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Abstract—The aim of this work is to jointly achieve individual
rate requirements and minimum total transmit power in a
Multi User Multiple Input Multiple Output (MU-MIMO) Broadcast
Channel (BC). Data streams are transmitted from a multi-antenna
base station to several independent and non-cooperative multi-
antenna users. Perfect Channel-State-Information (CSI) is known
at the receivers and it is fed back to the transmitter, where
partial CSI is used for the design of linear transmit filters.
Employing a duality betweenMultiple Access Channel (MAC) and
BC w.r.t. the average Mean Square Error (MSE) and identifying
standard interference functions, we propose an algorithmic joint
solution for the transmit filter design and the power allocation.
Additionally, we describe the feasibility region in the average
MMSE domain. This result allows for checking the convergence
of the algorithm for given Quality of Service (QoS) constraints.

Keywords—MIMO, Multiuser, QoS, Feasibility, Imperfect CSI

I. INTRODUCTION

Dualities between the MAC and the BC have been stud-
ied in several previous works, e.g., dualities w.r.t. Signal-to-
Interference-and-Noise Ratio (SINR) [1], [2], [5], rate [3], [4],
and MSE [6]–[8]. Using several types of dualities, regions of
the MAC and the BC were confirmed to be identical under
sum power constraints. For example, the SINR duality of the
vector BC and the vector MAC [1] is used in SINR balancing
algorithms (e.g. [2]). The coincidence of the MSE regions of
the MIMO MAC and the MIMO BC has also been proven
in [6], [7]. Finally, the rate regions of the MAC and the BC
have been observed to be the same with and without non-
linear interference cancellation under Gaussian signaling for
both single antenna and multiple antenna scenarios [3]–[5].

The mentioned dualities provide conversion formulas to
switch from one domain to the other. These dualities (except
the result in [8]) and the MMSE balancing solution via inter-
ference functions of [9] are based not only on the assumption
of perfect CSI at the receivers but also at the transmitter in
the BC. In a practical scenario, however, the transmit CSI is
imperfect, e.g., when the transmitter obtains the CSI via a
limited rate feedback channel.

Note that the optimization of the linear precoding operation
based on the data rates is difficult for imperfect CSI. Therefore,

∗This work has been supported by Xunta de Galicia, MINECO of Spain,
and FEDER funds of the EU under grants 2012/287, TEC2010-19545-C04-01,
and CSD2008-00010.

we rely on the average MSE to end up with the optimization
of the average rates lower bounds (see Section III). The
proof of the duality between the BC and the MAC w.r.t. the
average MSE conserving the average total transmit power was
shown in [8]. Such a duality allows us to build a standard
interference function [10] to find the optimal transceivers and
power allocation by a fixed-point iteration. Thus, we proposed
an algorithmic solution for the Multi User Multiple Input
Single Output (MU-MISO) in [18] which is now extended
to the MIMO case. Additionally, we describe a method to
guarantee the convergence of the algorithm since it depends
on whether the QoS constraints are feasible or not. There are
several works concerning feasibility (e.g. [2], [16], [17]) but,
again, they are based on the perfect CSI assumption.

We show that the QoS feasibility region in the average
MMSE domain is a polytope. Any point inside the polytope is
achievable and the boundaries describe the separation between
feasibility and infeasibility. As the average MMSE can be
translated to a lower bound to the rate, we end up with a
sufficient feasibility condition for the rates under imperfect
transmit CSI.

II. SYSTEM MODEL

The upper subfigure of Fig. 1 depicts the BC model
considered in this work. The zero-mean data signal sk ∈ C

for user k, with 1 ≤ k ≤ K and E[|sk|2] = 1, is precoded
by pk ∈ C

N , where K and N are the number of users and
transmit antennas, respectively. The transmit signal propagates
over a MIMO channelHk ∈ C

N×R, with R being the number
of receiver antennas. The additive Gaussian noise in the MIMO
channel is ηk ∼ NC(0,Cηk

). The data signals are mutually
independent and also independent of the noise. The linear
equalizer fk ∈ C

