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The mathematical foundations of a new theory for the design of intelli-
gent agents are presented. The proposed learning paradigm is centered
around the concept of constraint, representing the interactions with the
environment, and the parsimony principle. The classical regularization
framework of kernel machines is naturally extended to the case in which
the agents interact with a richer environment, where abstract granules
of knowledge, compactly described by different linguistic formalisms,
can be translated into the unified notion of constraint for defining the
hypothesis set. Constrained variational calculus is exploited to derive
general representation theorems that provide a description of the opti-
mal body of the agent (i.e., the functional structure of the optimal solution
to the learning problem), which is the basis for devising new learning
algorithms. We show that regardless of the kind of constraints, the op-
timal body of the agent is a support constraint machine (SCM) based
on representer theorems that extend classical results for kernel machines
and provide new representations. In a sense, the expressiveness of con-
straints yields a semantic-based regularization theory, which strongly
restricts the hypothesis set of classical regularization. Some guidelines to
unify continuous and discrete computational mechanisms are given so as
to accommodate in the same framework various kinds of stimuli, for ex-
ample, supervised examples and logic predicates. The proposed view of
learning from constraints incorporates classical learning from examples
and extends naturally to the case in which the examples are subsets of
the input space, which is related to learning propositional logic clauses.
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1 Introduction

1.1 Motivations. This work focuses on the open issue of designing intel-
ligent agents with effective learning capabilities in complex environments,
where sensorial data are combined with knowledge-based descriptions of
the tasks. Unlike the classical framework of learning from examples, in
those cases the beauty and the elegance of simplicity behind the parsimony
principle have not been profitably used yet for the formulation of system-
atic theories of learning.1 Most solutions are essentially based on hybrid
systems, in which there is a mere combination of different modules that are
separately charged with handling prior knowledge on the problem at hand
and providing the inductive behavior naturally required in some tasks. The
investigation of more unified approaches is not only of interest per se, but
also, and perhaps primarily, because this crafting of knowledge with learn-
ing can give rise to interesting induction and deduction processes that are
likely to be very effective in complex real-world problems. Our theory is
centered around the parsimony principle: we consider intelligent agents
interacting with constraints in a multitask environment, with the purpose
of developing the simplest (smoothest) vectorial function in a set of feasible
solutions.

A first insight into the idea of learning from constraints on which this let-
ter is based was given in Gori (2009), but the first systematic study along this
direction is given in Diligenti, Gori, Maggini, and Rigutini (2012), where,
in addition to some artificial problems, the authors applied the theory to
the automatic tagging of bibtex entries. Related studies can be found in
Diligenti, Gori, Maggini, and Rigutini (2010); Saccà, Diligenti, Gori, and
Maggini (2011a, 2011b), and Diligenti, Gori, & Maggini (2011). An appli-
cation to text categorization that involves supervised learning and prior
knowledge has been addressed in Frandina, Saccà, Diligenti, and Gori
(2012), while a first attempt to perform first-order Logic (FOL) verifica-
tion can be found in Gori and Melacci (2013). Kernel-based representations
of the optimal solutions to constrained learning problems have been used
in other cases too, where the prior knowledge is not given in terms of logic
expressions. Remarkable results have been obtained by imposing the classi-
fication consistency of different views of the same object (Melacci, Maggini,
& Gori, 2009) and probabilistic constraints in Melacci and Gori (2011). A
preliminary study on the benefit deriving from the restriction to convex
constraints is given in (Gori and Melacci, 2010). An in-depth analysis of the
special case of constraints deriving from propositional descriptions is given
in Melacci and Gori (2013). Theoretical results for some kinds of constraints

1This principle has been massively exploited in decision making to promote the pref-
erence for the least complex explanation of observations, as well as for deriving laws of
nature, especially in physics (Basdevant, 2006).
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Table 1: Main Notations and Their Meanings

X Subset of the perceptual space R
d

F Task space
fj jth task of the agent
φ Function expressing a holonomic bilateral constraint
φ̌ Function expressing a holonomic unilateral constraint
� Functional expressing an isoperimetric bilateral constraint
�̌ Functional expressing an isoperimetric unilateral constraint
Fi ⊆ F Set of admissible tasks with regard to the ith constraint
C Constraint collection
FC ⊆ F Set of admissible tasks with respect to the constraint collection C
Wk,2(X ) Sobolev space, with k > d/2
Dαu ∂ |α|

∂α1 ...∂αn
u, |α| :=∑n

j=1 α j

Pi Finite-order linear differential operator
∑
|α|≤ki

bi,αDα

P Vectorial finite-order linear differential operator [P0, . . . , Pl−1]′
P� Formal adjoint of P
L (P�)′P
‖ f j‖2

P 〈P f j, P f j〉 =
∑l−1

r=0

∫
X (Pr f j(x))2dx

‖ f‖2
P,γ

∑n
j=1 γ j‖ f j‖2

P, γ ∈ R
n vector of positive components

E (·) Parsimony index ‖ · ‖2
P,γ

μC Degree of mismatch of C
Esoft
C (·) 1

2 ‖ · ‖2
P,γ
+ μC (·)

f ∗ Global optimum
f o Local optimum
g Free-space Green function of an operator
ωi Reaction of the ith constraint
ω Overall reaction of the constraints
VQ Quadratic loss
VH Hinge loss

are contained in Gnecco, Gori, Melacci, and Sanguineti (2013). The regu-
larization principles adopted in this letter were exploited in Gnecco, Gori,
and Sanguineti (2013), together with tools from statistical learning theory,
to investigate learning from constraints expressed as boundary conditions.

The main objective of this study is to develop mathematical foundations
for the paradigm of learning from constraints, with the aim of providing
the mathematical and algorithmic apparatus (see section 5) for facing typ-
ical machine tasks encountered in applications, such as those presented in
section 5.3 (see, in particular, Table 4). (In Table 1 we collect some symbols
and notations widely used in the letter.)

1.2 Types of Constraints and Their Roles. In order to provide a unified
context for manipulating perceptual data and granules of knowledge, we
propose to use the unifying concept of constraint. It is sufficiently general
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to represent different kinds of sensorial data along with their relations, as
well as to express abstract knowledge on the tasks and embrace logic de-
scriptions. Examples of constraints come out naturally in different contexts:
one might want to enforce the probabilistic normalization of a set of func-
tions modeling a classification task, or the probabilistic normalization of a
density function, or to impose coherent decisions of the classifiers acting
on different views of the same pattern (Melacci et al., 2009). The expressive
power of constraints becomes more significant when dealing with specific
problems coming from, among others, vision, control, text classification,
ranking in hypertextual environment, and prediction of the stock market.
While the linguistic description to express a constraint can be of many dif-
ferent types, including those based on logic formalisms, in order to describe
knowledge granules, we can always end up with real-valued multivariable
functions involving the inputs and the learning tasks.

We propose to build an interaction among different tasks by introducing
various kinds of constraints; they are summarized in the following defini-
tion, which follows the terminology used in variational calculus:

Definition 1 (types of constraints). Let X denote a subset of the perceptual
space R

d , F a space of functions f : X → R
n, Xi open subsets of X , φi : Xi ×

R
n → R and φ̌i : Xi × R

n → R continuous functions, Φi : F → R and Φ̌i : F →
R continuous functionals, and mH, mI , m̌H, and m̌I positive integers. We consider
the following types of constraints:

i. Holonomic (ho) bilateral (bi):

∀x ∈ Xi ⊆ X : φi (x, f (x)) = 0, i = 1, . . . , mH .

ii. Holonomic (ho) unilateral (un):

∀x ∈ Xi ⊆ X : φ̌i (x, f (x)) ≥ 0, i = 1, . . . , m̌H .

iii. Isoperimetric (is) bilateral (bi):

Φi ( f ) = 0, i = 1, . . . , mI .

iv. Isoperimetric (is) unilateral (un):

Φ̌i ( f ) ≥ 0, i = 1, . . . , m̌I .

v,vi. Pointwise (pw) bilateral (bi) and pointwise (pw) unilateral (un): as con-
straints i and ii , respectively, with each Xi made up of finitely many
points (in this case, the continuity of φi —respectively, of φ̌i —is required
with respect to the second vector argument).

For notational simplicity, when dealing with constraints of the same type,
the notations mH, mI, m̌H , and m̌I will be replaced simply by m. It is worth
remarking that holonomic constraints express local properties, since they
hold ∀x ∈ Xi. Isoperimetric constraints express global properties of f (apart



392 G. Gnecco, M. Gori, S. Melacci, and M. Sanguineti

from degenerate cases, such as the one in which they are expressed by
integrand functions2 with compact support).3

We consider both the case in which perfect constraint satisfaction on a
whole subset of the perceptual space is required and the case where con-
straint violations are allowed, at the cost of some penalization, quantified
by a loss. The former situation corresponds to a hard (hr) interpretation
of the constraints, whereas the latter to their soft (sf) interpretation. For
simplicity and with a little abuse of terminology, we refer to these cases
as hard constraints and soft constraints, respectively. Soft constraints arise
often in real-word problems, as in collections of supervised data in which
labeling errors are quite common. Moreover, sometimes it may be desirable
to have total fulfillment (i.e., hard constraints), but that may be too difficult
to achieve. So, the original problem with hard constraints is approximated
by a sequence of problems with soft constraints, whose optimal solutions
converge to the “hard” one (Luenberger, 1969). In summary, the theory that
we propose is based on using both supervised pairs and hard and soft
constraints of a more general nature.

Based on the notion of constraint, we can accommodate into the same
framework stimuli of very different kinds, like those shown in Table 2. The
labels (ho, nh, is, bi, un, pw, hr, sf) are used to classify the different constraints.
The classification considers three categorical variables that represent the
specific local or global nature (pw, ho, nh), is stands for pointwise, holonomic,
nonholonomic, and isoperimetric, respectively; the bilateral/unilateral for-
mulation (bi, un), and the hard/soft enforcement (hr, sf). Sometimes a given
problem can receive different classifications and, consequently, can be at-
tacked using the corresponding different methodologies. For example, the
classical learning from examples corresponds to constraints that can be re-
garded either as pointwise (see Table 2i) or special isoperimetric. The second

2This is the case of the functions ψi in equation 2.5 (see section 2), when they have
compact support.

3The meaning of holonomic is “integrable.” Constraints of the forms

∀x ∈ Xi ⊆ X : φi(x, f (x), Q f (x)) = 0, i = 1, . . . , mNH, (1.1)

∀x ∈ Xi ⊆ X : φ̌i(x, f (x), Q f (x)) ≥ 0, i = 1, . . . , m̌NH, (1.2)

where Q is a (vector) linear differential operator, which cannot be transformed by integra-
tion into the holonomic forms of definition 1i and 1ii, respectively, are called nonholonomic
constraints (nh). They will not be considered in this letter. Any holonomic bilateral con-
straint can be transformed by differentiation into a constraint of the form (1.1), and one
can regain the original constraint by integration. However, the opposite does not hold
true (Giaquinta & Hildebrand, 1996). The name isoperimetric derives from the classical
isoperimetric problem of the calculus of variations, which consists in determining a plane
figure of the largest possible area, whose boundary is constrained to have a specified
length.
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interpretation is specifically covered in section 4.1. The table gives exam-
ples of constraints that are described in column 2 by informal (i through vi)
or formal languages (vii and viii). The informal description in the table is
kept concise but could be much more detailed. Column 3 contains a transla-
tion into constraints rewritten by real-valued functions that are the formal
environmental description of our agents.

Example i describes the simplest case in which we handle the classical
pair (xκ , yκ ) provided for supervised learning in classification, where xκ is
the κth supervised example and yκ ∈ {−1, 1} is its label. If f is the function
that the agent is expected to compute, the corresponding real-valued rep-
resentation of the constraint, reported in column 3, is just the translation of
the classic robust sign agreement between the target and the function to be
learned.

Examples ii and iii are classical probabilistic normalizations, while ex-
ample iv imposes coherence between the decisions taken on x1 and x2, for
the object x, where x1 and x2 are two different views of the same object x
(see Melacci et al., 2009).

Example v describes the constraints needed to impose consistency in
portfolio asset allocation when investing money (U.S. dollars and euro) in
bonds and stocks. Here f d

c , f d
b , and f d

s denote the allocations in cash, bonds,
and stocks in U.S. dollers (USD) on the basis of the financial feature vector
x, while f e

c , f e
b , f e

s are the corresponding allocations in euro. The constraints
simply express the consistency imposed by the overall amount of available
money, denoted by T (in USD), being c the euro/USD conversion factor.

In example vi, we report a constraint coming from computer vision
concerning the classic problem of determining the optical flow. It consists
in finding the smoothest solution for the velocity field under the constraint
that the brightness of any point in the movement pattern is constant. The
smoothness of the velocity field can be measured according to formula 2.2,
introduced in section 2, by choosing a linear differential operator such as the
gradient or the Laplacian. If u(x, y, t) and v(x, y, t) denote the components
of the velocity field and E(x, y, t) denotes the brightness of any pixel (x, y)

at time t, then the velocity field satisfies the linear constraint reported in
Table 2vi (Horn & Schunck, 1981).

In example vii, the ith rule expresses propositions on some linguistic
features P1, P2, P5, N5, V0, V1 detected by proper linguistic tests for
the diagnosis of Wernicke’s aphasia (Tsakonasa et al., 2004). The propo-
sitional description of column 2 can be equivalently split into a super-
vised pair (Xi, yi

we), where yi
we = 1 and Xi = (3,+∞)× (−∞, 4]× (2,∞)×

(−∞, 22]× (−∞, 62]× (38,+∞). Basically, as we will show in section 2,
any proposition i in this example can be associated with a correspondent
set Xi ∈ 2X , where X := R

6 = {(P1, P2, P5, N5,V0,V1)} is the feature space.
The last row of the table refers to a document classification problem and
states that all papers dealing with numerical analysis and neural networks
are also machine learning papers. Notice that whereas column 2 expresses
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the rule by a logic description, in column 3 there is a related constraint ex-
pressed by real-valued functions, according to the classic product T-norm
(Klement, Mesiar, & Pap, 2000; Diligenti et al., 2010, 2012).

1.3 Lex Parsimoniae Principles. A specific interpretation of the parsi-
mony principle, inspired by Occam’s razor, provides the unified methodol-
ogy for the construction of the theory of learning from constraints presented
in this letter. The parsimony principle has been used in decision making
by promoting the idea that simple explanations are preferable, and it has
been proposed in that context as a mysterious heuristics to guide toward
understanding the laws of nature. Although in the scientific method, the
preference for the simplest explanation is not necessarily considered an ir-
refutable principle and therefore it is arguable and falsifiable on the basis
of experimental results, typically the laws derived via the parsimony prin-
ciple provide accurate descriptions of reality. The principle of least action,
the studies on electromagnetic fields, and the development of quantum
mechanics are, among others, some of the many examples of successful
application of the lex parsimoniae to physics (Basdevant, 2006).

There are arguments to claim that Occam’s razor should not be regarded
as a theory in the classic sense of being a model that explains physical ob-
servations. According to James Gleick (1992, pp. 60–61), “Where Newton’s
methods left scientists with a feeling of comprehension, minimum princi-
ples left a sense of mystery,” which is nicely reinforced in David Park’s
challenging question: “How does the ball know which path to choose?”
(Gleick, 1992). The experimental validation is the only way to claim that
the principle holds. Aesthetic considerations are not enough to claim that
a ball or a planet is condemned to follow a predetermined path. This issue
becomes central when trying to capture complex cognitive processes or to
conceive models for decision making. We can think of cognitive processes
that obey a sort of “cognitive law” based on the minimization of a gen-
eralized version of the Dirichlet integral in physics that yields simplicity
in its optimal solution. Interestingly, within this context, Park’s question
on mechanics sheds light on the truly inductive nature of Occam’s razor.
The introduction of constraints, along with quantifiers, opens the door to
an interpretation of the parsimony principle that better resembles physical
laws like Newton’s laws. Indeed, constraints translate rules that are not
only expected to hold for single examples. As we will show, a remarkable
improvement of the learning paradigm developed in this letter with respect
to classical frameworks of learning from examples is that these “cognitive
laws” can naturally be checked on numerous of unsupervised examples.

The idea of simplicity that is generally expressed by Occam’s razor can be
given different formulations, which are partially related. Within the frame-
work of the minimum description length (MDL) principle, which gives
preference to models that lead to the best compression of the data, the in-
variance theorem states that for a long sequence, the difference between
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any two optimal descriptions of it is negligible compared to the size of
the sequence (Kolmogorov, 1965; Solomonoff, 1964; Chaitin, 1966), which
gave rise to the notion of universal code and Kolmogorov complexity. How-
ever, the concept of simplest explanation given by Vapnik (1998) with the
introduction of the concept of structural risk minimization, rooted in the
Vapnik-Chervonenkis (VC) dimension, is likely to be the better starting
point to grasp the idea of simplicity followed in our approach (which, as
for support vectors machines, is not simply associated with the number of
free parameters).

