
Parameterizing MAX SNP problems above Guaranteed Values

Meena Mahajan, Venkatesh Raman, Somnath Sikdar

The Institute of Mathematical Sciences,
C.I.T Campus, Taramani, Chennai 600113.
{meena,vraman,somnath}@imsc.res.in

Abstract. We show that every problem in MAX SNP has a lower bound on the optimum solution size
and that the above guarantee question with respect to that lower bound is fixed parameter tractable.
We next introduce the notion of ‘tight’ upper and lower bounds for the optimum solution and show that
the parameterized version of a variant of the above guarantee question with respect to the tight lower
bound cannot be fixed parameter tractable unless P = NP, for a number of NP-optimization problems.

1 Introduction

In this paper, we consider the parameterized complexity of NP-maximization problems Q with the
following property: for each instance I of Q, the optimum opt(I), is lower-bounded by a function
of the input size. That is, for all instances I, opt(I) ≥ f(|I|) for some function f . For such an
optimization problem Q, the standard parameterized version Q̃ defined by

Q̃ = {(I, k) : I is an instance of Q and opt(I) ≥ k}

is easily seen to be fixed parameter tractable. For if k ≤ f(|I|), we answer ‘yes’; else, f(|I|) < k
and so |I| < f−1(k)1 and we have a kernel.

Thus for such an optimization problem it makes sense to define an “above guarantee” parame-
terized version Q̄ as

Q̄ = {(I, k) : I is an instance of Q and opt(I) ≥ f(|I|) + k}.

Such above guarantee parameterized problems were first considered by Mahajan and Raman in [5].
The problems dealt with by them are Max Sat and Max Cut. An instance of the Max Sat
problem is a boolean formula φ in conjunctive normal form and the standard parameterized version
asks whether φ has at least k satisfiable clauses, k being the parameter. Since any boolean formula
φ with m clauses has at least dm/2e satisfiable clauses (see Motwani and Raghavan [6]), by the
above argument, this problem is fixed parameter tractable. The above guarantee Max Sat question
considered in [5] asks whether a given formula φ has at least dm/2e + k satisfiable clauses, with k
as parameter. This was shown to be fixed parameter tractable.

The standard parameterized version of the Max Cut problem asks whether an input graph G
has a cut of size at least k, where k is the parameter. This problem is also fixed parameter tractable
since any graph G with m edges has a cut of size dm/2e. The above guarantee Max Cut question
considered in [5] asks whether an input graph G on m edges has a cut of size at least dm/2e + k,
where k is the parameter. This problem was shown to be fixed parameter tractable too.

To date, very few results have been published on the parameterized complexity of above guar-
antee problems. See for instance [2, 9]. In this paper, we consider above guarantee questions for
1 Assuming f to be invertible; the functions considered in this paper are.

problems in the class MAX SNP. This paper is structured as follows. In Section 2, we introduce
the necessary ideas about parameterized complexity and state some basic definitions needed in the
rest of the paper. In Section 3, we show that every problem in the class MAX SNP has a guaran-
teed lower bound and that the above guarantee problem with respect to this lower bound is fixed
parameter tractable. In Section 4, we define a notion of tight lower bound and show that a variant
of the above guarantee question with respect to tight lower bounds is hard (unless P = NP) for a
number of NP-maximization problems. Finally in Section 5, we end with a few concluding remarks.

2 Preliminaries

We briefly introduce the necessary concepts concerning optimization problems and parameterized
complexity.

To begin with, a parameterized problem is a subset of Σ∗ × N, where Σ is a finite alphabet
and N is the set of natural numbers. An instance of a parameterized problem is therefore a pair
(I, k), where k is the parameter. In the framework of parameterized complexity, the run time of
an algorithm is viewed as a function of two quantities: the size of the problem instance and the
parameter. A parameterized problem is said to be fixed parameter tractable (fpt) if there exists an
algorithm for the problem with time complexity O(f(k) · |I|O(1)), where f is a recursive function
of k alone. The class FPT consists of all fixed parameter tractable problems.

A parameterized problem π1 is fixed-parameter-reducible to a parameterized problem π2 if there
exist functions f, g : N → N, Φ : Σ∗ × N → Σ∗ and a polynomial p(·) such that for any instance
(I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 such that Φ(I, k) is computable in time f(k) · p(|I|)
and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2.

An NP-optimization problem Q is a 4-tuple Q = {I , S, V, opt}, where

1. I is the set of input instances. It is assumed that I can be recognized in polynomial time.
2. S(x) is the set of feasible solutions for the input x ∈ I .
3. V is a polynomial-time computable function called the objective function and for each x ∈ I

and y ∈ S(x), V (x, y) ∈ N.
4. opt ∈ {max, min}.
5. The following decision problem (called the underlying decision problem) is in NP: Given x ∈ I

and an integer k, does there exist a feasible solution y ∈ S(x) such that V (x, y) ≥ k, when Q is
a maximization problem (or, V (x, y) ≤ k, when Q is a minimization problem).