R provides the estimates of the data symbols

ŝk = fH
k HH

k

K∑
i=1

pisi + fH
k ηk. (1)

In this work, we consider that the transmitter does not have a
perfect knowledge of the CSI but a partial one that is modeled
through v. We assume the conditional PDFs fHk|v (Hk|v)
are available for all k. Contrarily, the receivers can employ
the known full CSI. Hence, any meaningful equalizers are
functions of the channel state (see [8]), e.g.,

fk,MMSE = argminfk
E
[
|sk − ŝk|2

∣∣∣Hk

]
. (2)
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Fig. 1: Downlink and dual uplink

To highlight the dependence of the receivers on the channel
state, we use the notation fH

k (Hk) in the following.

Recall that the transmitter only has the partial CSI v.
Hence, the precoder design is based on the average MSE

MSEBCk = E[|sk − ŝk|2 | v] = E
[
1− 2�{

fH
k (Hk)H

H
k pk

}
+fH

k (Hk)Cηk
fk(Hk) +

∑K

i=1

∣∣fH
k (Hk)H

H
k pi|2

∣∣ v] . (3)
The lower subfigure of Fig. 1 shows the model of the dual
MAC. The kth precoder is tk (Hk) ∈ C

R. The transmit
signal propagates over the channel HkC

−H/2
ηk

∈ C
N×R. The

received signal is perturbed by η ∼ NC(0, IN ) and filtered
with the receiver gk ∈ C

N to get the estimated symbol of user
k, i.e., ŝMACk = gH

k x, with x =
∑K

i=1 HiC
−H/2
ηi ti(Hi)si + η.

Note that the MAC receivers gk depend on the partial CSI
v, whereas the MAC precoders tk(Hk) are functions of the
current channel state. Accordingly,

MSEMACk = E
[
1− 2�

{
gH
k HkC

−H/2
ηk

tk(Hk)
}

(4)

+
∑K

i=1

∣∣∣gH
k HiC

−H/2
ηi

ti(Hi)
∣∣∣2 + ‖gk‖22

∣∣∣∣ v
]

is the average MSE, E[|sk − ŝMACk |2 | v], in the MAC channel.

A. BC/MAC MSE Duality

We define the relationship between the BC and the MAC
filters as [8]

pk = αkgk and fk(Hk) = α−1
k C−H/2

ηk
tk(Hk) (5)

with αk ∈ R
+ and rewrite MSEBCk accordingly [cf. (3)], i.e.,

MSEBCk = E
[
1− 2�

{
tHk(Hk)C

−1/2
ηk

HH
k gk

}
+α−2

k ‖tk(Hk)‖22 +
∑K

i=1

α2
i

α2
k

∣∣∣gH
i HkC

−H/2
ηk

tk(Hk)
∣∣∣2
∣∣∣∣ v

]
.

By equating the last expression to (4), we get Ψa = ς , where
a = [α2

1, . . . , α
2
K ]T and with ςi = E[‖ti(Hi)‖2 | v] ∈ R

+
0 , we

have ς = [ς1, . . . , ςK ]T. The entries of Ψ ∈ R
K×K are

ψk,j =

{∑
i�=k E[|gH

k HiC
−H/2
ηi ti(Hi)|2 | v] + ‖gk‖22 j = k

−E[|gH
j HkC

−H/2
ηk

tk(Hk)|2 | v] j �= k.

Note that Ψ is non-singular because it is diagonally dominant.
Additionally, Ψ has positive diagonal and non-positive off-
diagonal entries. Thus, Ψ−1 has non-negative entries [7], [13]
and the resulting α2

k are non-negative. In other words, we can
always find αk ∈ R

+ such that MSEBCk = MSEk
MAC

, ∀k. Note
that

∑K
i=1 ‖gi‖22α2

i =
∑K

i=1 E[‖ti(Hi)‖22 | v], which results
from left multiplying Ψa = ς by the all-ones vector 1T. Due
to (5), we can infer that the same average transmit power is
used in the BC as in the dual MAC.

