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Abstract. We consider the problem of controlling the end-effector motion
of flexible robot arms. Main difficulties arise both from the typical nonlin-
earities of robot dynamics and from the non-minimum phase nature of the
flexible arm when tip position is chosen as output. This bars the straight
application of inversion control solving the trajectory tracking problem in
robots with rigid links. Three alternative strategies are presented: inversion
control based on a suitable minimum phase output, nonlinear regulation of
the tip output, and iterative learning control. The control laws are discussed
from the point of view of system requirements and complexity, while their
performance is compared by simulation on a simple but significative exam-
ple. Finally, we report on the experimental activity in controlling flexible
robots carried out in the Robotics Laboratory at DIS.

1. Introduction

The adoption of lightweight materials and the development of very large
manipulators have recently given an impulse to the modeling and control
of robotic systems with flexible elements. From the application point of
view, robots with flexible links are found in space, as in the Space Shuttle
manipulator [1], and on earth, e.g. in automated crane devices for advanced
building costruction. Flexibility plays a major role whenever long and dex-
trous arms are needed to have access to hostile environments, such as in
nuclear sites for maintenance, in underground waste deposits for inspection,
or in deep sea for exploration.

Robotic tasks require two types of motion: point-to-point moves for
repositioning the end-effector and path following. However, it is always
convenient to specify an interpolating trajectory so to guarantee smooth
transition between initial and final configurations, impose an explicit time
constraint on the overall motion, and eventually simplify the synthesis of
the control gains. Moreover, when the task involves contact with the en-
vironment, the accuracy in executing the planned motion becomes quite
crucial. As a result, trajectory tracking is considered to be the reference
problem for evaluating advanced robotic control law.
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In the case of robots with fully rigid links, straightforward solutions
are offered by inversion control schemes, which use nonlinear state feedback
to compensate for couplings and nonlinearities of the system equation [2].

In the presence of link flexibility, both the trajectory specification and
the control design should take care also of the relevant induced vibrations
in the robot arm. On one hand, fast trajectories are usually associated
to large deformations that may excessively stress the mechanical structure
and result in long oscillation settling times at the final point. Conversely,
slow motions that do not excite the characteristic eigenfrequencies of the
arm would limit the operational performance. As for the controller, two
main objectives are of interest: exact or asymptotic reproduction of a con-
veniently defined output trajectory and stabilization of the arm flexible
dynamics.

When inversion control is applied to a flexible robot arm for tracking
an end-effector trajectory, serious instability problems occur. This phe-
nomenon emerges already in a linear setting. In fact, the nature of the
mapping between input torque and tip location of each link is non-minimum
phase, i.e. the transfer function contains right-half plane zeros [3]. Some-
times this corresponds to the practical observation of an ‘opposite’ output
motion in response to a given torque input command. Since inversion con-
trol tends to impose a prescribed linear input-output behavior with no zeros,
this suggests that cancellation with unstable poles is attempted. In a non-
linear setting, the generalization of the concept of zero dynamics allows to
draw analogous conclusions about instability due to cancellations [4]. Non-
linear systems with unstable zero dynamics are often called non-minimum
phase systems, similarly to the linear case.

Recently, some control alternatives have been proposed that achieve ac-
curate tracking in flexible robots, complying with the non-minimum phase
characteristics of the end-effector output. These can be classified as follows.

e Inversion control for an associated minimum phase output [5-8]. This
involves the definition of a suitable output for which inversion control
yields a stable closed-loop system.

e Output regulation of the end-effector output [9-11]. A bounded evolu-
tion of the whole state can be associated to any given bounded refer-
ence trajectory and used as a reference for a state feedback stabilizing
law, without involving cancellations. This reference state trajectory
produces exactly the desired time profile at the system output.

e Iterative learning control of repetitive trajectories [12,13]. Provided
that repeated trials are allowed, it is possible to learn the input com-
mand that imposes the desired output trajectory, processing error data
at previous trials with a limited knowledge of the system dynamics.

The purpose of this paper is to present a comparison of the above
control methodologies. As a matter of fact, several interesting relationships
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exist among the different approaches: the application to a physical example,
as the flexible robot arm, will help to enlighten them.

The first two classes of methods lead essentially to model-based con-
trollers and will thus perform best when a good dynamic model of the
robot arm is available. The third class uses instead a nominal model only
for an efficient selection of the learning functions. Several approaches exist
for modeling articulated flexible structures, ranging from finite- to infinite-
dimensional descriptions and from linear to nonlinear dynamics [14,15].

