ρ (either λa, p, or γ, or

all of them), σ, and/or r0 to satisfy the condition.

For illustration purposes, let us fix σ and r0, and study

how the recovery capacity ρ can be adjusted to adapt to the

different types of viruses (corresponding to different values of

β). The exact solution for ρ can be determined numerically by

solving a nonlinear equation based on (16). Here, we derive

an explicit approximate solution. Rewrite (16) as

ρ

[
1−ln

(
ρ

βσπr2
0

)
−ln

(
N

N − 1

)]
≥

(
1− IF

N

)
σπr2

0. (17)

Since 0 < ρ
βσπr2

0
< 1 (note that σπr2

0 is the number of

neighbors of an infected node), we can apply a Taylor series

expansion [19] about 1
2 to obtain the following approximation

ln
(

ρ

βσπr2
0

)
� ln

(
1
2

)
+

2ρ

βσπr2
0

− 1. (18)

Substituting (18) into (17), we derive a principle for selecting

ρ as a function of β:

ρ ≥ 1
2
βσπr2

0[C0 −
√

C2
0 − 2(1− IF

N
), (19)

where the constant C0 � 1 + 1
2 ln(2(N−1)

N ), and it is required

that IF

N ≥ 1− 1
2C2

0 (e.g., IF

N ≥ 0.163 as N = 10, IF

N ≥ 0.1 as

N = 100, IF

N ≥ 0.094 as N = 1000), which is easily satisfied

in practice.

IV. NUMERICAL RESULTS

We present numerical results in terms of the analytical

results obtained in Section III. The network is assumed to

have N = 5000 sensor nodes. The other parameters are set

as follows, unless otherwise indicated in the figures: p = 0.5;

λa = 0.5; r0 = 2; σ = 0.5 (all parameters are given in

dimensionless units). The values of the parameters β and γ
are shown in the figures.

Fig. 2 shows the transient response of the number of

infective nodes I(t) as a function of various parameters. As

expected, over time, I(t) first increases gradually, reaches

the maximum point, and then decreases gradually. We also

observe that as the recovery capacity γ increases, the outbreak

of an infection becomes smaller, and the outbreak point is

achieved earlier. As the infection capacity β increases, the

results change in an inverse way. An increase in the value of

γ or a decrease in β will slow down the spread of the virus.

Fig. 3 shows the transient response of the number of sus-

ceptible nodes S(t). As time passes, S(t) decreases gradually

to zero. Note that S(t) = 0 does not imply a network failure,

since an infection process often accompanies a recovery pro-

cess. We also observe that as γ is changed, S(t) does not

change, which can be seen from (9) in Section III. As β
increases, S(t) decreases more quickly, since more susceptible

nodes will be infected.

Fig. 4 shows the transient response of the number of

infective nodes I(t) with respect to different values of the

density σ and the transmission range r0. The maximum value

of I(t) increases as the node density σ increases or the node’s

transmission range becomes larger. It can also be seen that the

outbreak point is achieved earlier when σ or r0 is increased.

An increase in the node density leads to an increase in the

number of infected nodes. A stronger signal transmission

capability achieves the same result, as can be seen from Fig. 5.

In Fig. 5, the transient response of the number of susceptible

nodes S(t) is illustrated with respect to the changes in the

parameters σ and r0. As the node density σ or transmission

range r0 increases, S(t) decreases more quickly.
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Fig. 2. Transient response of I(t) w.r.t. β and γ.

Fig. 6 shows the relationship between I(t) and S(t) under

different settings of β and γ. Initially, the number of suscepti-

ble nodes is close to N−1 while the number of infective nodes

is 1. As time passes, S(t) decreases gradually, while I(t)
increases gradually. After I(t) achieves the outbreak point, its

value decreases gradually. We also observe that as the recovery

capacity γ increases, or the infection capacity β decreases, the

outbreak point of I(t) becomes smaller. The reason is the same

as that in Fig. 2. Fig. 7 shows the relationship between I(t) and

S(t) for different values of p, the fraction of infected nodes

who are treated in the maintenance mode and then become

recovered nodes. As can be observed, the larger the value of

p, the more infected nodes will be cured. As seen in Fig. 7,

when p is increased, I(t) becomes smaller. When p = 0, the

maintenance mode fails and the SIR-M model reduces to an

SIR model; in this case, the maximum value of the outbreak

point is achieved.

Fig. 8 shows the total recovery capacity ρ with respect

to the infection capacity β under different network failure

thresholds. To check the accuracy of our approximate solution,

we compare it with the exact solution obtained, numerically.

Both results are closely matched. As seen in Fig. 8, the

recovery capacity ρ can be adjusted for different types of

viruses (with different values of β). Note that ρ is a linear

function of β with different slopes under different thresholds.

V. CONCLUSION

In this paper, we studied the potential threat of virus

spread in wireless sensor networks. Using epidemic theory,

we proposed a new SIR-M model to describe the dynamics

of the virus spread process from a single node to the entire

network. By introducing a maintenance mechanism in the

sleep mode of WSNs, our SIR-M model can improve the

network’s anti-virus capability and enable the network to adapt

to different types of viruses without additional computational

or signaling overhead. The proposed model captures both

the spatial (e.g., node density, transmission range) and the

temporal (e.g., transient responses of S(t), I(t), and R(t))
dynamics of the virus spread process.
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We derived explicit solutions for the number of nodes in

different groups with respect to time and discussed some

practical applications of interest. Extensive numerical results

were presented to validate our analysis. It is worthwhile to note

that although we focused on modeling the virus spread process

in a wireless sensor network, the proposed model is applicable

to more general scenarios, such as modeling either (useful)

data dissemination or a malware attack over different types

of networks, including wireless networks, computer networks

(e.g., the Internet), medical networks, and social networks.
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