The proof for the converse transform is analogous. For
given BC filters, MAC filters achieving the same average MSEs
with the same average transmit power can be found [8].

III. PROBLEM FORMULATION

Due to Jensen’s inequality and the concavity of log2 (•),
we have log2(E[x]) ≥ E[log2(x)]. Since the instantaneous data
rate can be expressed as R = − log2(MMSE), we have that
E[R] = E[− log2(MMSE)] ≥ − log2(E[MMSE]). In other
words, when ensuring an average MMSE, a minimum average
rate is guaranteed, i.e., E[Rk | v] ≥ − log2 (εk) follows from
MMSEBCk ≤ εk.

Our goal is to ensure minimum average rates. Based on
the above discussion, we circumvent the difficult optimization
of the average rates and focus on the average MSE instead.
We minimize the total transmit power under QoS constraints
expressed as maximum MSEs, εk, i.e.,

min
{fk(Hk),pk}Kk=1

K∑
i=1

‖pi‖2 s.t.: ∀k: MSEBCk ≤ εk (6)

where the precoders pk depend on the partial CSI v. This for-
mulation is conservative as it ensures E[Rk | v] ≥ − log2(εk)
for all k. Note that the BC optimization (6) has the advantage
that the computation of the optimal equalizers depending on
the precoders is simple. From (2), we find

fk,MMSE(Hk) =

(
Cηk

+
∑K

i=1
HH

k pip
H
i Hk

)−1

HH
k pk.

(7)
For the computation of the optimal precoders, however, a
reformulation in the dual MAC is necessary, i.e.,

min
{tk(Hk), gk}Kk=1

Ptx,MAC s.t.: ∀k: MSEMACk ≤ εk (8)

with Ptx,MAC =
∑K

i=1 E[||ti(Hi)||22 | v]. The reformulation (8)
leads to the following optimal MAC receivers, i.e., the BC
precoders [see (5)]

gk,MMSE = (R+ IN )
−1

μk (9)

where we introduced μk = E[HkC
−H/2
ηk

tk(Hk) | v] and R =∑K
i=1 E[HiC

−H/2
ηi ti(Hi)t

H
i (Hi)C

−1/2
ηi HH

i | v].
The two formulations (6) and (8) allow for a simple

computation of the optimal receivers although the precoders
fulfilling the QoS constraints are difficult to find. Therefore,
we propose to employ an Alternating Optimization (AO) where
BC receivers are found via (7) for given precoders pk and the
BC precoders (including the power allocation) are computed
in the dual MAC for given fk(Hk) (see Section V).
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IV. MAC SOLUTION FOR GIVEN BC RECEIVERS

As can be seen from (9), it is necessary to compute
the expectations R and μi for i = 1, . . . ,K. We propose
to perform the numerical integration by the Monte Carlo
method. To this end, the M realizations H

(1)
k , . . . ,H

(M)
k

resulting from the PDF fHk|v(Hk|v) are collected in Γk =

[H
(1)
k C

−H/2
ηk

, . . . ,H
(M)
k C

−H/2
ηk

]. In the AO procedure, the
dependence of the BC receivers on the channel state is left un-
changed in the MAC step. However, the power allocation is up-
dated in the MAC to fulfill the QoS constraints. Therefore, we
split off the average power allocation ξk = 1

M

∑M
i=1 ‖t(i)k ‖22,

i.e., t
(i)
k =

√
ξkτ

(i)
k with 1

M

∑M
i=1 ‖τ (i)

k ‖22 = 1, ∀ i. For
notational brevity, we use Tk = blockdiag(τ

(1)
k , . . . , τ

(M)
k )

such that Tk1 = [τ
(1),T
k , . . . , τ

(M),T
k ]T, with the all-ones

vector 1. Accordingly, the MAC MSE reads as [cf. (4)]

MSEMACk = 1− 2M−1
√
ξk�{gH

k ΓkTk1} (10)

+
1

M

K∑
i=1

ξig
H
k ΓiTiT

H
i ΓH

i gk + ‖gk‖22.

