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Abstract  Radial Basis Function Neural Network (RBFNN) is considered as a good applicant for the prediction 
problems due to it’s fast convergence speed and rapid capacity of learning, therefore, has been applied successfully 
to nonlinear system identification. The traditional RBF networks have two primary problems. The first one is that the 
network performance is very likely to be affected by noise and outliers. The second problem is about the 
determination of the parameters of hidden nodes. In this paper, a novel method for robust nonlinear system 
identification is constructed to overcome the problems of traditional RBFNNs. This method based on using Support 
Vector Regression (SVR) approach as a robust procedure for determining the initial structure of RBF Neural 
Network. Using Genetic Algorithm (GA) for training SVR and select the best parameters as an initialization of 
RBFNNs. In the training stage an Annealing Robust Learning Algorithm (ARLA) has been used for make the 
networks robust against noise and outliers. The next step is the implementation of the proposed method on the 
Hydrocarbon Debutanizer unit for prediction of n-butane (C4) content. The performance of the proposed method 
(ARLA-RBFNNs) has been compared with the conventional RBF Neural Network approach. The simulation results 
show the superiority of ARLA-RBFNNs for process identification with uncertainty. 
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1. Introduction 
Artificial neural networks are recognized as major tools 

for optimization, pattern recognition and nonlinear system 
identification because of their learning and modeling 
abilities [1]. System identification is the science of 
building mathematical models of dynamic systems from 
Input–Output(I/O) pairs. It can be realized as the interface 
between the real world of applications and the 
mathematical world of model abstractions [2]. Robust 
identification is a method to determine the parameters of 
neural network when training data contaminated with 
noise and outliers. The intuitive definition of an outlier 
(Hawkins, 1980) is “an observation which deviates so 
much from other observations as to arouse suspicions that 
it is generated by a different mechanism” [3,4]. However, 
outliers may occur due to erroneous measurements in 
measurement device (sensors). When outlier exist in 
training data set, approximation of predicted models with 
neural networks is largely deteriorated [5,6]. 

 Between the existing neural networks architectures, the 
Radial Basis Function Neural Networks (RBFNNs) is 
considered as a good candidate for approximation and 

prediction due to its rapid learning capacity and simpler 
network structure [7]. Accordingly, the RBFNNs is a 
popular alternative to the Multilayer Perceptron (MLP). In 
contrast to MLPs, RBF networks use a localized 
representation of information. RBFNNs were introduced 
into the neural network literature by Broomhead and Lowe 
(1988). Radial basis function (RBF) networks typically 
have three layers which include an input layer, a hidden 
layer with a non-linear activation function and a linear 
output layer [3,4,7,8]. The training procedure of RBF 
networks is accomplished through the estimation of three 
kind of parameters, namely the centers and the width of 
basis function and finally, the synaptic weights [8]. Center 
selection is an important role in performance of RBFNNs. 
There are two kinds of methods exist in this scope. One of 
them is fixed selection of hidden node center (such as 
random selection from training data and fuzzy c-means 
clustering) and the other chooses this parameter 
systematically. SVR approach is a systematic way to 
define the initial structure of RBFNNs. supervised and 
unsupervised learning are common learning methods in 
RBF networks. Unsupervised learning is used to initialize 
the network parameters, and supervised learning is usually 
used for the fine tuning of the network parameters [9]. 
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Many learning algorithms in literature have been 
proposed for training RBFNNs such as hybrid fuzzy 
clustering approach [8], orthogonal least squares (OLS) 
[10], gradient descent [11] and extended kalman filter 
(EKF) [12]. When training data contaminated with noise 
and outliers, traditional learning methods (least squares 
based) show poor performance therefore we must 
approach robust learning algorithm. The following robust 
training methods are proposed in literature for training 
RBFNNs: In 1995, sanchez presented Scaled Robust Loss 
Function (SRLF) and conjugate gradient method for 
Robust learning RBFNNs [5]. Chien-Cheng Lee et al. 
derived new robust objective function from robust 
statistics (type of Hample’s M-estimator) and back 
propagation as learning algorithm in order to reduce the 
influence of outliers in training patterns [13]. Chen-Chia 
Chuang et al. proposed Annealing Robust 
Backpropagation Learning Algorithm (ARBP) that adopts 
the annealing concept into the robust learning algorithms 
to overcome the problem of training network with noise 
and outliers [14]. Mei-juan Su et al. (2006) illustrate that 
by using new SRLF and gradient descent as training 
method and shows strength robustness against outliers. 

