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a b s t r a c t

In this paper, model reduction techniques for a class of nonlinear systems are proposed. Specifically,
nonlinear systems are considered that can be decomposed as the feedback interconnection of a high-
order linear subsystem and a nonlinear subsystem of relatively low order, allowing for the application
of well-developed reduction techniques for linear systems. In this setting, conditions are given under
which internal stability, as well as passivity or a bound on the L2 gain are preserved for the reduced-
order nonlinear model. Additionally, a priori error bounds are given. In the derivation of the error bound,
an incremental gain (or incremental passivity) property of the nonlinear subsystem is shown to be
instrumental. Additionally, the techniques developed in this paper are applied in the scope of controller
reduction, as is illustrated by means of an industrial temperature control benchmark example.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Model reduction is a tool for the approximation of complex
high-order systems, leading to reduced-order systems that allow
for efficient analysis or facilitate control design and implementa-
tion. Since the reduced-order model is used as a substitute for the
original high-order model, it is of importance to preserve key sys-
temproperties during the reduction process. Herein, stability is the
most crucial one. However, the preservation of gain properties or
passivity is relevant in many (control) applications as well. Addi-
tionally, the availability of an error bound is highly instrumental in
determining the quality of the approximation. In this paper, tech-
niques are proposed for the model and controller reduction for a
class of nonlinear systems that, firstly, preserve stability, gain or
passivity properties and, secondly, allow for the computation of an
error bound.

For linear systems, model reduction techniques addressing
these aspects exist in the literature. Herein, balanced truncation
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(Moore, 1981) is amongst the most popular methods for the re-
duction of asymptotically stable linear systems, since it preserves
stability (Pernebo & Silverman, 1982) and an error bound exists
(Enns, 1984; Glover, 1984). Extensions of balanced truncation
such as positive real balancing (Desai & Pal, 1984; Harshavard-
hana, Jonckheere, & Silverman, 1984) and bounded real balancing
(Opdenacker & Jonckheere, 1988) provide methods that preserve
passivity and contractivity, respectively, where the latter basically
preserves a certain bound on the gain. For an overview, see An-
toulas (2005). For nonlinear systems, existing model reduction
techniques typically do not satisfy the properties of preservation
of stability and the existence of an error bound. Here, it is re-
marked that both internal stability (i.e. stability of an equilib-
rium point for zero input) as well as input–output stability (i.e. a
bounded gain) have to be considered separately. This is contrary to
linear systems, for which internal stability implies input–output
stability. Nonetheless, balanced truncation for nonlinear systems
(Fujimoto & Scherpen, 2010; Scherpen, 1993) provides a method
preserving (local) stability of the equilibrium point. Here, results
on input–output stability are not available and (as a result) no
error bound exists. Additionally, the approach is computationally
challenging. The same properties hold for moment matching for
nonlinear systems (Astolfi, 2010). Recently, an extension of bal-
anced truncation for nonlinear systems has been developed aim-
ing at the preservation of dissipativity, including the cases of gain
and passivity preservation (Ionescu, Fujimoto, & Scherpen, 2010).
Similarly, recently obtained results on moment matching for non-
linear systems can be exploited for the preservation of passivity
(Ionescu & Astolfi, 2010). However, no error bounds are available
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for these methods. A computationally attractive approach for the
reduction of nonlinear systems is given by trajectory piecewise
linear approximation (Rewieński &White, 2003), where model re-
duction techniques for linear systems are exploited. Results on
input–output stability are available for a subclass of nonlinear sys-
tems (Bond & Daniel, 2009), but no error bound exists. Moreover,
data-based reduction methods such as proper orthogonal decom-
position (Sirovich, 1987) or balancing using empirical gramians
(Lall, Marsden, & Glavaški, 2002) do generally not preserve stabil-
ity nor exhibit an error bound. In Prescott and Papachristodoulou
(2012), an approach towardsmodel reduction for biochemical net-
works is presented, where bounds on the output error are given for
given initial conditions. However, inputs are not considered.

Thus, model reduction techniques for nonlinear systems gen-
erally lack a guarantee on the preservation of internal and/or in-
put–output stability, as well as an error bound. In this paper, a
model reduction procedure is presented addressing these proper-
ties, for a class of nonlinear systems. In addition, the preservation
of contractivity (an input–output gain smaller than 1) and passiv-
ity is discussed. Herein, nonlinear systems are considered that can
be decomposed into the feedback interconnection of a high-order
linear subsystem and a nonlinear subsystem of relatively low or-
der. This is motivated by the observation that nonlinearities act
only locally in many engineering applications. Examples include
mechanical systems with friction or hysteresis, electrical circuits
with nonlinear components and linear systems with nonlinear ac-
tuator dynamics.

In this setting, model reduction is performed on the linear
subsystem only. This allows for the use of well-developed exist-
ing model reduction techniques for linear systems, making the
approach computationally attractive. Here, the nonlinear subsys-
tem is assumed to satisfy either an incremental input–output gain
property or to be incrementally passive. These incremental prop-
erties prove to be crucial in the derivation of an error bound, since
they characterize the evolution of errors introduced by model re-
duction of the linear subsystem. Similar ideas were used for sys-
tems with static nonlinearities in Besselink, van de Wouw, and
Nijmeijer (2009) and Reis and Heinkenschloss (2009), where the
latter focuses on passivity preservation in the scope of electrical
circuits. The current paper extends these results in three ways.
First, the results are extended to dynamic nonlinearities and both
internal and input–output stability properties are explicitly ad-
dressed (see also Besselink, van deWouw, & Nijmeijer, 2011). Sec-
ondly, the case of the preservation of contractivity is addressed
and a relation with passivity preservation is derived. Thirdly, the
results are applied in the scope of controller reduction, hereby
building upon existing techniques for controlled linear systems.
Additionally, the results on controller reduction are applied to a
temperature-control benchmark example of a lab-on-a-chip, as is
of interest in many biomedical applications.

Summarizing, the main contributions of the paper are the
development of model (and controller) reduction procedures for
a class of nonlinear systems that, firstly, preserve key system
properties (such as stability, bounded L2 gain and passivity), and,
secondly, provide a computable error bound.

The remainder of this paper is organized as follows. The
research problem is stated in Section 2 and preliminaries regarding
incremental gain properties are discussed in Section 3. Model
reduction techniques for linear systems are reviewed in Section 4
before discussing the main results on reduction of nonlinear
systems in Section 5, hereby addressing the preservation of
stability and input–output gain or passivity. Here, error bounds
are derived as well. In Section 6, these results are used in the
scope of controller reduction. The model and controller reduction
procedures are illustrated in Section 7, where the latter is applied
to a temperature control benchmark example representing a lab-
on-a-chip. Finally, conclusions are stated in Section 8.
Fig. 1. Nonlinear system Σ = I(Σlin, Σnl).

Fig. 2. Reduced-order nonlinear system Σ̂ = I(Σ̂lin, Σnl).

Notation. The field of real (complex) numbers is denoted by R
(C). For a vector x ∈ Rn, |x|2 = xT x. The space Ln

2 consists of all
functions x : [0, ∞) → Rn which are bounded using the norm
∥x∥2

2 =


∞

0 |x(t)|2 dt .