The optimal receivers gk,MMSE still have the form of (9) but
R = 1

M

∑K
i=1 ξiΓiTiT

H
i ΓH

i and μk = 1
M

√
ξkΓkTk1. In

the following, we show a strategy to find the MAC power
allocation ξ = [ξ1, . . . , ξK ]T ≥ 0.

A. Power Allocation via Interference Functions

The MAC receivers gk resulting from the BC-to-MAC
transform are kept fixed. To allow for an adaptation of the
equalizers during the power update, additional scalar receivers
rk are introduced. Replacing gk by rkgk in (10) leads to

MSEMACk = 1− 2M−1�
{
r∗kg

H
k ΓkTk1

√
ξk

}
(11)

+
1

M
|rk|2

K∑
i=1

ξig
H
k ΓiTiT

H
i ΓH

i gk + |rk|2 ‖gk‖22 .

The MMSE optimal scalar receiver is given by

rk,MMSE =
1
M gH

k ΓkTk1
√
ξk

1
M

∑K
i=1 ξig

H
k ΓiTiT

H
i ΓH

i gk + ‖gk‖22
. (12)

Substituting rk,MMSE in (11) gives MMSE
MAC
k,scalar. With

yk(ξ) =
1

M

K∑
i=1

ξig
H
k ΓiTiT

H
i ΓH

i gk − ξk
M2

∣∣gH
k ΓkTk1

∣∣2
and xk(ξ) = ‖gk‖22 + yk(ξ), the minimum MSE reads as

MMSEMACk,scalar =
1

ξk

1
1
ξk

+ 1
M2

1
xk(ξ)

∣∣gH
k ΓkTk1

∣∣2 . (13)

For diagonal D, aHD2a − 1
M |aHD1|2 = aHDΠDa > 0

with the projector Π = IM − 1
M 11

T. Thus, xk(ξ) > 0. The
QoS power allocation problem can be written as [cf. (8)]

min
ξ≥0

1
Tξ s.t.: ∀k: ε−1

k Jk(ξ) ≤ ξk (14)

with the interference of user k

Jk(ξ) =

(
1

ξk
+

1

M2

1

xk(ξ)

∣∣gH
k ΓkTk1

∣∣2)−1

(15)

Algorithm 1 Power Minimization

1: Initialize: l← 0, random initialization for p(0)
k

2: repeat
3: l ← l + 1 , execute commands for all k ∈ {1, . . . ,K}

and for all m ∈ {1, . . . ,M}
4: f

(l,m)
k ← update BC receiver using (7)

5: t
(l,m)
k ← BC-to-MAC conversion (see Section II-A)

6: ξ
(l+1)
k ← 1

εk
Jk(ξ

(l))

7: t
(l+1,m)
k ← τ

(l,m)
k

√
ξ
(l+1)
k

8: g
(l+1)
k ← update MAC receiver using (9)

9: p
(l+1)
k ← MAC to BC conversion (see Section II-A)

10: until
∣∣ξ(l+1) − ξ(l)

∣∣ ≤ δ

and where MMSEMACk,scalar = Jk(ξ)/ξk. Collecting the interfer-
ences in J(ξ) = [J1(ξ), . . . , JK(ξ)]T leads to a standard
interference function [10]. Positivity of J(ξ) follows from
ξ ≥ 0 and xk(ξ) > 0. Monotonicity can be seen from the
property of xk to be monotonically increasing in ξ. Finally,
we have zxk(ξ) > xk(zξ) for z > 1 and, zJk(ξ) > Jk(zξ)
thus demonstrating scalability. These properties imply that
J(ξ) is a standard interference function and, if (14) is fea-
sible, the fixed point iteration ξ(�) = E−1J(ξ(�−1)) with
E = diag(ε1, . . . , εK) converges to the global optimum of
(14) as proven in [10].

