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ABSTRACT 
Recently, great advance has been made in large-scale content-
based image search. Most state-of-the-art approaches are based on 
the Bag-of-Visual-Words model with local features, such as SIFT. 
Visual matching between images is obtained by vector 
quantization of local features. Two feature vectors from different 
images are considered as a match, if they are quantized to the 
same visual word, even though the L2-distance between them is 
large. Thus, it may introduce many false positive matches. To 
address this problem, in this paper, we propose to generate binary 
SIFT from the original SIFT descriptor. The L2-distance between 
original SIFT descriptors is demonstrated to be well kept with the 
metric of Hamming distance between the corresponding binary 
SIFT. Two feature vectors quantized to the same visual word are 
considered as a valid match only when the Hamming distance 
between their binary SIFT vectors is below a threshold. With our 
binary SIFT, most false positive matches can be effectively and 
efficiently identified and removed, which greatly improves the 
accuracy of large-scale image search.  

We evaluate the proposed approach by conducting partial-
duplicate image search on a one-million image database. The 
experimental results demonstrate the effectiveness and efficiency 
of our scheme.  

Categories and Subject Descriptors 
I.2.10 [Vision and Scene Understanding]: VISION 

General Terms 
Algorithms, Experimentation, Verification. 

Keywords 
Keywords are your own designated keywords. 

1. INTRODUCTION 
In recent years, great advance has been made in large-scale 

content-based image retrieval [1, 2, 3, 4, 6, 7, 8, 24]. Two kinds of 
work make major contribution to it. The first one is the 
introduction of local invariant feature, involving interest point 
detector and local patch descriptor. Popular interesting point 
detectors include difference of Gaussian (DoG) [5], MSER [14], 
and Hessian affine [15], etc. Local patch descriptors make a 
representation of the local appearance around interest points. 
Well-acknowledged descriptors include SIFT [5], SURF [16], etc. 
The second work is the Bag-of-Visual-Words (BoW) model [1] 
leveraged from information retrieval [11]. With BoW model, an 
image is compactly represented with a “bag” of visual words, and 
can be efficiently indexed with an inverted file structure for on-
line query. Usually, local features in images are quantized to 
visual words by vector quantization.  

In essence, image search has to address the problem of visual 
matching between images. When images are represented with 
local SIFT features, image matching is realized by visual 
matching of local features. In large-scale image search, two 
features from different images are considered as a match, if they 
are quantized to the same visual word. Since the dimension of 
SIFT feature space is as high as 128, the sub-spaces 
corresponding to visual words are still likely to be large even with 
millions of visual words, i.e., the SIFT feature space is divided 
into millions of sub-spaces. As a result, we frequently observe 
that, SIFT features quantized to the same visual word may have 
large Euclidean distance between each other, which causes many 
false positive feature matches and consequently degrades the 
accuracy of image search. Generally, in visual matching with 
SIFT descriptors [5], it is the vector distance between two SIFT 
descriptors that should be used to determine whether they are 
likely to be a true match. Therefore, it is very necessary to further 
check the distance between SIFT features after vector 
quantization. However, it is infeasible to store SIFT descriptors in 
an inverted index file as it will cast too high cost in memory. 
Besides, it is also not efficient to compute vector distance with the 
original SIFT descriptors. Therefore, some compact 
representations of SIFT descriptor are desired. 

In literature, there are some works, such Hamming Embedding [8, 
12], converting SIFT descriptor to binary signature to remove 
false SIFT matches. However, to our best knowledge, none of 
them explicitly demonstrate the Hamming distance from binary 
signature is consistent to the L2-distance of SIFT descriptor. As a 
result, the improvement from current works [7, 8, 12] is limited. 

In this paper, we propose a new scheme to transform a SIFT 
descriptor to a binary bit stream, called binary SIFT. Extensive 
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study with large-scale (trillion) samples reveal that the generated 
binary SIFT effectively keeps the distance metric of the original 
SIFT descriptor. We apply the binary SIFT to large-scale image 
search. To adapt to the classic BoW model for large-scale image 
search, the binary SIFT is stored in the inverted file list. During 
online retrieval, for each query feature quantized to a visual word, 
we further compare its binary SIFT with those in the inverted file 
list following the visual word. Only those features with 
sufficiently small enough Hamming distance from the query 
feature are regarded as true matches. Since the main computation 
in Hamming distance is logic operation, the computational cost is 
low. Experiments on image search in million-scale dataset 
demonstrate the effectiveness of the proposed scheme.  