Regardless of the contiguities with other approaches and the specific
discussion on parsimony issues, the proposed approach is primarily related
to kernel machines. Our investigation was stimulated by the idea that so far,
restricting this approach to environments based on examples only has given
quite a limited picture of the potential use of the parsimony principle, as the
examples alone are not a very expressive description of the most interesting
cognitive tasks.

1.4 Overview of the Main Results. This letter summarizes and cements
a series of our work by providing a unifying perspective and contextually
new theoretical results. The letter presents a new learning paradigm, which
we call support constraint machines (SCMs), and can be regarded as a gen-
eralization of standard support vector machines (SVMs) and other kernel
methods, where classic supervision based on training samples is interpreted
in terms of pointwise constraints. Based on this novel view, new types of
possibly nonpointwise constraints are taken into account, and a classifica-
tion of constraints that can be handled by the new learning paradigm is
provided. Similar to SVMs and other kernel methods, learning takes place
by finding a function that best satisfies the constraints (in a hard or soft way)
and is as smooth as possible, according to an integro-differential regular-
ization term. Such a function is assumed to belong to a Cartesian product of
Sobolev spaces of finite order (although extensions to the infinite-order case
are possible, modeling, e.g., the case of a gaussian kernel) and is searched
for as a solution to the Euler-Lagrange equations induced by the problem
formulation.

The work makes use of variational calculus to show that the optimal
solution to the constrained learning problem has an additive decompo-
sition into several terms, each related to a specific constraint and given
as the convolution between the free-space Green function associated with
the differential regularization operator and a so-called constraint-reaction
function, which, roughly speaking, takes the role of the SVM’s dual vari-
able associated with the constraint. The letter also investigates in detail
contexts in which the convolution can be carried out easily (e.g., in the case
of SVMs) and situations for which it cannot. The latter cases are actually
more interesting because they open a new research direction, in which the
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optimal solution to the learning problem has to be numerically found as the
solution of a system of partial differential equations.

In our approach, an agent performs an induction process under a reg-
ularization mechanism that goes beyond the classical regularization based
on supervised examples only. To give insight into the way we measure the
smoothness of a feasible solution, let us consider an open set X ⊆ R, scalar-
valued admissible functions f : X → R of one variable and, for b0, b1 ≥ 0,
the minimization of the parsimony index

‖ f‖2 := b0

∫
X

f 2(x)dx+ b1

∫
X

(
df
dx

)2

dx, (1.3)

which is the square of a seminorm in the Sobolev space of functions onX that
are square-integrable together with their partial derivatives up to the order
k (it is a norm when b0, b1 > 0). In section 2.1, we extend this setting to more
general norms of the form ‖P f‖, where P is a linear differential operator,
and also to vectorial functions f. Basically, in this case, the learning problem
that we address consists of discovering appropriate functions f in a Sobolev
space that are required to minimize ‖ f‖2 while fulfilling a given set of hard
and soft constraints. The distinction between hard and soft constraints is
in the way the constraints are embedded into the problem formulation. In
the hard case, they restrict the set of feasible solutions, whereas in the soft
case, their violation is penalized through terms containing a loss, which
are included in the objective of the optimization problem together with the
parsimony index. Likewise for kernel machines, it is of special interest in
the situation in which there is a unique optimal solution to the learning
problem, which is proven to hold for a very large class of regularization
operators, regardless of specific assumptions on the shape of the optimal
solution.

To fully appreciate the difference between this kind of regularization
operators with respect to classical kernels, we note that any problem of
learning from examples can be directly formulated in our framework by
replacing the traditional loss with one that measures the fulfillment of the
constraints. This usually requires collecting unsupervised data to check
the constraints. It indeed represents a general way of facing learning from
constraints that in this letter is fully covered and referred to as learning from
pointwise constraints and has already been the subject of investigation (see,
e.g., Diligenti et al., 2012).

As we will show, a significant class of constraints can be expressed as
∀x ∈ X : φ(x, f (x)) = 0 (or a generalization of this case, in which the set
X is replaced by its subset Xi), and in one instance of the proposed learn-
ing paradigm, a parsimonious agent is required to fulfill such constraints
while minimizing ‖ f‖. Notice that unlike the case of supervised learning in
which the constraints are clearly imposed on the training set, this class of
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Figure 1: Constraint reactions in the generic point x ∈ X corresponding to hard
and soft constraints, where one can see the roles of the Lagrange multiplier
function and the probability density in the same point x for hard and soft
constraints, respectively. For illustrative purposes, the case n = 2 is considered
here. The reaction of the constraint φ in x is a vector orthogonal to the level curve
φ(x, f �(x)) = 0, where, in the definition of the level curve, φ(x, ·) is interpreted
as a function of its second vector–valued argument only.

constraints is expressed by quantifiers on infinite domains. In the letter, we
prove that for several problems of learning from constraints, the optimal
solution is fully representable by using the following notion of constraint
reaction:

i. ωhard(x) :=−λ(x) · ∇ f φ(x, f (x)),

ii. ωsoft(x) :=−p(x) · ∇ f φ(x, f (x)), (1.4)

where ∇ f denotes the gradient with respect to the second vector argument
of φ, computed at f (x), λ(x) is a Lagrange multiplier function associated
with the constraint, and p(x) is a probability density (see Figure 1). Case i
refers to a hard constraint and case ii to a soft one. Interestingly, the two
constraint reactions have exactly the same dependence on the gradient of the
constraint. However, whereas in the case of a hard constraint, the Lagrange
multiplier function associated with the constraint φ needs to be determined
so as to impose the hard fulfillment of the constraint, for soft constraints, the
role of λ(x) is replaced by the probability density p(x). Both functions λ(·)
and p(·) play crucial roles in determining the magnitude of the constraint
reactions. For a given point x, in the case of hard fulfillment, the weight
λ(x) needs to be discovered in a way so as not to violate the constraint
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at x, whereas for soft fulfillment, p(x) is the typical weight that is large in
regions of high probability. An important result given in the letter concerns
the representation of an optimal solution to the problem of learning from
constraints. Recall that the free-space Green function g associated with a
linear differential operator O is a solution to the distributional differential
equation Og= δ, where δ is the Dirac distribution, centered on the origin. In
the letter, we prove that if g is the (free-space) Green function of the operator
L := (P�)′P, being P a (vectorial) differential regularization operator and P�

its formal adjoint (the symbol ′ denotes transposition), then under suitable
conditions, the functional representation of an optimal solution is4

f ∗(x) =
m∑

κ=1

(g ∗ ωκ )(x), (1.5)

where ∗ denotes the convolution operator, m is the number of constraints,
and ωκ is the reaction of the kth constraint. Interestingly, the Fourier
transforms5 of both sides yield

f̂ �(ξ ) =
m∑

κ=1

ĝ(ξ ) · ω̂κ (ξ ). (1.6)

The basic results on the representation of the optimal solution are given in
sections 3.1 to 3.3 for various classes of constraints. Under some assump-
tions, g is also the kernel of a reproducing kernel Hilbert space (RKHS)
(Berlinet & Thomas-Agnan, 2004).

In equations 1.5 and 1.6, we can easily recognize a structure that very
much resembles the one arising from the representer theorems of kernel
machines (see Schölkopf & Smola, 2002; Dinuzzo & Schölkopf, 2012). Com-
pared to other classic representer theorems, those obtained in this letter
provide necessary optimality conditions expressed in the form of (distribu-
tional) partial differential equations. This is due to the choice of a Sobolev
space in the definition of the ambient space of the optimization problem and
of a regularization term expressed in integro-differential form. So, one can

4We denote by f � a globally optimal solution to the constrained learning problem ( f �

is a particular instance of a locally optimal solution, denoted by f o, which is the case for
which most of the equations presented in this section are derived in the letter). Moreover,
under certain circumstances (in particular, for convex problems), any f ◦ is also a globally
optimal solution. For simplicity, the linear differential operator considered here is not
scaled by a factor γ as in the general definition (2.2), that is, equation 1.5 refers to the case
γ = 1.

5We use the unitary definition of the Fourier transform in terms of the frequency vec-
tor ξ ∈ R

d : ĝ(ξ ) := ∫
Rd g(x) exp(−ι〈2πξ, x〉)dx and g(x) := ∫

Rd ĝ(ξ ) exp(ι〈2πξ, x〉)dξ , where
〈·, ·〉 denotes the Euclidean inner product in R

d .



400 G. Gnecco, M. Gori, S. Melacci, and M. Sanguineti

exploit in this framework Green functions and other tools from functional
analysis and variational calculus, which are not standard for use in machine
learning problems. A similar approach was adopted in Poggio and Girosi
(1989), but only for soft pointwise constraints and in the absence of hard
constraints.

In section 4.1, we prove that the functional representation provided by
equation 1.5 collapses perfectly to the kernel expansion of kernel machines,
where the constraints are restricted to supervised pairs (xκ , yκ ). Indeed, we
prove that in such a case, the global constraint reaction (i.e., the sum of the
reactions of all the constraints) can be written as

ω(x) =
m∑

κ=1

ακδ(x− xκ ), (1.7)

where the ακs are real coefficients, and we have made the simplified as-
sumption of dealing with a scalar-valued function f. Consequently, in the
Fourier domain, we have

ω̂(ξ ) =
m∑

κ=1

ακe−2πιx
κ
ξ . (1.8)

Hence, it turns out that the weights of the obtained kernel machine can be
thought of as the coefficients ακ of the Fourier transform of the global con-
straint reaction. The constraint reaction associated with a single supervised
pair is shown in Figure 2a.

In Figure 2c we can see the response to the κth constraint dictated by
the Green function g of the regularization operator. Such a response has
the form (or is proportional to) g(x) ∗ δ(x− xκ ) = g(x− xκ ). We call such a
function plain kernel. In general, when quantifiers are involved, the Fourier
transform does not get the simple structure of equation (1.8), which reveals
an intriguing peculiarity of classical supervised learning (more generally,
of learning with pointwise constrants). The connection with classical kernel
machines vanishes when considering other constraints (i.e., holonomic con-
straints), since in such cases the plain kernel that arises as the response to
the impulse δ(x− xκ ) is replaced by (g ∗ ωk)(x). Basically this new response
comes out from the marriage of the plain kernel with the reaction of the
constraint, which contributes to defining the class of functions to be used
for the representation of the optimal solution to the constrained learning
problem.

Let us consider, as an example, the soft relaxation of the so-called box
constraint, ∀x ∈ B ⊂ X : f (x)− 1 = 0, and, for simplicity6, let B := [a, b] ⊂

6In section 4, the results are established in general.



Foundations of Support Constraint Machines 401

Figure 2: Constraint reactions corresponding to (a) a classical supervised pair
and (b) the soft constraint ∀x ∈ [a, b] : f (x) = 1 (box constraint). (c, d) The
emergence of the plain and the box kernels, respectively. The regularization
operator of equation 1.9 is used, which for supervised learning yields the classic
plain gaussian kernel. The representation 1.5 (here, for m = 1) leads to a new
kernel-based optimal solution and prescribes its form (box kernel).

R for some a < b. As depicted in Figure 2b, in this case, the reaction of the
constraint is a rectangular impulse instead of a Dirac distribution. If, for
σ > 0, we use the differential regularization operator

L =
∞∑

κ=0

(−1)κ
σ 2κ

κ! 2κ
∇2κ (1.9)

(associated with a suitable operator P), whose Green function is the gaus-
sian, then for a single box, the general functional representation given by
equation 1.5 yields for the optimal solution the expression

(g ∗ 1B)(x) ∝ erf((x− a)/
√

2σ )− erf((x− b)/
√

2σ ),

where 1B is the characteristic function of B,

erf(x) := 2√
π

∫ x

0
e−t2

dt

is the error function, g is the Green function of the operator L := (P�)′P, and
P� is the formal adjoint of P.

The two examples clearly indicate that the functional representation of
the optimal solution can be thought of as the response of a system with a
certain Green function g (plain kernel) to a Dirac delta (supervised pair) or
to a rectangular impulse (box constraint). The latter case is just an example
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Table 3: Different Types of Constraints with Corresponding Reactions and Op-
timal Solutions.

Constraint Reactions and Kernels

Type of Constraint Reaction Optimal Solution

Supervised pair δ(x− x
κ
) g(x) ∗ δ(x− x

κ
) ∝ e−(x−x

κ
)2/(2σ 2 )

(x
κ
, y

κ
)

Box constraint 1[a,b] g(x) ∗ 1[a,b](x) ∝ erf((x− a)/
√

2σ )− erf((x− b)/
√

2σ )

[A f (x) = b(x)]i ai

(
[AA′]−1Lb(x)

)
ig(x) ∗ ai

(
[AA′]−1Lb(x)

)
i ∝ e−x2/(2σ 2 )

∗ ai

(
[AA′]−1Lb(x)

)
i

Note: The cases refer to the differential regularization operator of equation 1.9, which for
supervised learning yields the classical plain kernel.

to show that often the representation of the optimal solution is not based
on the plain kernel anymore, but on a function that arises from its marriage
with the reaction of the constraint. Melacci and Gori (2013) prove that under
certain conditions, g ∗ 1B is in fact the kernel of an RKHS, and therefore all
the related mathematical and algorithmic apparatus of kernel machines can
be directly reused. They also show that significant experimental results are
achieved in cases where prior knowledge of this form is naturally available
(e.g., for the case of medical applications, rules provided by physicians).
Basically the emergence of the plain kernel as the Green function of the
operator L is the consequence of the degeneration of the reaction of the
constraint to a Dirac distribution, which happens in the case of a supervised
pair.

As we have pointed out, the general representation, equation 1.5, of
the optimal solution holds not only for soft constraints but also for hard
constraints (see also Table 2, item v). In section 4.3.2 we prove that in this
case, for linear hard constraints of the form A f (x) = b(x) (where A is a given
matrix and b(x) is a given smooth function and with compact support), the
reaction of the ith constraint has the expression

ωi(x) ∝ ai

(
[AA′]−1Lb(x)

)
i ,

where the transpose a′i of the column vector ai is the ith row of the ma-
trix A and

(
[AA′]−1Lb(x)

)
i denotes the ith element of the column vector

[AA′]−1Lb(x).
For the three examples above, the reactions of the constraints and the cor-

responding functional representations of the optimal solutions are shown
in Table 3. In the case of supervised learning, the reaction of the constraint
associated with a single supervised pair (xκ , yκ ) is proportional to δ(x− xκ )

and the corresponding Fourier transform ω̂κ has constant absolute value.
In the second case, the reaction is a rectangle function, and its Fourier
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transform is a window-like function (more precisely, a sinc function). Intu-
itively, in this case, the more we stress the universal quantification over X ,
the more the spectrum of the constraint reaction is peaked. Finally, in the
last case, the constraint reaction depends on Lb(x), which is approximated
by a constant when b(x) is “nearly” constant in some portion of interest
of the domain7 and, in such a case, its Fourier transform is approximated
by a Dirac distribution. The proofs of these and related results are given in
section 4, where we apply the notion of constraint reaction.

Summing up, the proposed framework can be given a twofold interpreta-
tion. First, any constraint can be thought of as yet another stimulus, just like
a supervised input-target pair. Hence, the development of an agent in such
a learning environment consists of finding a parsimonious solution com-
patible with the given constraints. Second, we can think of the constraints
as a way to provide an additional prior with respect to the one introduced
by the classical smoothness assumptions on the hypothesis space. Unlike
supervised examples, any constraint quantified on an infinite domain turns
out to represent a sort of rule derived from the environment, which of-
fers a semantic statement on the tasks. Hence, an agent learning in such a
framework is subjected to priors that give rise to a sort of semantic-based
regularization.

1.5 Algorithmic Issues. The results that we obtain on the structure of
the optimal solution of the constrained learning problem (body of the agent)
are important not only in themselves; they also play a crucial role for the
construction of learning algorithms. Whenever we determine the structure
of the optimal solution, we often identify a dependence on parameters that
leads to bridge most classic machine learning algorithms. To sum up, the
cases of Table 3, even when we consider a mixture of constraints, can be at-
tacked by using the classical kernel machine mathematical and algorithmic
apparatus (see section 4 for details). Unfortunately, an explicit expression
of the constraint reaction in Table 3 is not always possible, and numerical
approximations are needed in that case.