2. Problem setting

In this paper, nonlinear systems as depicted in Fig. 1 are con-
sidered. Here, the system Σ = I(Σlin, Σnl) consists of a feedback
configuration of a high-order linear subsystem Σlin and a nonlin-
ear subsystemΣnl of relatively low order, where I(·, ·) denotes the
interconnection as in Fig. 1. The linear subsystem Σlin is given as

Σlin :

ẋ = Ax + Buu + Bvv,
y = Cyx + Dyuu + Dyvv,
w = Cwx + Dwuu + Dwvv,

(1)

with x ∈ Rn, u ∈ Rm and y ∈ Rp. The linear subsystem is coupled
to the nonlinear subsystem via v ∈ Rnv and w ∈ Rnw , where the
nonlinear dynamics is given as

Σnl :


ż = g(z, w),
−v = h(z, w),

(2)

with z ∈ Rnz and g locally Lipschitz continuous in z, continuous
in w and satisfying g(0, 0) = 0. Moreover, h is continuous with
h(0, 0) = 0.

Since only the linear subsystem Σlin in Σ is assumed to be of
high order, a model reduction procedure is proposed inwhich only
Σlin is reduced. This leads to a reduced-order linear subsystem Σ̂lin
of the form

Σ̂lin :


˙̂x = Âx̂ + B̂uu + B̂v v̂,

ŷ = Ĉyx̂ + D̂yuu + D̂yv v̂,

ŵ = Ĉw x̂ + D̂wuu + D̂wv v̂,

(3)

with x̂ ∈ Rk, k < n and where the dimensions of the inputs
and outputs remain unchanged (i.e. ŷ ∈ Rp, v̂ ∈ Rnv and
ŵ ∈ Rnw ). Such a reduction approach allows for the application
of well-developed existing model reduction techniques for linear
systems, making the approach computationally attractive. Finally,
the interconnection of the reduced-order linear subsystem and the
original nonlinear subsystem leads to the reduced-order nonlinear
system Σ̂ = I(Σ̂lin, Σnl) as in Fig. 2.

This paper deals with stability properties of the reduced-order
nonlinear system Σ̂ when the high-order system Σ exhibits a
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bounded incremental L2 gain. As a special case, the preservation
of contractivity is discussed, which is closely related to the case of
passivity preservation. In all cases, error bounds for the reduced-
order nonlinear system are provided.

3. Incremental L2 gain and incremental passivity

The property of an incremental L2 gain will be exploited in the
scope ofmodel reduction and is discussed in this section. Nonlinear
systems of the form

ẋ = f (x, u), y = h(x, u), (4)

are considered, where x ∈ Rn, u ∈ Rm, y ∈ Rp and f (0, 0) = 0,
h(0, 0) = 0. Input–output properties such asL2 gain (or passivity)
can be conveniently characterized using the theory of dissipative
systems (see Willems, 1972).

Definition 1. A system (4) is said to be dissipative with respect to
the supply rate s : Rm

× Rp
→ R if there exists a storage function

S : Rn
→ R such that S ≥ 0 and

S(x(t1)) ≤ S(x(t0)) +

 t1

t0
s(u(t), y(t)) dt (5)

for all t1 ≥ t0. Here, x and y are the solutions of (4) for the state and
output, respectively, for input function u.

Throughout this paper, it is assumed that the storage functions
S are differentiable, such that (5) is equivalent to the differential
dissipation inequality Ṡ ≤ s(u, y). In order to define incremental
input–output properties of (4), an auxiliary system is defined as

ẋ1 = f (x1, u1), y1 = h(x1, u1),

ẋ2 = f (x2, u2), y2 = h(x2, u2).
(6)

Then, the property of a bounded incremental L2 gain can be
defined as follows (see e.g. Romanchuk & James, 1996).

Definition 2. A system (4) is said to have a bounded incremental
L2 gain γ if the corresponding auxiliary system (6) is dissipative
with respect to the supply rate

s(u1, u2, y1, y2) = γ 2
|u1 − u2|

2
− |y1 − y2|2. (7)

If, in (7), γ ≤ 1 (γ < 1), the system (4) is said to be incrementally
(strictly) contractive.

Incremental passivity can be defined similarly, hereby using
(Pavlov & Marconi, 2008) and the terminology from Brogliato,
Lozano, Maschke, and Egeland (2007).

Definition 3. A system (4) satisfying m = p is said to be incre-
mentally passive if there exist parameters δ ≥ 0, ϵ ≥ 0 such that
the corresponding auxiliary system (6) is dissipative with respect
to the supply rate

s(u1, u2, y1, y2)= (u1 − u2)
T (y1 − y2) − δ|u1 − u2|

2

− ϵ|y1 − y2|2. (8)

If, in (8), δ > 0 and ϵ > 0, the system (4) is said to be incrementally
very strictly passive.

Remark 4. Definitions 2 and3dealwith incremental input–output
properties for nonlinear dynamical systems as in (4). However,
these properties can also be defined for static nonlinearities.
Namely, a nonlinearity φ : Rm

→ Rp has a bounded incremen-
talL2 gain (is incrementally passive) if s(u1, u2, φ(u1), φ(u2)) ≥ 0
for all u1, u2 ∈ Rm, with s the supply rate as in (7) (as in (8)). Con-
sequently, the results in this paper also hold when the subsystem
Σnl is replaced by a static nonlinearity ϕ : Rnw → Rnv .
Finally, dissipativity can be linked to internal stability proper-
ties (i.e. stability of x = 0 for u = 0). Thereto, the following defini-
tions are useful (see e.g. Hill &Moylan, 1976; van der Schaft, 2000).

Definition 5. The system (4) is zero-state observable if u(t) = 0,
y(t) = 0, ∀t ≥ 0 implies x(t) = 0, ∀t ≥ 0.

Definition 6. The system (4) is reachable from 0 if for all x∗, there
exists an input u and time T such that u steers the system from
x(0) = 0 to x(T ) = x∗.

For nonlinear systems that are zero-state observable and
reachable from 0, the storage function S showing a bounded L2
gain or passivity is positive definite (see Hill & Moylan, 1976) and
can act as a candidate Lyapunov function.

4. Model reduction for linear systems

The model reduction procedures for nonlinear systems pre-
sented in this paper rely on the reduction of the linear subsystem.
Therefore, relevant model reduction procedures for linear systems
are briefly reviewed in this section.Minimal, asymptotically stable,
linear systems

ẋ = Ax + Bu, y = Cx + Du (9)

are considered, with x ∈ Rn, u ∈ Rm and y ∈ Rp. The transfer
function associated with (9) is given as G(s) = C(sI − A)−1B + D,
s ∈ C.

Balanced truncation (Moore, 1981) is the most popular method
for the reduction of asymptotically stable linear systems, since
it preserves stability (Pernebo & Silverman, 1982) and satisfies
a bound on the error (Enns, 1984). Optimal Hankel norm
approximation (Glover, 1984) is an alternative with the same
properties.

An extension of balanced truncation focusing on the preserva-
tion of contractivity is given in Opdenacker and Jonckheere (1988)
and is known as bounded real balancing.

Definition 7. The transfer function G of an asymptotically stable
system (9) is said to be bounded real if I − GT (−jω)G(jω) ≥ 0 for
all ω ∈ R and I − DTD ≥ 0. It is strictly bounded real when the
inequalities are strict.

The following well-known result forms the basis for bounded
real balancing.