V. ALGORITHMIC SOLUTION

The pseudocode given in Algorithm 1 finds a feasible
solution of (6), if any. In every loop, the BC receivers are
updated in line 4. After the BC-to-MAC transform, the MAC
power allocation is recomputed based on the interference
function J(ξ) [see (15)] in line 6 and the MAC receivers are
updated in line 8. Due to the MAC-to-BC transform in line 9,
this translates into an update of the BC precoders. Note that
every step of Algorithm 1 either reduces the average MSEs or
the average transmit power. Due to the existence of an infimum
for feasible (6) [see Section VI], this property implies that the
power converges. We also observe that the filters converge.

VI. QOS FEASIBILITY

In Theorem 1, we present a feasibility test for given average
MMSE requirements applicable for imperfect CSI. A similar
result was shown in [17] for the vector BC but assuming
perfect CSI. For the optimal equalizers [see (9)], the average
MAC MMSE achieved for user k can be expressed as

εMACk = 1− μH
k

(
K∑
i=1

Ri + σ2
IN

)−1

μk (16)

where Rk = E[HkC
−H/2
ηk

tk(Hk)t
H
k(Hk)C

−1/2
ηk

HH
k |v]. With

Ck=E[(HkC
−H/2
ηk

tk(Hk)−μk)(t
H
k (Hk)C

−1/2
ηk

HH
k−μH

k )|v],
we have Rk = Ck + μkμ

H
k . Note that we have introduced a

non-unit variance σ2 of the noise η in the dual MAC. Intro-
ducing Θ = HT where H = [H1C

−H/2
η1

, . . . ,HKC
−H/2
ηK ]

and T = blockdiag(t1(H1), . . . , tK(HK)) yields

εMACk = 1−
[
E[ΘH|v] (E[ΘΘH|v] + σ2

IN

)−1
E[Θ|v]

]
k,k

.
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Due to the imperfect CSI at the transmitter, the average MM-
SEs cannot be arbitrarily reduced in a simultaneous way, even
when K ≥ N . This observation is in contrast to the perfect
CSI case (see [17]). Employing the above expression for εMACk ,
we get for the average sum MMSE εMAC =

∑K
k=1 ε

MAC
k

εMAC = K − tr
{
E[ΘH|v] (E[ΘΘH|v] + σ2

IN

)−1
E[Θ|v]

}
.

By setting the noise variance to zero, i.e., σ2 = 0, we observe
that the average MMSEs collected in ε = [εMAC1 , . . . , εMACK ]T

for any finite total average power allocation satisfies

1
Tε > K − tr{X} (17)

with X = E[THHH|v](E[HTTHHH|v])−1 E[HT |v]. Here,
we assume that E[HTTHHH|v] is invertible, which is ful-
filled when at least one of the error covariance matrices Ck is
non-singular, for example. Equality in (17) is asymptotically
achieved when the powers for all users reach infinity.

So far, we have found a necessary condition for the
feasibility of QoS targets, i.e., any power allocation with finite
sum power achieves an MMSE tuple ε inside the polytope

P =
{
ε |1Tε ≥ K − tr {X} and ∀k : 0 ≤ εk ≤ 1

}
. (18)

To show that P is the feasible set of (14), we must prove
the converse, i.e., that there exists a power allocation for
any tuple inside the polytope P . The mapping from ε to the
power allocation resuls from equating εMACk [see (16)] with
the target εtargetk . The resulting fixed point is unique due to
the properties of interference functions [10]. Then, if the fixed
point exists, the aforementioned mapping is bijective. In [15],
Kennan established sufficient conditions for the existence of
the fixed point x = f(x; εtarget), viz.,

f(0; εtarget) ≥ 0 (19)
∃a > 0 with f(a; εtarget) > a (20)
∃ b > a with f(b; εtarget) < b. (21)

For finding f , apply the matrix inversion lemma to (16) to get

εMACk =
(
1 + ξkϕ

H
k A

−1
k ϕk

)−1 (22)

with μk =
√
ξkϕk,Ak =

∑K
i=1 ξiΦi+

∑
j �=k ξjϕjϕ

H
j +σ2

IN

and Ck = ξkΦk. Equating εMACk = εtargetk > 0 shows that the
optimal powers are the fixed points fk(ξ; εtarget) = ξk with

fk(ξ; ε
target) :=

((
εtargetk

)−1 − 1
) (

ϕH
k A

−1
k ϕk

)−1
. (23)

Clearly, fk(ξ; εtarget) fulfills the first requirement (19) due to

fk(0; ε
target) =

1− εtargetk

εtargetk

σ2

‖ϕk‖22
≥ 0 if 0 < εtargetk ≤ 1.