The class MAX SNP was defined by Papadimitriou and Yannakakis [7] using logical expres-
siveness. They showed that a number of interesting optimization problems such as Max 3-Sat,
Independent Set-b, Max Cut, Max k-Colorable Subgraph etc. lie in this class. They also
introduced the notion of MAX SNP-completeness by using a reduction known as the L-reduction.
We define this next.

Let π1 and π2 be two optimization (maximization or minimization) problems. We say that π1

L-reduces to π2 if there are two polynomial-time algorithms f , g, and constants α, β > 0 such that
for each instance I1 of π1:

1. Algorithm f produces an instance I2 = f(I1) of π2, such that the optima of I1 and I2, opt(I1)
and opt(I2), respectively, satisfy opt(I2) ≤ α · opt(I1).

2. Given any solution of I2 with cost c2, algorithm g produces a solution of I1 with cost c1 such
that |c1 − opt(I1)| ≤ β · |c2 − opt(I2)|

2

We call such an L-reduction from π1 to π2 as an 〈f, g, α, β〉 reduction.
A problem π is MAX SNP-hard if every problem in the class MAX SNP L-reduces to π. A

problem π is MAX SNP-complete, if π is in MAX SNP and is MAX SNP-hard.

3 Parameterizing above Guaranteed Values

Consider the problem Max 3-Sat which is complete for the class MAX SNP. An instance of Max
3-Sat is a boolean formula f in conjunctive normal form with at most three literals per clause. As
already stated, any boolean formula with m clauses has at least dm/2e satisfiable clauses and thus
the following above guarantee parameterized problem is fixed parameter tractable.

L = {(f, k) : f is a Max 3-Sat instance and ∃ an assignment satisfying
at least k + dm/2e clauses of the formula f }.

Since Max 3-Sat is MAX SNP-complete and has a guaranteed lower bound, we have

Proposition 1 Every maximization problem in MAX SNP has a polynomial-time computable lower
bound. That is, if π ∈ MAX SNP, then for each instance x of π there exists a positive number γx

such that γx ≤ opt(x).

Proof. Let π be a problem in MAX SNP and let 〈f, g, α, β〉 be an L-reduction from π to Max 3-Sat.
Then for an instance x of π, f(x) is an instance of Max 3-Sat such that opt(f(x)) ≤ α · opt(x). If
f(x) is a formula with m clauses, then dm/2e ≤ opt(f(x)) and therefore opt(x) is bounded below
by dm/2e/α. This proves that each instance x of π has a lower bound.

We can express this lower bound in terms of the parameters of the L-reduction. Since f(x) is
an instance of Max 3-Sat, we can take the size of f(x) to be m. Then γx = |f(x)|/(2 · α).

Note that this lower bound γx depends on the complete problem to which we reduce π. By
changing the complete problem, we might construct different lower bounds for the problem at
hand. It is also conceivable that there exist more than one L-reduction between two optimization
problems. Different L-reductions should give different lower bounds. Thus the polynomial-time
computable lower bound that we exhibit in Proposition 1 is a special lower bound obtained from a
specific L-reduction to a specific complete problem (Max 3-Sat) for the class MAX SNP. Call the
lower bound of Proposition 1 a Max 3-Sat-lower bound for the problem π.

Since the above guarantee parameterized version L of Max 3-Sat is known to be FPT, we
immediately have the following.

Theorem 1. If π is a maximization problem in MAX SNP and if γx represents the Max 3-Sat-
lower bound for an instance x of π then the following parameterized problem is FPT:

Lπ = {〈x, k〉 : x is an instance of π and opt(x) ≥ γx + k}

Proof. We will make use of the fact that there exists a fixed parameter tractable algorithm A for
Max 3-Sat which takes as input, a pair of the form 〈ψ, k〉, and in time O(|ψ|+ h(k)), returns yes
if there exists an assignment to the variables of ψ that satisfies at least dm/2e+ k clauses, and no
otherwise. See [5, 10] for such algorithms.

3

Consider an instance 〈x, k〉 of Lπ. Let 〈f, g, α, β〉 be an L-reduction from π to Max 3-Sat.
Then f(x) is an instance of Max 3-Sat. Let f(x) have m clauses. Then the guaranteed lower
bound for the instance x of π, γx = m

2α , and opt(f(x)) ≤ α · opt(x). Apply algorithm A with input
〈f(x), kα〉. If A outputs yes, then opt(f(x)) ≥ m/2 + k · α, implying opt(x) ≥ m

2·α + k = γx + k.
Thus 〈x, k〉 ∈ Lπ.

If A answers no, then
⌈

m
2

⌉
≤ opt(f(x)) <

⌈
m
2

⌉
+ kα. Apply algorithm A kα times on inputs

(f(x), 1), (f(x), 2), . . . , (f(x), kα) to obtain opt(f(x)). Let c′ = opt(f(x)). Then use algorithm g of
the L-reduction to obtain a solution to x with cost c. By the definition of L-reduction, we have
|c− opt(x)| ≤ β · |c′ − opt(f(x))|. But since c′ = opt(f(x)), it must be that c = opt(x). Therefore
we simply need to compare c with γx + k to check whether 〈x, k〉 ∈ Lπ.