Lemma 8 (Opdenacker& Jonckheere, 1988). Let (9) be aminimal and
asymptotically stable system. Then, the transfer function G is bounded
real if and only if (9) is contractive. If Rc := I − DTD > 0, these
statements are equivalent to the existence of a realmatrix P = PT > 0
satisfying

ATP + PA + CTC + (PB + CTD)R−1
c (PB + CTD)T = 0. (10)

Then, in particular, (10) admits two extremal solutions such that 0 <
Pmin ≤ P ≤ Pmax.

In Lemma 8, the extremal solutions Pmin and Pmax of (10)
define the available storage and required supply, characterizing the
maximumamount of energy that can be extracted from the system
for a given initial condition and the least amount of energy needed
to reach a certain state, respectively. This motivates a balancing
procedure on the basis of Pmin and Pmax. Thus, a realization is
pursued in which Pmin = P−1

max = diag{ξ1, ξ2, . . . , ξn}, with ξ 2
i =

λi(PminP−1
max) the so-called bounded real singular values satisfying

1 ≥ ξ1 ≥ ξ2 ≥ · · · ≥ ξn > 0 and λi(X) the i-th eigenvalue of X .
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Theorem 9 (Opdenacker & Jonckheere, 1988). Let (9) be a mini-
mal, asymptotically stable system with strictly bounded real trans-
fer function, and in bounded real balanced coordinates. Then, the
reduced-order system obtained by truncation is minimal, asymptot-
ically stable, has a strictly bounded real transfer function, and is in
bounded real balanced coordinates. Moreover, the error bound

∥y − ŷ∥2 ≤ 2


n

i=k+1

ξi


∥u∥2 (11)

holds for distinct bounded real singular values ξi.

A model reduction procedure for passive systems has been
developed using similar ideas. This method, known as positive
real balancing, can be found in Desai and Pal (1984) and
Harshavardhana et al. (1984).

5. Model reduction for nonlinear systems

In this section, model reduction for nonlinear systems with a
bounded incremental L2 gain is considered, where the case of
preservation of contractivity is derived as a special case. Moreover,
a relation to the preservation of passivity is discussed.

5.1. Systems with bounded incremental L2 gain

As discussed in Section 2, nonlinear systems Σ = I(Σlin, Σnl)
as in Fig. 1 are considered. Here, the following assumption is
adopted throughout the paper.

Assumption 10. Let the system Σ = I(Σlin, Σnl) satisfy the
following assumptions:

(1) The feedback interconnectionI(Σlin, Σnl) iswell-posed, i.e. for
each x ∈ Rn, u ∈ Rp, z ∈ Rnz , the equation w = Cwx+ Dwuu−

Dwvh(z, w) can uniquely be solved for w;
(2) The linear subsystem Σlin is asymptotically stable and (1) is a

minimal realization;
(3) The nonlinear subsystem Σnl is reachable from 0 and zero-

state observable.

Moreover, it is assumed that the nonlinear system Σ = I(Σlin,
Σnl) has a bounded incremental L2 gain.

Assumption 11. Let the system Σ = I(Σlin, Σnl) satisfy the fol-
lowing assumptions:

(1) The nonlinear subsystem Σnl has a bounded incremental L2
gain µ;

(2) The small-gain condition γwvµ < 1 holds, with γwv the (incre-
mental) L2 gain of Σlin with respect to input v and output w.

By Assumption 10, the linear subsystem is asymptotically
stable. This allows for the introduction of the input–output
operators Fy : Lm

2 × Lnv
2 → L

p
2 and Fw : Lm

2 × Lnv
2 → Lnw

2
defined as y = Fy(u, v) and w = Fw(u, v), respectively. These
operators characterize the outputs y andw of the linear subsystem
for given inputs u and v and zero initial condition x(0) = 0. For
linear systems, asymptotic stability implies a bounded incremental
L2 gain, such that the input–output operators satisfy

∥Fi(u1, v1) − Fi(u2, v2)∥2 ≤ γiu∥u1 − u2∥2 + γiv∥v1 − v2∥2, (12)

for all u1, u2 ∈ Lm
2 , v1, v2 ∈ Lnv

2 and some bounded γiu, γiv ≥

0 with i ∈ {y, w}. Due to linearity, the incremental L2 gain is
equivalent to the (non-incremental)L2 gain, such that the gains γij
in (12) can be chosen as theH∞ normof the corresponding transfer
function Ci(sI − A)−1Bj + Dij with i ∈ {y, w} and j ∈ {u, v}.
For the nonlinear subsystem Σnl, it is recalled that Assump-
tion 11 holds. Herein, the first item implies that the outputs −v of
the nonlinear subsystem remain bounded for bounded inputsw, as
follows from the properties g(0, 0) = 0, h(0, 0) = 0. This allows
for the definition of the input–output operator G : Lnw

2 → Lnv
2 as

−v = Gw, where −v is the solution of Σnl for input w and zero
initial condition z(0) = 0. Then, the property of a bounded incre-
mental L2 gain in Assumption 11 implies the bound

∥v1 − v2∥2 = ∥Gw1 − Gw2∥2 ≤ µ∥w1 − w2∥2, (13)

for all w1, w2 ∈ Lnw
2 .

Under these assumptions, the total nonlinear system also has a
bounded incremental L2 gain, as stated next.

Lemma 12. Let Σ = I(Σlin, Σnl) satisfy Assumptions 10 and 11.
Then, Σ has a bounded incremental L2 gain (from input u to output
y), where the gain is bounded by

γ = γyu +
γyvµγwu

1 − γwvµ
. (14)

Additionally, the origin is an asymptotically stable equilibrium point
of Σ for u = 0.

Proof. Substitution of (13) in (12) for i = w yields

∥w1 − w2∥2 ≤ γwu∥u1 − u2∥2 + γwvµ∥w1 − w2∥2, (15)

where it is noted that the small-gain condition γwvµ < 1
guarantees boundedness of ∥w1 − w2∥2. Namely,

∥w1 − w2∥2 ≤
γwu

1 − γwvµ
∥u1 − u2∥2 (16)

holds. Substitution of (16) in (12) for i = y by using (13) gives (14).
To prove stability of the origin, it is recalled that the property of

a bounded incremental L2 gain implies a bounded L2 gain. Thus,
for the linear subsystem, there exists a storage function Slin(x) that
satisfies (for u = 0)

Ṡlin ≤ γ 2
wv|v|

2
− |w|

2. (17)

Here, it is remarked that Slin is positive semi-definite. It is
not guaranteed to be positive definite since the linear subsystem
Σlin is minimal with respect to the combined inputs (u, v) and
outputs (y, w), which does not imply minimality with respect
to the input v and output w. Next, if Snl(z1, z2) denotes the
storage function that characterizes the incrementalL2 gain for the
nonlinear subsystem, then Snl(z, 0) is a storage function for the
supply rate µ2

|w|
2

− |v|
2. By reachability from 0 and zero-state

observability of Σnl, Snl(z, 0) is positive definite. Differentiation of
the composed storage function S(x, z) = Slin(x) + α2Snl(z, 0) with
respect to time gives

Ṡ ≤ (γ 2
wv − α2)|v|

2
+ (α2µ2

− 1)|w|
2, (18)

where the small-gain condition γwvµ < 1 implies that α can be
chosen as γwv < α < µ−1, such that the right-hand side of (18) is
negative semi-definite. In order to prove stability using the semi-
definite Lyapunov function candidate S, let M denote the largest
positively invariant set contained in {(x, z) ∈ Rn

× Rnz | S(x, z) =

0}. Since S is positive semi-definite, S(x, z) = 0 implies v = 0,
w = 0. As a result, M is also contained in {(x, z) ∈ Rn

× Rnz |

Cwx = 0, h(z, 0) = 0}. Thus, by asymptotic stability of Σlin and
zero-state observability of Σnl, the origin is asymptotically stable
for all initial conditions (x0, z0) ∈ M. Application of van der Schaft
(2000, Theorem 3.2.9) (see also Iggidr, Kalitine, & Outbib, 1996)
proves stability of the origin of I(Σlin, Σnl) for u = 0.