In this paper we use ε-SVR with Gaussian kernel 
function for systematic determination of an initial 
structure of RBFNNs. Another advantage of this method 
is robust initialization of RBFNNs against data 
uncertainties. When the initial structure of RBFNNs 
determined with ε-SVR, the next step is training the SVR 
parameter using Genetic Algorithm to find optimal 
parameters from SVR. Constructing the network using 
this parameter and using Annealing Robust Learning 
Algorithm (ARLA) in training phase. In this stage we 
used as M-estimator [15] as a popular method to fix the 
problem of parameter estimation when data contain 
uncertainty. The least squares based estimators residuals 
deviated from zero when we faced outliers in the data set 
therefore M-estimators are used as a robust estimation 
method to decrease the effect of outliers in the data set. At 
the point When the residuals goes outside a threshold, the 
M-estimator suppresses the response instead. Therefore, 
the M-estimator based error function is more robust to 
noise and outliers than the Least Mean Square (LMS) 
based error function. This robustness can be achieved by 
replacing the MSE criterion with M-estimator [6]. In this 
study Logistic loss function was adopted to develop a 
robust RBF network. Thus, the cost function is a special 
case of the logistic function with properly setting 
constants in the theory of the M-estimator. We have 
adopted the concepts of M-estimator and annealing to 
develop a feedforward network with a robust 
backpropagation learning algorithm. At the same time, the 
proposed approach has fast convergence speed and robust 
against outliers on the identification of the nonlinear 
dynamic systems contain noise and outliers. 

The proposed method will be implemented on the 
Hydrocarbon Debutanizer unit and the capability of this 
method for prediction of n-butane (C4) content will be 
investigated. This paper is organized as follows: In 
Section 2 full description of the method is proposed. The 
implementing and its results of the proposed method on a 
Hydrocarbon Debutanizer unit together with a short 
description of the process are presented in section 3 and 
section 4 presents conclusions.  

2. Methodology Description 

2.1. Architecture of RBFNNs for 
Identification of Nonlinear Systems 

Assume that the unknown nonlinear dynamical system 
is expressed by: 
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Where m is input lag, n is output lag and f(.) is an 
unknown nonlinear function needed to be identified. The 
goal of the identification problems is to find a suitable 
prediction model ˆ( 1)y t + .  
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Such that f̂  predicts f(.). 
A Radial Basis Function Neural Networks (RBFNNs) 

have three layers, the input layer, the hidden layer with 
nonlinear activation function, and the linear output layer. 
The architecture of RBFNNs with Gaussian basis function 
for identification problem is expressed in Figure 1. 

 

Figure 1. Architecture of Radial Basis Function Neural Networks for 
Identification Problem 

A RBFNNs would be shown in the form: 
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 is the input 

vector, ˆ ( )oy t  is the oth network predicted output, joW  is 

the synaptic weight, jG  is the Gaussian function at the jth 

hidden layer neuron, jm  and jσ  are the center and 
width of Gaussian function, respectively, and L is equal to 
the number of hidden layer neurons [16]. 

When utilizing an RBFNNs for the identification of 
nonlinear dynamical system, our objective is to determine 
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the values of RBFNNs parameters (L, joW , jm ) to 
minimize the following objective function: 
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Where N is the number of training data pairs (I/O pairs), 
iy  is the output of unknown nonlinear dynamical systems 

and ˆiy  is the prediction value from identified model. For 
determining better combination of optimal parameters, 
iterative methods can be applied. When constructing a 
RBFNNs, it is significant to define the net structure and 
initializes the network parameters. Most of the 
conventional RBFNNs approaches (Least squares based) 
are easily influenced by long tail noise and outliers ,
therefore, robust approaches are given to overcome the 
problem of traditional RBFNNs. These robust radial basis 
functions approaches mainly focus on robust learning 
algorithms. These algorithms assume the concept of 
robust estimators in the training phase. For construction 
the network structure we use SVRε −  approach for 
determining initial network structure and parameter of 

SVRε −  method tuned with Genetic Algorithm (GA) and 
using iterative methods for training RBFNNs parameters. 
How to use the ε−SVR−GA method to get the optimal 
structure of RBFNNs will be exemplified in the 
succeeding segment. 