The rest of the paper is organized as follows. Section 2 reviews 
related work in literature. Section 3 discusses our approach in 
details. Section 4 shows the experimental results. Finally, 
conclusion is given in Section 5. 

2. RELATED WORK 
In literature, there are lots of works on large-scale content-based 
image retrieval. Most of them are based on BoW model and 
utilize local invariant features, such as SIFT [5], for image 
representation. Since local features are of high-dimensional and 
an image may contain hundreds or thousands of local features, 
vector quantization is popularly applied to quantize a local feature 
to a visual word. Consequently, an image is compactly 
represented by a “bag” of visual word ID, which effectively 
adapts to the classic inverted index structure for real-time retrieval. 
To date, many algorithms have been proposed to improve 
different stages of the classic image retrieval framework. In the 
following, we make a review of related work on feature 
quantization, hashing, and post-processing. 

In feature quantization, k-means is widely used to cluster feature 
samples to generate visual words for feature quantization [1]. In 
[3], a hierarchical visual vocabulary tree structure is adopted to 
greatly increase the quantization efficiency. In [6], instead of 
quantizing one feature to one visual word, each SIFT is mapped 
to and represented by multiple nearest visual words. It effectively 
alleviates the quantization loss but with high computational cost. 
In [8], to reduce the quantization error, an interesting binary 
signature is used to verify features quantized to the same visual 
word. The binary signature is generated with a thresholding 
vector computed with large training samples for each visual word, 
respectively. In [12], an asymmetric version of Hamming 
Embedding is developed by exploiting the precise query location 
instead of the binarized query vector. In [7], the high dimensional 
SIFT descriptor space is partitioned into regular lattices. In [13], a 
novel scheme is proposed to aggregate all local features in an 
image with a very small codebook, and complex quantization 
techniques are exploited for indexing. In [10], a novel 
quantization method based on randomized trees is introduced to 
build visual vocabulary.  The conjunction of randomized k-d trees 
creates an overlapping partition of the SIFT feature space and 
helps to mitigate quantization error. In [24], visual (code) words 
are generated with the first 32 bits from scalar quantization. 

Some algorithms design better hashing techniques for visual word 
vectors. In [17, [20], an interesting min-hash scheme is proposed 
to independently select a set of visual words from an image as 
global descriptors and define image similarity as the set overlap. 
It is based on the philosophy that the more common features in 
two images, the higher the probability of having the same min-

Hash. Such scheme is very effective and efficient in detection of 
near identical images and video shots. In [18], geometric min-
hash exploits local spatial context to construct repeatable hash 
keys and increase the discriminability of the description. 

Some other schemes improve the image search performance in the 
post-processing stage. In [1], local spatial consistency is imposed 
to filter visual-word matches with low support. In [8], weak 
geometric consistency of SIFT orientation and scale is used to 
remove potential false matches. In [10], global spatial verification 
is performed to estimate an affine model [19] to filter local 
matches. In [2], geometric context is represented with coding 
maps. It recursively removes geometrically inconsistent matches 
by analyzing those coding maps. In [21], geometric coding 
improves [2] by generating coding maps with full use of SIFT 
orientation, scale and key point location. The obtained coding 
maps are invariant to translation, rotation and scale changes. 
Besides the above spatial verification techniques, query expansion 
is another important post-processing scheme. It reissues the initial 
highly-ranked results to generate new queries so as to improve 
recall performance. General techniques, such as average query 
expansion, transitive closure expansion, resolution expansion, are 
discussed in [4]. In [9], two novel expansion strategies, i.e., intra-
expansion and inter-expansion, are proposed. Intra-expansion 
expands more target feature points similar to those in the query, 
while inter-expansion explores those feature points co-occurring 
with the search targets but not present in the query. 