To prove asymptotic stability, LaSalle’s invariance principle (see
van der Schaft, 2000, Theorem 3.2.3) is used. By stability, there
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exists, for each initial condition x(0) in a neighborhood of the
origin, a compact set B such that x(t) ∈ B for all t ≥ 0. As a
result of (18), any solution approaches the largest invariant set in
B that satisfies v = 0 and w = 0. For the nonlinear subsystem,
by zero-state observability, this invariant set is given by z = 0.
By asymptotic stability of the linear subsystem, x = 0 is the
only invariant set. Hence, the origin of the nonlinear system Σ =

I(Σlin, Σnl) is asymptotically stable. �

It is recalled that reduction is applied to the linear subsystem
only, leading to the reduced-order linear subsystem Σ̂lin. Herein,
the following assumption is adopted.

Assumption 13. Let the reduced-order linear subsystem Σ̂lin as in
(3) satisfy the following assumptions:

(1) Σ̂lin is asymptotically stable;
(2) An error bound on reduction of the linear subsystem exists of

the form

∥Ei(u1, v1) − Ei(u2, v2)∥2 ≤ εiu∥u1 − u2∥2

+ εiv∥v1 − v2∥2 (19)

with εiu, εiv > 0 and i ∈ {y, w}. Here, Ei = Fi − F̂i, i ∈ {y, w}

denotes the error operator with F̂y : Lm
2 × Lnv

2 → L
p
2 and

F̂w : Lm
2 × Lnv

2 → Lnw
2 the input–output operators of the

reduced-order linear subsystem Σ̂lin for zero initial condition;
(3) The feedback interconnection Σ̂ = I(Σ̂lin, Σnl) is well-posed.

It is noted that the input–output operators F̂i, i ∈ {y, w},
indeed exist due to asymptotic stability of Σ̂lin. Furthermore, even
though the assumption on the error bound as in (19) might seem
restrictive at first sight, it is remarked that this incremental form is
directly implied by an ordinary (i.e. non-incremental) error bound,
due to linearity. Actually, model reduction techniques for linear
systems satisfying the first two items of Assumption 13 exist.
Balanced truncation and optimal Hankel norm approximation
(Glover, 1984) are two such examples. Here, it is mentioned
that balanced truncation leaves the direct-feedthrough matrix
unchanged, such that the third item of Assumption 13 is also
automatically satisfied. This does not hold for optimalHankel norm
approximation. Finally, it is noted that thesemethods yield a single
error bound εlin, such that no distinction ismade between different
input–output combinations as in (19). In this case, the relation
εij ≤ εlin holds with i ∈ {y, w}, j ∈ {u, v}.

The next result formalizes the conditions under which, firstly,
the reduced-order nonlinear system inherits stability properties
from the original system, and, secondly, an error bound can be
guaranteed.

Theorem 14. Let Σ = I(Σlin, Σnl) satisfy Assumptions 10 and
11. Furthermore, let Σ̂lin be a reduced-order linear subsystem
satisfying Assumption 13. Then, the following statements hold:

(1) The reduced-order system Σ̂ = I(Σ̂lin, Σnl) has a bounded
incremental L2 gain and the origin is an asymptotically stable
equilibrium for u = 0 when

(γwv + εwv)µ < 1; (20)

(2) Let (20) be satisfied. Then, the output error δy = y− ŷ is bounded
as ∥δy∥2 ≤ ε∥u∥2, with

ε = εyu +
εyvµγwu

1 − γwvµ

+
(γyv + εyv)µ

1 − (γwv + εwv)µ


εwu +

εwvµγwu

1 − γwvµ


. (21)

Proof. The two statements are proven separately.
1. Input–output stability and internal stability. Lemma 12 directly
guarantees a bounded incremental L2 gain and asymptotic
stability of the origin when the small-gain condition γ̂wvµ < 1
holds. However, the incremental gain γ̂wv of the reduced-order
linear subsystem is not known a priori. Nonetheless, an upper
bound for γ̂wv can be obtained by considering the equality

F̂w(u1, v1) − F̂w(u2, v2)= Fw(u1, v1) − Fw(u2, v2)

− Ew(u1, v1) + Ew(u2, v2), (22)

as follows from the definition of the error operator. Then,

∥F̂w(u, v1) − F̂w(u, v2)∥2 ≤∥Fw(u, v1) − Fw(u, v2)∥2

+ ∥Ew(u, v1) − Ew(u, v2)∥2

≤ (γwv + εwv)∥v1 − v2∥2. (23)

Here, the latter inequality follows from the incremental bound on
the high-order linear subsystem (12) and the error bound (19).
Clearly, γwv + εwv provides an upper bound to the incremental
L2 gain γ̂wv of the reduced-order linear subsystem. Hence, (20)
implies γ̂wvµ < 1, which proves the first statement via Lemma 12.

2. Error bound. As a first step in error analysis, bounds on the
magnitude of the signals w and v will be derived. Here, by using
the fact that w = 0 is the unique solution of Σ = (Σlin, Σnl) to
u = 0 (for zero initial condition), (16) in the proof of Lemma 12
directly leads to

∥w∥2 ≤
γwu

1 − γwvµ
∥u∥2. (24)

Substitution of (24) in (13), hereby using G0 = 0, gives

∥v∥2 ≤
µγwu

1 − γwvµ
∥u∥2. (25)

Next, the error δw = w − ŵ is considered, which gives

δw = Fw(u, v) − F̂w(u, v̂)

= Fw(u, v) − F̂w(u, v) + F̂w(u, v) − F̂w(u, v̂), (26)

such that ∥δw∥2 can be bounded as

∥δw∥2 ≤ ∥Fw(u, v) − F̂w(u, v)∥2 + ∥F̂w(u, v) − F̂w(u, v̂)∥2. (27)

In (27), the first term is related to the error bound on the linear
subsystem, which is bounded by (19). The second term can be
related to the incremental L2 gain of the reduced-order linear
subsystem, which yields

∥δw∥2 ≤ εwu∥u∥2 + εwv∥v∥2 + γ̂wv∥δv∥2. (28)

The gain γ̂wv is unknown a priori, but can be bounded as γ̂wv ≤

γwv + εwv , as is shown in the proof of the first part of this theorem.
Furthermore, (13) implies ∥δv∥2 ≤ µ∥δw∥2. Exploiting this in (28)
leads to

∥δw∥2 ≤
εwu∥u∥2 + εwv∥v∥2

1 − (γwv + εwv)µ
, (29)

where it is noted that the small-gain condition (20) guarantees
boundedness of (29). Substitution of (25) in (29) and the use of this
result in (13) leads to a bound on the error δv = v − v̂ as