2.2. ε−SVR−GA Approach for Structure 
Selection of RBFNNs 

Suppose we are given training I/O pair data which 
includes ( ) ( ){ }1 1 2 2, , , , , ( , )N Nx y x y x y…  where X denotes 
the input space pattern and Y means output data. That is, 
regression function in the SVR approach is approximated 
by the following function as: 
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In 1995 Vapnik [17] proposed SVRε −  as a solution 
for the problem is to find ( , )f x θ  that minimize the 
subsequent risk function 
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Subject to the constraint 

 2θ C,<  (7) 

Where C is a constant and (.)Lε  is the ε -insensitive 
loss function defined as: 
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Where ( ) ˆ( )e y i y i= −  is the error between ith desired 
output and ith output of RBFNNs and ε  is a nonnegative 
number. 

Since an SVR approach with the insensitive loss 
function provides an estimated function within zone, the 

initial construction of the RBFNNs can be obtained by the 
SVR approach that evenhandedly supplies better 
initialization to learning algorithm. Three kinds of 
parameter which can be chosen appropriately to determine 
the best initialization parameters of RBFNNs consist of 
penalty factor (C), epsilon (coefficient of the SVR loss 
function) and sigma (width of kernel function). Moreover, 
an SVR approach with the ε -insensitive loss function can 
make use of a small subset of the training data, called the 
support vectors (SVs), to approximate the unknown 
functions within a tolerance band ε  The numbers of SVs 
are controlled by the values of tolerance band ε  
[17,18,19]. 

Shows the situation graphically. Only the points outside 
the shaded region contribute to the cost insofar, as the 
deviations are penalized in a linear fashion. It turns out 
that the optimization problem can be solved more easily in 
its dual formulation and solving this problem [19] with the 
Lagrange multipliers method and minimized above loss 
function leads to following dual optimization problem 
[4,16,17,19]. 

 
Figure 2. The soft margin loss setting corresponds for a linear SVR [19] 
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Subject to the constraint 
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Where Q is a cost function in the SVRε − , 
* * *, , , , ,r r s sα α α α α α  are all the nonnegative Lagrange 

multipliers, r and s are all indexes, X is input and Y is 
output. The inner product of basis function is replaced via 
kernel function 

 ( ) ( ), . ( )r s r sK x x x x= Φ Φ   (11) 

The kernel function determines the smoothness 
properties of solutions and should reflect a previous 
knowledge of the data. In the literature Gaussian kernel 
function often used. Hence equation (9) rewritten as  
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Therefore, the solution of the SVR method [15] is in the 
form of the following linear expansion of kernel function: 

 ( ) ( )* *
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Note that only some of ( )*
k kα α− s are not zeros and 

the corresponding vectors kx  are termed support vectors 
(SVs). That is, # SVs N≤ , SVs is number of SVs. In this 
paper, we use the Gaussian kernel function is used in 
kernel of SVRε −  and then relation (13) can be rewritten 
as 
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Where *( ) 0k k kλ α α= − ≠  and kx  are SVs and b is 
bias of the network. 

To design an effective SVR model, the values of SVR 
parameters have to be chosen carefully. For this purpose, 
we use Genetic Algorithm as an advanced tool to find the 
best solution. The concept of GA was developed by 
Holland and his coworkers in the 1960s and 1970s [20]. 
Genetic algorithms (GAs) are well appropriate for 
searching global optimal values in complex search space 
(multi-modal, multi-objective, non-linear, discontinuous, 
and highly constrained space), combined with the fact that 
they work with raw objectives only when compared with 
conventional techniques [21,22]. 