Consequently, we have found a lower bound for fk(ξ; εtarget),
that is, fk(ξ; εtarget) ≥ 1−εtarget

k

εtarget
k

σ2

‖ϕk‖22
for ξ ≥ 0. Obviously, a

lower bound to fk(ξ; ε
target) for all k can be found by

a = min
k

1− εtargetk

εtargetk

σ2

‖ϕk‖22
for εtargetk < 1. (24)

Bearing in mind that a > 0 for εtargetk < 1 and choosing a < a,
the second condition (20) is satisfied using a = a1. To demon-
strate that the third requirement (21) is also accomplished, we
need to consider the following two cases.

1) Number of transmit antennas greater than or equal to
the number of users (N ≥ K): first, we apply the matrix
inversion lemma to the denominator in (23) to obtain

ϕH
k Φ

−1
[
I−Bk̄

(
Ξ−1

k̄
+BH

k̄ Φ
−1Bk̄

)−1
BH

k̄ Φ
−1

]
ϕk

where
∑

j �=k ξjϕjϕ
H
j = Bk̄Ξk̄B

H
k̄
with Ξk̄ = diag(ξj)j �=k,

Bk̄ = [ϕj ]j �=k, and Φ =
∑K

i=1 ξiΦi + σ2
IN . Thus,

fk(ξ; ε
target) can be upper bounded by lower bounding its

denominator via [see (23)]

ϕH
k A

−1
k ϕk ≥ ψH

k

(
I−Dk̄

(
DH

k̄ Dk̄

)−1
DH

k̄

)
ψk (25)

with ψk = Φ−1/2ϕk and Dk̄ = Φ−1/2Bk̄. The equality
in (25) holds for ∀k : ξk → ∞. We also introduce the
orthogonal projector Πk onto the complement of the range
space ofDk̄. Hence, the righthand side of (25) can be rewritten
as ψH

k Πkψk. The third condition (21) can be fulfilled by
choosing b such that bk > ( 1

εtarget
k

−1)/(ψH
k Πkψk), completing

the proof that P is the feasible set of (14) for N ≥ K.

2) Number of transmit antennas smaller than the number
of users (N < K): Set b = αb0, where b0 belongs to the
simplex S = {x|∑k xk = 1 and ∀k : xk ≥ 0}. For α → ∞
(or σ2 → 0) and b0 > 0, we can rewrite (23) as

f∞k (b0; ε
target) :=

1
εtarget
k

− 1

ϕH
k

(∑
i

b0,iΦi +
∑
j �=k

b0,jϕjϕ
H
j

)−1

ϕk

where bk = αf∞k (b0; ε
target). Since b0,k = f∞k (b0; ε

target), we
observe that b0 − f∞(b0; ε

target) = 0. The tuple εtarget has to
satisfy 1

Tεtarget = K − tr{X} for α → ∞ or σ2 → 0 [cf.
(17)]. In other words, a power allocation b = αb0 with b0 > 0

and α → ∞ achieves a tuple εtarget that lies in the region
B = {ε|1Tε = K − tr{X} and ∀k : 0 ≤ εk ≤ 1} which
separates feasible from infeasible targets. Obviously, B ⊂ P
[see (18)]. Then, to complete the proof, we need to show that
there exists a unique power allocation b = αb0 for any MMSE
tuple ε ∈ B with b0 ∈ S and α→∞.
Define the kth user’s SINR as 1

εMAC
k

− 1. When α → ∞,
the SINR reduces to the signal-to-interference ratio [cf. (22)]
SIRk = b0,kϕ