∥δv∥2 ≤
µ

1 − (γwv + εwv)µ


εwu +

εwvµγwu

1 − γwvµ


∥u∥2. (30)

By construction, (30) provides a bound on δv in the coupled
configuration. This result will be exploited to obtain the final error
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bound. Hereto, the output error δy = y − ŷ is introduced, which is
given by

δy= Fy(u, v) − F̂y(u, v̂)

= Fy(u, v) − F̂y(u, v) + F̂y(u, v) − F̂y(u, v̂). (31)

Here, the introduction of the term F̂y(u, v) leads to

∥δy∥2 ≤ ∥Fy(u, v) − F̂y(u, v)∥2 + ∥F̂y(u, v) − F̂y(u, v̂)∥2, (32)

where the first term is related to the error introduced by reduction
of the linear subsystem,which is bounded by (19). The second term
can be related to the incremental gain of the reduced-order linear
subsystem, such that

∥δy∥2 ≤ εyu∥u∥2 + εyv∥v∥2 + γ̂yv∥δv∥2. (33)

Again, the gain γ̂yv is unknown a priori, but can be bounded as
γ̂yv ≤ γyv + εyv . Then, substitution of the bound on v (25) and
the bound on δv (30) in (33) leads to the output error bound as in
(21), which proves the second statement of the theorem. �

In the proof of the error bound in Theorem 14, the incremental
gain property of the input–output operators plays a crucial role.
Namely, the incremental gains characterize the amplification
of perturbations going through the subsystems, where these
perturbations are introduced by model reduction of the linear
subsystem. The small-gain theorem then guarantees boundedness
of the perturbations in the bidirectionally coupled configuration as
in Fig. 2.

The result in Theorem 14 is based on the availability of the
error bounds εij, i ∈ {y, w}, j ∈ {u, v}, for the linear subsystem,
providing bounds on all relevant input–output pairs. However, as
mentioned before, existing model reduction techniques for linear
systems generally provide a single error bound εlin.When this error
bound is exploited as εij ≤ εlin for i ∈ {y, w}, j ∈ {u, v}, the error
bound (21) reduces to

ε = εlin


1 +

µγwu

1 − γwvµ


1 +

(γyv + εlin)µ

1 − (γwv + εlin)µ


. (34)

Remark 15. The condition for stability (20) and the error bound
(21) depend only on properties of the high-order system and
the error bound on the linear subsystems and can therefore
be evaluated a priori. However, a tighter error bound can be
obtained when the gains γ̂wv and γ̂yv of the reduced-order linear
subsystem are computed a posteriori (i.e. after the reduction has
been employed). These gains can directly be used in (28) and
(33), respectively, instead of using their bounds γiv + εiv , i ∈

{y, w}. Additionally, the availability of γ̂wv will allow for the direct
evaluation of stability via γ̂wvµ < 1 instead of via (20).

Remark 16. The availability of the explicit expression (21) allows
for a reduction procedure in which the error bound is minimized.
Namely, in the reduction of the linear subsystem, emphasis can
be placed on the input–output combination that has the largest
contribution to the overall error in (21).

5.2. Incrementally contractive systems

As a special case of the results in the Section 5.1, systemswill be
discussed that are (incrementally) contractive. Then, the following
assumption replaces Assumption 11.

Assumption 17. Let the system Σ = I(Σlin, Σnl) satisfy the fol-
lowing assumptions:
(1) The linear subsystem Σlin has a strictly bounded real transfer
function, i.e. is (incrementally) contractive;

(2) The nonlinear subsystem Σnl is incrementally strictly contrac-
tive with gain µ (µ < 1).

Under Assumptions 10 and 17, the total nonlinear system Σ is
contractive, as formalized in the following lemma.

Lemma 18. Let Σ = I(Σlin, Σnl) satisfy Assumptions 10 and 17.
Then, Σ is incrementally contractive. Additionally, the origin is an
asymptotically stable equilibrium point of Σ for u = 0.

Proof. By Assumption 17, there exist nonnegative storage func-
tions Slin(x1, x2) and Snl(z1, z2) such that

Ṡlin ≤|u1 − u2|
2
+ |v1 − v2|

2
− |y1 − y2|2 − |w1 − w2|

2, (35)

Ṡnl ≤µ2
|w1 − w2|

2
− |v1 − v2|

2. (36)

Then, using the storage function S(x1, x2, z1, z2) := Slin(x1, x2) +

Snl(z1, z2), it is easily shown that Σ is incrementally contractive.
The proof of stability of the origin (for u = 0) directly follows

from Lemma 12 by noting that Assumption 17 can be interpreted
as a special case of Assumption 11. �

In the reduction of the linear subsystem for nonlinear systems
satisfying Assumption 17, the bounded real balancing procedure
as discussed in Section 4 is applied. Then, the reduced-order
nonlinear system Σ̂ = I(Σ̂lin, Σnl) is incrementally contractive
and satisfies an error bound, as formalized in the next theorem.

Theorem 19. Let Σ = I(Σlin, Σnl) satisfy Assumptions 10 and
17 and let Σ̂lin be the reduced-order linear subsystem obtained by
bounded real balancing. Then, the reduced-order nonlinear system
Σ̂ = I(Σ̂lin, Σnl) is incrementally contractive, the origin of Σ̂ is
asymptotically stable for u = 0 and the output error is bounded as

∥y − ŷ∥2 ≤ 2


1
1 − µ

2


n
i=k+1

ξi


∥u∥2, (37)

with ξi distinct bounded real singular values.

Proof. The properties of bounded real balancing, as stated in The-
orem 9, guarantee that the reduced-order nonlinear system Σ̂ =

I(Σ̂lin, Σnl) satisfies Assumptions 10 and 17. Here, it is remarked
that bounded real balancing leaves the direct feedthrough matrix
D unchanged, such that the interconnection I(Σ̂lin, Σnl) is indeed
well-posed. Then, incremental contractivity and asymptotic stabil-
ity of the origin follow from Lemma 18.

The error bound can be proven along the same lines as in Theo-
rem 14. By (incremental) contractivity of the linear subsystem, the
gains γij in the proof of Theorem 14 satisfy γij ≤ 1, i ∈ {y, w},
j ∈ {u, v}. Moreover, by the application of bounded real bal-
ancing, the gains γ̂ij of the reduced-order linear systems can also
be a priori bounded as γ̂ij ≤ 1. Finally, the single error bound
εlin = 2

n
i=k+1 ξi (see Theorem 19) is used to provide the bounds

εij ≤ εlin. Then, the application of these bounds in the proof of The-
orem 14 gives the error bound (37). �

5.3. Incrementally passive systems

The ideas as used in Sections 5.1 and 5.2 can be exploited in the
development of a model reduction procedure for the preservation
of passivity.

In particular, if the linear subsystem Σlin has a strictly positive
real transfer function (i.e. is incrementally passive) and the
nonlinear subsystem Σnl is incrementally very strictly passive
(see Definition 3), then the interconnection Σ = I(Σlin, Σnl) is
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Fig. 3. Controlled nonlinear system. The gray box represents the controlled linear
subsystem Σlin = Fu(Σgen, Γ ).

incrementally passive and the origin is an asymptotically stable
equilibrium for u = 0. If the reduction procedure of positive
real balancing is applied to Σlin to obtain a reduced-order linear
subsystem Σ̂lin, these properties are preserved in the reduced-
order nonlinear system Σ̂ = I(Σ̂lin, Σnl). Finally, under some
additional conditions, an error bound can be derived. Further
details on passivity preservation for systems of the form as in Fig. 1
can be found in Besselink (2012).