The procedure of GA for finding the best solution can 
be summarized below: 

1. Choose a randomly generated population. 
2. Calculate the fitness of each chromosome in the 

population. 
3. Create the offspring by the genetic operators: 

selection, crossover and mutation. 
4. Check the termination condition. If the new 

population does not satisfy the termination condition, 
repeat steps 2 up to 4 for the generated offspring as a new 
starting population 

The SVR parameters are as follows: 
•  Regularization parameter C, which determines the 

tradeoff cost between minimizing the training error 
and minimizing the complexity of the model. 

•  Spread parameter ( 2σ ) of the kernel function which 
defines the width of Gaussian kernel function. 

•  Epsilon parameter ( ε ) of the loss function which 
determine the number of SVs. A small ε value allows 
more points to be outside the ε-tube and results in 
more SVs and a large ε value results in less SVs and 
probably in a smoother regression function. 

2.3. Annealing Robust Learning Algorithm 
(ARLA) for Training RBFNNs  

An ARLA is proposed as a learning algorithm for 
training RBFNNs. An important feature of ARLA that 
adopts the annealing concept in the cost function of the 
robust backpropagation learning algorithm is suggested in 
[4]. Therefore, the ARLA can overcome the existing 
problems in the traditional backpropagation learning 
algorithm when data contaminated with outliers. The 

intuitive definition of an outlier (Hawkins, 1980) is “an 
observation which deviates so much from other 
observations as to arouse suspicions that it is generated 
by a different mechanism” [3,4]. However, outliers may 
occur due to erroneous measurements in measurement 
device(sensors). Outliers in training data set can cause 
substantial deterioration of the approximation realized by 
a neural network architecture [5,6]. Statistical techniques 
are often used which are sensitive to such outliers, and 
negative results may have been affected by them, and the 
most robust and resistant methods have been developed 
since 1960 and less sensitive to outliers. Robustness is the 
key issue for system identification. 

A cost function for ARLA is defined as 
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t is number of epochs, ( )ie t  is the error between the ith 
desired output and the ith output of the trained network at 
epoch t, ( )tβ  is a deterministic annealing schedule acting 
like the cut-off points (scale estimator) and (.)ρ  is 
Logistic loss function and defined as 
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Our objective function defined as 
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In a Logistic loss function using annealing schedule 
(Scale Estimator) as a threshold for the rejection of 
outliers. Usually, the scale estimator can be chosen in two 
ways. One is to obtain the scale estimator based on some 
robust statistic theories such as the median errors and the 
median of absolute deviation (MAD) and the other way of 
defining the scale estimator is to count out the pre-
specified percentage of points [14]. This loss function 
with scale estimator degrade the effect of noise and 
outliers in dataset. 

Based on Gradient-Descent as a type of learning 
algorithm the parameters of RBFNNs ( , ,jo j jW m σ ) 
updated as 
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Where η  is a learning rate, (.)ϕ  is usually called the 
influence function. When outliers exist in dataset, they 
have a major impact on the predicted results. In the ARLA, 
the properties of the annealing schedule ( )hβ  have [12]: 
•  ( ),initial hβ β  has large values for the first epochs; 

•  ( ) 0hβ +→  for h →∞ ; 

•  ( ) kh
h

β =  for any h epoch, where k is a constant. 

The procedure of robust learning algorithm for 
RBFNNs described as follows: 

2.3.1. Robust learning Procedure 
Step 1: Initializing the structure of RBFNNs using 

SVRε − -GA as shown in section 2.2.  
Step 2: Compute the predicted output of network and 

its error for training data. 
Step 3: Find the values of annealing schedule 

( ) kh
h

β =  for each epoch, where { }2*max i initialk e= . 

Step 4: Update the network parameters such as 
(synaptic weights ( )joW , width of Gaussian function ( jσ ) 

and the centers ( jm )). 
Step 5: Compute the robust cost function explain in 

(18). 
Step 6: If the stopping criteria are not satisfied, then go 

to Step 2; otherwise terminate the training stage. 