The general solution of the given constrained learning problem leads
to representations that stimulate the development of learning algorithms.
This is summarized in Figure 3, where we distinguish between kernel-
based approaches and solutions based on equation 1.5. For some learning
problems, the most straightforward approximation of the optimal solution
can be gained by quantizing the constraints over a given set of unsuper-
vised data, which yields a representation based on an expansion in terms
of the plain kernel (see section 3.2, theorem 6). This approach, which has
already been the subject of in-depth investigation, can also be investigated

7See section 4.3 for a discussion about an extension to the case of a function b(x) that
is constant on the whole input space (hence, its support is not compact).
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Figure 3: Three approaches leading to the development of learning algorithms.
Besides kernel-based algorithms, this letter gives hints for devising algorithms
based on constraint-induced kernels and the direct solution of fixed-point func-
tional equations.

by using a software simulator available at https://sites.google.com/site/
semanticbasedregularization/home/software, where any pointwise soft
constraint can be considered. From an algorithmic point of view, our results
also suggest the two approaches depicted in the lower part of Figure 3.

• For the case in which each constraint reaction takes the form ωκ (x) =
ακhκ (x), where ακ is a coefficient (to be determined) and hκ (·) is a
known function, we can construct the new constraint-induced kernel
g ∗ hκ , which, like the box kernel, comes from the marriage of the
plain kernel and the κth constraint. In so doing, one can still rely
on the usual kernel machine apparatus for the concrete algorithmic
development.

• In other cases, one can also learn the optimal solution f � as a fixed
point of equation 1.5. This is a more general approach, as it applies
also to the case in which the reaction ωκ to the κth constraint has an
unknown structure. Such a case will be briefly discussed in section 6,
along with a new perspective of online learning.

1.6 Related Literature. The variational formulation of learning pro-
posed in this work is mostly inspired by Poggio and Girosi (1989), who
offered a clear variational formulation of learning single tasks that opens
the door to fruitful developments in the area of kernel machines. Under
gaussian assumptions on the probability density of the data, they also

https://sites.google.com/site/semanticbasedregularization/home/software
https://sites.google.com/site/semanticbasedregularization/home/software
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pointed out that their formulation of learning, which is extended in this
letter, has some intriguing connections with expressing a prior in Bayesian
learning (see Kaipio & Somersalo, 1994, for gaussian smoothness priors).
Basically, the presence of a generalized version of the Dirichlet integral in
the performance index of the agent, which favors the development of sim-
ple solutions, can be thought of as a prior within the Bayesian framework.
In general, however, the smoothing of the solution is not interchangeable
with priors, and it is somehow related to luckiness functions (Herbrich &
Williamson, 2002).

The notion of simplicity in our agents emerges from the classic way of
facing inverse problems, which can be traced back to Wahba (1975) and
Tikhonov and Arsenin (1977). Interestingly, the extended formulation that
we develop to encompass the concept of constraints requires solving a
Fredholm equation of the II kind, which has been massively investigated in
the context of inverse problems (see Kaipio & Somersalo, 1994). The same
issue is central in inverse imaging, where it is required to reconstruct an
object from its image (see Bertero & Boccacci, 1998).

The context in which our agents operate is the one of multitask learning,
brought to the attention of the machine learning community in Caruana
(1997) and is related to recent studies in such a field (Caponnetto, Micchelli,
Pontil, & Ying, 2008; Argyriou, Micchelli, Pontil, & Ying, 2008; Evgeniou,
Micchelli, & Pontil, 2005). However, following Poggio and Girosi (1989),
here we adopt a measure of parsimony that is based on linear differential
operators instead of directly on kernels of RKHSs, which allows us to deal
naturally with quantifiers on infinite sets. To this end, we extend the studies
on approximation and learning presented in Poggio and Girosi (1989) and
Girosi, Jones, and Poggio (1995) to the case in which the agent interacts
with general hard and soft constraints instead of the classical interaction
restricted to supervised examples (Evgeniou et al., 2000; Chen & Haykin,
2002). The two approaches of inducing parsimony using differential op-
erations versus kernels are connected as follows: the optimal solutions to
certain learning problems containing regularization terms that depend on
linear differential operators can be written in terms of Green functions of
related differential operators, and under certain assumptions, such Green
functions are also kernels of RKHSs (see Smola, Schölkopf, & Mueller, 1998;
Schölkopf & Smola, 1998; Gnecco, Gori, & Sanguineti, 2013).8 When invok-
ing this connection, we see that unlike the above-mentioned approaches
to multitask kernels, our agents do not capture cross-dependencies among

8However, it is not true that any kernel of a RKHS can be expressed as the Green
function of a linear differential operator. For instance, a polynomial kernel cannot be a
Green function even for an infinite-order differential operator because it has nonzero
partial derivatives only up to a finite order. We refer interested readers to Gnecco, Gori,
and Sanguineti (2013, Section 11 and Table 1) for examples of kernels that can or cannot
be expressed as Green functions of linear differential operators.
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different tasks at the level of the choice of the kernel, but they express any
such dependence using constraints. More precisely, the constraint-induced
kernels, which emerge from the marriage of the plain kernel with the reac-
tions of the constraints, are entrusted with the role of capturing the cross-
dependencies. This kind of dependence between tasks and the idea of in-
jecting prior knowledge into the learning process goes in the direction of
probabilistic inductive logic programming (De Raedt, Frasconi, Kersting, &
Muggleton, 2008).

This letter is organized as follows. In section 2 we introduce our formu-
lation of learning from constraints in a variational framework. In section 3,
first we investigate the structures of the optimal solutions to the problem
of learning hard, soft, and mixed constraints using suitable Euler-Lagrange
equations by providing the corresponding representer theorems. Then we
introduce the basic concepts of constraint reactions and support constraints,
which open the doors to the new learning paradigm of support constraint
machines (SCMs). Section 4 applies the results to some relevant case studies,
and section 5 addresses the algorithmic side of the theory. Finally, section
6 contains a perspective view and a discussion on the application of the
theory. Some technical lemmas are collected in the appendix.

2 Learning from Constraints

In this section, we introduce a formulation of learning from constraints
based on a variational formulation of the parsimony principle, which aims
at keeping small a functional that involves the function to be learned and
its derivatives up to some order via suitable linear differential operators.
Interestingly, it is different from—yet related to—the classic approach of
kernel machines. The bridge between the proposed approach and classic
learning theory in RKHSs is represented by the fact that the Green functions
of certain linear differential operators are also kernels of certain RKHSs (this
issue is addressed in Gnecco, Gori, & Sanguineti, 2013).

2.1 Task Space and Parsimonious Agents

Definition 2 (agent, tasks, and task space). We think of an intelligent agent acting
on a subset X of the perceptual space R

d as one implementing a vectorial function
f := [ f1, . . . , fn]′ ∈ F , where F is a space of functions from X to R

n. The function
f j , j = 1, . . . , n, is called the j-th task of the agent and F the task space.

For technical reasons, related to the theory of Sobolev spaces (Adams
& Fournier, 2003), in the following we assume X to be either the whole
R

d or an open, bounded, and connected subset of R
d, with strongly local

Lipschitz continuous boundary. In particular, we consider the case in which,
∀ j ∈ Nn := {1, . . . , n} and some positive integer k, the function f j : X → R,
belongs to the Sobolev space Wk,2(X ), that is, the subset of L2(X ) whose
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elements fj have weak partial derivatives up to the order k with finiteL2(X )-
norms, and we require k > d/2. We express this choice in the next definition,
which, unless stated otherwise, is supposed to hold throughout the letter.
By the superscript ′ we denote transposition:

Definition 3 (hard/soft constraint satisfaction). The interaction between the agent
and the environment is modeled by constraints that have to be strictly satisfied (hard
constraints) or constraints that can be violated, at the cost of some penalization
quantified by a loss (soft constraints).

In definition 3, we slightly abuse the terminology. Although the qualifiers
hard and soft regard the way in which a constraint is interpreted, depending
on the application context, for simplicity we refer to “hard constraints” and
“soft constraints,” respectively.

Definition 4 (choice of the task space). Let X ⊆ R
d be open, f j : X → R the j-th

task of the agent, j = 1, . . . , n, and f := [ f1, . . . , fn]′. Then f ∈ F , where the task
space is chosen as

F := Wk,2(X )× . . .×Wk,2(X )︸ ︷︷ ︸
n times

with k > d/2.

By the Sobolev embedding theorem (see Adams & Fournier, 2003), the
requirement k > d/2 implies that each element of Wk,2(X ) has a unique
bounded and continuous representative on which the constraints are well
defined.9 Moreover, by the Sobolev embedding theorem, for k > d/2, the
space F is an RKHS too (see also Berlinet & Thomas-Agnan, 2004).10

To define our learning model, we introduce a parsimony index, defined
via a differential operator. We linear-consider differential operators that are
invariant under spatial shift and have constant coefficients, as summarized
in the next definition. We use the following notation. For a function u and a

9Indeed, each element of Wk,2(X ) is an equivalence class of functions, which dif-
fer on sets of zero Lebesgue measure. Knowing that each such equivalence class has a
unique bounded and continuous representative allows one to define the constraints un-
ambiguously, that is, to evaluate them on such a representative element (otherwise, some
constraints, such as pointwise ones, might be ambiguously defined, since it would not be
clear on which representative element they should be evaluated).

10When the condition k > d/2 is violated, one can easily construct functions belonging
to Wk,2(X ) and containing peaks of infinite amplitude (see Stein, 1970 and Girosi &
Anzellotti, 1993). This shows that in such cases, Wk,2(X ) is not an RKHS since, by one of
its equivalent definitions, a RKHS is a Hilbert space of functions for which all evaluation
functionals are bounded (see Berlinet & Thomas-Agnan, 2004).



408 G. Gnecco, M. Gori, S. Melacci, and M. Sanguineti

multi-index α with n nonnegative components α j, we write Dαu to denote
∂ |α|

∂α1...∂αn
u, where |α| :=∑n

j=1 α j.

Definition 5 (finite-order linear differential operator). We define the vectorial
finite-order linear differential operator P := [P0, . . . , Pl−1]′ as the l-tuple of oper-
ators Pi , i = 0, . . . , l − 1, acting on the Sobolev space Wk,2(X ) and such that

Pi :=
∑
|α|≤ki

bi,α Dα,

where ki ≤ k and the bi,αs are suitable real coefficients. The formal adjoint of P is
defined as the operator P� = [P�

0 , . . . , P�
l−1]′ whose ith component P�

i has the form

P�
i :=

∑
|α|≤ki

(−1)|α|bi,α Dα.

We also define the operator

L := (P�)′P.

For two functions u1, u2 : X → R such that the right-hand side of equa-
tion 2.1 is well defined and finite, we let

〈u(1), u(2)〉 :=
∫
X

u(1)(x)u(2)(x) dx. (2.1)

Definition 6 (parsimony index). Let P := [P0, . . . , Pl−1]′ be a finite-order
linear differential operator, ‖ f j‖2

P := 〈P f j , P f j 〉 :=
∑l−1

r=0

∫
X (Pr f j (x))2dx and

γ ∈ R
n a vector of positive components. We endow the task space F :=

Wk,2(X )× . . .×Wk,2(X )︸ ︷︷ ︸
n times

with a seminorm

‖ f ‖P,γ :=

⎛
⎝ n∑

j=1

γ j‖ f j‖2
P

⎞
⎠1/2

=

⎛
⎝ n∑

j=1

γ j

l−1∑
r=0

∫
X

(Pr f j (x))2dx

⎞
⎠1/2

.

The parsimony index is given by the functional

E(·) := ‖ · ‖2
P,γ . (2.2)
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Equation 1.3 provides a simple example of a parsimony index of the
form 2.2.

Definition 7 (parsimonious agent). A parsimonious agent that interacts with
the environment aims at minimizing over the task space the functional E . More
specifically, in the case of hard constraints, the functional 2.2 has to be minimized
on the subset of F of the task space that satisfies the hard constraints, whereas in
the soft case, one has to minimize on F the sum of equation 2.2 and a suitable
penalty term, which quantifies the violation of the given set of soft constraints. In
the case of hard constraints mixed with soft ones, the sum above is minimized on
the subset of F of the task space that satisfies the hard constraints.

Notice that in principle, any constraint can be regarded as hard or soft,
depending on the way it is encoded in the optimization problem that models
learn with constraints.

Our formulation is a generalization to multitask learning of what was
proposed in Poggio and Girosi (1989) for regularization networks with soft
constraints associated with supervised examples only, whose definition is
rooted in Tikhonov’s regularization theory (Tikhonov & Arsenin, 1977) and
related studies on spline functions (Wahba, 1975, 1990; see also Hadamard’s
seminal paper on well-posedness: Hadamard, 1902). This relies on a gen-
eralized version of the Dirichlet integral, which plays a fundamental role
in many classic physic laws. In the case n = 1, the operator P has been re-
lated to the notion of kernel in a RKHS, too (see Schölkopf & Smola, 1998;
Smola et al., 1998; Gnecco, Gori, & Sanguineti, 2013), and in Evgeniou, Pon-
til, and Poggio (2000) there are some relevant links between regularization
networks and kernel machines.

The representer theorems that we derive in section 3 are based on the
existence of a free-space Green function for the operator L := (P�)′P intro-
duced in definition 5. It has to be remarked that when P is a finite-order
linear differential operator, as stated in definition 5, a gaussian cannot be
the free-space Green function of L. Indeed, if g were a gaussian, then the
first-hand side of the distributional differential equation Lg= δ would be
smooth (different from the right-hand side). So our theory does not cover
directly the gaussian kernel, which nevertheless was used in the introduc-
tory example of section 1.4. In section 3.6, we discuss a way to circumvent
this problem.

If we choose for the operator P the form used in Tikhonov’s stabilizing
functionals (Tikhonov & Arsenin, 1977), for n = 1 (i.e., there is only one task
f : X → R) and l = k+ 1, we get

‖ f‖2
P =

∫
X

k∑
r=0

ρr(x)
(
Dr f (x)

)2 dx,
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where the function ρr(x) is nonnegative, Pr := √ρr(x)Dr, and Dr denotes a
linear differential operator with constant coefficients and containing only
partial derivatives of order r. An interesting case is the one in which ρr(x) ≡
ρr ≥ 0 for every x ∈ X and the differential operator satisfies

D2r = �r = ∇2r (2.3)

and

D2r+1 = ∇�r = ∇∇2r, (2.4)

where � := ∇2 denotes the Laplacian operator and ∇ the gradient, with
the additional condition D0 f = f (see Poggio & Girosi, 1989; Yuille &
Grzywacz, 1989). For instance, D1 = ∇, D2 = � = ∇2, and D3 = ∇� = ∇∇2.
According to equation 2.2, when n > 1 the operator P acts separately on all
the components of f: P f := [P f1, P f2, . . . , P fn]′.11 Then, unlike what is done
in Micchelli and Pontil (2005), Argyriou et al. (2008), and Evgeniou et al.
(2005), the interaction among the components f �

j of an optimal solution f �

to the learning problem is modeled by the fulfillment of the constraints, not
by the presence of the differential operator P in the parsimony index.

2.2 Admissible Tasks and Constraint Transformations. The kinds of
constraints that we consider in this letter have been summarized in defi-
nition 1 (see Table 2 for several instances). We use the symbol C to denote
a collection of constraints. For instance, C := {φ̌i, i ∈ Nm̌H

} is a collection of
unilateral holonomic constraints:

Definition 8 (admissible tasks). The set Fi ⊆ F of the functions belonging to the
task space F and compatible with the ith constraint is called the set of admissible
tasks with regard to the ith constraint. For a constraint collection C, the set FC ⊆ F
of the functions belonging to the task spaceF and compatible with all the constraints
in C is called the set of admissible tasks and its functions are the admissible tasks.

An especially interesting case of the isoperimetric bilateral constraints
introduced in definition 1, iii, is

�i( f ) =
∫
X

ψi(x, f (x))dx. (2.5)

where ψi : X × R
n → R, that is, when �i(·) is an integral functional. A sim-

ilar remark holds for �̌i(·) in the case of isoperimetric unilateral constraints

11Basically, in this case we overload the notation and use the symbol P for both the
(matrix) linear differential operator acting on f and the (vector) differential operator acting
on its components.
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(see definition 1, iv). When the setXi is made up of a single point, under mild
smoothness assumptions, any pointwise constraint defined in that point can
be expressed in terms of an equivalent isoperimetric one by replacing ψi in
equation 2.5 by a Dirac delta. For instance, the bilateral pointwise constraint
φi(xi, f (xi)) = 0 is equivalent to

∫
X

φi(x, f (x))δ(x− xi)dx = 0,

provided that φi and f are continuous. Often pointwise constraints can be
interpreted as discretizations of constraints of holonomic type. In machine
learning applications, they may be associated with both supervised and
unsupervised training examples.

Any holonomic bilateral constraint φi(x, f (x)) = 0 can be expressed in
terms of the pair of unilateral constraints (φi(x, f (x)) ≥ 0,−φi(x, f (x)) ≥ 0).