Remark 20. Contractive and passive nonlinear systems as in Fig. 1
can be related via a scattering transformation (see e.g. van der
Schaft, 2000 for a definition). For the contractivity and passivity
preserving reduction procedures discussed in Sections 5.2 and 5.3,
it can be shown that this scattering relation is preserved after
reduction. In fact, this relation is crucial in the derivation of an
error bound for the reduction of (incrementally) passive nonlinear
systems. Details can be found in Besselink (2012).

6. Controller reduction for closed-loop nonlinear systems

The model reduction procedures for nonlinear systems that
can be decomposed as in Fig. 1 exploit existing linear model
reduction techniques. As a consequence, the results in Section 5
can be extended towards procedures for controller reduction
by exploiting existing controller reduction techniques for linear
systems.

Controlled nonlinear systems as in Fig. 3 are considered. Here,
Σgen is a generalized system, which contains linear dynamics and
linear weighting filters defining the control problem. Specifically,
the generalized system is chosen such that theminimization of the
L2 gain from the performance input u to the performance output y
gives increased performance. The linear controller is denoted by Γ ,
which has input yc and output uc . When combining the controller
and generalized system into a (controlled) linear system as Σlin =

Fu(Σgen, Γ ), with Σlin as in (1) and Fu the upper linear fractional
transformation, it is clear that the controlled linear system in
Fig. 3 is a special case of the linear subsystem in Fig. 1. Finally,
Σnl is a nonlinear dynamic system of the form (2). It is remarked
that the configuration in Fig. 3 does not necessarily represent the
control of a system with local nonlinearity by means of a linear
controller. Namely, some nonlinear controllers can be cast in the
same framework, where an example is given by variable-gain
controllers (see e.g. Heertjes & Steinbuch, 2004; van de Wouw,
Pastink, Heertjes, Pavlov, & Nijmeijer, 2008).

In the configuration in Fig. 3, the controller Γ may have been
designed on the basis of the linear generalized system only, where
stability properties of the full nonlinear system are guaranteed
by means of a small-gain argument in the loop connecting
the nonlinear subsystem Σnl. In this case, controller design is
performed with respect to the input d = [uT vT
]
Tand output

e = [yT wT
]
Tand standard controller synthesis techniques such as

H∞ control design can be exploited. However, controller synthesis
is not within the scope of this paper. Instead, the controller Γ is
assumed to be given and the reduction of this controller is pursued.
Next, it is assumed that the controller is designed such that the
nonlinear controlled system satisfies Assumption 10. Additionally,
the following assumption is adopted.

Assumption 21. Let the controlled system Σ = I(Σlin, Σnl)
satisfy the following assumptions:
(1) The controller Γ ensures that Σlin = Fu(Σgen, Γ ) satisfies

∥e∥2 ≤ γcon∥d∥2 for some γcon > 0;
(2) The nonlinear subsystem Σnl has a bounded incremental L2

gain with gain µ;
(3) The small-gain condition γconµ < 1 holds.

For such systems, a reduced-order linear controller Γ̂ will
be pursued, leading to a reduced-order controlled system Σ =

I(Σ̂lin, Σnl) as in Fig. 2 with Σ̂lin = Fu(Σgen, Γ̂ ) of the form (3).
Two distinct objectives for controller reduction are stated in the
next sections.

6.1. Approximation of closed-loop behavior

Here, the objective is to find a reduced-order controller Γ̂
such that the reduced-order closed-loop dynamics resembles the
original high-order closed-loop dynamics, from the external input
u to the external output y. This problem is addressed in the
following corollary.

Corollary 22. Let Σ = I(Σlin, Σnl) with Σlin = Fu(Σgen, Γ ) sat-
isfy Assumptions 10 and 21. Furthermore, let Γ̂ be a reduced-order
controller such that Σ̂lin = Fu(Σgen, Γ̂ ) is asymptotically stable and
the error bound ∥e− ê∥2 ≤ εcon∥d∥2 on reduction of the (controlled)
linear subsystem Σlin holds for some εcon > 0, with ê = [ŷT ŵT

]
T .

Then, the following holds:
(1) The controlled nonlinear systemΣ = I(Σlin, Σnl) has a bounded

incremental L2 gain and the origin is an asymptotically stable
equilibrium point for u = 0;

(2) The reduced-order controlled nonlinear system Σ̂ = I(Σ̂lin,
Σnl) has a bounded incremental L2 gain and the origin is an
asymptotically stable equilibrium point of Σ̂ for u = 0 when

(γcon + εcon)µ < 1; (38)
(3) If (38) holds, then the error δy = y − ŷ between the closed-loop

outputs of the high-order and reduced-order nonlinear system Σ

and Σ̂ is bounded as ∥δy∥2 ≤ ε∥u∥2, with

ε = εcon


1

1 − γconµ


1

1 − (γcon + εcon)µ


. (39)

Proof. To prove the corollary, it is remarked that Assumption 21
is basically a restatement of Assumption 11. Then, the first item
directly follows from Lemma 12. Similarly, the assumptions on the
reduced-order controller are equivalent to Assumption 13, with
εij ≤ εcon. Then, the second and third item follow fromTheorem14,
with γij ≤ γcon, i ∈ {u, v}, j ∈ {y, w}. �

The results in Corollary 22 rely on the application of controller
reduction techniques for linear systems that guarantee stability of
the reduced-order closed-loop linear subsystem aswell as an error
bound of the form ∥e − ê∥2 ≤ εcon∥d∥2. Methods satisfying these
assumptions and guaranteeing an a priori error bound are given
in Gao, Lam, and Wang (2006) and Zhou, D’Souza, and Cloutier
(1995). Alternatively, stability and an error bound can be evaluated
a posteriori (i.e. after the reduction has been employed), allowing
for the application of other controller reduction techniques (e.g.
those in Ceton, Wortelboer, & Bosgra, 1993).
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6.2. Performance preservation

For performance preservation, the reduced-order controller Γ̂

is required to guarantee the same performance as the high-order
controller Γ , i.e. the implication ∥y∥2 ≤ γcl∥u∥2 ⇒ ∥ŷ∥2 ≤

γcl∥u∥2 should hold for some γcl. After scaling to γcl = 1,
this represents the preservation of contractivity, leading to the
following corollary.

Corollary 23. Let Σ = I(Σlin, Σnl) with Σlin = Fu(Σgen, Γ ) sat-
isfy Assumptions 10 and 21 with γcon = 1 and µ < 1. Furthermore,
let Γ̂ be a reduced-order controller such that Σ̂lin = Fu(Σgen, Γ̂ )
is asymptotically stable and the bound ∥ê∥2 ≤ ∥d∥2 holds, with
ê = [ŷT ŵT

]
T . Then, the following statements hold:

(1) The controlled nonlinear system Σ = I(Σlin, Σnl) is incremen-
tally contractive and the origin is an asymptotically stable equi-
librium point for u = 0;

(2) The reduced-order controlled nonlinear system Σ̂ = I(Σ̂lin,
Σnl) is incrementally contractive and the origin is an asymptoti-
cally stable equilibrium for u = 0.