3. Case Study, Implementation and 
Results 

3.1. Hydrocarbon Debutanizer Process 
Debutanizer column is an essential component of the 

gas recovery unit in the petroleum refineries. It is used to 
recover butane from the light end product containing C2–
C8 hydrocarbons [23]. Nevertheless, the debutanizer 
column demonstrations high dimensional coupling with 
severe nonlinearity and cooperative set of operational 
constraints. A debutanizer is a type of fractional 
distillation column used to recover light gases (C1-C4) 
and Liquefied Petroleum Gas (LPG) from the overhead 
distillate before producing light naphtha during the 
refining process. Distillation is the process of heating a 
liquid to vapor and condensing the vapors back to liquid 
in order to separate or purify the liquid. The main 
equipment of this process consist of a distillation column, 
reboiler and condenser. The debutanizer condenser 
condenses the overhead vapor and the debutanizer 
overhead pressure control valves controls the overhead 
system. The reflux from the top of the debutanizer consists 
of the collected condensed hydrocarbon (light 
hydrocarbon). There are three manipulated variables for 
the distillation column which are the feed flow rate, reflux 
flow rate and reboiler duty. The feed flow rate controls the 
feed to the column, the debutanizer reboiler control valve 
controls the reboiler temperature while the debutanizer 
bottom level controller controls the bottom product 
(Heavier Hydrocarbon) level. The debutanizer reflux 
control valve controls the ratio of the liquid and distillate 

flow rate at the top of the column. This column is a 
challenging process because a highly nonlinear 
multivariable process, involves a great deal of interactions 
between the variables, has lag in many variable of the 
control system (Dynamic System), all of which makes it 
difficult system to be modeled by linear techniques [24]. 
Therefore we use nonlinear models for the prediction of 
properties and identification of this process. At this time, 
the composition of the debutanizer products is measured 
through tedious and time consuming laboratory 
measurements. Consequently, prediction of product 
quality is an important issue for solving these problems. 
To maintain the product quality at a desired level, it is 
necessary to predict the top and bottom compositions of 
the debutanizer column quickly with a high degree of 
precision[25].Therefore robustness issues are important 
for contaminated data. The debutanizer column considered 
in this study is a fifteen-stage multi-component distillation 
column fed by two input streams consisting of a mixture 
of light hydrocarbons [26]. The two input feed streams to 
debutanizer are compositions of the light hydrocarbons 
containing i-butane, n-butane, i-butene, i-pentane, n-
pentane, n-hexane, n-heptane and n-octane. The Process 
Flow Diagram (PFD) of this process presented in the 
Figure 3. 

 
Figure 3. PFD of Debutanizer column 

3.2. Results and Discussion 
To demonstrate the validity of the proposed ARLA-

RBFNNs identification method in practical modeling 
applications, the proposed method has been used for 
identification of Debutanizer unit. 

In the identification problems, the training input-output 
data are obtained by feeding a signal x(t) to the MISO 
system and measuring corresponding outputs y(t+1). An 
objective of the debutanizer is minimizing the n-butane 
(C4) content in the debutanizer bottom flow, this 
concentration is chosen as the output variable which must 
be estimated by the proposed algorithm. 

After gathering 1000 data samples from the debutanizer, 
60 percent of given data selected randomly picked up as 
the training data (600 sample) for modeling and the 
remaining samples were used for testing purpose. some of 
the original data set are replaced by artificially generated 
Gaussian noise, Cauchy noise and outliers for evaluating 
the robustness of the proposed algorithm against 
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uncertainty. The following Figures Demonstrates the data 
set contaminated with artificially Gaussian noise and 
Cauchy noise with outliers. 

 

Figure 4. Contaminated data with Gaussian noise 

 

Figure 5. Contaminated data with Gaussian noise and 7% outlier 
(STD=5) 

 

Figure 6. Contaminated data with Cauchy noise 

 

Figure 7. Contaminated data with Cauchy noise and 7% outlier (STD=5) 

Figure 4, shows contaminated data with Gaussian noise, 
Figure 5, illustrates contaminated data with Gaussian 
noise and 7% outlier when standard deviation (STD) is 
equal to 5, Figure 6, represents Contaminated data with 
Cauchy and Figure 7, shows the Contaminated data with 
Cauchy noise and 7% outlier when STD is equal to 5. 