Unilateral constraints also can be expressed in terms of an appropriate
choice of bilateral constraints. To see this, let (u)+ := max{0, u}. Then the
unilateral constraint φ̌i(x, f (x)) ≥ 0 is equivalent to (−φ̌i(x, f (x)))+ = 0 and
to ((−φ̌i(x, f (x)))+)2 = 0. This equivalence should be treated with care
when applying the classic theory of Lagrange multipliers (see sections
3.1 to 3.3), since it requires some properties that might be lost in making
such a transformation. For instance, the reduction of a unilateral constraint
φ̌i(x, f (x)) ≥ 0 to the corresponding bilateral one (−φ̌i(x, f (x)))+ = 0 may
cause the loss of the differentiability. So the direct extension of theoretical
results from the case of bilateral constraints to unilateral ones is not always
trivial.

2.3 Learning from Hard and Soft Constraints. We denote by 1Fi
: Fi →

{0, 1} the characteristic function(al) of the set of functions Fi: f ∈ Fi ⇔
1Fi

( f ) = 1. We use 1Xi
(·) to denote the characteristic function of the set

Xi when Xi is open. In order to keep the notation uniform for pointwise

constraints, we let 1Xi
(·) :=∑|Xi|

j=1 δ(· − x(i, j)) for a finite set Xi made up of
the points x(i, j) ( j = 1, . . . , |Xi|), where δ denotes the Dirac’s delta. So for a
set Xi made up of only one point xi, one has 1Xi

(·) := δ(· − xi).
The following definition formalizes the problems of learning from hard

constraints:

Definition 9 (learning from hard constraints). Let FC ⊆ F be the subset of the
functions that belong to the given function space F and are compatible with a given
collection C of constraints. The problem of determining a (local or gobal) minimizer
of the functional E(·) := ‖ · ‖2

P,γ over FC is called learning from the hard constraint
collection C.
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Now we turn our attention to the soft case, focusing on holonomic con-
straints. The softness of pointwise and isoperimetric constraints can be
directly understood once we have the notion for holonomic constraints.
Whereas isoperimetric constraints yield directly a measure of their viola-
tion (given, e.g., by |�i( f )| and |(−�̌i( f ))+|), for holonomic constraints we
can express a global degree of mismatch in terms of some given (possibly
generalized)12 data probability density p(·) (more generally, a weighted av-
erage of their degree of violation). For example, for a continuous holonomic
constraint φi associated with an open subset Xi of X and q ∈ N

+, one can
express the global degree of mismatch as

∫
Xi

|φi(x, f (x))|q p(x)dx (2.6)

and, for a continuous unilateral holonomic constraint φ̌i, as

∫
Xi

|(−φ̌i(x, f (x)))+|q p(x)dx. (2.7)

However, when different kinds of constraints are involved, the quantities
in equations 2.6 and 2.7 might not satisfactorily represent the interactions
of the agent with the environment. Basically, the constraints come with
their own specificity, and the agent might be willing to express a belief on
them. Hence, whereas equations 2.6 and 2.7 represent inherent degrees of
mismatch of φi, which depend on the probability density, it is useful to the
belief of a soft constraint.

Definition 10 (belief of a soft constraint). Given the i-th constraint of a collection
C of soft constraints, its belief is defined as follows:

• If isoperimetric: a non negative constant β

• If holonomic: either a function from Xi to R
+ or a linear combination of

Dirac’s deltas with positive coefficients
• If pointwise: a vector of |Xi | nonnegative constants

For the pointwise case, the belief can be reduced to the one for the
holonomic case, when the latter is expressed by a linear combination of
Dirac’s deltas with positive coefficients. So in the following definition, we
deal only with isoperimetric and holonomic constraints.

Definition 11 (degree of mismatch of a soft constraint). Given the i-th constraint
of a collection C of soft constraints (possibly of different kinds), its q-th-order degree
of mismatch is defined as follows:

12Expressed in terms of Dirac’s deltas, for example.
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• If isoperimetric bilateral: μ
(q )
Φi

( f ) := |Φi ( f )|q βi

• If isoperimetric unilateral: μ
(q )
Φ̌i

( f ) := |(−Φ̌i ( f ))+|q βi

• If holonomic bilateral: μ
(q )
φi

( f ) :=
∫
Xi
|φi (x, f (x))|q βi (x) p(x) dx

• If holonomic unilateral: μ
(q )
φ̌i

( f ) :=
∫
Xi
|(−φ̌i (x, f (x)))+|q βi (x) p(x) dx

The q-th-order degree of mismatch of C, denoted by μ
(q )
C ( f ), is the summation of

the degrees of mismatch of each constraint in C. In this case, by μ
(q )
i,C( f ) we denote

the qth-order degree of mismatch of the ith constraint in C.

Of course, μ
(q)

C ( f ) = 0 ⇔ C is a collection of constraints that are strictly
satisfied by f. Notice that in the holonomic case, it is reasonable to expect
βi(x) ≡ ci for every i ∈ Nm, which expresses a global belief on the holonomic
constraints. It might be the case that ci = c for every i ∈ Nm, when one has
no reason to express different beliefs on different constraints. In other cases,
the choice of the belief is not obvious, since it may involve local properties
of the constraints.

The following example provides insight into the joint role of the proba-
bility density and the belief of the constraints:

Example 1. Let us consider the following holonomic constraints, along with
their beliefs:

∀x ∈ X : φ1( f1(x), f2(x)) := f1(x)(1− f2(x)) = 0; β1(x) = 1
2
,

φ2( f1(x), f2(x)) = f1(x)− y1 = 0; β2(x) = 1
4
δ(x− x),

φ3( f1(x), f2(x)) = f2(x)− y2 = 0; β3(x) = 1
4
δ(x− x).

The overall second degree of mismatch is

1
4

(
(y1 − f1(x))2 + (y2 − f2(x))2)︸ ︷︷ ︸

supervised pairs, βi(x)= 1
4 δ(x−x)

+1
2

∫
X

(
f1(x)(1− f2(x))

)2 dx︸ ︷︷ ︸
logic constraint, β1(x)= 1

2

.

While the first part involves supervised pairs on the same x, the second
models a logic-type constraint. Clearly their soft fulfillment requires ex-
pressing their belief, since it may be qualitatively different on different
points of the domain. Basically, the belief can be thought of as a weight to
judge the subsequent constraint verification.

In the rest of the letter, we consider the case q = 1. To simplify the nota-
tion, we merely write μφi

( f ) instead of μ
(1)
φi

( f ) and similar notations.
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Now we consider the following functional:

Esoft
C ( f ) := 1

2
‖ f‖2

P,γ + μC ( f ). (2.8)

By definitions 1 and 4, the functional 2.8 is welldefined when f ∈ F . In
equation 2.8, we can clearly realize the twofold role of probability in the
fuzziness arising from soft constraints. For instance, in the case of a soft
holonomic constraint represented by the function φ̌, the degree of mismatch
μ

φ̌
( f ) depends on each point x ∈ X via its belief and the probability density

p(·), and at the same time, the penalty (−φ̌)+ is a way of weighing the
fuzziness of the set F

φ̌
:= {φ̌ : φ̌(x, f (x)) ≥ 0 ∀x ∈ X } ⊆ F that has already

been defined in the hard case. In the case of a soft constraint, the penalty term
(−φ̌)+ yields a measure connected with a certain membership functional of
F

φ̌
.

Definition 12 (learning from soft constraints). Let C be a collection of constraints.
The problem of determining a (local or global) minimizer of the functional E so f t

C (·) :=
1
2‖ · ‖2

P,γ + μC(·) over F is called learning from the soft constraint collection C.

In the following, in order not to burden the notations and without loss
of generality, we omit βi and βi(x) and write merely 1 instead of βi and p(x)

instead of βi(x) p(x).

2.4 Existence and Uniqueness of Optimal Solutions. Let us investigate
the existence of optimal solutions to the problems of learning from hard and
soft constraints. The following theorem provides sufficient conditions for
the existence of global minimizers in the hard case.

Theorem 1 (existence and uniqueness for the problem of learning from hard
constraints). Let C be a hard constraint collection. If ‖ · ‖P,γ is a Hilbert-space
norm on F and the set FC is nonempty, closed, and convex, then there exists a
unique solution to the problem of learning from C.

Proof. As ‖ · ‖P,γ is a Hilbert-space norm on F and the norm is convex
and continuous, it follows by lemma 1iv in the appendix that the func-
tional ‖ · ‖P,γ is weakly lower semicontinuous on F . Moreover, since for
any sufficiently large M ∈ R the set

SM := { f ∈ FC |‖ f‖P,γ ≤ M}

is nonempty, closed, bounded, and convex, by lemma 1iii, SM is nonempty
and weakly compact. Finally, since any Hilbert space norm is strictly con-
vex, by lemma 1v arg min f∈FC

‖ f‖P,γ is nonempty and contains only one
element.
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For n = 1, examples of problems for which ‖ · ‖P,γ is a Hilbert-space norm
on F are provided in Gnecco, Gori, and Sanguineti (2013) for the class of
rotationally symmetric linear differential operators as defined in that paper
(see also section 4.3.1 for some details on such operators). Such examples
extend readily to the case n > 1 as the operator P acts on each component of
f separately. Examples of problems for which FC is nonempty, closed, and
convex arise when the constraints are bilateral and holonomic and the con-
straint functions φi(·, ·) are linear with respect to the second vector-valued
argument. For unilateral and holonomic constraints, the assumption of
closedness and convexity of FC holds when the associated constraint func-
tions φ̌i(·, ·) are concave with respect to the second vector-valued argument
and continuous. A similar remark holds for the other kinds of constraints.

The next theorem addresses the case of soft constraints:

Theorem 2 (existence and uniqueness for the problem of learning from soft con-
straints). Let C be a soft constraint collection. If ‖ · ‖P,γ is a Hilbert-space norm on
F and the penalty term μC(·) is convex and continuous, then there exists a unique
solution to the problem of learning from C.

Proof. In the proof of theorem 2, by lemma 1iv in the appendix, the func-
tionals ‖ · ‖P,γ and μC (·) are weakly lower semicontinuous on F , such is
their sum. Moreover, as for any sufficiently large M ∈ R, the set

SM :=
{

f ∈ F
∣∣∣ 1

2
‖ f‖2

P,γ + μC ( f ) ≤ M
}

is nonempty, closed, bounded, and convex, it follows by lemma 1iv that SM
is nonempty and weakly compact. Finally, since any Hilbert space norm is
strictly convex and the sum of a strictly convex functional and a convex one
is strictly convex, by lemma 1v, arg min f∈F ( 1

2‖ f‖2
P,γ + μC ( f )) is nonempty

and contains only one element.

When the constraints are holonomic and bilateral, problems for which
μC (·) is convex and continuous arise when each φi(·, ·) is nonnegative,
continuous, and convex with respect to the second vector-valued argument
(this implies the convexity of φ2

i (·, ·) with respect to the same argument too).
For unilateral holonomic constraints, the convexity and continuity of μC (·)
hold when the constraint functions φ̌i(·, ·) are concave with respect to the
second vector-valued argument and continuous. Again, a similar remark
holds for the other kinds of constraints.

Remark 1. In sections 4 and 5, we shall see that for many important learning
tasks the conditions of theorem 2 (e.g., the convexity and continuity ones)
hold true. However, when departing from the convexity hypothesis of the
constraints, the optimization problem can become hard to face.
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3 Representer Theorems and Support Constraint Machines

The investigations of this section are based on results established in the
areas of unconstrained and constrained variational calculus (see van Brunt,
2003; Giaquinta & Hildebrand, 1996; Ernestovic, 1970; Gelfand & Fomin,
1963).

3.1 Representer Theorems for Hard Constraints. We start by consid-
ering hard holonomic constraints. The following theorem prescribes the
functional representation of an optimal solution to the corresponding learn-
ing problem. Given a set of m holonomic constraints (defined, in general,
on possibly different open subsets Xi), we denote by m(x) the number of
constraints that are defined in the same point x of the domain. For each
set Xi, we denote by cl(Xi) its closure in the Euclidean topology. For two
vector-valued functions u(1) and u(2) of the same dimension, u(1) ∗ u(2) de-
notes the vector-valued function v whose first component is the convo-
lution of the first components of u(1) and u(2), the second component is
the convolution of the second components of u(1) and u(2), and so on, that
is, v j = (u(1) ∗ u(2)) j = u(1)

j ∗ u(2)

j , for each index j. We denote by X̂ ⊂ X an
open set in which the same subset of constraints is defined in all its points
in such a way that m(x) is constant on the same X̂ . We recall that we denote
by f o a locally optimal solution to the problem of learning from (hard or
soft) constraints and by f � a globally optimal solution. The following two
definitions recall some classical concepts.

Definition 13 (active constraints). A constraint φ̌i (x, f (x)) ≥ 0 is said to be
active in x0 at local optimality iff φ̌i (x0, f o(x0)) = 0; otherwise it is inactive in x0
at local optimality.

Definition 14 (free-space Green function). The free-space Green function g as-
sociated with a linear differential operator O is a solution to the distributional
differential equation Og = δ, where δ is the Dirac distribution, centered on the
origin.

Theorem 3 (representer theorem for hard holonomic constraints). Let us consider
the learning problem formulated in definition 9 in the case of m < n hard bilateral
constraints of holonomic type, which define the subset

Fφ :=
{

f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φi (x, f (x)) = 0
}

of the function space F , where ∀i ∈ Nm : φi ∈ Ck+1(cl(Xi )× R
n). Let f o be any

constrained local minimizer of class C2k(X , R
n) of the functional 2.2. Let us assume

that for every X̂ and every x0 in the same set X̂ , one can find two permutations σ f
and σφ of the indexes of the n functions fj and of the m constraints φi , respectively,
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such that φσ
φ

(1), . . . , φσ
φ

(m(x0)) refer to the constraints actually defined in x0, and

the Jacobian matrix

∂(φσ
φ

(1), . . . , φσ
φ

(m(x0)))

∂( f o
σ f (1), . . . , f o

σ f (m(x0)))
, (3.1)

evaluated in x0, is not singular. Then the following hold:

i. There exists a set of functions λi : X̂ → R, i ∈ Nm, such that f o satisfies
on X̂ the Euler-Lagrange equations

γ L f o(x) +
m∑

i=1

λi (x)1Xi
(x) · ∇ f φi (x, f o(x)) = 0, (3.2)

where γ L := [γ1 L , . . . , γnL]′ is a spatial-invariant operator13 and ∇ f φi
is the gradient with regard to the second vector argument f of the function
φi .

ii. Let γ−1g := [γ−1
1 g, . . . , γ−1

n g]′. If for all i one has Xi = X = R
d , L is

invertible on Wk,2(X ), and there exists a free-space Green function g of L
that belongs to Wk,2(X ), then f o has the representation14

f o(·) =
m∑

i=1

γ−1g(·) ∗ ωi (·), (3.3)

where ωi (·) := −λi (·)1Xi
(·)∇ f φi (·, f o(·)).

iii. For the case of m < n unilateral constraints of holonomic type, which
define the subset

Fφ̌ :=
{

f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φ̌i (x, f (x)) ≥ 0
}

of the function space F , i and ii still hold if the nonsingularity of equation
3.1 is required when restricting the constraints defined in x0 to the ones
that are active in x0 at local optimality (of course, replacing the φi s by
the φ̌i s). Moreover, each Lagrange multiplier function λi (x) is nonpositive
and equal to 0 when the correspondent constraint is inactive in x at local
optimality.