Due to the overall complexity of modeling and controlling flexible ma-
nipulators, the analysis and the synthesis stages asks for an adequate ex-
perimental verification. To this aim, a two-link planar robot with a very
flexible forearm has been designed and built in our Laboratory [16,17], and
the robotic system is now available for control experiments. Such an appa-
ratus allows to evaluate theoretical control findings, with respect to several
real world aspects which are often neglected at the level of control design.
However, it should be emphasized that the end-effector trajectory tracking
in a flexible robot arm can be viewed as a prototype control problem for
the larger class of nonlinear systems with unstable zero dynamics.

The paper is organized as follows. Dynamic modeling issues are sum-
marized in Section 2. The three approaches to trajectory control based
on inversion, regulation, and learning are presented in Section 3, directly
for the case of multi-link flexible robot arms. In Section 4 a more specific
comparison is performed on the basis of the most simple arm structure that
inherits the non-minimum phase characteristic. Preliminary experimental
results are then reported, obtained on the flexible manipulator available
at DIS. Finally, on-going research activities and future developments are
outlined.

2. Dynamic modeling of flexible robot arms

Accurate and complete dynamic models are mandatory for simulation pur-
poses, where efficient numerical formats are more convenient. On the other
hand, when control design is of concern, the availability of the system equa-
tions in an explicit symbolic form allows to trade off between the complexity
of a model-based derivation and the expected control performance [18].

In robots with flexible links, deflection is always distributed in nature.
This supports the usual argument that infinite-dimensional dynamic equa-
tions describe at best the dynamic behavior of flexible manipulators [19].
Typically, each link is represented in the limit as an Euler beam with proper
boundary conditions at the two ends [20]. When small deformations are
assumed, an eigenvalue problem has to be solved for each link or, more
correctly, for the entire system. However, for all but the most simple struc-
tures, it is quite difficult to solve for the time evolution of the arm deforma-
tion. In particular, time-varying boundary conditions appear whenever the
robot is constituted by two or more flexible links [21]. As a result, several
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approximations have been introduced, all leading to the derivation of finite-
dimensional dynamic models. In describing the arm flexibility, separability
in time and space is a common hypothesis, e.g. for the bending deformation
at time ¢ of a point x along the ith link one has

1) pil ) = D 01y (2)5 ).

The n; spatial components ¢;;(x) satisfy geometric and/or dynamic condi-
tions, while time dependency is resumed within the generalized coordinates
i (t).

Once the arm kinematics is properly described in terms of a set of
N rigid variables (usually associated to the robot joints) and of N, =
ZZN:l n; deformation variables, the dynamic equations of motion follows in
a standard fashion using a Lagrangian approach [22]. Consider a robot arm
with an open kinematic chain structure, rotational joints and flexible links.
The coupling of N rigid motion equations with N, flexible ones will result
in a nonlinear dynamic model of the general form

@ (s w5+ [nesis] + [l - [5]

where 6 is the vector of rigid joint variables and § collects the general-
ized coordinates associated to deformations. B;; are blocks of the positive
definite inertia matrix B, partitioned according to the rigid and flexible
components; vectors n; contain the Coriolis, centrifugal and gravity terms.
The diagonal matrix D; represents joint viscous friction, while the positive
definite, symmetric (and typically diagonal) matrices K and Dy are, re-
spectively, the modal stiffness and the structural damping of the arm links.
Accordingly, the input torques u appear only in the first set of N equations.

The model structure (2) holds for any finite-dimensional approximation
of distributed flexibility, as long as the assumed modes of deformations sat-
isfy the geometric clamped boundary conditions at the base of each link [14].
However, simplifications are obtained for the blocks in (2) whenever use is
made of deformation modes ¢;;(x) that automatically satisfy orthonormal
conditions. Moreover, relevant reductions follow from evaluating robot ki-
netic energy only in correspondence to the undeformed arm configuration
(6 = 0). Other couplings between rigid body motion and flexible deforma-
tions are also often neglected.

We point out that consistent dynamic modeling choices retain the same
physical feature, relevant for control purposes: in the presence of uniform
mass distribution for each link, all flexible robot models share the non-
minimum phase property of the end-effector output.
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3. Control strategies for trajectory tracking

We present here the basic steps involved in the synthesis of three trajectory
control laws for general flexible manipulators. The common problem is to
determine an input torque which leads to the reproduction of a desired
smooth end-effector trajectory. This can be restated as finding ways to
extend the well-known computed torque method [2] to flexible robot arms.