The total time complexity of the above algorithm is O(kα·(|f(x)|+h(kα))+p1(|x|)+p2(|f(x)|)),
where p1(·) is the time taken by algorithm f to transform an instance of π to an instance of Max
3-Sat, and p2(·) is the time taken by g to output its answer. Thus the algorithm that we outlined
is indeed an FPT algorithm for Lπ.

Note that the proof of Proposition 1 also shows that every minimization problem in MAX SNP
has a Max 3-Sat-lower bound. For minimization problems whose optimum is lower bounded by
some function of the input, it makes sense to ask how far removed the optimum is with respect to
the lower bound. The parameterized question asks whether for a given input x, opt(x) ≤ γx + k,
with k as parameter. The following result can be proved similarly to Theorem 1.

Theorem 2. If π is a minimization problem in MAX SNP and if γx represents the Max 3-Sat-
lower bound for an instance x of π then the following parameterized problem is FPT:

Lπ = {〈x, k〉 : x is an instance of π and opt(x) ≤ γx + k}

Examples of minimization problems in MAX SNP include Vertex Cover-B and Dominating
Set-B, the restriction of the Vertex Cover and the Dominating Set problems to graphs
whose vertex degree is bounded by B.

4 Hardness Results

For an optimization problem, the question of whether the optimum is at least lower bound + k,
k being the parameter, is not always interesting because if the lower bound is “loose” then the
problem is trivially fixed parameter tractable. For instance, for the Max Cut problem, the question
of whether an input graph has a cut of size at least m

2 + k is fpt since any graph G with m edges, n
vertices and c components has a cut of size at least m

2 + dn−c
4 e. Thus if k ≤ dn−c

4 e, we answer yes;
else, dn−c

4 e < k and we have a kernel.
We therefore examine the notion of a tight lower bound and the corresponding above guarantee

question. A tight lower bound is essentially the best possible lower bound on the optimum solution
size. For the Max Sat problem, this lower bound is m/2: if φ is an instance of Max Sat, then
opt(φ) ≥ m/2, and there are infinitely many instances for which the optimum is exactly m/2. This
characteristic motivates the next definition.

Definition 1 (Tight Lower Bound) Let Q = {I , S, V, opt} be an NPO problem and let f :
N → N. We say that f is a tight lower bound for Q if the following conditions hold:

4

1. f(|I|) ≤ opt(I) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = f(|I|) for all I ∈ I ′.

Note that we define the lower bound to be a function of the input size rather than the input
itself. This is in contrast to the lower bound of Proposition 1 which depends on the input instance.
We can define the notion of a tight upper bound analogously.

Definition 2 (Tight Upper Bound) Let Q = {I , S, V, opt} be an NPO problem and let g :
N → N. We say that g is a tight upper bound for Q if the following conditions hold:

1. opt(I) ≤ g(|I|) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = g(|I|) for all I ∈ I ′.

Some example optimization problems which have tight lower and upper bounds are given below.
The abbreviations tlb and tub stand for tight lower bound and tight upper bound, respectively.

1. Max Exact c-Sat
instance A boolean formula F with n variables and m clauses with each clause having

exactly c distinct literals.
question Find the maximum number of simultaneously satisfiable clauses.
bounds tlb = (1− 1

2c)m; tub = m.

The expected number of clauses satisfied by the random assignment algorithm is (1− 1
2c)m; hence

the lower bound. To see tightness, note that if φ(x1, . . . , xc) denotes the Exact c-Sat formula
comprising of all possible combinations of c variables, then φ has 2c clauses of which exactly 2c − 1
clauses are satisfiable. By taking disjoint copies of this formula one can construct Exact c-Sat
instances of arbitrary size with exactly (1− 1

2c)m satisfiable clauses.

2. Constraint Satisfaction Problem (CSP)
instance A system of m linear equations modulo 2 in n variables, together with pos-

itive weights wi, 1 ≤ i ≤ m.
question Find an assignment to the variables that maximizes the total weight of the

satisfied equations.
bounds tlb = W

2 , where W =
∑m

i=1wi; tub = W .

If we use {+1,−1}-notation for boolean values with −1 corresponding to true, we can write the
ith equation of the system as πj∈αixj = bi, where each αi is a subset of [n] and bi ∈ {+1,−1}. To
see that we can satisfy at least half the equations in the weighted sense, we assign values to the
variables sequentially and simplify the system as we go along. When we are about to give a value
to xj , we consider all equations reduced to the form xj = b, for a constant b. We choose a value for
xj satisfying at least half (in the weighted sense) of these equations. This procedure of assigning
values ensures that we satisfy at least half the equations in the weighted sense. A tight lower bound
instance, in this case, is a system consisting of pairs xj = bi, xj = b̄i, with each equation of the pair
assigned the same weight. See [3] for more details.

3. Max Independent Set-B
instance A graph G with n vertices such that the degree of each vertex is bounded

by B.
question Find a maximum independent set of G.
bounds tlb = n

B+1 ; tub = n.