Proof. (i) Let f o be a constrained local minimizer of the functional
E( f ) := ‖ f‖2

P,γ over F . Fix x0 ∈ X̂ and a compact subset XC ⊂ X̂ contained
in an open ball of sufficiently small radius containing x0; after perform-
ing the permutations σφ and σ f , reorder the constraints and the compo-
nents of f in such a way that the ones with indexes σφ(1), . . . , σφ(m(x0))

13Here we use an overloaded notation, as made for the operator P.
14Existence and uniqueness of g and invertibility of L are discussed in Gnecco, Gori,

and Sanguineti (2013).
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and σ f (1), . . . , σ f (m(x0)), respectively, are the first m(x0) ones. By an ap-
plication of lemma 2, if we fix arbitrarily the functions ηi ∈ Ck

0(XC) for
i = m(x0)+ 1, m(x0)+ 2, . . . , n, then for every sufficiently small |ε| > 0, the
bilateral holonomic constraints are met for a function f whose components
fj have the following expressions:

f1= f o
1 + εη1 +O(ε2),

f2= f o
2 + εη2 +O(ε2),

. . .

fm(x0 )= f o
m(x0 ) + εηm(x0 ) +O(ε2),

fm(x0 )+1= f o
m(x0 )+1 + εηm(x0 )+1,

fm(x0 )+2= f o
m(x0 )+2 + εηm(x0 )+2,

. . .

fn= f o
n + εηn,

where the functions ηi ∈ Ck
0(XC), for i = 1, . . . , m(x0), are still determined

by lemma 2. In particular, by setting y(x) := [ f o
m(x0 )+1(x), f o

m(x0 )+2(x), . . . ,

f o
n(x)]′, z(x) := [ f o

1 (x), . . . , f o
m(x0 )(x)]′, φ := [φ1, . . . , φm(x0 )]

′, ηy := [ηm(x0 )+1,

ηm(x0 )+2, . . . , ηn]′, and ηz = [η1, . . . , ηm(x0 )]
′, we have15

ηz(x) = −(∇3φ(x, y(x), z(x)))−1(∇2φ(x, y(x), z(x)))ηy(x). (3.4)

Moreover, the partial derivatives, up to the order k, of the first m(x0) com-
ponents of f, have similar expressions, obtained from equation A.3 in the
appendix, which contain terms of order O(ε2). This implies that E( f ) can
be written as

E( f )=
n∑

j=1

γ j〈P( f o + εη) j, P( f o + εη) j〉 +O(ε2)

=
n∑

j=1

γ j〈P f o
j , P f o

j 〉+2ε

n∑
j=1

γ j〈P f o
j , Pη j〉+ε2

n∑
j=1

γ j〈Pη j, Pη j〉+O(ε2)

=
n∑

j=1

γ j〈P f o
j , P f o

j 〉 + 2ε

n∑
j=1

γ j〈P f o
j , Pη j〉 +O(ε2).

15 For a scalar-valued function u of various vector arguments, we denote by ∇iu the
column vector of partial derivatives of u with respect to all the components of the ith
vector argument.
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Moreover, by an application of Green formula (see, e.g., Attouch, Buttazzo,
& Michaille, 2006, proposition 5.6.2), we have

〈P f o
j , Pη j〉 = 〈(P�)′P f o

j , η j〉 = 〈L f o
j , η j〉,

where P� is the formal adjoint of the operator P. Now we define locally the
row vector function λ as follows:

λ(x) := −[γ1(L f o)1(x), . . . , γm(x0 )(L f o)m(x0 )(x)](∇3φ(x, y(x), z(x)))−1.

(3.5)

Then, with such a definition and exploiting equation 3.4, we get

m(x0 )∑
j=1

γ j〈P f o
j , Pη j〉 =

m(x0 )∑
j=1

γ j〈L f o
j , η j〉 =

∫
X

λ(x)(∇2φ(x, y(x), z(x)))ηy(x)dx.

Summing up, we have

E( f )− E( f o)= 2ε

∫
X

(
[γm(x0 )+1(L f o)m(x0 )+1(x), . . . , γn(L f o)n(x)]

+ λ(x)(∇2φ(x, y(x), z(x)))
)
ηy(x)dx+O(ε2).

Now, since E( f )− E( f o) ≥ 0 for |ε| > 0 sufficiently small due to the local
optimality of f o, and ηy ∈ Ck

0(XC, R
n−m(x0 )) is arbitrary, by applying the fun-

damental lemma of the calculus of variations (see Giaquinta & Hildebrand,
1996) we conclude that

[γm(x0 )+1(L f o)m(x0 )+1(x), . . . , γn(L f o)n(x)]+λ(x)(∇2φ(x, y(x), z(x)))= 0

on XC. This, together with definition 3.5 of λ(x), shows that equation 3.2
holds on XC (setting also λi(x) = 0 for the constraints that are not defined in
x). Finally, by varying the point x0, we obtain equation 3.2 on the whole X̂ .

Part ii follows by equation 3.2, the definition of the Green function g of
L as the solution of Lg= δ (where δ denotes the Dirac’s delta centered in 0),
and the stated assumptions on L and g.

iii. For the case of unilateral constraints, the constraints inactive in x0 at
local optimality are not taken into account locally, so the condition of the
nonsingularity of the Jacobian matrix has to be referred only to the con-
straints that are active in x0 at local optimality. Moreover, all the arguments
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used to derive i and ii still hold (restricting the analysis to the active con-
straints in x0 at optimality and replacing the φi’s by the φ̌i’s), since, for every
sufficiently small |ε| > 0, the function f constructed as in the proof of i still
satisfies with equality the active constraints in x0 at local optimality.

Finally, we show that each Lagrange multiplier function λi(x) is nonpos-
itive. Without loss of generality, we can restrict the analysis to the points of
continuity of λi(x). Suppose by contradiction that there exists one such point
x̂0 ∈ X̂ such that λi(x̂0) > 0. Then, by continuity, λi(x) > 0 on a sufficiently
small open ball centered on x̂0.

For simplicity of notation, we also suppose that all the constraints de-
fined in x̂0 are active in x̂0 at local optimality. Then, by the nonsingularity
of the Jacobian matrix, there exists a vector u = [u1, . . . , um(x̂0 )]

′ such that
∇3φ̌(x̂0, y(x̂0), z(x̂0))u = ei, where ei is a column vector of all 0s, with the
exception of the ith component, which is 1. By an application of the implicit
function theorem (in the proof of lemma 2), for every sufficiently small
ε > 0 (but in this case, not for every sufficiently small ε < 0) we can con-
struct a feasible smooth perturbation f (x) of f o(x) such that its components
fj satisfy

f1(x)= f o
1 (x)+ εη1(x)+O(ε2),

f2(x)= f o
2 (x)+ εη2(x)+O(ε2),

. . .

fm(x̂0 )(x)= f o
m(x̂0 )(x)+ εηm(x̂0 )(x)+O(ε2),

fm(x̂0 )+1(x)= f o
m(x̂0 )+1(x),

fm(x̂0 )+2(x)= f o
m(x̂0 )+2(x),

. . .

fn(x)= f o
n(x),

for suitable functions η1, . . . , ηm(x̂0 ) ∈ Ck
0(XC) such that η1(x̂0) = u1, η2(x̂0) =

u2, ..., ηm(x̂0 )(x̂0) = um(x̂0 ), and such that E( f )− E( f o), apart from an infinites-

imal of order O(ε2), is directly proportional to

ε[γ1(L f o)1(x̂0), . . . , γm(x0 )(L f o)m(x̂0 )(x̂0)]u = −ελ(x̂0)ei = −ελi(x̂0) < 0,

which contradicts the local optimality of f o. Then we have λi(x̂0) ≤ 0.

When Xi �= R
d, the constraints considered in theorem 3 may include

conditions on the borders ∂Xi which have to be taken into account when
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solving the correspondent Euler-Lagrange equations (see equation 3.2). In
particular, they are required to join the solutions to the Euler-Lagrange
equations associated with two adjacent sets X̂ ’s.

In the expression

f o =
m∑

i=1

γ−1g ∗ ωi,

derived for the case Xi = X = R
d for all i, we can recognize both the ingre-

dients of a parsimonious knowledge-based solution, that is, the Green func-
tion g and the functions ωi, mixed by convolution. Note also that by defining
ω :=∑m

i=1 ωi, we have f o = γ−1g ∗ ω (the functions ωi and ω :=∑m
i=1 ωi play

a special role, which we discuss in section 3.4). Denoting by ◦ the Hadamard
(entrywise) product, we can express the Fourier transform (by Fourier trans-
form of a vector-valued function we mean the vector of Fourier transforms
of each component) f̂ o of f o as follows:

f̂ o = γ−1ĝ ◦ ω̂,

which promptly shows the filtering role of g(·), although we should also
take into account that ω itself depends on f o through the collection of the φis.
The frequency-vector distribution ω̂i, j(ξ ) (the jth component of the Fourier
transform ω̂i of ωi) is referred to as the weight of the constraint φi in the rep-
resentation of the function f o

j . These results represent a formal statement
of the general results concerning the notion of constraint reaction (equa-
tion 1.4i) and the representation of an optimal solution to the constrained
learning problem (equations 1.5 and 1.6).

Since the operator L is invertible on Wk,2(X ) and has g∗ as its inverse, by
f o = γ−1g ∗ ω we get ω = γ L f o, which is just a compact expression of the
solution 3.3 to the Euler-Lagrange equations, 3.2.

Corollary 1. Under the assumptions of theorem 3ii, one has ‖ f o‖2
P,γ = 〈ω, γ−1g ∗

ω〉.

Proof. Directly from equation 3.2, when considering the definition of the
function ω, we get

‖ f o‖2
P,γ = 〈γ L f o, f o〉 = 〈ω, γ−1g ∗ ω〉.

By the Parseval theorem and the mean value theorem, we can find ξ̌ωi, j
∈

R
d (i = 1, . . . , m, j = 1, . . . , n) such that (as L = (P∗)′P and g solves Lg= δ,
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ĝ is real),

‖ f o‖2
P,γ =〈ω, γ−1g ∗ ω〉 =

n∑
j=1

∫
Rd

γ−1
j ĝ(ξ ) · |ω̂|2(ξ )dξ

=
m∑

i=1

n∑
j=1

∫
Rd

γ−1
j ĝ(ξ ) · |ω̂i, j|2(ξ )dξ

=
m∑

i=1

n∑
j=1

γ−1
j ĝ(ξ̌ωi, j

)

∫
Rd
|ω̂i, j|2(ξ )dξ . (3.6)

Now we consider hard isoperimetric constraints. The structure of an
optimal solution of the correspondent learning problem is investigated in
the following theorem. By Ck

0(X , R
n), we denote the set of functions from

X to R
n that are continuously differentiable up to the order k and have

compact support. We say that the constraint
∫
X 1Xi

(x) · ψ̌i(x, f (x))dx ≥ 0

is active at local optimality iff
∫
X 1Xi

(x) · ψ̌i(x, f o(x))dx = 0; otherwise it is
inactive at local optimality.

Theorem 4 (representer theorem for hard isoperimetric constraints). Let f o be a
constrained local minimizer of equation 2.2. Consider a parsimonious agent that
minimizes equation 2.2 on F , consistently with the set

∀i ∈ Nm,

∫
X

1Xi
(x) · ψi (x, f (x))dx = 0,

of bilateral isoperimetric constraints, where ∀i ∈ Nm : ψi ∈ C1(cl(Xi )× R
n) and

assume that there exist functions η(1), . . . , η(m) ∈ Ck
0 (X , R

n) such that the matrix

⎛
⎜⎝
∫
X1

(∇ f ψ1(x, f o(x)))′η(1)(x)dx . . .
∫
X1

(∇ f ψ1(x, f o(x)))′η(m)(x)dx
. . . . . . . . .∫

Xm
(∇ f ψm(x, f o(x)))′η(1)(x)dx . . .

∫
Xm

(∇ f ψm(x, f o(x)))′η(m)(x)dx

⎞
⎟⎠

(3.7)

is nonsingular. Then the following hold:

i. There exist m constants λi ∈ R such that f o satisfies on X

γ L f o(x) +
m∑

i=1

λi 1Xi
(x) · ∇ f ψi (x, f o(x)) = 0.
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ii. If X = R
d , L is invertible on Wk,2(X ) and there exists a free-space Green

function g of L that belongs to Wk,2(X ), then f o has the representation

f o(·) =
m∑

i=1

γ−1g(·) ∗ ωi (·), (3.8)

where ωi (·) := −λi 1Xi
(·)∇ f ψi (·, f o(·)).

iii. Now consider a parsimonious agent that minimizes equation 2.2 on F
consistently with the set

∀i ∈ Nm,

∫
X

1Xi
(x) · ψ̌i (x, f (x))dx ≥ 0

of m unilateral isoperimetric constraints, where ∀i ∈ Nm : ψ̌i ∈
C1(cl(Xi )× R

n). Then i and ii still hold the nonsingularity of equation
3.7 is required on the active constraints at local optimality (of course,
replacing the ψi s by the ψ̌i s). Moreover, each Lagrange multiplier λi is
nonpositive and equal to 0 when the correspondent constraint is inactive
at local optimality.

Proof. (i) Let f o be a constrained local minimizer of the functional E( f ) :=
‖ f‖2

P,γ over F , let the auxiliary functions η(1), . . . , η(m) ∈ Ck
0(X , R

n) be such
that the matrix 3.7 is nonsingular, and fix η(m+1) ∈ Ck

0(X , R
n) arbitrarily. Let

ε1, . . . , εm+1 ∈ R and consider the problem of minimizing the function

F(ε1, . . . , εm+1) := E
(

f o +
m+1∑
i=1

εiη
(i)

)

subject to the m equality constraints given by

∀i ∈ Nm, Wi(ε1, . . . , εm+1)

:=
∫
X

1Xi
(x) · ψi(x,

(
f o +

m+1∑
i=1

εiη
(i)

)
(x))dx = 0. (3.9)

Of course, being f o a local constrained minimizer of E( f ) implies
that (0, . . . , 0) is a constrained local minimizer of F(ε1, . . . , εm+1) un-
der the constraints 3.9. Since the nonsingularity of equation 3.7 provides
the qualification16 of the set of constraints 3.9 in (0, . . . , 0), we can apply the
standard theory of Lagrange multipliers in finite-dimensional spaces (see
Bertsekas, 1999) to conclude that there exists a vector λ = [λ1, . . . , λm]′ ∈ R

m

16 In particular, the so-called linear independence constraint qualification (LICQ).
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of Lagrange multipliers such that

∇ε1,...,εm
F(0, . . . , 0)+ (∇ε1,...,εm

W )′(0, . . . , 0)λ = 0, (3.10)

∇εm+1
F(0, . . . , 0)+ (∇εm+1

W )′(0, . . . , 0)λ = 0, (3.11)

where W is the column vector of components Wi, for i = 1, . . . , m. Terms
∇ε1,...,εm

F(0, . . . , 0) and (∇ε1,...,εm
G)′(0, . . . , 0) do not depend on the arbitrary

function η(m+1). Moreover, ∇ε1,...,εm
W(0, . . . , 0) is equal to the matrix 3.7,

which is invertible by assumption. Concluding, equation 3.10 allows us to
compute the vector λ regardless of the specific choice of η(m+1). Finally, re-
defining the Lagrange multipliers up to the common multiplicative constant
1/2, equation 3.11 is equivalent to

∫
X

[
γ L f o(x)+

m∑
i=1

λi1Xi
(x) · ∇ f ψi(x, f o(x))

]′
η(m+1)(x)dx = 0, (3.12)

from which we obtain equation 3.12, by applying the fundamental lemma
of the calculus of variations.

Part ii. is obtained likewise in the proof of theorem 3ii.
iii. Proceeding in the proof of part i, we consider the problem of mini-

mizing the function

F(ε1, . . . , εm+1) := E
(

f o +
m+1∑
i=1

εiη
(i)

)

subject to the m inequality constraints given by

∀i ∈ Nm, W̌i(ε1, . . . , εm+1)

:=
∫
X

1Xi
(x) · ψ̌i

(
x,

(
f o +

m+1∑
i=1

εiη
(i)

)
(x)

)
dx ≥ 0.

Since the active constraints at optimality are qualified by assumption, we
can proceed similarly as in the proof of part i by applying the Karush-Kuhn-
Tucker necessary conditions for local optimality, which provide the correct
sign of the Lagrange multipliers associated with the inequality constraints.

The next theorem states a similar result for the case of hard pointwise
constraints. We denote by x(i,1), x(i,2), . . . , x(i,|Xi|) the elements of each fi-
nite set Xi (notice that in general, there may be a nonempty intersection
between different Xis). We say that the constraint φ̌i(x(i, j), f (x(i, j))) ≥ 0 is
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active at local optimality iff φ̌i(x(i, j), f o(x(i, j))) = 0; otherwise is inactive at
local optimality.

Theorem 5 (representer theorem for hard pointwise constraints). Let us consider
a parsimonious agent that minimizes equation 2.2 on F consistently with a given
set of bilateral pointwise constraints given by

∀i ∈ Nm∀ j ∈ N|Xi |, φi (x(i, j), f (x(i, j))) = 0,

where ∀i ∈ Nm : φi ∈ C1(X × R
n). Let f o be any constrained local minimizer of

equation 2.2. Moreover, assume that for any x0 in the finite set ∪m
i=1Xi , we have

m(x0) ≤ n, and we can find two permutations σ f and σφ of the indexes of the n
functions fj and of the m constraints φi such that φσ

φ
(1), . . . , φσ

φ
(m(x0)) refer to the

constraints actually defined in x0, and the Jacobian matrix

∂(φσ
φ

(1), . . . , φσ
φ

(m(x0)))

∂( f o
σ f (1), . . . , f o

σ f (m(x0)))
, (3.13)

evaluated in x0, is nonsingular. Then the following hold:

i. There exist
∑m

i=1
∑|Xi |

j=1 constants λ(i, j) ∈ R such that f o satisfies on X

γ L f o(x) +
m∑

i=1

|Xi |∑
j=1

λ(i, j)δ(x − x(i, j))∇ f φi (x, f o(x)) = 0. (3.14)

ii. If X = R
d , L is invertible on Wk,2(X ) and there exists a free-space Green

function g of L that belongs to Wk,2(X ), then f o has the representation

f o(·) =
m∑

i=1

γ−1g(·) ∗ ωi (·), (3.15)

where ωi (·) := −∑|Xi |
j=1 λ(i, j)δ(· − x(i, j))∇ f φi (·, f o(·)).

iii. For the case of m unilateral pointwise constraints given by

∀i ∈ Nm∀ j ∈ N|Xi |, φ̌i (x(i, j), f (x(i, j))) ≥ 0,

where ∀i ∈ Nm : φ̌i ∈ C1(X × R
n), parts i and ii still hold if the nonsingu-

larity of equation 3.13 is required on the active constraints at local opti-
mality (of course, replacing the φi s by the φ̌i s). Moreover, each Lagrange
multiplier λ(i, j ) is nonpositive and equal to 0 when the correspondent
constraint is inactive at local optimality.
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Proof. Items i, ii, and iii are obtained in the same way as the correspondent
items in theorem 4. In the following, we detail only the required changes
with respect to the proof of item i of theorem 4.