If, in addition, the error bound ∥e − ê∥2 ≤ εcon∥d∥2 is available
on reduction of the (controlled) linear subsystem Σlin, the following
statement holds:

(3) The error δy = y − ŷ between the closed-loop outputs of Σ and
Σ̂ is bounded as ∥δy∥2 ≤ ε∥u∥2, with ε = εcon(1 − µ)−2.

Proof. Assumption 21 with γcon = 1 and µ < 1 implies that
the linear subsystem is (incrementally) contractive, whereas the
nonlinear subsystem is incrementally strictly contractive. Thus, As-
sumption 17 holds, such that the first item follows from Lemma 18.
Additionally, the assumptions on the reduced-order controller re-
semble the properties of bounded real balancing, such that the re-
maining items follow from Theorem 19. �

As before, the result in Corollary 23 is based on properties of
the reduced-order controlled linear subsystem. Specifically, the
reduced-order controller is assumed to be performance preserving
in the sense that the reduced-order controlled linear subsystem
satisfies the performance criterion ∥ê∥2 ≤ ∥d∥2. A controller
reduction technique that satisfies this assumption has been
proposed in Goddard and Glover (1998). Alternatives following
the same ideas are given by Wang and Huang (2003) and Wang,
Sreeram, and Liu (2001). Here, it is noted that these methods
do not give an a priori error bound of the form ∥e − ê∥2 ≤

εcon∥d∥2, such that the third item can only be obtained by the
a posteriori computation of the required error bound on the
reduced-order linear subsystem. Also, this is the only item that
requires the property of incremental strict contractivity of the
nonlinear subsystem Σnl. Thus, the first two items also hold when
the nonlinear subsystem satisfies the less restrictive assumption of
strict contractivity.

7. Examples

The model and controller reduction procedures are illustrated
by means of examples in Sections 7.1 and 7.2, respectively.
Here, the first example gives a detailed illustration of the
theoretical developments of this paper, whereas the second
example illustrates the applicability of the proposed techniques to
an engineering case study.

7.1. Flexible beam example

To illustrate the model reduction procedure for nonlinear
systems satisfying a bounded incrementalL2 gain in Section 5, the
Fig. 4. Flexible beam with nonlinear damping.

Fig. 5. Frequency response functions for the high-order and reduced-order linear
subsystems.

flexible beam system in Fig. 4 is considered. The beam (without
the damper) is modeled using Euler beam elements, which yields
a minimal asymptotically stable linear model of the form (1) with
x ∈ R60. The input u ∈ R is a force acting on the beam, whereas
the vertical deflection y ∈ R is the output. In its center, the beam
is supported by a nonlinear damping element, which is described
by

Σnl : ż = −z − σ(z) + κw, −v = z, (40)

with z ∈ R the internal state. In (40), w ∈ R is the vertical velocity
of the beam center, v ∈ R is the damping force and it is noted
that the interconnection satisfies Assumption 10.Moreover,σ is an
arbitrary nondecreasing continuous function, such that the storage
function S(z1, z2) =

1
2 (z1 − z2)2 shows that the incremental L2

gain of (40) is bounded by κ , i.e. µ = κ . After choosing κ such that
γwvκ < 1, Assumption 11 holds.

Balanced truncation is applied to the linear beam model to
obtain an asymptotically stable reduced-order subsystem Σ̂lin for
k = 4 satisfying Assumption 13. The frequency response functions
Gwv of Σlin and Ĝwv of Σ̂lin are depicted in Fig. 5, where the line
µ−1 (forµ = κ = 4) shows that both the high-order and reduced-
order nonlinear system have a bounded incremental L2 gain and
an asymptotically stable equilibrium for u = 0 (see Lemma 12).
In fact, stability of the reduced-order nonlinear system can be
guaranteed a priori (i.e. without computing the frequency response
function Ĝwv) since the a priori error bound for balanced truncation
εlin = 6.522 · 10−2 satisfies γwv < µ−1

− εlin (see Fig. 4). Thus,
condition (20) (with εwv ≤ εlin) in Theorem 14 holds and stability
is guaranteed.

Error bounds on the full nonlinear system are computed using
Theorem 14 and can be found in Table 1, for several values of
κ . Here, an a priori error bound is computed using the bounds
εij ≤ εlin, leading to (34). Moreover, an a posteriori error bound
is obtained by computing the error bounds εij and the evaluation
of (21). Clearly, the latter leads to less conservative results, even
though it is remarked that the conservatism in a priori error bound
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Table 1
A priori (using (34)) and a posteriori (using (21)) error bounds.

κ ε (a priori) ε (a posteriori)

3 1.214 · 10−1 2.157 · 10−4

4 3.060 · 10−1 2.694 · 10−4

5 – 6.449 · 10−4

Fig. 6. Comparison of the high-order system Σ and reduced-order system Σ̂ for
k = 4 and with input signal u(t) = 10 sign(sin(2π15t)): output y (left) and state z
(right).

fluid chamber

Fig. 7. Lab-on-a-chip benchmark system.

is largely due to the large value of εlin (compared to εij) rather than
the results of Theorem 14.

Remark 24. For κ = 5, stability cannot be guaranteed a priori as
γwv > µ−1

− εlin and the satisfaction of (20) (with εwv ≤ εlin) is
unknown. As a result, the a priori error bound in Table 1 cannot
be computed. Of course, a less conservative guarantee on stability
properties is obtained by the a posteriori computation of εwv .

Fig. 6 shows a comparison of the response of the high-order
and reduced-order nonlinear systems for σ(z) = arctan(10z) and
κ = 4, indicating an accurate approximation.

7.2. Lab-on-a-chip benchmark example

The controller reduction techniques developed in Section 6 are
applied in the design of a low-order controller for the temperature
control in an industrial lab-on-a-chip. An important application
of a lab-on-a-chip is in the field of molecular biology for disease
diagnostics. Herein, biochemical analysis techniques are applied
on small volumes of fluid, such as e.g. blood. These analysis
techniques rely on an accurate control of the fluid temperature.
Since a lab-on-a-chip is typically (part of) a disposable product,
the on-board computational power is limited and the controller is
required to be relatively simple (and thus of low order). Herein,
controller reduction provides a means for obtaining this controller
on the basis of a complex (high-order) model, hereby using H∞

controller design techniques.
The lab-on-a-chip benchmark system as depicted in the top

graph in Fig. 7 basically consists out of three parts. First, a casing
forms a fluid chamber, which contains the fluid of which the
temperature needs to be controlled. To cool or heat the fluid, a
Peltier element is used. A Peltier element is an electric heat pump
and transfers heat between its two sides. Therefore, a heat sink
is needed to exchange heat with the environment. In this setting,
Fig. 8. Lab-on-a-chip benchmark system model.

Fig. 9. Control configuration for the lab-on-a-chip benchmark system.

the fluid temperature needs to track a reference trajectory, such
that the objective is the design of a tracking controller. Herein, the
Peltier element input voltage Vp is prescribed by the controller,
hereby using a measurement of the fluid temperature Tf , where
Tf represents the deviation from the environmental temperature.