In the following, some simplifying assumptions are introduced: (i) for
each link, deflections are limited to the plane of rigid motion; (i) gravity
effects are not included in the analysis. As a result, the terms n; in (2) are
purely quadratic in the velocity (9, 5) and any undeformed rest configura-
tion will be an equilibrium state for the robot arm. Typical examples of
this situation are the motion in a horizontal plane and robotic operations
in space.

3.1 Joint and link-point based inversion control

Let the output of the system be defined in a parametric form as
(3) y =0+ \C4, A€ [0,1].

When A = 0, (3) is just the set of rigid joint variables. More in general,
the component y; is §; modified by a linear combination of the variables d;;
relative to the ith link. When A = 1, each output is an angle that points
from the joint to the end of the associated flexible link.

Under the assumption that the so-called decoupling matrix is nonsingu-
lar, the inversion algorithm requires to differentiate each output component
until the input appears explicitly and then solve for the input u [23]. Define
the inverse of the inertia matrix H = B~! and denote by H;; the blocks of
its partitioned form. The generic relative degree for system (2) with (3) is
uniformly equal to two. Then, dropping dependencies,

@ § =04+ \C6 = (Hy + \CHEL)(u—ny — D16)
— (Hiz + A\CHa) (n2 + K& + Ds0).

Setting § = v and solving for u yields, after some manipulations, the non-
linear feedback controller

u=ng +D19+B110

(5) T \—1/pT S
— (Blg — )\BHC) (BQQ — )\BIQC) (BIQ’U + N9 + Ké + D25)

The closed-loop dynamics

(6a) j=uv
(6b) 6 = (Bas — ABLC) " Y(BLv + ng + K6 + D)
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should be asymptotically stable. The external input v is designed as a linear
stabilizing feedback for (6a), while the choice of the output parameter A
will affect directly the stability of (6b).

A simplification occurs when A\ = 0, i.e. when a joint-based inversion
strategy is pursued. In this case, the control law becomes

(7) U =mni+ D10 - B1232_21 (TLQ + K6 + D25) —+ (Bll — BlgB2_21.BlT2)’U,
and the closed-loop unobservable dynamics is
(8) 6 = —B3, (BLu 4 ng + K& + D39).

It can be shown that the zero dynamics associated to (8) (i.e. when y = 0)
is exponentially stable [24]. Thus, inversion at the joint level is always
feasible. By continuity, there exists an interval [0, Ag] for A that guarantees
closed-loop stability while providing exact tracking of the associated output
trajectory. Indeed, if A\g < 1 end-effector exact tracking will never be
realized. However, the closer is the output to the tip of each link, the
better the end-effector will approximate the same trajectory.

3.2 Nonlinear regulation of end-effector motion

In this case the output is chosen directly at the end of each flexible link,
ie. setting A=11in (3) or

(9) y=0+C6.

Under the hypothesis of small link deformation, this output is one-to-one
related to the cartesian position and orientation of the end-effector through
the standard direct kinematics of the arm.

Following [25], the design of a regulator requires the computation of a
reference state trajectory associated to the output evolution, together with
a nominal input needed to keep the state along its reference trajectory.
The output reference trajectory is generated by a dynamic autonomous
exosystem that can be chosen, without loss of generality, as a linear system
in observable canonical form with

(10) Yd = {yd,i7 yd,h yd,i7' ey y:l:l_17 1= 1u .. 7N}

taken as its state. Here, r; is the smoothness degree of the ith output
reference trajectory.

Using (9), the robot dynamics (2) can be rewritten in terms of the new
coordinates (y, ) as
Bii(y — C8,8)jj + [Bia(y — C6,8) — Byi(y — C6,6)C]d
(11a) +ni(y — C8,8,9 — C3,6) + Dy (y — C8) = u,
Biy(y — C8,0)ij + [Baa(y — C6,6) — Bl (y — C6,6)C)8
(11Db) +ng(y — C8,8,9 — C8,8) + K& + Dad = 0.
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The reference state evolution is then equivalently specified in terms of y4
and 84, and of their derivatives ¢4 and 4. In particular, it is easy to see
that the problem reduces to determining only the N, functions §4 = 7 (Yy),
with d; = (Om/8Yy) Yy as a direct consequence.