5

A graph whose vertex degree is bounded by B can be colored using B + 1 colors and in any valid
coloring of the graph, the vertices that get the same color, form an independent set. By the pigeon
hole principle, there exists an independent set of size at least n/(B+1). The complete graph KB+1

on B + 1 vertices has an independence number of n
B+1 . By taking disjoint copies of KB+1 one can

construct instances of arbitrary size with independence number exactly n
B+1 .

4. Max Planar Independent Set
instance A planar graph G with n vertices and m edges.
question Find a maximum independent set of G.
bounds tlb = n

4 ; tub = n.

A planar graph is 4-colorable and in any valid 4-coloring of the graph, the vertices that get the
same color form an independent set. By the pigeon hole principle, there exists an independent set
of size at least n

4 . A disjoint set of K4’s can be use to construct arbitrary sized instances with
independence number exactly n

4 .

5. Max Acyclic Digraph
instance A directed graph G with n vertices and m edges.
question Find a maximum acyclic subgraph of G.
bounds tlb = m

2 ; tub = m.

To see that any digraph with m arcs has an acyclic subgraph of size m
2 , place the vertices v1, . . . , vn

of G on a line in that order with arcs (vi, vj), i < j, drawn above the line and arcs (vi, vj), i > j,
drawn below the line. Clearly, by deleting all arcs either above or below the line we obtain an
acyclic digraph. By the pigeonhole principle, one of these two sets must have size at least m

2 . To
see that this bound is tight, consider the digraph D on n vertices: v1 � v2 � v3 � . . . � vn which
has a maximum acyclic digraph of size exactly m

2 . Since n is arbitrary, we have an infinite set of
instances for which the optimum matches the lower bound exactly.

6. Max Planar Subgraph
instance A connected graph G with n vertices and m edges.
question Find an edge-subset E′ of maximum size such that G[E′] is planar.
bounds tlb = n− 1; tub = 3n− 6.

Any spanning tree of G has n − 1 edges; hence any maximum planar subgraph of G has at least
n−1 edges. This bound is tight as the family of all trees achieve this lower bound. An upper bound
is 3n − 6 which is tight as for each n, a maximal planar graph on n vertices has exactly 3n − 6
edges.

7. Max Cut
instance A graph G with n vertices, m edges and c components.
question Find a maximum cut of G.
bounds tlb = m

2 + dn−c
4 e; tub = m.

The lower bound for the cut size was proved by Poljak and Turzik [8]. This bound is tight for
complete graphs. The upper bound is tight for bipartite graphs.

A natural question to ask in the above-guarantee framework is whether the language

L = {〈I, k〉 : opt(I) ≥ tlb(I) + k}

6

is in FPT. The parameterized complexity of such a question is not known for most problems. To
the best of our knowledge, this question has been resolved only for the Max Sat and Max c-Sat
problems [5] and, very recently, for the Linear Arrangement problem [2].

In this section, we study a somewhat different, but related, parameterized question: Given an
NP-maximization problem Q which has a tight lower bound (tlb) a function of the input size,
what is the parameterized complexity of the following question?

Q(ε) = {〈I, k〉 : opt(I) ≥ tlb(I) + ε · |I|+ k}

Here |I| denotes the input size, ε is some fixed positive rational and k is the parameter. We show
that this question is not fixed parameter tractable for a number of problems, unless P = NP.

Theorem 3. The Q(ε) problem is not fixed parameter tractable for the following problems Q unless
P = NP:

Problem tlb(I) + ε · |I|+ k Range of ε

1. Max Sat (1
2 + ε)m+ k 0 < ε < 1

2

2. Max c-Sat (1
2 + ε)m+ k 0 < ε < 1

2

3. Max Exact c-Sat (1− 1
2c + ε)m+ k 0 < ε < 1

2c

4. CSP (1
2 + ε)m+ k 0 < ε < 1

2

5. Planar Independent Set (1
4 + ε)n+ k 0 < ε < 3

4

6. Independent Set-B (1
B+1 + ε)n+ k 0 < ε < B

B+1

7. Max Acyclic Subgraph (1
2 + ε)m+ k 0 < ε < 1

2

8. Max Planar Subgraph (1 + ε)n− 1 + k 0 < ε < 2
9. Max Cut m

2 + dn−c
4 e+ εn+ k 0 < ε < 1

4

10. Max Dicut m
4 +

√
m
32 + 1

256 −
1
16 + εm+ k 0 < ε < 3

4

The proof, in each case, follows this outline: Assume that for some ε in the specified range, Q(ε)
is indeed in FPT. Now consider an instance 〈I, s〉 of the underlying decision version of Q. Here is
a P-time procedure for deciding it. If s ≤ tlb, then the answer is trivially yes. If s lies between
tlb and tlb + ε|I|, then “add” a gadget of suitable size corresponding to the tub, to obtain an
equivalent instance 〈I ′, s′〉. This increases the input size, but since we are adding a gadget whose
optimum value matches the upper bound, the increase in the optimum value of I ′ is more than
proportional, so that now s′ exceeds tlb+ε|I ′|. If s already exceeds tlb+ε|I|, then “add” a gadget
of suitable size corresponding to the tlb, to obtain an equivalent instance 〈I ′, s′〉. This increases
the input size faster than it boosts the optimum value of I ′, so that now s′ exceeds tlb + ε|I ′| by
only a constant, say c. Use the hypothesised fpt algorithm for Q(ε) with input 〈I ′, c〉 to correctly
decide the original question.