Let us denote by M the cardinality of the set∪m
i=1Xi and by x(1)

0 , . . . , x(M)

0 its
elements. For l = 1, . . . , M, let the auxiliary functions η(l,1), . . . , η(l,m(x(l)

0 )) ∈
Ck

0(X , R
n) be chosen according to the following rules:

• The supports of η(l,1), . . . , η(l,m(x(l)
0 )) are contained in an open ball of

sufficiently small radius, centered in x(l)
0 .

• The auxiliary functions correspondent to different indexes l (hence to
different points x(l)

0 ) have disjoint supports.
• The m(x(l)

0 )×m(x(l)
0 ) matrix

∂(φ1, . . . , φm(x(l)
0 )

)

∂( f o
1, . . . , f o

n)
[η(l,1), . . . , η(l,m(x(l)

0 ))],

evaluated in x(l)
0 , is nonsingular,17 where [η(l,1), . . . , η(l,m(x(l)

0 ))] denotes
the n×m(x(l)

0 ) matrix obtained by concatenating the column vectors
η(l,1), . . . , η(l,m(x(l)

0 )).

Now, let us choose an arbitrary function η ∈ Ck
0(X , R

n) and, for ε, ε(l,r) ∈ R

(l = 1, . . . , M, r = 1, . . . , m(x(l)
0 )), consider the problem of minimizing the

function

F(ε, {ε(l,r)}) := E

⎛
⎝ f o + εη +

M∑
l=1

m(x(l)
0 )∑

r=1

ε(l,r)η
(l,r)

⎞
⎠

subject to the
∑M

h=1 m(x(h)

0 ) equality constraints18 given by

∀h ∈ NM∀i ∈ Nm(x(h)

0 )
,

Gh,i(ε, {ε(l,r)}) := φi

⎛
⎝x(h)

0 ,

⎛
⎝ f o + εη +

M∑
l=1

m(x(l)
0 )∑

r=1

ε(l,r)η
(l,r)

⎞
⎠ (x(h)

0 )

⎞
⎠ = 0.

By the construction of the auxiliary functions η(l,r), the qualification of the
constraints holds and the Lagrange multipliers can be chosen independent

17Choosing the functions η(l,1), . . . , η(l,m(x(l)
0 )) in such a way is always possible, due to

the assumed nonsingularity of the Jacobian matrix, equation 3.13).
18 We have implicitly reordered the constraints in such a way that the first m(x(h)

0 ) ones

are those defined in x(h)

0 .
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of the function η. So we can proceed likewise for the rest of the proof of item
i of theorem 4. The Dirac delta terms in equation 3.14 arise from the fact that
(∇εGh,i)(0, . . . , 0) depends on only the value assumed by the vector η(x) for
x = x(h)

0 , h = 1, . . . , M.

Example 2. Let us consider the classical supervised learning in which we
want to enforce hard fulfillment of the constraints

∀κ ∈ Nls
: f (xκ )− yκ = 0,

where the subscript s in ls stands for “supervised.” We can promptly see
that conditions 3.13 concerning the qualification of the constraints hold true
whenever we deal with distinct points, since the Jacobian matrix becomes
the diagonal matrix.

3.2 Representer Theorems for Soft Constraints. In this section we do
not consider the case of soft isoperimetric constraints, which, however, can
be dealt with similar to holonomic and pointwise ones.

We can associate any holonomic or pointwise unilateral constraint
φ̌i(x, f (x)) ≥ 0 with φ≥i (x, f (x)) = 0, where φ≥i (·, ·) is a suitable nonneg-
ative function. Similarly, each holonomic or pointwise bilateral constraint
can be reformulated as a pair of unilateral constraints. Hence, the learning
problem amounts to minimizing

Esoft
C ( f )= 1

2
‖ f‖2

P,γ +
m∑

i=1

μi,C ( f )

= 1
2
‖ f‖2

P,γ +
m∑

i=1

∫
X

1Xi
(x)φ≥i (x, f (x)) p(x) dx, (3.16)

where each set Xi is either open or made up of a finite number of points.
The next result is a representer theorem for an optimal solution. Note that

the classic supervised learning is a degenerate case in which each set Xi is
made up of a single point, and in this case we set p(x) 1Xi

(x) = p(x)δ(x− xi).

Theorem 6 (representer theorem for soft holonomic and soft pointwise con-
straints). Let C be a collection of soft constraints, p be continuous, nonnegative and
in L1(X ), and consider the problem of minimizing over F the functional Esoft

C (see
equation 3.16). Let f o be a local minimizer. Then the following holds true:

i. Let the following condition hold: ∀i ∈ Nm, Xi ⊆ X is open, ∀x ∈ Xi , and
there is an open neighborhood N of (x, f o(x)) for which φ≥i ∈ C1(N ). Then
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f o satisfies on X

γ L f o(x) +
m∑

i=1

p(x)1Xi
(x) · ∇ f φ

≥
i (x, f o(x)) = 0. (3.17)

Under the same assumptions on φ≥i , the same result holds if the sets Xi are
made up of a finite number of points.

ii. Suppose that the sets Xi are disjoint, each set Xi is made up of a single
point xi, and φ≥i has the form

φ≥i (x, f (x)) =
∑
j∈Nn

φ≥i, j (x, f j (x)),

where φ≥i, j (x, f j (x)) := (1− yi, j · f j (x))+, and the yi, j s belong to the set
{−1, 1}. Then f o satisfies on X

γ j L f o
j (x) +

m∑
i=1

p(x)1Xi
(x) · ∂ f j

φ≥i, j (x, f o
j (x)) = 0, j = 1, . . . , n,

(3.18)

where ∂ f j
φ≥i, j (x, f o

j (x)) is a suitable element of the subdifferential19

∂ f j
φ≥i, j (x, f o

j (x)), which is equal to the subdifferential ∂ f j
φ≥i (x, f o(x)).

iii. Let the assumptions of either item i or ii hold. If, moreover, X = R
d , L is

invertible on Wk,2(X ) and there exists a free-space Green function g of L
that belongs to Wk,2(X ), then f o has the representation

f o(·) =
m∑

i=1

γ−1g(·) ∗ ω≥i (·), (3.19)

where ω≥i (·), under the assumptions of item i, has the expression

ω≥i (·) := −p(·)1Xi
(·)∇ f φ

≥
i (·, f o(·)),

whereas under the assumptions of item ii, its n components ω≥i, j (·) are given
by

ω≥i, j (·) := −p(·)1Xi
(·)∂ f j

φ≥i, j (·, f o(·)).

19Let Ω ⊆ R
d be a convex set. The subdifferential of a convex function u : Ω → R at a

point x0 ∈ Ω is the set of all the subgradients of u at x0, that is, the set of all vectors v ∈ R
d

such that f (x)− f (x0) ≥ v′(x− x0).
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Proof. (i) Let us first consider the case in which Xi ⊆ X is open. Then part
i is proved by fixing arbitrarily η ∈ Ck

0(X , R
n) and then computing

lim
ε→0

Esoft
C ( f o + εη)− Esoft

C ( f o)

ε

=
∫
X

(
γ L f o(x)+

m∑
i=1

p(x)1Xi
(x) · ∇ f φ

≥
i (x, f o(x))

)′
η(x)dx = 0,

(3.20)

and finally applying the fundamental lemma of the calculus of variations.
The first equality in equation 3.20 is obtained by exploiting the assumption
that ∀x ∈ Xi and there is an open neighborhood N of (x, f o(x)) for which
φ≥i ∈ C1(N ), and the second is derived by the local optimality of f o. The case
in which the sets Xi are made up of a finite number of points is similar and
is proved in Gnecco, Gori, Melacci, and Sanguineti (2014).

ii. Let us fix arbitrarily η ∈ Ck
0(X , R

n), with the additional condition that
η(x) = 0 for all x ∈ ∪m

i=1Xi. By proceeding in the same way as in the proof
of item i, we obtain

lim
ε→0

Esoft
C ( f o + εη)− Esoft

C ( f o)

ε
=
∫
X

(
γ L f o(x)

)′
η(x)dx = 0. (3.21)

Since, for every j = 1, . . . , n, γ jL f o
j is a distribution, equation 3.21 implies

that the support of γ jL f o
j is a subset of {x1, . . . , xm}, which is a set of finite

cardinality. By (Schwartz, 1978, theorem XXXV), γ jL f o
j is made up of a

finite linear combination of Dirac deltas and their partial derivatives up to
some finite order, centered on x1, . . . , xm. Now, all the coefficients associated
with the partial derivatives of any order of the Dirac deltas are 0. This can
be checked by choosing a function η ∈ C∞0 (X , R

n) such that only its jth
component η j is different from 0, and η j(x) = 0 for all x ∈ ∪m

i=1Xi (although
some partial derivatives of some order of η j may be different from 0 for
some x ∈ ∪m

i=1Xi). Concluding, γ jL f o
j satisfies on X

γ jL f o
j (x) =

m∑
i=1

Biδ(x− xi), (3.22)

where the Bis are constants. Notice that equation 3.22 is of the same form
as equation 3.18.

Now we look for lower and upper bounds on the Bis. For simplicity of
exposition, in the following we suppose m = 1, so there is only one constant
B1. However, the following arguments hold also for the case m > 1. Let η j+

denote any function in Ck
0(X , R

n) such that only its jth component η
j+
j is

different from 0, and η
j+
j (x1) > 0. Once η j+ has been fixed, we denote by

η j− the function −η j+. The following possible cases show up:
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1. (1− y1, j · f o
j (x1))+ < 0.

2. (1− y1, j · f o
j (x1))+ > 0.

3. (1− y1, j · f o
j (x1))+ = 0 and y1, j = −1.

4. (1− y1, j · f o
j (x1))+ = 0 and y1, j = 1.

In case 1, we get

lim
ε→0+

Esoft
C ( f o + εη j+)− Esoft

C ( f o)

ε

=
∫
X

γ jL f o
j (x)η

j+
j (x)dx = B1η

j+
j (x1) ≥ 0 (3.23)

and

lim
ε→0+

Esoft
C ( f o + εη j−)− Esoft

C ( f o)

ε

=
∫
X

γ Lj f o
j (x)η

j−
j (x)dx = −B1η

j+
j (x1) ≥ 0; (3.24)

then B1 = 0 (since η
j+
j (x1) > 0). Notice that the inequalities in equations 3.23

and 3.24 follow by the local optimality of f o, whereas the equalities follow
by the left right differentiability20 of the function (·)+.

Similarly, in case 2, we have

lim
ε→0+

Esoft
C ( f o + εη j+)− Esoft

C ( f o)

ε

=
∫
X

(γ jL f o
j (x)− y1, j p(x)1X1

(x))η
j+
j (x)dx

= (B1 − y1, j p(x1))η
j+
j (x1) ≥ 0

and

lim
ε→0+

Esoft
C ( f o + εη j−)− Esoft

C ( f o)

ε

=
∫
X

(γ jL f o
j (x)− y1, j p(x)1X1

(x))η
j−
j (x)dx

= −(B1 − y1, j p(x1))η
j+
j (x1) ≥ 0.

So, B1 = y1, j p(x1).

20 Depending on the sign of y1, j .
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In case 3, we obtain

lim
ε→0+

Esoft
C ( f o + εη j+)− Esoft

C ( f o)

ε

=
∫
X

(γ jL f o
j (x)− y1, j p(x)1X1

(x))η
j+
j (x)dx

= (B1 − y1, j p(x1))η
j+
j (x1) ≥ 0

and

lim
ε→0+

Esoft
C ( f o + εη j−)− Esoft

C ( f o)

ε

=
∫
X

γ jL f o
j (x)η

j−
j (x)dx = −B1η

j+
j (x1) ≥ 0.

Hence, B1 ∈ [y1, j p(x1), 0] = [−p(x1), 0].
Finally, in case 4, we get

lim
ε→0+

Esoft
C ( f o + εη j+)− Esoft

C ( f o)

ε

=
∫
X

γ jL f o
j (x)η

j+
j (x)dx = B1η

j+
j (x1) ≥ 0

and

lim
ε→0+

Esoft
C ( f o + εη j−)− Esoft

C ( f o)

ε

=
∫
X

(γ jL f o
j (x)− y1, j p(x)1X1

(x))η
j−
j (x)dx

= −(B1 − y1, j p(x1))η
j+
j (x1) ≥ 0.

Then, B1 ∈ [0, y1, j p(x1)] = [0, p(x1)].
Finally, summarizing the results of the analysis of cases 1 to 4 and apply-

ing the definition of subdifferentiability to the function (·)+, we get equation
3.18.21

Item iii is obtained as in the proof of theorem 3ii.

Item i of theorem 6 applies, for example, to the case of a function φ≥i
that is continuously differentiable everywhere (or at least a function φ≥i that

21 A different method to prove item ii in theorem 6 consists of reducing the soft con-
straints to hard unilateral constraints and then applying a slight modification of theorem
5iii.
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is seen as a continuously differentiable function at local optimality, in the
sense that (x, f o(x)) is not a point of discontinuity of any partial derivative
of φ≥i ). However, a function φ≥i deriving from a unilateral constraint may
not be continuously differentiable everywhere. In this case, we can approx-
imate such a function by a continuously differentiable approximation or,
for some φ≥i , we can deal directly with the nondifferentiable case, as shown
in theorem 6ii.

A remarkable difference with the case of hard constraints is that the
solution provided by theorem 6 is based on the assumption of knowing the
probability density of the data, whereas for hard constraints, we need to
compute the Lagrange multipliers associated with the constraints and also
to check the satisfaction of the constraints. We also remark that the classic
supervised learning with a smooth loss is a degenerate case of theorem
6i, in which each set Xi is made up of a single element xi, and one sets
p(x)1Xi

(x) = p(x)δ(x− xi). Such a degenerate case is extended in theorem
6ii to the case of a particular nondifferentiable function φ≥i . Examples of
applications of theorem 6 are provided in section 4.

When the probability density p is not known but a finite set U := {x̃κ ∈
R

d, κ = 1, . . . , lu} of unsupervised examples is given (where the subscript u
in lu stands for “unsupervised”), we can exploit them to estimate p according
to a mixture of kernel functions, that is, p(x) =∑κ∈Nlu

πκ ϑκ (x− x̃κ ) for
suitable coefficients πκs and kernel functions ϑκ ’s. For example, we can
take the kernel functions equal to the Green function g of the differential
operator L; in such a way, the Euler-Lagrange equations 3.17 become

γ L f o(x)+
m∑

i=1

�u∑
κ=1

πκ · 1Xi
(x) · ∇ f φ

≥
i,κ (x, f o(x)) = 0,

where

φ≥i,κ (x, f o(x)) := g(x− xκ ) · φ≥i (x, f o(x)).

If we plug the expression of ω≥i (·) into the representational equation for
f o(·) given by theorem 6iii, we get

f o(x)=−
m∑

i=1

γ−1g(x) ∗
(

p(x)1Xi
(x)∇ f φ

≥
i (x, f o(x))

)

=−
m∑

i=1

γ−1g(x) ∗
⎛
⎝ �u∑

κ=1

πκg(x− xκ )1Xi
(·)∇ f φ

≥
i (x, f o(x))

⎞
⎠

=−
m∑

i=1

�u∑
κ=1

γ−1πκg(x) ∗ (g(x− xκ )1Xi
(x)∇ f φ

≥
i (x, f o(x))). (3.25)
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In section 5 we will provide algorithmic issues for the concrete solution
of the learning problem, which are based on the notion of dimensionality
collapse.