A model of the lab-on-a-chip benchmark system leads to the
block diagram as shown in Fig. 8. The casing and heat sink
typically exhibit temperature nonuniformities and are therefore
modeled using a finite element approach, leading to a (single)
high-order model for the thermal dynamics. Herein, the nonlinear
effect of radiation is not taken into account. Besides the fluid
temperature Tf , the temperatures of the casing and heat sink at the
boundary with the Peltier element form the outputs w̃ of the finite
element model, whereas the inputs ṽ represent the heat flows
resulting from the heat pumping action of the Peltier element. The
Peltier element represents the actuator and is modeled as a static
nonlinearity, which describes these heat flows as a function of the
casing and heat sink temperatures and the input voltage Vp, where
the latter is the control input. The model in Fig. 8 thus consists out
of the feedback interconnection of a high-order linear system and a
static nonlinearity, such that it falls in the scope of earlier sections.
However, in order to reduce the conservatism in the computation
of the gain of the Peltier element, a loop transformation is applied.
This transforms the linear system describing the casing and heat
sink in a linear system Σfem, where removing the uncontrollable
and unobservable modes leads to the minimal realization Σmin

fem of
order 44. This system is depicted in Fig. 9, where ϕ represents
the static nonlinearity describing the Peltier element (after loop
transformation). Furthermore, v ∈ R2 denote the (transformed)
heats flows between the Peltier element and the casing and heat
sink, whereas w ∈ R3 combines the temperatures at the top and
bottom boundary of the Peltier element and the input voltage.
Since only a limited range in temperatures is of (practical) interest,
the incremental L2 gain of the static nonlinearity is bounded
and can be obtained as µ = supw∈W σ̄ ((∂ϕ/∂w)(w)), where W
represents the compact set (in the variable w) of interest and σ̄ (·)

denotes the largest singular value.
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As stated before, the tracking control of the fluid temperature
is of interest. Thus, a tracking controller is designed which,
firstly, ensures stability by enforcing a small-gain condition
in the loop connecting the static nonlinearity ϕ to the linear
closed-loop dynamics and, secondly, enforces the desired tracking
performance. Thereto, the controller uses the measurement of the
(scaled) fluid temperature Tf and prescribes the Peltier element
voltage Vp. For controller design, a H∞ loopshaping procedure
is used (McFarlane & Glover, 1990), leading to the control
configuration in Fig. 9. Here, W1 and W2 are the weighting filters
employed in the loopshaping procedure, which are included in the
feedback loop. Furthermore, u = [u1 u2]

Tand y = [y1 y2]T form
the performance inputs and performance outputs, respectively,
leading to the so-called four-block problem.When the generalized
system Σgen is defined as in Fig. 9, it is clear that the closed-
loop system is of the form as in Fig. 3, where the nonlinear
subsystemΣnl is replaced by the static nonlinearity (see Remark 4).
By inclusion of the weighting filters, the generalized system is of
order 48, such that controller design leads to a controllerΓ of order
nc = 48. Then, the controlled linear subsystemΣlin = Fu(Σgen, Γ )
(see Fig. 3) is of the form (1) with n = 96. The control problem is
scaled such that the static nonlinearity ϕ is incrementally strictly
contractive, with gain µ = 0.95. Then, the controller is designed
such that the controlled linear subsystem Σlin = Fu(Σgen, Γ ) is
(incrementally) contractive with gain γcon = 0.945 (from input
d = [uT vT

]
T to output e = [yT wT

]
T ). Hence, the controlled

nonlinear system satisfies Assumption 21. Thus, by application
of item 1 of Corollary 22, the controlled nonlinear system has a
bounded incremental L2 gain and the origin is an asymptotically
stable equilibrium point for u = 0. It is remarked that, due to
scaling, this can also be concluded from item 1 of Corollary 23,
such that the controlled nonlinear system is in fact (incrementally)
contractive.

The controller Γ is reduced by applying closed-loop balanced
truncation (Ceton et al., 1993) to the controlled linear subsystem
Σlin = Fu(Σgen, Γ ), leading to a reduced-order controller Γ̂
of order nc = 4. Since closed-loop balanced truncation does
not give an a priori guarantee on stability of the reduced-order
linear subsystem Σ̂lin = Fu(Σgen, Γ̂ ), stability is verified after
the reduction. Additionally, an error bound on reduction of the
controlled linear subsystem is computed as ∥e − ê∥2 ≤ εcon∥d∥2,
with εcon = 0.053.

The reduced-order controlled linear subsystem satisfies the
assumptions in the statement of Corollary 22 and it is easily
checked that the condition (38) holds. Hence, the reduced-order
controlled nonlinear system has a bounded incremental L2 gain
and the origin is an asymptotically stable equilibrium point for
u = 0. Furthermore, evaluation of the error bound (39) yields ε =

10.2, providing a bound on the difference between the closed-loop
behavior of the high-order and reduced-order controlled nonlinear
systemsΣ and Σ̂, respectively. Here, it is remarked that this bound
is likely to be conservative as a result of the fact that the small-gain
condition (38) is only satisfied with a small margin.

Even though it has been concluded that stability properties
are preserved after controller reduction, the problem can also be
considered from a different perspective. Namely, due to scaling,
the conditions of Corollary 23 hold as well. In fact, an upper bound
on the gain of the reduced-order controlled linear subsystem is
given by γcon + εcon < 1, such that Σ̂lin is (incrementally)
contractive. Then, by item 2 of Corollary 23, the reduced-order
controlled nonlinear system Σ̂ is (incrementally) contractive as
well, indicating performance preservation.

The magnitude of the frequency response function of the high-
order and reduced-order controllers are compared in Fig. 10, from
which it is clear that, despite the large reduction, the reduced-order
controller matches the original high-order controller well. Finally,
Fig. 10. Bode magnitude graphs of the transfer functions K and K̂ of the
implementations of the high-order controller Γ and reduced-order controller Γ̂ ,
respectively.

Fig. 11. Step response of the closed-loop using the high-order controller Γ and
reduced-order controller Γ̂ . The right graph is a zoomed version of the left graph.

the closed-loopbehaviors are compared in Fig. 11,which shows the
fluid temperature for a 1 K step in the reference temperature. Here,
it is recalled that deviations from the environmental temperature
are considered. Again, it is clear that the performance obtained by
the reduced-order controller is similar to that of the high-order
controller.

Resuming, in this section the results developed in this paper
have been applied in the scope of controller reduction for an
industrial temperature control unit for a lab-on-a-chip, hereby
validating the applicability of the techniques presented.

8. Conclusions

In this paper, a class ofmodel reduction procedures is presented
for nonlinear systems that can be decomposed into a feedback
interconnection of a linear and nonlinear subsystem. Here,
reduction is employed on the linear subsystem only, allowing for
the use of existing model reduction techniques for linear systems
and making this approach computationally attractive. First,
conditions are given under which stability of the reduced-order
nonlinear model can be guaranteed. Furthermore, it is shown that
the application of specific reduction techniques for linear systems
yields a reduction method in which contractivity or passivity is
preserved. Also, a priori error bounds are derived, where the
properties of a bounded incremental L2 gain or incremental
passivity of the nonlinear subsystem play an important role.

The techniques developed in this paper are applied in the scope
of controller reduction for a class of controlled nonlinear systems,
hereby again exploiting existing controller reduction procedures
for linear systems and addressing the objectives of approximation
of closed-loop behavior and performance preservation. This
approach is illustrated by means of application to an industrial
temperature control problem for a lab-on-a-chip.
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