Thus, the vector function 7(Yy) should satisfy equation (11b), evalu-
ated along the reference evolution of the output

B (ya, 7(Ya))ija + [Baz(ya, 7(Ya)) — Biy(ya, 7(Ya))Cl# (Ya, Ya, Ya)

12 ) .
( ) + n2(yd, W(Yd), Yd, ﬁ(Yd, Yd)) + Kﬂ'(Yd) + DQ#(Yd, Yd) =0.

This equation is independent from the applied torque and should be consid-
ered as a dynamic constraint for 7(Yy). Being (12) a nonlinear time-varying
differential equation, it is almost impossible to determine a bounded solu-
tion in closed form. Note that this would be equivalent to finding proper
initial values for 7(Yy) and #(Yy,Yy) at time ¢ = 0 such that forward inte-
gration of (12) yields a bounded evolution.

A feasible approach is to build an approximate solution 7(Yy) by using
basis elements which are bounded functions of their arguments, e.g. polyno-
mials in Yy [10]. As long as each component y4 ;(t) of the desired trajectory
and its derivatives up to the (r; — 1) order are bounded, the approximation
7m(Yy) is necessarily a bounded function of time. The problem of deter-
mining the constant coefficients in the expansion is then solved through
a recursive procedure based on the polynomial identity principle. Once a
solution 7(Yy) = 7(Yy) is obtained up to any desired accuracy, backsubsti-
tution of the reference deformation d4, of the desired output trajectory g,
and of their time derivatives into (11a) will give the nominal feedforward
term ug = v(Yqy, Yy, Yd) of the regulation law.

If the initial state is not on the reference trajectory, a stabilizing term
should be added in order to drive the state towards this solution and only
asymptotic output reproduction can be guaranteed. Since the system lin-
earization is controllable, this can be accomplished —at least locally— using
a simple linear state error feedback characterized by a matrix F. The final
regulation law takes on the form

Yd — Y 0o — 0

. . ~ ) — 1 . . 9 _0

(13)  w=~(Ya, Yo, Vo) + F | 11 7Y = (Y, Yo, Vo) + F | 2~
dq =0 0q — 0

by—0 g —0

If a particular globally stabilizing law exists, then convergence to the ref-
erence state behavior associated to the desired output trajectory can be
achieved from any initial state. For robot arms with flexible links it is
known that, in the absence of gravity, proportional-derivative (PD) joint
feedback is enough for stabilizing any arm configuration [8,26]. As a result,
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a simplified matrix F' can be used in (13) and the overall regulator for the
nonlinear system can be implemented using only partial state feedback.

3.3 Iterative learning of end-effector motion

Suppose that the task requires to execute the desired end-effector trajectory
several times. We may then acquire from experiments (or from simulations
using an accurate dynamic model) the input torque needed for accurate
reproduction of that particular trajectory. At each trial, a feedforward
command is applied to the robot and output error data are stored for
subsequent off-line processing. The next feedforward term is computed by
combining the previous command (‘memory’) with the error at the current
trial (‘update’). Provided that the robot arm is stabilized, a contraction
mapping argument can be used to prove convergence of the learning process.

It has been shown [27] that for rigid robot arms one can design the
learning algorithm based only on approximate information about the sys-
tem dynamics. In the presence of flexibility, additional filtering of high-
frequency signal components is needed to guarantee convergence. The price
to pay is that tracking accuracy is preserved only within a bandwidth of
interest (i.e. for f < fo) [28]. However, this operation prevents other un-
modeled effects from destroying learning convergence.

In the synthesis of a learning controller a linearized model can be used,
e.g. obtained by expanding (2) around a static configuration 6 = 6y, § = 0.
In order to better shape the system characteristics, a preliminary linear
feedback is applied. Following the same arguments used in (13), a PD joint
feedback law is sufficient and the closed-loop linearization yields

av oo 5]+ [T = 3]

with obvious meaning of the variations A. Taking only the diagonal ele-
ments wj;(s) of the matrix transfer function associated to (14) and to the
tip output (9), a decentralized synthesis can be performed in the frequency
domain. Let vy be the feedforward command used at the ktrial (v; usually
contains all a priori information). The next feedforward is derived as

(15) Vi+1,i(8) = a;(s)ek,i(s) + Bi(s)vg,i(s), i=1,...,N,

where ey, ; = Yd4,; — Yk,; is the ith joint error at the kth trial, and a; and §;
are the two learning filters to be designed. For rigid manipulators, it has
been shown that the learning process is convergent provided that [28]

(16) 1Bi(s) — ci(s)wis(s)| < 1, i=1,...,N.