Rather than proving the details for each item separately, we use this proof sketch to establish
a more general theorem (Theorem 4 below) which automatically implies items 1 through 8 above.
It does not imply items 9 and 10, since Max Cut and Max Dicut do not meet the technical
conditions of the theorem. However, the above proof idea works for Max Cut and Max Dicut as
well; see the appendix for details.

The conditions in Theorem 4 are rather technical. So we first demonstrate the result for a
specific problem (Max 3-Sat). Recall that an instance of Max 3-Sat is a boolean formula in

7

conjunctive normal form with m clauses and at most 3 literals per clause. One can easily verify
that dm/2e is a tight lower bound for this problem.

Proposition 2 Let φ be an instance of the Max 3-Sat problem with n variables and m clauses.
If the following parameterized problem

Max 3-Sat(ε) = {〈φ, k〉 : ∃ an assignment satisfying b(1/2 + ε) ·m+ kc clauses of φ}

has a fixed parameter tractable algorithm A for any 0 < ε < 1/2, then P = NP.

Proof. Suppose, for the purpose of contradiction, that there exists an fpt algorithm A for the
problem Max 3-Sat(ε) with time complexity O(f(k) ·mO(1)), for some 0 < ε < 1/2. We will use
A to decide the decision version of Max 3-Sat, which is NP-complete, in polynomial time. An
instance of the decision version of Max 3-Sat is a pair 〈φ, s〉, where φ is a boolean formula on
m clauses and n variables and s is an integer. The question is to decide whether there exists an
assignment which satisfies s clauses of φ.

Case 1: s ≤ dm/2e. Return yes.

Case 2: dm/2e < s <
⌊
(1
2 + ε) ·m

⌋
.

We claim that in this case, we can transform the instance 〈φ, s〉 into an ‘equivalent’ instance
〈φ′, s′〉 where φ′ is a 3-Sat instance on m′ clauses and n′ variables such that⌊(

1
2

+ ε

)
·m′

⌋
≤ s′. (1)

Let y1, . . . , yt be t new variables, where t will be determined later. Define φ′ as

φ′ = φ ∧ y1 ∧ y2 ∧ . . . ∧ yt.

Set m′ = m+ t, n′ = n+ t and s′ = s+ t. Clearly there exists an assignment that satisfies s clauses
of φ if and only if there exists an assignment that satisfies s + t clauses of φ′. Choose t so that
inequality (1) holds. We will show that such a t actually exists. Inequality (1) holds if we choose t
so that (

1
2

+ ε

)
·m− s ≤

(
1
2
− ε

)
t.

Note that 0 < (1
2 + ε) ·m− s ≤ εm and (1

2 − ε) > 0, and so such a t is actually linear in m. Thus
without loss of generality we can assume the input instance satisfies Case 3 below.

Case 3:
⌊
(1
2 + ε) ·m

⌋
≤ s.

In this case, we transform 〈φ, s〉 into an ‘equivalent’ instance 〈ψ, s′〉, where ψ is a 3-Sat instance
with m′ clauses and n′ variables such that

1. s′ =
⌊(

1
2 + ε

)
·m′⌋.

2. There exists an assignment satisfying s clauses of φ iff there exists an assignment satisfying s′

clauses of ψ.

Let z1, . . . , zt be t new variables, where t will be determined later. Define ψ as follows:

ψ = φ ∧ z1 ∧ z̄1 ∧ . . . ∧ zt ∧ z̄t.

8

ψ is a 3-Sat instance on m + 2t clauses and n + t variables. Clearly there exists an assignment
satisfying s clauses of φ iff there exists an assignment satisfying s+ t clauses of ψ. Choose t to be
the largest non-negative integer satisfying⌊(

1
2

+ ε

)
· (m+ 2t)

⌋
≤ s+ t. (2)

(Inequality 2 holds if and only if
⌊(

1
2 + ε

)
m+ 2tε

⌋
≤ s.) Then, since 2ε < 1, it is easy to see that

in fact equality is achieved in (2).
Now call algorithm A with input 〈ψ, 0〉. If A answers yes, then there exists an assignment

satisfying s+ t clauses of ψ, and so there exists an assignment satisfying s clauses of φ. Therefore,
we answer yes. If A answers no, then there is no assignment that satisfies s+ t clauses of ψ and
hence no assignment satisfying s clauses of φ. We answer no. Therefore in time O(f(0) ·mO(1)) we
can decide Max 3-Sat implying P = NP.

To generalize the above argument, we first need some definitions.

Definition 3 (Dense Set) Let Q = {I , S, V, opt} be an NPO problem. A set of instances I ′ ⊆
I is said to be dense with respect to a set of conditions C if there exists a constant c ∈ N
such that for all closed intervals [a, b] ⊆ R+ of length |b − a| ≥ c, there exists an instance I ∈ I ′

with |I| ∈ [a, b] such that I satisfies all the conditions in C. Further, if such an I can be found in
polynomial time (polynomial in b), then I ′ is said to be dense poly-time uniform with respect
to C.

