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ABSTRACT 
Bag-of-Visual-Words model is popular in large-scale image 
search. However, traditional Bag-of-Visual-Words model does 
not capture the geometric context among local features in images. 
To fully explore geometric context of all visual words in images, 
efficient global geometric verification methods are demanded. In 
this paper, we propose a novel geometric coding algorithm to 
encode the spatial context among local features of an image for 
large scale partial duplicate image retrieval. Our approach is not 
only computationally efficient, but also can effectively detect 
duplicate images with rotation, scale changes, occlusion, and 
background clutter with low computational cost. Experiments 
show the promising results of our approach. 

Categories and Subject Descriptors 
I.2.10 [Vision and Scene Understanding]: VISION 

General Terms 
Algorithms, Experimentation, Verification. 

Keywords 
Image retrieval, partial-duplicate, large scale, rotation-invariant, 
geometric square coding, geometric fan coding. 

1. INTRODUCTION 
With the emergence of Tineye [1] and Google Image Search [2], 
partial-duplicate image search has been attracting more and more 
attention in recent years. Partial-duplicate images are referred as 
those images, part of which are usually cropped from the same 
original image, but edited with modification in color, scale, 
rotation, partial occlusion, etc. Fig. 1 shows some instances of 
partial-duplicate Web images.  Partial-duplicate image search can 
be widely used in many applications, such as image/video 
copyright violation detection, tracking the appearance of an image 
online and duplicate image annotation. 

Large scale image retrieval [5~17] with local features has been 
significantly improved based on Bag-of-Visual-Words (BOW) 
model.  BOW model achieves scalability for large scale image 

retrieval by quantizing local features to visual words. Popular 
local features include SIFT [4], MSER [23], etc. Local feature 
quantization makes image representation very compact. However, 
it also reduces the discriminative power of local descriptors. And 
the unavoidable quantization error will cause false matches of 
local features between images and decrease retrieval accuracy. 

 

    

    
Figure 1. Examples of partial-duplicate Web images. 

 

To reduce the quantization error, some approaches improve the 
discrimination power of local features, such as soft-quantization 
[12, 15], Hamming Embedding [6]. Some other approaches focus 
on utilizing geometric information in images to improve retrieval 
precision in a pre-processing or post-processing way.  

The motivation of pre-processing approaches is to encode spatial 
context of local features into image representation. In [17], a 
spatial-bag-of-features scheme is used to encode geometric 
information of objects within an image and generate ordered bag-
of-features for image search. Due to the large amount of local 
features in images, it is hard for the pre-processing approaches to 
fully encode various spatial relationships.  

To avoid these problems, post-processing approaches use 
geometric consistency to filter those false matches. In [3], the 
locally spatial consistency of some spatially nearest neighbors is 
used to filter false matches. However, such loose geometric 
constraint is sensitive to the image noise from background clutter. 
Bundled-feature [16] is to assemble features in local MSER [20] 
regions to increase the discriminative power of local features. 
Geometric min-hashing [14] constructs repeatable hash keys with 
loosely local geometric information for more discriminative 
description. All of the above post-processing approaches only 
verify spatial consistency of features in local areas instead of the 
entire image. Although they are computationally efficient, they 
cannot capture the spatial relationship between all features, which 
makes it hard to detect all false matches.   

To capture geometric relationships of all features in a whole 
image, global geometric verification method such as RANSAC 
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[11, 18, 19] is often used for this task. RANSAC can greatly 
improve retrieval precision. However, it is computationally 
expensive. It is usually applied on the subset of the top-ranked 
candidate images, which may not be sufficient in large scale 
image retrieval systems. The spatial coding approach [8] is 
another global geometric-verification method to remove false 
matches based on spatial maps. The drawback of spatial coding is 
that it requires that the duplicated patches in the query and the 
matched image share the same or very similar spatial 
configuration and it cannot handle rotation very efficiently.  

In this paper, our motivation is to design an efficient global 
geometric verification approach, which can achieve rotation-
invariant and is insensitive to background clutter. We propose two 
coding schemes, i.e., geometric square coding and geometric fan 
coding, to encode the geometric relationships of local features for 
global spatial verification. Our approach can efficiently and 
effectively address images with free rotation changes. 

2. OUR APPROACH 

2.1 Geometric Coding 
The spatial context among local features of an image is critical in 
identifying duplicate image patches. After SIFT quantization, SIFT 
matches between two images can be obtained. However, the 
matching results are usually polluted by some false matches. To 
refine the matching results effectively and efficiently, we propose 
the geometric coding scheme. 