Although a similar argument has not yet been proven for the flexible case,
this simple design approach can be attempted and shown to converge by
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simulation. Note that noncausal filtering is allowed in (15), as well as antic-
ipative shifting of signals in time, since the whole processing is performed
off-line.

The applied control law at the kth trial is then

(17) uzvk—kF[z;l_Z}
Also in this case, as for regulation, the stabilizing feedback used in (17)
is not closed around the output for which trajectory tracking is desired.
However, the tip tracking error is taken into account here, being fed back
‘off-line’ through the learning procedure. Accordingly, control effort will
move gradually from feedback to feedforward along iterations.

3.4 Discussion of the methods

It is interesting to summarize assumptions and properties of the above three
tracking control methods. Table 1 collects various aspects which should help
in understanding system requirements and ease of implementation.

Inversion Nonlinear Learning
control regulation control
End-effector tracking |approximate |asymptotic |exact (f< fo)
Feedback type nonlinear linear linear
Partial state feedback no yes yes
Trajectory known a priori no yes yes
Repeated trials no no yes
Anticipative action no no yes
Model accuracy high high low

Tab. 1 — Comparison of tracking controllers for flexible robot arms

The following additional remarks are in order.

e An inversion control approach may give stable results even when ap-
plied at the end-effector level, provided that the flexible arm is correctly
initialized. This would mean to ‘preload’ the link deflection (and its
velocity) at time ¢ = 0 in a way that depends on the desired tip tra-
jectory.

e When applying the final feedforward computed by learning, the system
state at time ¢ = 0 will be in the right ‘preloaded’ conditions, as a result
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of the anticipative action of the input torque. Thus, learning iterations
may be seen as a computational scheme for obtaining the reference
state evolution that produces exact output tracking. In practice, some
error will be left due to the frequency cut-off at f = fy (see Table 1).

e At steady operation, e.g. with a sinusoidal trajectory, the feedforward
terms of the regulation and the learning control schemes will coincide.

4. Numerical results

4.1 Comparative simulations

In order to compare inversion, regulation, and learning control, we consider
a one-link planar arm of 1 m and 0.2 kg, modeling flexibility by just one
elastic spring (kK = 10 Nm/rad, corresponding to an eigenfrequency of ~
5 Hz) located halfway along the link. Large deflections are allowed, resulting
in two second-order weakly nonlinear dynamic equations that can be found
in [5]. Damping coefficients (see (2)) are d; = da = 0.01 Nm/rad. This
simple model is still representative since the end-effector angular position
is a non-minimum phase output.

The desired output trajectory has a sinusoidal velocity profile and
moves 90° in 1 second, with zero initial and final velocity. Simulations were
run in nominal conditions for 1.8 seconds, using a 2nd order Runge-Kutta
integration routine. In all cases the robot initial state is zero (undeformed
and at rest).

The results obtained with inversion control for an output point at
A = 0.3 of the distal half link are shown in Figs. 1-3. Note that in this
case Ao = 2/3. Although satisfactory tip tracking is obtained (maximum
error is 0.45 deg), the error is persistent while the control effort is highly
oscillatory. Note that the small error drift after the trajectory completion
is due to the absence of a stabilizing feedback, i.e. v = §j4 is used in (6a).

Nonlinear regulation results are shown in Figs. 4-6, using a feedback
matrix F' in (13) which sets the poles of the closed-loop system linearization
at (—20,—20, —30, —30). After a transient phase, which vanishes in 0.2 sec-
onds, perfect tracking is obtained in this case. The second transient error
at the final trajectory time (7' =1 sec in Fig. 5) is due to the switching of
the reference trajectory from a sinusoidal one to a constant value, a situa-
tion that cannot be generated by any smooth autonomous exosystem. The
required torque is similar to the one needed if the arm was rigid (dashed
line in Fig. 6).
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Fig. 1 — Tracking with inversion control (A = 0.3)

Fig. 2 — Trajectory error with inversion control (A = 0.3)

Fig. 3 — Input torque with inversion control (A = 0.3)
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Fig. 4 — Tracking with nonlinear regulation

Fig. 5 — Trajectory error with nonlinear regulation

Fig. 6 — Input torque with nonlinear regulation
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Fig. 7 — Tracking with learning control