For example, for the Maximum Acyclic Subgraph problem, the set of all oriented digraphs is
dense (poly-time uniform) with respect to the condition: opt(G) = |E(G)|.

We also need the notion of a partially additive NP-optimization problem.

Definition 4 (Partially Additive Problems) An NPO problem Q = {I , S, V, opt} is said to
be partially additive if there exists an operator + which maps a pair of instances I1 and I2 to an
instance I1 + I2 such that

1. |I1 + I2| = |I1|+ |I2|, and
2. opt(I1 + I2) = opt(I1) + opt(I2).

A partially additive NPO problem that also satisfies the following condition is said to be additive in
the framework of Khanna, Motwani et al [4]: there exists a polynomial-time computable function f
that maps any solution s of I1 + I2 to a pair of solutions s1 and s2 of I1 and I2, respectively, such
that V (I1 + I2, s) = V (I1, s1) + V (I1, s2).

For graph-theoretic optimization problems, the operator + can be interpreted as disjoint union.
Then the problems Max Cut, Max Independent Set-B, Minimum Vertex Cover, Minimum
Dominating Set, Maximum Directed Acyclic Subgraph, Maximum Directed Cut are
partially additive. For other graph-theoretic problems, one may choose to interpret + as follows:
given graphs G and H, G +H refers to a graph obtained by placing an edge between a vertex of
G and a vertex of H. The Max Planar Subgraph problem is partially additive with respect to
both these interpretations of +. For boolean formulae φ and ψ in conjunctive normal form with
disjoint sets of variables, define + as the conjunction φ ∧ ψ. Then the Max Sat problem is easily
seen to be partially additive.

9

Theorem 4. Let Q = {I , S, V, opt} be a polynomially bounded NP-maximization problem such
that the following conditions hold.

1. Q is partially additive.
2. Q has a tight lower bound (tlb) of the form ρ · |I| + α1, where ρ is a positive rational and

α1 ∈ Q. The infinite family of instances I ′ witnessing the tight lower bound is dense poly-time
uniform with respect to the condition opt(I) = ρ · |I|+ α1.

3. Q has a tight upper bound g(|I|) = σ|I| + α2, where σ > ρ and α2 ∈ Q. The infinite family
of instances I ′ witnessing the tight upper bound is dense poly-time uniform with respect to the
condition opt(I) = g(|I|).

4. The underlying decision problem Q̃ of Q is NP-hard.

Define Q(ε) to be the following parameterized problem

Q(ε) = {〈I, k〉 : opt(I) ≥ tlb(I) + ε · |I|+ k}

where 0 < ε < σ − ρ. If Q(ε) is FPT for any 0 < ε < σ − ρ, then P = NP.

Proof. Suppose, for the purpose of contradiction, Q(ε) is in FPT for some 0 < ε < σ − ρ. Let A
be the fpt algorithm for Q(ε) with running time O(f(k) · poly(|I|)).

We will describe an algorithm A ′ that makes use of A to solve the decision version Q̃ of Q
in polynomial time. Let 〈I, s〉 be an instance of Q̃. 〈I, s〉 ∈ Q̃ iff opt(I) ≥ s. The algorithm A ′

considers four cases and works as described below.

Case 1: s ≤ ρ · |I|+ α1.
Since opt(I) ≥ ρ · |I|+ α1, A ′ answers yes.

Case 2: ρ · |I|+ α1 < s < ρ · |I|+ α1 + ε · |I|
In this case, A ′ transforms 〈I, s〉 into an instance 〈I ′, s′〉 such that

1. (ρ+ ε) · |I ′|+ α1 ≤ s′.
2. |I ′| = poly(|I|).
3. opt(I) ≥ s if and only if opt(I ′) ≥ s′.

This will show that we can, without loss of generality, go to Cases 3 or 4 below. Let I1 be a tub
instance of Q (i.e. opt(I1) = g(|I1|)), and let I ′ = I+ I1. Define s′ = s+ g(|I1|). From the definition
of a partially additive NPO problem, it follows that opt(I ′) ≥ s′ if and only if opt(I) ≥ s. Choose
I1 so that

(ρ+ ε) · |I ′|+ α1 ≤ s′ (3)

Inequality (3) holds iff

(ρ+ ε) · |I|+ α1 ≤ s+ g(|I1|)− (ρ+ ε) · |I1|. (4)

Note that h(n) = g(n) − (ρ + ε)n = (σ − ρ − ε)n + α2 > 0 for sufficiently large n ∈ N and h is
increasing. Thus by choosing a sufficiently large instance I1, we can satisfy inequality (4). It is also
important to note that we can choose I1 so that |I1| ≤ poly(|I|). This follows because of the range
in which s lies and the polynomial-time uniform density of the tub.

Case 3: (ρ+ ε) · |I|+α1 + p0 < s, where p0 = dcεe and c is the constant appearing in the definition
of density.

In this case, A ′ transforms the instance 〈I, s〉 into an instance 〈I ′, s′〉 such that

10

1. (ρ+ ε) · |I ′|+ α1 ≤ s′ ≤ (ρ+ ε) · |I ′|+ α1 + p0.
2. opt(I ′) ≥ s′ if and only if opt(I) ≥ s.