The key idea of geometric coding is to encode the geometric context 
of local SIFT features for geometric consistency verification. Our 
geometric coding is composed of two types of coding strategies, i.e., 
geometric square coding and geometric fan coding. The difference 
between the two strategies lies in how the image plane is divided.  
Before encoding, the image has to be divided with a certain criterion 
that can address both rotation-invariance and scale-invariance. We 
design the criterion via the intrinsic invariance merit of SIFT feature. 
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Figure 2. Illustration of image plane division. (a) Five SIFT 
features in image; (b) Key point of feature 2 displayed as vector 
indicating scale, orientation, and location (red arrow); (c) Image 
plane division with lines and square (green dashed lines) with 
feature 2 as reference point; (d) Image plane rotation from (c); 
(e) and (f): Image subdivisions  from (d).  

Fig. 2 gives a toy example of image plane division with feature 2 as 
reference point.  Fig. 2(b) illustrates an arrow originated from 
feature 2, which corresponds to a vector indicating the scale and 

orientation of the SIFT feature. With feature 2 as origin and 
direction of the arrow as major direction, two lines horizontal and 
vertical to the arrow are constructed. Besides, centered at feature 2, 
a square is also drawn along these two lines, as shown in Fig. 2(c). 
For comparison convenience, we rotate the locations of all features 
to align the arrow to be horizontal, as shown in Fig. 2(d). After that, 
the image plane division with the two lines and the square can be 
decomposed into two kinds of sub-divisions, as shown in Fig. 2(e) 
and (f), which are used for geometric square coding and geometric 
fan coding, respectively. 

2.1.1 Geometric Square Coding 
Geometric square coding (GSC) encodes the geometric context in 
axial direction of reference features. In GSC, with each SIFT 
feature as reference center, the image plane is divided by regular 
squares. A square coding map, called S-map, is constructed by 
checking whether other features are inside or outside of the square. 

To achieve rotation-invariant representation, before checking 
relative position, we have to adjust the location of each SIFT 
feature according to the SIFT orientation of each reference feature. 
For instance, given an image I with M  
features ),,2,1(  )},,({ Miyxf iii  , with feature ),( iii yxf as 

reference point, the adjusted position ),( )()()( i
j
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where i is a rotation angle equal to the SIFT orientation of the 

reference feature if . 

S-map describes whether other features are inside or outside of a 
square defined by the reference feature. For image I , its S-map is 
defined as: 
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where is is a half-square-length proportional to SIFT scale of 

feature if : ii scls   ,  is a constant.  

To more strictly describe the relative positions, we advance to 
general squared maps. For each feature, n  squares are drawn, 
with an equally incremental step of the half side length on the 
image plane. Then, the image plane is divided into )1( n  non-
overlapping parts. Correspondingly, according to the image plane 
division, a generalized geo-map should encode the relative spatial 
positions of feature pairs. The general S-map is defined as 
follows, 
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where is is the same as that in Eq. (2), rk ,,2,1  .  

2.1.2 Geometric Fan Coding 
Geometric square coding (GSC) encodes the geometric context 
perpendicular to axial direction of reference features. In geometric 
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fan coding, we take each SIFT feature as reference point and divide 
the image plane into some regular fan regions. Then two fan coding 
maps, i.e., H-map and V-map, are constructed by checking which 
fan region other features fall into.  

Based on the adjusted new positions of SIFT feature in Eq. (1), two 
binary geometric maps, called H-map and V-map, are generated. H-
map and V-map describe the relative spatial positions between each 
feature pair along the horizontal and vertical directions, 
respectively. They are formulated as follows, 
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We can put forward the geometric fan coding to more general 
formulations to impose stricter geometric constraints. The image 
plane is divided into r4  parts, with each quadrant evenly 
divided into r  fan regions. We decompose the division 
into r independent sub-divisions, each dividing the image plane 
into four quadrants. Each sub-division is encoded independently 
and their combination leads to the final fan coding maps.   