3.3 Representer Theorems for Mixed Constraints. The proof tech-
niques used to derive the results in sections 3.1 and 3.2 can be applied
to the case in which the constraints are of mixed type too—for instance,
when there are simultaneously a bilateral isoperimetric constraint and a
bilateral holonomic constraint. While the extension to such a case in the
soft case is straightforward, in the hard case it requires in addition the sat-
isfaction and the qualification of the whole set of mixed constraints, both of
which are required to apply the theory of Lagrange multipliers. A problem
that arises when dealing with mixed hard and soft constraints, together
with the associated Euler-Lagrange equations, is reported and solved in
section 4.3.2.

As an example, the following theorem combines hard holonomic and
soft pointwise constraints. The learning problem amounts to minimizing,
for some c > 0, the functional

Emixed
C ( f ) := 1

2
‖ f‖2

P,γ +
c

2ls

ls∑
κ=1

n∑
j=1

(yκ, j − f j(xκ ))2 (3.26)

in the presence of a collection C of hard holonomic constraints and of ls
supervised examples (xκ ∈ R

d, yκ, j ∈ R), dealt with in a soft way, where
κ = 1, . . . , ls and j = 1, . . . , n.

Theorem 7 (representer theorem for mixed hard holonomic and soft pointwise
constraints). We consider the minimization of the functional 3.26 in the case of
m < n hard bilateral constraints of a holonomic type, which define the subset

Fφ :=
{

f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X : φi (x, f (x)) = 0
}

of the function space F , where ∀i ∈ Nm : φi ∈ C∞(cl(Xi )× R
n). Let f o be any

constrained local minimizer of the functional 3.26, and let the holonomic constraints
be defined in such a way that either L f o ∈ C0(X , R

n) or they are of the form
Af (x) = b(x), where A∈ R

m,n with m < n and rank(A) = m, and b ∈ C2k
0 (X , R

m).
Let us assume that for any X̂ and for every x0 in the same X̂ , we can find two
permutations σ f and σφ of the indexes of the n functions fj and the m constraints φi ,
respectively, such that φσ

φ
(1), . . . , φσ

φ
(m(x0)) refer to the constraints actually defined

in x0, and the Jacobian matrix

∂(φσ
φ

(1), . . . , φσ
φ

(m(x0)))

∂( f o
σ f (1), . . . , f o

σ f (m(x0)))
, (3.27)
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evaluated in x0, is not singular. Suppose also that equation 3.27 is of class
C∞(X̂ , R

n). Then the following hold:

i. There exists a set of distributions λi defined on X̂ , i ∈ Nm, such that f o

satisfies on X̂ the Euler-Lagrange equations

γ L f o +
m∑

i=1

λi 1Xi
(·) · ∇ f φi (·, f o(·)) +

c
ls

ls∑
κ=1

( f o(·)− yκ )δ(· − xκ ) = 0.

ii. Let γ−1g := [γ−1
1 g, . . . , γ−1

n g]′. If for all i we have Xi = X = R
d , L is

invertible on Wk,2(X ), and there exists a free-space Green function g of L
that belongs to Wk,2(X ), then f o has the representation

f o(·) =
m∑

i=1

γ−1g(·) ∗ ωhard
i (·) +

ls∑
κ=1

γ−1g(·) ∗ ωsoft
κ (·), (3.28)

where ωhard
i (·) := −λi 1Xi

(·)∇ f φi (·, f o(·)), and ωsoft
κ (·) := − c

ls
( f o(xκ )−

yκ )δ(· − xκ ).
iii. For the case of m < n unilateral constraints of holonomic type, which define

the subset

Fφ̌ :=
{

f ∈ F : ∀i ∈ Nm, ∀x ∈ Xi ⊆ X , φ̌i (x, f (x)) ≥ 0
}

of the function space F , items i and ii still hold (with every occurrence of
φi replaced by φ̌i ) if the nonsingularity of the Jacobian matrix (see equation
3.27) is required when restricting the constraints defined in x0 to those
active in x0 at local optimality. Moreover, each Lagrange multiplier λi is
nonpositive and locally equal to 0 when the correspondent constraint is
locally inactive at local optimality.

Proof. For conciseness, we merely summarize the differences with respect
to the proof of theorem 3. First, in the Euler-Lagrange equations, there is
an additional term c

ls

∑ls
κ=1( f o(x)− yκ )δ(x− xκ ) due to the presence of the

supervised examples. Then, in general, the Lagrange multipliers λi are not
functions, as in theorem 3, but distributions, obtained by a variation of equa-
tion 3.5, which is well defined in a distributional sense since the Jacobian
matrix, equation 3.27, is locally invertible and infinitely smooth, and since
either L f o ∈ C0(X , R

n) or A f (x) = b(x) holds with the stated assumptions
on A and b(x)). More precisely, equation 3.5 is replaced by

λ :=−[γ1(L f o)1, . . . , γm(x0 )(L f o)m(x0 )](∇3φ(·, y(·), z(·)))−1

+
(

c
md

md∑
κ=1

[(yκ,1 − f o
1 ), . . . , (yκ,m(x0 ) − f o

m(x0 ))]δ(· − xκ )

)

× (∇3φ(·, y(·), z(·)))−1,
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where λ is now a row vector distribution. Finally, additional smoothness of
f o is not required, since only equation 3.27 has to be infinitely smooth.

3.4 Constraint Reactions. The following definition introduces a con-
cept that plays a central role in the theory developed in this letter.

Definition 15 (constraint reactions). The function ωi in theorems 3 and 4 and
the function ω≥i in theorem 6 is called reaction of the ith constraint, while ω :=∑m

i=1 ωi (respectively, ω≥ :=
∑m

i=1 ω≥i ) is the overall reaction of the constraints. A
similar definition holds for the distributions ωi and ω :=

∑m
i=1 ωi in theorem 5, the

distributions ω≥i and ω≥ :=
∑m

i=1 ω≥i in theorem 6, and the distributions ωhard
i ,

ωsoft
κ and ωmixed :=

∑m
i=1 ωhard

i +
∑ls

κ=1 ωsoft
κ in Theorem 7.

We emphasize that the constraint reaction is a concept associated with the
(constrained) local minimizer f o. In particular, two different local minimiz-
ers may be associated with different constraint reactions. A similar remark
holds for the overall reaction of the constraints. Loosely speaking, under
the assumptions of the respective representer theorems, the reaction of the
ith constraint provides the way under which such a constraint contributes
to the expansion of f o. For instance, under the assumptions of theorem 3ii,
we have the expansion

f o =
m∑

i=1

γ−1g ∗ ωi = γ−1g ∗ ω,

which shows the roles of ωi and ω in the representation of f o. Hence, in such
cases, the problem of learning from constraints is reduced to finding the
reactions of the constraints.

The following uniqueness property that involves constraint reactions
and Lagrange multipliers plays an important role in the concrete develop-
ment of algorithms. Indeed, although in general a local minimizer is a priori
unknown, this is still a structural property of local minimizers, which can
be useful when searching for them.

Proposition 1. For both soft and hard constraints, under the hypothesis of the
respective representer theorems, the constraint reactions and the Lagrange multi-
pliers are uniquely determined by the local minimizer f o.

Proof. For the soft case, the property concerning the constraint reaction is
trivial and follows directly from the definition of the constraint reaction,
as no Lagrange multiplier has to be determined. Let us prove the unique-
ness of Lagrange multipliers for hard constraints. We detail the proof in
the holonomic bilateral case, that is, under the hypotheses of theorem 3ii.
Similar proofs can be given for the other cases. Let us proceed by con-
tradiction and assume that there exist two different sets {λi, i = 1 . . . , m}
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and {λi, i = 1 . . . , m} of Lagrange multipliers associated with the same con-
strained local minimizer f o, with at least one index i such that λi �= λi. Ac-
cording to theorem 3i, f o satisfies the Euler-Lagrange equations 3.2. Without
loss of generality, for each x ∈ X̂ , we can reorder the constraints and the as-
sociated Lagrange multipliers in such a way that the first m(x) constraints
are the ones actually defined in x ∈ X̂ , and assume that λi(x) = λi(x) = 0
for all indexes i > m(x), as the corresponding constraint reactions are equal
to 0 in x due to the definition of ωi. By the assumption of distinct Lagrange
multipliers, we have

γ L f o(x)+
m∑

i=1

λi(x) · ∇ f φi(x, f o(x)) = 0,

γ L f o(x)+
m∑

i=1

λi(x) · ∇ f φi(x, f o(x)) = 0,

from which we get

m∑
i=1

(λi − λi)∇ f φi = (λ(D) − λ(D))
′ ∂(φ1, . . . , φm(x))

∂( f1, . . . , fm(x))
= 0,

where λ(D) := [λ1, . . . , λm(x)]′ and λ(D) := [λ1, . . . , λm(x)]
′. Distinct multipli-

ers are compatible only with the singularity of the Jacobian matrix, which
contradicts the assumption on the invertibility of equation 3.1.

3.5 Support Constraints and Support Constraint Machines. Starting
from the concept of the reaction of a constraint, we introduce the following
definition:

Definition 16 (support constraint). A support constraint is a constraint associated
with a reaction that is different from 0 at least in one point of the domain X .

Under the assumptions of the representer theorems of sections 3.1 to
3.3, a local optimal solution f o to a problem of learning from hard or soft
constraints can be obtained by the knowledge of the Lagrange multipliers
(in the hard case) and the reactions associated merely with the support con-
straints. This motivates the use of the terminology of support constraints as an
extension of the concept of support vector in kernel methods to problems
of learning from constraints. The connection with kernel methods arises
also because under quite general conditions, the free-space Green function
g associated with the operator L is the kernel of a RKHS (see, e.g., Gnecco,
Gori, & Sanguineti, 2013). In such cases, for suitable choices of the con-
straints, various kernel methods are obtained as particular instances of the
proposed learning framework. For instance, with soft pointwise constraints
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expressed by the quadratic loss and in the absence of hard constraints, one
obtains kernel ridge regression. In the case of soft pointwise constraints
expressed by the hinge loss and no hard constraints, one gets support vec-
tor machines. In section 4, a precise connection will be given with support
vectors associated with the correspondent support constraints.

The emergence of constraints whose reaction is identically 0 at local op-
timality (thus, constraints that are not support constraints) is particularly
evident for the case of hard holonomic unilateral constraints. For instance,
under the assumptions of theorem 3iii, a hard holonomic unilateral con-
straint that is inactive at local optimality for all x ∈ X is associated with
a Lagrange multiplier function λi(·) that is identically 0, so its reaction is
identically 0 too. Therefore, such a constraint is not a support constraint.

It is interesting to discuss the case of an instance of a problem of learning
from hard constraints in which one of the constraints is entailed by the
collection of the remaining ones in the sense that the fulfillment of all the
other hard constraints guarantees its fulfillment too. Without any loss of
generality, such a redundant constraint22 can be discarded from the prob-
lem formulation and, provided that the assumptions of one of theorems
3 to 5 hold, we still have the representations 3.3, 3.8, or 3.15 for the con-
strained local minimizer f o, where the Lagrange multiplier associated with
the redundant constraint is 0; hence, the reaction from that constraint is,
also 0. Therefore, we can say that the redundant constraint is not a support
constraint.

The concept of support constraints arises also in the soft case. Indeed,
although in such a context the Lagrange multipliers, which make their
appearance in the hard case, are replaced by fixed (possibly generalized)
probability densities, the reaction of the ith constraint can be still identically
0—hence the constraint is not a support constraint—provided that the term
∇ f φ

≥
i (x, f o(x)) in equation 3.17 or, for all indexes j, the one ∂ f j

φ≥i, j(x, f o
j (x))

in equation 3.18, is identically 0 on Xi. Examples of such a behavior are
provided in section 4. We also show there that the classic concept of support
vector and the one of support set are two instances of the more general
concept of support constraint.

The role played by support constraints in the proposed learning
paradigm is emphasized in the next definition:

Definition 17 (support constraint machine (SCM)). A support constraint ma-
chine (SCM) is any computational machinery capable of finding a (local or global)
optimal solution to the problem of learning from constraints for which one of the rep-
resenter theorems provided in sections 3.1, 3.2, and 3.3 holds, and such an optimal
solution can be expressed in terms of the correspondent constraint reactions.

22Of course, redundant hard constraints can appear only if the assumption on the
invertibility of the Jacobian matrix made in the correspondent represent theorem of section
3.1 is violated.
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3.6 Approximating the Gaussian Kernel. The gaussian is often used
as a kernel function in classical kernel methods and SVMs. However, when
P is a finite-order linear differential operator (see definition 5), a gaussian
cannot be the Green function of L = (P�)′P. Indeed, if g were a gaussian, the
firsthand side of the distributional differential equation Lg= δ would be
smooth (differently from the right-hand side). So our theory does not cover
directly the gaussian kernel. Nevertheless, if the operator P is replaced by
an infinite-order differential operator with constant coefficients, then it is
possible to get a gaussian as a free-space Green function. Indeed, Yuille
and Grzywacz (1988) showed that the gaussian kernel with mean 0 and
variance σ 2 is a free-space Green function of the linear differential operator
of infinite order23

L = L(∞) :=
∞∑

i=0

(−1)iai∇2i, (3.29)

where ai := σ 2i

i!2i (see also Poggio & Girosi, 1989). This can be proved via
Fourier transforms, observing that the Fourier transforms of (−1)i∇2i and
δ are, respectively, the function ‖2πξ‖2i and the constant function 1. Then,
with such coefficients ai, by exploiting the Taylor series expansion

exp(t) =
∞∑

i=0

ti

i!
,

one obtains

ĝ(ξ ) = ĝ(∞)(ξ ) :=
( ∞∑

i=0

ai‖2πξ‖2i

)−1

= exp
(
−σ 2‖2πξ‖2

2

)
,

whose inverse Fourier transform is the gaussian function

g(x) = g(∞)(x) := 1√
(2πσ 2)d

exp
(
−‖x‖

2

2σ 2

)
.

The simplest way to apply the results of the previous sections to this
situation consists in replacing, for some positive integer k, the infinite-order

23Of course, differential operators P associated with L via L = (P�)′P can be constructed
in several ways.
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Figure 4: For σ 2 = 1 and d = 1, (left) the functions ĝ
(k)

(ξ ) := (
∑k

i=0 ai‖2πξ‖2i)−1

with ai := σ 2i

i!2i , and (right) their inverse Fourier transforms g
(k)

(x) for several val-
ues of the positive integer k. As k →∞, g

(k)
(x)→ g

(∞)
(x) := 1√

(2πσ 2 )d
exp(−‖x‖2

2σ 2 )

in the L2 norm.

operator, equation 3.29, with its truncation

L = L(k) :=
k∑

i=0

(−1)iai∇2i,

which is a finite-order linear differential operator. Then the free-space Green
function g(x) = g(k)(x) associated with L = L(k) is the inverse Fourier trans-
form of

ĝ(ξ ) = ĝ(k)(ξ ) :=
(

k∑
i=0

ai‖2πξ‖2i

)−1

,

which, for sufficiently large values of k, is a good approximation of the
gaussian kernel. (See Figure 4 for a numerical example of computation of
the inverse Fourier transforms of ĝ(ξ ) and ĝ(k)(ξ ) via the Inverse fast fourier
transform (IFFT), implemented in Matlab 7.7.)

A similar method can be used for other infinitely smooth kernels that
are free-space Green functions of infinite-order linear differential operators.
Otherwise, direct extensions of the results to infinite-order differential op-
erators may be obtained by setting the problem of learning from constraints
on Sobolev spaces of infinite order (Dubinskij, 1986).

4 Case Studies

In this section we discuss some instances of learning problems that involve
hard and soft constraints. We show that the application of the represen-
tations given in sections 3.1 to 3.3 leads in some cases to problems that
can be attacked by using the mathematical and algorithmic apparatus of



440 G. Gnecco, M. Gori, S. Melacci, and M. Sanguineti

kernel machines. In particular, for the reactions of the constraints, we pro-
vide expressions that clearly show the connections with classic kernel meth-
ods. Because the examples refer to convex problems, there is no distinction
between global and local minimizers f � and f o.