Fig. 8 — Trajectory error with learning control

Fig. 9 — Input torque with learning control
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Finally, learning control results are summarized in Figs. 7-9, where a
time shift of 0.2 seconds is used to show that the input torque begins before
the start and ends after the completion of the actual output trajectory.
These results are obtained after 50 trials, using an underlying PD joint
feedback with Fp = 45 Nm/rad and Fp = 90 Nm-sec/rad. The maximum
error is almost reduced by a factor of 10, thanks to the anticipative torque
action. This is realized by the use of a 10 msec time lead in the filter
a(s). The very limited residual oscillations are due to the overall frequency
cut-off at 13 Hz introduced by both «(s) and £(s).

4.2 Experimental validation

The above control strategies are currently being implemented on the ex-
perimental testbed available in the Robotics Laboratory at DIS. The robot
is a two-link planar manipulator with a very flexible forearm, driven by
direct drive DC motors. The links are 0.3 and 0.7 meters long, with in-
ertias of 0.447 and 0.303 kg-m? with respect to the joint axes. The first
two clamped eigenfrequencies of the flexible link are at 4.7 and 14.4 Hz. A
detailed description of the overall system is given in [16,29]. In particular,
control laws are executed with 5 msec sampling time.

Figures 10 and 11, that refer to experiments performed keeping the
first (rigid) link fixed, are obtained using learning control on a fast quintic
polynomial trajectory with a rest-to-rest slew of 90° in 1 second. The
typical lag and overshoot with respect to the desired tip trajectory of a pure
PD joint feedback are practically eliminated over the iterations. After 27
trials, the maximum error is reduced to about 0.3°. Further results with
learning control are presented in [13].

As a preliminary step towards end-effector regulation for the full two-
link flexible arm, nonlinear regulation of desired joint trajectories has been
implemented first [29)].

Fig. 10 — Tip tracking with learning control (one-link experiment)



TRAJECTORY TRACKING IN FLEXIBLE ROBOT ARMS 31

Fig. 11 — Tip error with learning control (one-link experiment)

Figures 12-14 illustrate the performance on a very demanding bang-
bang acceleration trajectory; in particular, the second link undergoes a
4 seconds motion of 360°, with reversal at the midpoint. The stabilizing
PD gains are Fp = diag{11.5, 6} and Fp = diag{2, 0.8}. As expected,
in contrast to the good accuracy obtained at the joint level (Fig. 12), the
end-effector behavior is not satisfactory, with a maximum angular deflec-
tion of 7° (Fig. 13). Note that the deformation profile is similar to the
one computed by simulation (dashed line) with an identified model of the
robot arm. The torque oscillations in Fig. 14 compensate the effects of link
deflections so to obtain a quasi-rigid joint motion. Only joint position and
velocity measures are used in these experiments.

We point out that the same control hardware is ready to be used for
end-effector regulation. In fact, once the joint trajectories associated to
the desired tip motion are computed from the regulator equations (viz.
04 = ya — d4), these can be provided as reference for the joint controllers
together with the proper feedforward.

Fig. 12 — Joint trajectory regulation (two-link experiment)
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Fig. 13 — Tip angular error with joint regulation (two-link experiment)

Fig. 14 — Input torques with joint regulation (two-link experiment)

5. Conclusions

Accurate control of the end-effector motion in flexible robot arms is a
paradigmatic instance of the trajectory tracking problem for nonlinear sys-
tems with non-minimum phase outputs. The obtained results support the
confidence in the proposed control methods as appealing solutions to this
problem, in particular those based on nonlinear regulation and iterative
learning theory. On-going research is devoted to the realization of robust
(practical) tracking controllers for flexible robots. We are currently investi-
gating the design of observers for the flexible deformation velocity. Within
the same framework, we will evaluate the feasibility of end-effector trajec-
tory regulation using only tip measurements and nonlinear dynamic output
feedback. On-line identification of dynamic parameters (e.g. a tip payload)
is also being studied, for inclusion in an adaptive regulation scheme.
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Figure 3: Input torque with inversion control (A = 0.3)
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Figure 4: Tracking with nonlinear regulation
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Figure 5: Trajectory error with nonlinear regulation
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Figure 6: Input torque with nonlinear regulation
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Figure 10: Tip tracking with learning control (one-link experiment)
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Figure 14: Input torques with joint regulation (two-link experiment)