The general fan coding maps GH and GV are both 3-D and 
defined as follows. With feature if as reference, the location of 

feature jf is rotated counterclockwise by i
k
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angle of  if , as used in Eq. (1). Then GH and GV are formulated 

as, 
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2.2 Spatial Verification 
Denote that a query image qI  and a matched image mI  are found 

to share N  pairs of matched features through SIFT quantization. 
Then the corresponding sub-geo-maps of these matched features 
for both qI  and mI can be generated and denoted as 

),,( qqq GVGHGS  and ),,( mmm GVGHGS  by Eq. (3), Eq. (6) 

and Eq. (7), respectively. After that, the comparison of geometric 
maps is performed as follows. We do logical Exclusive-OR (XOR) 
operation on qGH and mGH , qGV and mGV , respectively:  

mqH GHGHV  ;      mqV GVGVV                  (8) 

If some false matches exist, the entries of these false matches on 

qGH and mGH may be inconsistent, and so are that on 

qGV and mGV . These inconsistencies will cause the 

corresponding exclusive-OR result of HV and VV to be 1. We 

define the inconsistency from geometric fan coding as follows,  
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The inconsistency from geometric square coding is defined as:  

 ),(),(),( jiGSjiGSjiF mqS                       (10) 

Consequently, by checking HF , VF  and SF , the false matches 

can be identified and removed. Denote: 
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where  and  are constant integers.  

Ideally, if all N matched pairs are true positives, T will be zero 
for all entries. If false matches exist, the entries of these matches 
on those geometric coding maps may be inconsistent. We can 
iteratively remove such match that causes the largest 
inconsistency, until all remained matches are consistent to each 
other. 

3. EXPERIMENTS 
We construct our basic dataset by crawling one million images 
from the Web. To build the ground truth dataset, we collected and 
manually labeled 1104 partial-duplicate Web images of 33 groups 
from the Web. These ground-truth images are shared to the public 
and can be downloaded from: [21]. In our experiments, 100 
representative query images are selected from the ground truth 
dataset for evaluation comparison. We use mean average precision 
(mAP) to evaluate the accuracy performance of all experiments. 

We use an inverted-file index structure to index images. Each 
visual word is followed by an entry in the index that contains the 
list of images in which the visual word appears. For each indexed 
feature, we store its image ID, SIFT orientation, scale and the x- 
and y- coordinate, which will be used for generating geometric 
coding maps for retrieval. Similar to [8], the image similarity is 
formulated by the number of true matches. 

Two approaches are considered for comparison. The first one is 
the Bag-of-Visual-Words approach with visual vocabulary tree 
[3], denoted as the “baseline” approach. The second one is re-
ranking via geometric verification, which is based on the 
estimation of an affine transformation by a variant of RANSAC 
[19] as used in [11]. We call this method “RANSAC”. In the 
experiment, all candidate images are involved in the RANSAC-
based re-ranking. 

We perform the experiments on a server with 2.4 GHz CPU and 8 
GB memory. Fig. 3 illustrates the mAP performance of the 
comparison algorithms and our geometric coding (GC) approach. 
Table 1 shows the average time cost per query of all approaches. 
The time cost of SIFT feature extraction is not included.  

Compared with the baseline, our approach is more time-
consuming, since it is involved with geometric coding and 
verification. It takes the baseline 0.095 second to perform one 
image query on average, while for our approach the average 
query time cost is 0.155 second, 0.06 second more than the 
baseline. However, our approach increases the MAP from 0.37 to 
0.54, a 46% improvement over the baseline. RANSAC is the most 

1351



time-consuming approach, due to the affine estimation from many 
random samplings. It costs 1.052 second on average per query, 
which is 6.7 times more than our approach. Also, it is notable that 
our approach achieves even better mAP performance than the 
“RANSAC” method.  
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Figure 3. Comparison of mAP for different methods on the 
1M database. (Best viewed in color PDF)  

Table 1. The average time cost of the comparison methods and 
our geometric coding (GC) approach.  

approach baseline RANSAC GC 

time cost (s) 0.095 1.052 0.155 

4. CONCLUSION 
In this paper, we propose a novel geometric coding scheme for 
SIFT match verification in large scale partial-duplicate image 
search. The geometric coding consists of geometric square coding 
and geometric fan coding. It efficiently encodes the relative 
spatial locations among features in an image and effectively 
discovers false feature matches between images. Our approach 
can effectively detect duplicate images with rotation, scale 
changes, occlusion, and background clutter.  

In our future work, we will study better quantization strategy for 
visual codebook generation. Also, we will move on from 
duplicate image search to video copy detection, and explore its 
potential on image and video annotation [22]. 
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