In this paper, our focus is the feature quantization stage. We 
propose a binary SIFT for efficient and effective feature matching 
verification for large-scale image search. Unlike the binary 
signature in [8], our binary SIFT is independent of image 
collection and is demonstrated to keep the vector distance of SIFT 
descriptor.  Our approach can also be easily integrated with those 
hashing algorithms and post-processing approaches discussed 
above to achieve better retrieval performance. On the other hand, 
it should be noted that the binary SIFT matching scheme is not 
limited to image search. It can also be applied in video tracking, 
image registration, etc. 

3. OUR APPROACH 
In Section 3.1, we first discuss how to generate binary SIFT and 
demonstrate that the vector distance of SIFT descriptor is kept 
with Hamming distance of binary SIFT. In Section 3.2, we will 
introduce how to embed the binary SIFT into the image search 
framework. Some details in index and retrieval are also discussed. 

3.1 Binary SIFT Generation 
The standard SIFT descriptor is extracted from a local image 
patch by concatenating 8-D orientation histograms of all 16 (4 by 
4) sub-patches. We observe that the coefficients in most bins of 
SIFT descriptor vector are very stable even under various changes 
in rotation and scaling or noises addition. Such property accounts 
for its discriminative power in visual identification.  In other 
words, the differences between bins and a predefined threshold 
are stable for most bins. Based on such observation, we propose a 
simple scheme to convert a standard SIFT descriptor to a binary 
bit stream, i.e., binary SIFT (BSIFT). 

Given a SIFT descriptor vector dT
d Rffff ∈= ),,,( 21 L , 

where ),,2,1( , diRfi L=∈ , 128=d , we transform f to a bit 

vector (binary SIFT, or BSIFT) T
dbbbb ),,,( 21 L= , as follows:  
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It should be noted that, our binary SIFT generation is significantly 
different from the binary signature defined in Hamming 
Embedding [8]. Hamming Embedding has to train a thresholding 
vector with large training samples for each visual word, 
respectively. In contrast, our binary SIFT doesn’t involve any 
training step. It is independent of image collection. And it is 
simple and computationally efficient.  
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Figure 1. The average L2-distance vs. Hamming distance. The 
statistics are obtained based on 400 billion pairs of SIFT 
descriptors.  The L2-distance is computed with SIFT 
descriptors unit-normalized.  

 

 
(a) 

 
(b) 

Figure 2. Matching results verification by binary SIFT (t = 18). 
The initial matches are obtained with vector quantization. The 
red line segments denote those false matches identified by 
binary SIFT verification, while blue ones denote true matches 
passing matching verification. Both images in (a) contain the 
duplicate patch of Mona Lisa face. (Best viewed in color PDF) 

To demonstrate that the discriminative power of SIFT descriptors 
is well kept in the transformed binary SIFT, we have made a 
statistical study on over 400 billion SIFT descriptor pairs, which 
take every SIFT pair extracted from image pairs randomly 
sampled from a large image dataset. For each descriptor pair, its 
L2 distance on the standard SIFT and Hamming distance on the 
binary SIFT are calculated. From Fig. 1, we can observe that the 
Hamming distance between binary SIFT is consistent with the 
average L2-distance. (The drop of L2 distance after the Hamming 
distance grows over 114 is due to the fact that there is no binary 
SIFT features with that large Hamming distance.) In other words, 
the Hamming distance between binary SIFT can be used to 
approximate the Euclidean distance between the corresponding 
SIFT descriptors. Therefore, we can use the binary SIFT instead 
of the original SIFT descriptor to check the distance between two 
candidate features. Another advantage of binary SIFT is that, the 
memory cost of binary SIFT is low, making it feasible to store the 
whole binary SIFT in the index list.  

3.2 Image Search with BSIFT Verification 
Our image search method is based on the Bag-of-Visual-Words 
model. We construct a quantizer by hierarchically clustering 
large-scale SIFT descriptor samples. The clustering leaf nodes are 
considered as visual words. The obtained visual vocabulary tree is 
used to quantize a SIFT feature to a visual word.  
In the traditional approach [1, 2, 3], two SIFT features from two 
images are considered as a match, if they are quantized to the 
same visual word. In our implementation, a further binary SIFT 
verification is performed. That is, the hamming distance between 
two binary SIFT features is no greater than a threshold t. The 
impact of threshold t will be studied in Section 4.1.  
Fig. 2 shows two examples of feature matching based on binary 
SIFT. It can be observed that false local matches exist on both 
relevant and irrelevant image pairs after feature quantization. 
With further verification on binary SIFT, most false matches can 
be identified and removed. More matching sample results are 
shown in Fig. 6. 
We formulate the image search as a match voting scheme. For 
each SIFT feature in the query image, each verified feature match 
will cast a vote to the corresponding image of the database. The 
similarity between images is defined by the cardinality of 
matched feature set. Consequently, the database images are 
ranked by their similarity scores and returned as the image 
retrieval results. 