 

Figure 8. Output prediction with the proposed algorithm versus 
traditional RBF for Gaussian noise 

 

Figure 9. Output prediction with the proposed algorithm versus 
traditional RBF for Gaussian noise and 7% outliers (STD=5) 

 
Figure 10. Output prediction with the proposed algorithm versus 
traditional RBF for Cauchy noise 
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Figure 11. Output prediction with the proposed algorithm versus 
traditional RBF for Cauchy noise and 7% outliers (STD=5) 

Inputs applied to SVRε −  which parameters optimized 
with GA and initial parameters for RBF structure selection 
are determined. After this step, using robust learning 
algorithm to train the proposed network and then 
determined a prediction outputs. Simulation results show 
the effectiveness of the proposed algorithm versus 
traditional RBF. Traditional RBF consists of MATLAB 
Toolbox for creating RBFNNs with newrb function. The 
width of basis functions and number of neurons in this 
function replace with calculated value from GA-SVR 
(initialization method).  

The Figure 8 - Figure 11 depicts the comparison results 
between proposed algorithm and traditional RBF. 

The simulation results show that the proposed approach 
significantly improves the robustness against outliers 
versus traditional methods and follows real value very 
smoother than conventional approach. 

The Root Mean Square Error (RMSE) and Correlation 
Coefficient (CC) of test data are used to measure the 
performance of the learned networks. The RMSE is 
defined as: 

 2
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RMSE y y
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= −
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Where iy  is the desired output and ˆiy  is the output of 
the proposed method. And the value of the Correlation 
Coefficient(CC) is given by: 
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Where y  is the mean desired output and Ŷ  is the mean 
predicted output of the proposed method. Table 1 shows 
the comparison result of the prediction performance for 
proposed network and traditional RBFNNs. 

Table 1. Comparison results of the prediction error for the proposed method and traditional RBF in various case studies 

 Proposed method Traditional RBFNNs 
RMSE CC RMSE CC 

Output data contaminated with Gaussian noise 0.00022869 0.9977 0.00012979 0.9992 
Output data contaminated with Gaussian noise and 

7% outliers with STD=5 0.00025760 0.9972 0.0011 0.9530 

Output data contaminated with Cauchy noise 0.00025001 0.9977 0.00068912 0.9757 
Output data contaminated with Cauchy noise and 7% 

outliers with STD=5 0.00028294 0.9978 0.0014 0.9191 

The results from the demonstrate that when the data set 
is contaminated with Gaussian noise the proposed method 
reveals a good performance. Although the conventional 
RBF approach (least square estimators) has slightly better 
performance; this is because the conventional approach is 
an optimal estimator (Maximum Likelihood Estimator) for 
Gaussian noise. Since, the data set contain non-Gaussian 
(Cauchy) noise and outliers, performance of the 
conventional least squares estimator is getting worse and 
robust training methods have been used for achieving 
better performance. 

Evidently, the proposed method (ARLA-RBFNNs) has 
superior performance and is more robust against outliers 
than traditional RBF. 

4. Conclusion 
In this paper, the radial basis function networks with the 

support vector regression and the robust learning 
algorithm is developed for the system identification of 
nonlinear plant with outliers. To design an effective SVR 
model, suitable values of parameters in SVR have been 
chosen using GA. The SVR approach has been used to 
determine the number of hidden nodes, the initial 
parameters of the kernel, and the initial weights of the 
proposed neural networks. Using the annealing robust 
learning algorithm to adjust the parameters of the model, 

the successful results indicated that the proposed ARLA-
RBFNNs method can be used as a reliable technique for 
the system identification from data contamination with 
outliers. This algorithm has been implemented on 
Hydrocarbon Debutanizer unit for prediction of normal 
butane (C4) concentration. The simulation results show 
that the proposed approach overcome the problems of 
identification with outliers and have more accurate and 
smoother results than the conventional approaches. 
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