This ensures that we need only consider Case 4 below. To do this, define k = s−(ρ+ε) · |I|−α1. By
assumption, k > p0. Choose a tlb instance I1 in the range d(k+α1 − p0)/εe ≤ |I1| ≤ b(k+α1)/εc.
Such an instance exists by definition of density and our choice of p0. Let I ′ = I + I1. Then
opt(I ′) ≥ s + ρ · |I1| + α1 if and only if opt(I) ≥ s. So set s′ = s + ρ · |I1| + α1. Note that
|I ′| = |I|+ |I1|, and so

s′ − (ρ+ ε) · |I ′| − α1 = s+ ρ · |I1| − (ρ+ ε) · |I ′|
= s− (ρ+ ε) · |I| − ε · |I1|
= k + α1 − ε · |I1| ≥ 0

(ρ+ ε) · |I ′|+ α1 + p0 − s′ = (ρ+ ε) · |I ′|+ α1 + p0 − (s+ ρ · |I1|+ α1)
= (ρ+ ε) · |I|+ ε · |I1|+ p0 − s

≥ (ρ+ ε) · |I|+ (k + α1 − p0) + p0 − s = 0

Case 4: (ρ+ ε) · |I|+ α1 ≤ s ≤ (ρ+ ε) · |I|+ α1 + p0.
Now 〈I, s〉 ∈ Q̃ if and only if 〈I, k〉 ∈ Q(ε), where k = s− (ρ+ ε) · |I| − α1. Also, k ≤ p0. So A ′

calls A with input 〈I ′, k〉 and answers accordingly. This takes time O(f(p0) · poly(|I|)).
Thus the total time taken to decide any instance 〈I, s〉 of the decision version Q̃ is polynomial

in |I|, implying P = NP.

Remark 1. The result stated in Theorem 4 goes through if we assume the tight upper bound g to
be a strictly increasing, polynomial-time computable, super-linear function. For such a function g,
given any ε > 0, there exists n0 ∈ N such that

h(n) = g(n)− (ρ+ ε) · n− α1 > 0 ∀n ≥ n0.

Moreover, the function h is strictly increasing for all n ≥ n0. We could therefore choose an instance
I1 to satisfy inequality (4). The rest of the proof goes through as stated.

Remark 2. In order to apply Theorem 4 to prove items 1 through 8 of Theorem 3 one needs to
interpret the + operator appropriately. Except for the Max Planar Subgraph, the operator + is
to be interpreted throughout as disjoint union. For the Max Planar Subgraph problem, G+H
is a graph consisting of G and H with an arbitrary edge connecting them. Thus if G and H are
connected, so is G+H.

5 Conclusion

We have shown that every problem in MAX SNP has a lower bound on the optimal solution
size and that the above guarantee question with respect to that lower bound is in FPT. We
have also shown that the tlb(I) + ε · |I| + k question is hard for a general class that includes
a number of NP-maximization problems. However we do not know the parameterized complexity
of tight lower bound + k questions for most NPO problems. In particular, apart from Max Sat,
Max c-Sat and Linear Arrangement, this question is open for the rest of the problems stated
in Theorem 3. It would be interesting to explore the parameterized complexity of these problems
and above guarantee problems in general.

11

References

1. N. Alon, B. Bollabás, A. Gyárfás, J. Lehel and A. Scott. Maximum directed cuts in acyclic digraphs.
Available at: http://www.math.tau.ac.il/∼nogaa/PDFS/publications.html

2. G. Gutin, A. Rafiey, S. Szeider and A. Yeo. The Linear Arrangement Problem Parameterized Above
Guaranteed Value. Available at: http://arxiv.org/abs/cs.DS/0511030

3. J. Håstad and S. Venkatesh. On the Advantage Over a Random Assignment. Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, 2002, pages 43-52.

4. S. Khanna, R. Motwani, M. Sudan and U. Vazirani. On Syntactic Versus Computational Views of Approx-
imability. SIAM Jour. Computing. Vol. 28, No. 1, pp 164-191.

5. M. Mahajan and V. Raman. Parameterizing above Guaranteed Values: MaxSat and MaxCut, Journal of
Algorithms 31, 335-354 (1999).

6. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
7. C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Complexity Classes, JCSS 43,

425-440 (1991).
8. S. Poljak and D. Turzik. A Polynomial Algorithm for Constructing a Large Bipartite Subgraph with an

Application to a Satisfiability Problem. Canadian Jour. Math., Vol. 34, No. 3, 1982, pp. 519-524.
9. R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.

10. P. Rossmanith and R. Niedermeier. New Upper Bounds for Maximum Satisfiability. Journal of Algorithms,
36: 63-88, 2000.

6 Appendix

The proof of hardness of the Max Cut and Max Dicut problems (items 9 and 10 of Theorem 3) do
not follow from Theorem 4 because the tight lower bounds for cut size are, respectively, m

2 + dn−c
4 e

and m
4 +

√
m
32 + 1

256 −
1
16 which are not of the form ρ · |I|+ α1.