Visual Word Indexed 
Feature ……

Image ID BSIFT

…
…

 
Figure 3. Inverted file structure. 

 
In our image search scheme, the binary SIFT is indexed with an 
inverted file structure for large-scale image database, as illustrated 
in Fig. 3. Each visual word is followed by a list of entries and 
each entry contains the ID of images in which the visual word 
appears. Besides, for each indexed feature, we also store its binary 
SIFT (BSIFT). With the inverted index structure, we only need 
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check those images sharing common visual words with the query 
image and therefore achieve real-time response.  

4. EXPERIMENTS 
We build our basic dataset with one million images crawled from 
the Web. Images in the basic dataset are used as distracters. We 
take the partial-duplicate image dataset in [17] as the ground-truth 
dataset, which contains 1104 images from 33 groups, including 
“Mona Lisa”, “American Gothic Painting”, “Seven-eleven logo”, 
etc. From the ground truth dataset, 108 representative query 
images are randomly selected for evaluation comparison. Mean 
average precision (mAP) is selected to measure the accuracy 
performance of all methods. 

We select the standard SIFT feature [1] implemented with an 
open-source library [22] for image representation. Key points are 
detected with the Difference-of-Gaussian (DoG) detector. A 128-
D orientation histogram (SIFT descriptor) is extracted to describe 
the visual appearance of local patch around each key point. 
Before extracting SIFT features, large images are scaled to have a 
maximum axis size of 400. 

4.1 Parameter Impact 
There are two parameters in our approach: visual codebook size 
and Hamming distance threshold t. To evaluate their impact on 
search accuracy and efficiency, we test different parameter 
settings with all query images on the one-million image database. 
Four visual codebooks with different sizes, i.e., VW 100K, VW 
260K, VW 530K and VW 1M, are involved for evaluation. VW 
100K represents a visual codebook with 100 thousand visual 
words. The results are shown in Fig. 4. 
From Fig. 4(a), it is observed that, when the visual codebook size 
decreases, the search accuracy increases. This is because, smaller 
visual codebook will keep more true matches, and the false 
matches can be effectively removed with our binary SIFT 
verification. On the other hand, when the Hamming threshold t 
increases, the accuracy first increases to a peak, and then drops 
gradually. This is because smaller t introduces more false 
negatives while larger t incurs more false positives. From Fig. 
4(b), it is shown that the time cost increases sharply when the 
visual codebook size decreases. This is due to that more indexed 
features have to be checked with smaller visual codebook.  
To make a tradeoff between accuracy and efficiency, in our 
implementation, we select the visual codebook with 530K visual 
words and choose the Hamming threshold t as 18.  

4.2 Evaluation 
Comparison Algorithms: We compare our approach with three 
state-of-the-art feature quantization algorithms in large-scale 
image search. The BoW approach with classic visual vocabulary 
tree [3] is selected as the “baseline” method. We test various sizes 
of visual vocabulary for the baseline, and find the one with 1-
million visual words gives the best overall performance. To 
enhance the baseline, two other algorithms, i.e., soft assignment 
[13] and Hamming Embedding (HE) [6], are also included for 
comparison. We implement these three comparison algorithms 
based on the original papers. Since our focus in this paper is 
feature quantization, the weak geometric consistency verification 
in [6] is not included in the implementation of HE. In the 
implementation of soft assignment approach [13], the 
approximate nearest neighbor search is developed with the ANN 
library [23]. 
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Figure 4. Parameter impact on different sizes of visual 
codebooks. (a) Mean average precision; (b) Average time cost 
per query. (Best viewed in color PDF) 
  
Accuracy:  From Table 1, it can be observed that our approach 
outperforms all the other three methods on large image databases. 
On the 1-million dataset, the mAP of the baseline is 0.376. Our 
approach hits 0.505, a realtively 25.5% improvement. Since 
Hamming codes can effectively filter false features, the Hamming 
Embdding approach achieves a mAP of 0.429, but still 7.6% 
lower than our approach. The mAP improvement of soft 
assignment approach is higher than HE. It reaches a mAP of 
0.482. Compared with soft assignment, our approach still enjoys a 
relatively 4.8% improvement.  