H
k (

∑K
i=1 b0,iΦi +

∑
j �=k b0,jϕjϕ

H
j )
−1ϕk. Now,

we write the SIRk as the power factor b0,k over the function
Qk(b0). Fortunately, the functions Qk(b0) satisfy the proper-
ties given in [16]. Thus, the existence and uniqueness of the
optimal power allocation for the SIR balancing problem

max
r,b0

r s.t.
b0,k

Qk (b0)
= r SIR0,k ∀k ∈ {1, . . . ,K} (26)

is guaranteed. Note that we have that εMACk = 1
1+SIRk

in the
high power regime with α → ∞. Therefore, it holds that
1
Tε =

∑K
k=1

1
1+r SIR0,k

is the optimum of (26). Remember
from the above discussion that ε ∈ B, i.e., 1Tε = K− tr{X}
for α→∞. Therefore, the balancing level r can be found via

K∑
k=1

1

1 + r SIR0,k
= K − tr{X}.

Note that this equation only has a single solution r > 0 since
1

1+r SIR0,k
is monotonically decreasing for r > 0 and all k. In
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Fig. 2: Example of algorithm execution.

particular, r = 1 for SIR targets resulting from MMSE targets
out of B, i.e.,∑K

k=1
1

1+SIR0,k
= K− tr{X} is fulfilled by the

SIR targets. Summing up, we have shown based on results for
SIR balancing that a unique power allocation b = αb0 with
b0 ∈ S and α → ∞ always exists for any MMSE targets
ε′ ∈ B such that f(b; ε′) = b where the entries of f are
defined in (23). Since f(b; εtarget) is decreasing in εtarget [see
(23)], we can infer for any εtarget = βε′ with β > 1 that

f(b; εtarget) < b.

Hence, the third requirement (21) is also fulfilled for N < K.
This completes the proof of the following theorem.

Theorem 1. The QoS problem

min
ξ≥0,{gk}Kk=1

1
Tξ s.t. MSEMACk ≤ εk

has a solution, i.e., the targets εtarget = [ε1, . . . , εK ]T are
feasible, if and only if εtarget ∈ P where P is defined in (18).

Remarks: Theorem 1 is a generalization of Theorem III.1
in [17]. For error-free CSI, i.e., ∀k : CHk

= E[hkh
H
k |v] = 0

with hk = vec(Hk), we have tr{X} = N and the bound
reduces to 1Tε > K−N . Our observation is that tr{X} = R
for ∀k : CHk

= σ2
hk
IRN where R is the number of antennas

per user. If this observation is true in general, we can infer that
the feasible region for single-antenna receivers equals that of
SISO systems if ∀k : CHk

= σ2
hk
IRN . Contrary to the perfect

CSI case, tr{X} need not be integer for CHk
�= σ2

hk
IRN .

VII. SIMULATION RESULTS

We present the results of a simulation for N = 4 transmit
antennas, K = 4 users, and R = 2 receive antennas per
user. Fig. 2 shows the average MMSEs vs. the number of
iterations. The result is the mean of M = 4000 channel
realizations and the average MMSE targets are εk = 0.45,
∀k, that is, E[Rk] ≥ − log2 (0.45) = 1.152, ∀k. As we
can see, these rate targets are not reached even when we let
the power grow without restriction due to QoS constraints
infeasibility. This result agrees with Theorem 1 stating that
the sum of average MSEs is lower bounded by K − tr{X}.
Using the optimal MAC precoders from Algorithm 1, we find
that tr{X} = 2 for partial CSI v translated into Rayleigh
channels with ∀k : CHk

= σ2
hk
IRN . The resulting average

sum MSE lower bound is 1Tε ≥ 2, i.e., εk ≥ 0.5, ∀k if the
average MSEs are balanced.

VIII. CONCLUSION

We proposed an algorithm for rate balancing via MMSE
balancing in MU-MIMO systems. At each iteration, using

the average MSE duality between the MAC and the BC, the
precoders and the receivers are updated, and the transmit power
is minimized by means of standard interference functions. We
also described the MMSE feasibility region. If we choose QoS
constraints inside P , convergence and optimality are ensured
due to [10].
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