We first prove the hardness result for Max Cut. In what follows, we let maxcut(G) denote the
size of the maximum cut of an undirected graph G.

Theorem 5. For 0 < ε < 1
4 define Max Cut(ε) as follows:

Max Cut(ε) =
{

(G, k) : maxcut(G) ≥ m

2
+

⌈
n− c

4

⌉
+ ε · n+ k

}
.

If Max Cut(ε) is fixed parameter tractable for any 0 < ε < 1
4 then P = NP.

Proof. Suppose for the purpose of contradiction that there exists an 0 < ε < 1
4 for which the

language Max Cut(ε) is fixed parameter tractable. Let A be an fpt algorithm for Max Cut(ε)
with running time O(f(k) ·poly(n+m)). We will use A to solve the decision version of Max Cut,
which is NP-complete, in polynomial time.

Let (G, s) be an instance of the decision version of Max Cut. Then (G, s) is a ‘yes’-instance
if and only if maxcut(G) ≥ s. Assume that G has n vertices, m edges and c components. If
s ≤ m

2 + dn−c
4 e then (G, s) is already a ‘yes’-instance. Otherwise there are two cases to handle.

Case 1: m
2 + dn−c

4 e < s < m
2 + dn−c

4 e+ εn
In this case, we transform the input instance (G, s) into an instance (G′, s′) of the same problem
such that G′ has m′ edges, n′ vertices, c components and the following hold

1. maxcut(G) ≥ s if and only if maxcut(G′) ≥ s′,
2. m′

2 + dn′−c
4 e+ εn′ ≤ s′.

12

v
u0

u1

u2

ut−1

ut

G

G′

Fig. 1. Constructing the instance G′.

This will show that we can, without loss of generality, assume that s ≥ m
2 + dn−c

4 e+ εn. Let v be an
arbitrary vertex of G and let u0, u1, . . . , ut be t+ 1 new vertices. Construct a star graph using the
vertices u0, u1, . . . , ut with u0 as the center of the star and add an edge between u0 and v as shown
in Figure 1. We will choose the value of t later. Call the new graph G′. Then G′ has m′ = m+ t+1
edges, n′ = n + t + 1 vertices and c components. Define s′ = s + t + 1. It is easy to verify that
maxcut(G) ≥ s if and only if maxcut(G′) ≥ s′. Choose t so that

s′ ≥ m′

2
+

⌈
n′ − c

4

⌉
+ ε · n. (5)

The above inequality holds if and only if m
2 +

⌈
n−c
4

⌉
+ t+ 1 ≥ m′

2 +
⌈

n′−c
4

⌉
+ ε · n. One can verify

that by choosing t so that t+ 1 > ε·n
1/4−ε one can satisfy inequality 5.

Case 2: s ≥ m
2 + dn−c

4 e+ εn
In this case, we transform the instance (G, s) into (G′, s′) such that G′ has m′ edges, n′ vertices, c
components and the following hold

1. maxcut(G) ≥ s if and only if maxcut(G′) ≥ s′,
2. s′ = m′

2 + dn′−c
4 e+ εn′ + d, where d is a constant independent of the input instance (G, s).

We then apply the fpt algorithm A with input (G′, d). Clearly, A answers ‘yes’ if and only if
maxcut(G) ≥ s′ if and only if maxcut(G) ≥ s. The time taken by A is O(f(d) · poly(m′ + n′)).

Let v be an arbitrary vertex of G. Attach the complete graph on t vertices, Kt, to v. The value
of t will be chosen later. Call the resulting graph G′. G′ has n′ = n+ t vertices, m′ = m+

(
t
2

)
+ 1

edges and c components. Define k = s− (m
2 + dn−c

4 e+ εn) and s′ = s+ 1
2

(
t
2

)
+ d t−1

4 e+ 1. It is easy
to see that maxcut(G) ≥ s if and only if maxcut(G′) ≥ s′. One can verify that t can be suitably
chosen so that

s′ =
m′

2
+

⌈
n′ − c

4

⌉
+ εn′ + d,

where d is a fixed constant independent of the input instance (G, s).

The Max Dicut problem is defined below.

Max Dicut

13

instance A directed graph D = (V,A) with m arcs.
question Find a vertex partition V = X]Y such that the number of arcs with starting

point in X and with end point in Y is maximized.
bounds tlb = m

4 +
√

m
32 + 1

256 −
1
16 ; tub = m.

The tight lower bound is achieved in regular orientations of complete graphs of odd order [1]. The
tight upper bound is achieved in bipartite directed graphs D = (X] Y,A) with all arcs starting at
X and ending at Y . We let max dicut(D) denote the size of the maximum directed cut of D.

Theorem 6. For 0 < ε < 3
4 define Max Dicut(ε) as follows:

Max Dicut(ε) =

{
(D, k) : max dicut(D) ≥ m

4
+

√
m

32
+

1
256

− 1
16

+ ε ·m+ k

}
.

If Max Dicut(ε) is fixed parameter tractable for any 0 < ε < 3
4 then P = NP.

The proof of this is similar to that of Theorem 5 and is omitted.

14