Efficiency The experiments are performed on a server with 3.4 
GHz CPU and 16 GB memory. Fig. 5 shows the average online 
search time cost per query of all four approaches. The time cost 
on SIFT feature extraction is not included. It takes the baseline 
0.12 second in average to perform one query. Although HE is the 
most time-efficient one and costs only 0.05 second to finish one 
online query in average, it suffers more expensive off-line 
training process since it has to additionally train thresholding 
vectors for each visual word. Soft assignment is the most time-
consuming approach, consuming 0.52 second in average per 

4



query. The efficiency of our approach is comparable to the 
baseline, with 0.11 second on average per query. It is much faster 
than the soft assignment approach and saves offline training cost 
compared with HE. 

 

Table 1. Performance (mAP) comparison of different methods 
on 1-million image database. 

 Baseline HE Soft 
assignment 

Our 
approach

mAP 0.376 0.429 0.482 0.505 

 

 
Figure 5. Comparison of average query time cost of different 
methods on the 1M database. (Not including the time cost for 
SIFT feature extraction)  

 

Table 2. Memory cost per indexed feature for four approaches. 

 Baseline HE Soft 
assignment 

Our 
approach

Memory cost per 
feature (byte) 8 12 24 20 

 

Memory Cost:  The memory cost is linear to the number of features 
to be indexed. Therefore, we compare memory cost per feature on 
all four approaches, as shown in Table 2. For each feature, the 
baseline approach needs 4 bytes to store image ID and another 4 
bytes to store the tf-idf weight. The soft assignment has to store each 
indexed feature in three visual word lists. Therefore it costs 24 bytes, 
three times the memory cost of the baseline approach. In Hamming 
Embedding approach, for each feature it allocates 4 bytes on image 
ID and 8 bytes on the 64-bit binary signature. In our approach, 
besides the 4 bytes for image ID, another 16 bytes are needed to 
store the 128-bit binary SIFT.  

4.3 Sample Results 
We show more sample matching results in Fig. 6. We can see that 
even irrelevant images can share many local feature matches from 
vector quantization. With verification on binary SIFT, most false 
positive matches can be removed.  In Fig. 7, we show some 
retrieval results of four query images with our scheme.  It can be 
observed that our approach can effectively retrieve those target 
images with large editing in scale, rotation, illumination, and 
clutter background. 

  

   

       
Figure 6. Matching results verification by binary SIFT (t = 18). 
The initial matches are obtained by vector quantization with 
VW 500K. Red line: false matches identified by binary SIFT 
verification; blue lines: true matches passing matching 
verification. (left) irrelevant image pairs; (right) relevant 
image pairs. (Best viewed in color PDF) 
 

5. CONCLUSION 
In this paper, we present a binary representation of SIFT feature 
for SIFT matching verification. Study with large-scale samples 
demonstrates that binary SIFT preserves the quality of vector 
comparison on the original SIFT descriptor. Inverted file structure 
is used for large-scale indexing and the binary SIFT is stored in 
inverted file list for feature matching verification. Experiments on 
image search with large-scale database reveal the effectiveness of 
the proposed approach.  

Our binary SIFT generation is independent of image collection. 
Therefore, it does not involve any training and can be efficiently 
generated. Besides, comparison between binary SIFT can be 
achieved with efficient exclusive OR operation.  

In our next work, we will study the gap between vector 
quantization and visual matching in large-scale image search. We 
will also investigate better strategies to transform SIFT to binary 
version preserving the quality of vector comparison.  
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Figure 7. Example results from retrieval. In each row, queries are shown on left of the arrow, while highly-ranked images (selected 

from those before the first false positive result) from the query results are shown on the right of the arrow. 
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