4.1 Supervised Learning. The classic Framework of supervised learn-
ing from examples is a particular case of learning from constraints. Inter-
estingly, this classical framework can be reproduced by either pointwise or
isoperimetric constraints. In the hard context, the first case is trivial and pro-
duces an interpolation of the supervised examples. However, in learning
from supervised examples, the constraints are typically interpreted in a soft
sense. Given Y ⊆ R

n and the training set EL := {(xκ , yκ ) ∈ X × Y, κ ∈ N�s
},

a possible transcription by a single hard isoperimetric constraint of a col-
lection of given hard pointwise constraints imposed on the training set
is

�̌( f ) =
∫
X

∑
j∈Nn

∑
κ∈N

�s

V(yκ, j, f j(x))δ(x− xκ )dx = 0, (4.1)

where V(·, ·) is a continuous loss function, that is, a continuous nonnegative
function V : R

2 �→ [0,+∞) such that V(z, z) = 0 for each z ∈ R. This can be
translated into a soft constraint for the function space F . Of course, V has
to be properly chosen in dependence of the specific learning problem (e.g.,
classification or regression). Note that for the case in which V(z(1), z(2)) �= 0
for every z(1), z(2) ∈ R with z(1) �= z(2), as long as hard constraints are consid-
ered, the specific form of V is not important, since for this class of loss func-
tions,

∫
X
∑

j∈Nn

∑
κ∈N

�s

V(yκ, j, f j(x))δ(x− xκ )dx = 0 implies yκ, j = f j(xκ ),
for each j ∈ Nn and κ ∈ N�s

. Instead, the form of the loss function becomes
important when considering the correspondent soft constraints, in the sense
that in the soft case, different loss functions may lead to different optimal
solutions to the correspondent learning problems. Finally, it is worth men-
tioning that in general, the transcription by a single hard isoperimetric
constraint of several pointwise constraints causes the loss of the constraint
qualification, required to apply the technique of Lagrange multipliers.

Let us now focus on the soft framework. We have to find f � ∈
argmin f∈FEsoft

C ( f ), where Esoft
C ( f ) is given in equation 3.16 with p(x)1Xi

(x)

= p(x)δ(x− xi), assuming that each set Xi is made up of a single point24.
In the following, we write φ≥i ( f (x)) instead of φ≥i (x, f (x)) since there is no
explicit dependence on x. There are different possible choices for φ≥i ( f (x)),

24As discussed in section 2, this comes from merging the belief on the constraint with
the probability distribution.
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which typically depend mostly on whether we face regression or classifica-
tion problems. Here, we consider the following two cases:

• The quadratic loss VQ(u) := 1
2 u2, associated with the hard bi-

lateral constraints φi, j( f j(x)) = (yi, j − f j(x)) = 0, which originates
with φ≥i ( f (x)) =∑ j∈Nn

VQ ◦ φi, j( f j(x)) = 1
2

∑
j∈Nn

(yi, j − f j(x))2. The
quadratic loss is used for both classification and regression problems.

• The hinge loss VH(u) := (u)+, associated with the hard unilat-
eral constraints φ̌i, j( f (x)) = (1− yi, j · f j(x)) ≤ 0, which gives rise

to φ≥i ( f (x)) =∑ j∈Nn
VH ◦ φ̌i, j( f j(x)) =∑ j∈Nn

(1− yi, j · f j(x))+.25 The
hinge loss is used for classification, although related functions can be
exploited in regression problems.

As we shall see, the reactions of the constraints are related to the values
f j(xi) with respect to the targets yi, j. Here, each yi, j denotes a given real
number for regression problems and a given element of the set {−1, 1} for
classification problems.

4.1.1 Quadratic Loss. For every j ∈ Nn and x ∈ X , by theorem 6i and iii,
the jth component of the reaction of the generic ith constraint is given by

ω≥i, j(x)=−p(x)1Xi
(x)

∂

∂ f j
φ≥i ( f o(x))

=−p(x)δ(x− xi)
∂

∂ f j

⎛
⎝1

2

∑
j∈Nn

(yi, j − f o
j (x))2

⎞
⎠

= p(x)(yi, j − f o
j (x))δ(x− xi).

Then

f o
j (x)= 1

γ j

m∑
i=1

g ∗ ω≥i, j(x) = 1
γ j

m∑
i=1

g ∗ (p(x)(yi, j − f o
j (x)) · δ(x− xi))

=
m∑

i=1

p(xi)
yi, j − f o

j (xi)

γ j
g(x− xi) =

m∑
i=1

α
(ql)
i, j g(x− xi), (4.2)

25Here, we consider hard unilateral constraints of the form φ̌i, j( f (x)) ≤ 0 because this
formulation is more natural than the equivalent one −φ̌i, j( f (x)) ≥ 0.
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where α
(ql)
i, j := p(xi)

yi, j− f o
j (xi )

γ j
. The computation of f o from theorem 6 shows

how to compute the coefficients α
(ql)
i, j . For p(xi) �= 0, they can be obtained by

solving

⎡
⎣ γ j

p(xi)
α

(ql)
i, j +

∑
κ∈Nm

g(xi − xκ )α
(ql)
κ, j

⎤
⎦ = yi, j. (4.3)

In the case in which all the p(xi)’s are equal to 1/m, equation 4.3 can be
compactly rewritten as

[mγ jIn + G]α(ql)
·, j = y·, j. (4.4)

Here, In ∈ R
n,n is the n× n identity matrix and G is the Gram matrix asso-

ciated with the input data xi and g which, under suitable conditions (see
Gnecco, Gori, & Sanguineti, 2013) is the kernel of a RKHS. So in this case, we
get the classical representer theorem used in kernel machines. This emerged
in a very similar way in Poggio and Girosi (1989). Interestingly, we also find
that

ω≥i, j(x) = p(x)(yi, j − f o
j (x))δ(x− xi) = γ jα

ql
i, j · δ(x− xi).

This means that ω̂≥i, j(ξ ) ∝ α
ql
i, je

−2πι〈xi,ξ 〉, which is just the general form of
equation 1.8 in case of vectorial functions.

4.1.2 Hinge Loss. Here, we consider the case yi, j ∈ {−1, 1}. For every
j ∈ Nn and x ∈ X , by theorem 6ii and 6iii, the jth component of the reaction
of the generic constraint i is

ω≥i, j(x)=−p(x)1Xi
(x)∂ f j

φ≥i ( f o(x))

=−p(x)δ(x− xi)∂ f j
((1− yi, j · f o

j (x))+),

where

−∂ f j
((1− yi, j · f o

j (x))+)

is equal to 0 if (1− yi, j · f o
j (x)) < 0 and to yi, j if (1− yi, j · f o

j (x)) > 0, whereas
if (1− yi, j · f o

j (x)) = 0, it denotes an element (to be found) either of the set
[0, 1], when yi, j = 1, or [−1, 0], when yi, j = −1.
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Then we get

f o
j (x)= 1

γ j

m∑
i=1

g ∗ ω≥i, j(x)

= 1
γ j

m∑
i=1

g ∗ (−p(x)∂ f j
((1− yi, j · f o

j (x))+) · δ(x− xi))

=− 1
γ j

m∑
i=1

p(xi)∂ f j
((1− yi, j · f o

j (xi))+)g(x− xi)

=
m∑

i=1

yi, jα
(hl)
i, j g(x− xi), (4.5)

where, recalling that yi, j ∈ {−1, 1}, we have α
(hl)
i, j := −p(xi)

yi, j

γ j
∂ f j

((1− yi, j ·
f o

j (x))+). Of course, we may find points xi defined by indexes i ∈ Nm for
which α

(hl)
i, j �= 0, for at least one choice of the other index j. We denote by S

the set of such indexes i. Such points xi correspond to the support vectors of
the classic kernel machines. It is worth remarking that α

(hl)
i, j ∈ [0, p(xi)/γ j].

In the case p(xi) = 1/m, this is the classic result on the range of the weights
in support vector machines (see Bishop, 2006).

Following the same computations made for the hinge loss, we can also
derive the classic results for the ε-insensitive loss used for regression, using
an adaptation of theorem 6ii and 6iii to this case.

4.2 Learning from Propositional Descriptions. In this section we con-
sider the problem of learning from propositional descriptions, like those
given in Table 2 vii. This extends naturally learning from supervised exam-
ples with the hinge loss to the situation in which the points are replaced by
open sets Xi defined by the corresponding characteristic functions 1Xi

(·),
and associated with the volumes vol(Xi). The open sets can degenerate into
single points. For the purpose of this investigations, suppose we are given
md points and mo open sets. Hence, m = md +mo (the subscripts d and o
stand for “discrete” and “open,” respectively).26

Also, we need to express the (generalized) probability density of the
data. A strong simplification arises when this is approximated by

1
m

mo∑
i=1

1
vol(Xi)

1Xi
(x)+ 1

m

md∑
κ=1

δ(x− xκ ),

26Note that md corresponds to the notation ls used in section 3.3 for the number of
supervised examples.
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which corresponds to assuming a uniform distribution within the ordinary
open sets and Dirac distributional degeneration for points. So we hypothe-
size working in an environment with uniform probability distribution 1/m,
where the agent gives the same weight to the constraints and we give a
reasonable answer to the question of whether more importance should be
given to a rule with respect to an example, or vice versa. In addition, we
assume that 1− yi, j f o

j is nonzero on the sets Xi and does not change its sign
within each of such sets. We formalize this as an assumption:

Assumption 1 (sign consistency). On each set Xi , i = 1, . . . , m, the quantities
1− yi, j f o

j , j = 1, . . . , n, are nonzero and have constant signs.

We take yi, j ∈ {−1, 1} and invoke theorem 6.27 For every x ∈ X , the re-
action of the generic constraint is different depending on whether we are
considering a degenerate set (point) or an ordinary one (open set). In the
first case, by the previous analysis, we get for every κ ∈ Nmd

and j ∈ Nn

ω≥,d
κ, j (x) = yκ, jα

(hl)
κ, j δ(x− xκ ).

For nondegenerate sets, under the sign consistency hypothesis we have

ω≥,o
i, j (x) = − 1

m · vol(Xi)
1Xi

(x)
∂

∂ f j
((1− yi, j f o

j (x̂i))+),

where x̂i denotes here any point in Xi. Let

α̂
(hl)
i, j := −

yi, j

m · γ j

∂

∂ f j
((1− yi, j f o

j (x̂i))+).

By the sign-consistency hypothesis, we get α̂
(hl)
i, j ∈ {0, 1

m·γ j
}, and such a value

does not depend on the choice of x̂i ∈ Xi. Likewise for points, we call a
support set every set Xi whose index i ∈ Nmo

satisfies α̂
(hl)
i, j �= 0 for at least

one index j. We denote by So the set of such indexes i. Interestingly, because
of the sign-consistency hypothesis, the reaction of each support set comes
out from the entire contribution of the set, as each point inside the set
provides an equal contribution to the constraint reaction. Similarly, in the

27Actually, here we are applying an extension of theorem 6 to the case under consid-
eration, which differs slightly from the latter but can be proved similarly (it combines the
assumptions of theorem 6i and 6ii by considering both kinds of soft constraints—those
on open sets and those on single points).
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degenerate case, we denote by Sd the set of indexes of support vectors
(which corresponds to the set S of section 4.1.2). Now, if we define28

β(x;Xi) :=
[

1
vol(Xi)

g(·) ∗ 1Xi
(·)
]

x

as the set kernel associated with the pair (x,Xi), we end up with the repre-
sentation

f o
j (x) =

∑
κ∈Sd

yκ, jα
(hl)
κ, j g(x− xκ )+

∑
i∈So

yi, jα̂
(hl)
i, j β(x,Xi), (4.6)

which is limited to the support sets and support vectors.
As we discussed at the end of section 3.2, another useful approximation

can be given when a set U := {x̃κ ∈ R
d, κ = 1, . . . , �u} of unsupervised ex-

amples is given too and used to estimate p(x) according to a mixture of
kernel functions g(x− x̃κ ),29

p(x) =
∑

κ∈N
�u

πκg(x− x̃κ ),

for suitable coefficients πκs (to be determined, by using the information
coming from the unsupervised examples). For simplicity, we assume that
we are given only nondegenerate sets (i.e., open sets).30. Let us assume
again the sign-consistency hypothesis. Similar arguments as before provide

f o
j (x)=− 1

γ j

⎡
⎣g(·) ∗

mo∑
i=1

⎛
⎝ �u∑

κ=1

πκg(· − x̃κ)

⎞
⎠1Xi

(·) ∂

∂ f j
((1− yi, j f o

j (x̌i))+)

⎤
⎦

x

=
⎡
⎣g(·) ∗

mo∑
i=1

α̌
(hl)
i, j yi, j

⎛
⎝ �u∑

κ=1

πκg(· − x̃κ )

⎞
⎠ 1Xi

(·)
⎤
⎦

x

=
∑

i∈Nmo

α̌
(hl)
i, j

∑
κ∈N

�u

πκyi, j · [g(·) ∗ (g(· − x̃κ )1Xi
(·))]x

28The notation [ 1
vol(Xi )

g(·) ∗ 1Xi
(·)]x means that the argument · is evaluated at x.

29For notational simplicity, we suppose that the kernel in this expansion coincides
with the Green function g of the linear differential operator L.

30The case in which also supervised points are given can be treated as in the previous
case. Notice that since the constraints are of the same kind, in this context it is tacitly
assumed that their beliefs are the same.
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=
∑

(i,κ )∈Nmo
×N

�u

πκα̌
(hl)
i, j yi, jβ(x; x̃κ ,Xi)

=
∑

(i,κ )∈Šo×N
�u

α̌
(hl)
i, j,κyi, jβ(x; x̃κ ,Xi), (4.7)

where α̌
(hl)
i, j,κ := πκα̌

(hl)
i, j , x̌i denotes any point in Xi,

α̌
(hl)
i, j := −

yi, j

γ j

∂

∂ f j

(
(1− yi, j f o

j (x̌i))+
)

,

β(x; x̃κ ,Xi) :=
∫
X

g(x− ζ )g(ζ − x̃κ )1Xi
(ζ )dζ ,

and the last equality in equation 4.7 follows by restricting the summation
to the set Šo ⊆ Nmo

of indexes i for which α̌
(hl)
i, j > 0 for at least one index

j (i.e., the set of indexes i associated to the support sets). Moreover, by
the sign-consistency assumption, one has α̌

(hl)
i, j ∈ {0, 1

γ j
}. Of course, once

the coefficients α̌
(hl)
i, j,κ have been discovered assessing the (unsupervised)

data and the prescribed supervisions on the sets Xi, the sign-consistency
assumption has to be checked on the solution f o obtained in such a way.

Again, we have derived for f o a representation that depends on a fi-
nite number of parameters. However, notice that whereas representations
4.2 and 4.5 are kernel expansions in which the kernel is the Green func-
tion of the differential operator L, in the case considered in this section,
functions β(x;Xi) and β(x; x̃κ ,Xi) inherit a structure that in addition to L,
closely depends on the correspondent sets Xi. For this reason, such func-
tions are called constraint-induced kernels (more details on learning from
propositional descriptions can be found in Melacci & Gori, 2013), where
the methodology is applied to the case in which the sets Xi are boxes, thus
originating a particular case of constraint-induced kernels called box kernels.

4.3 Learning from Hard Bilateral Holonomic Constraints. First, we
deal with linear constraints without supervised examples. Then we consider
the situation in which the latter are also available.

4.3.1 Linear Constraints and No Supervised Examples. Let X = R
d and ∀i ∈

Nm, ∀x ∈ X define

φi( f (x)) := a′i f (x)− bi = 0, (4.8)

where ai ∈ R
n and bi ∈ R are given. We consider problems of learning from

hard constraints like those in Table 2v and 2vi. Basically, we have hard
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holonomic bilateral constraints that can be written in the form 4.8, where a′i
is the ith row of a given constraint matrix A ∈ R

m,n. The constraints can be
compactly written as A f (x) = b, where b ∈ R

m. We also suppose b �= 0. In
the following, we assume n > m and rank(A) = m. We discuss the solution
for the class of so-called rotationally symmetric linear differential operators,

P := [
√

ρ0D0,
√

ρ1D1, . . . ,
√

ρκDκ , . . . ,
√

ρkDk]′,

as defined in Gnecco, Gori, and Sanguineti (2013), where each operator Dκ

satisfies equations 2.3 and 2.4, ρ0, ρ1, . . . , ρκ , . . . , ρk ≥ 0, and ρk > 0. Such
operators correspond via L = (P�)′P to L =∑k

κ=0(−1)κρκ∇2κ , which is in-
vertible on Wk,2(Rd) (see Gnecco, Gori, & Sanguineti, 2013, lemma 1). In
addition, we assume that all the components of γ are equal to some con-
stant γ̄ > 0.

We first address the case ρ0 �= 0, for which we show by a counterexample
that being a solution of the Euler-Lagrange equations 3.2 is not a sufficient
condition to solve the associated problem of learning from hard constraints,
although in this case, such a problem is convex. Inspired by theorem 3, we
verify that the Euler-Lagrange equations 3.2 are satisfied for a constant func-
tion f̄ (·). We have L f̄ =∑k

κ=0(−1)κρκ∇2κ f̄ = ρ0 f̄ and ∇ f φi( f̄ ) = ai. Hence,
from equation 3.2, we get γ̄ ρ0 f̄ + A′λ = 0, where the Lagrange multipliers
are elements of the constant vector λ ∈ R

m. Every constant solution f̄ to
the algebraic equation above is also a solution to γ̄ ρ0A f̄ + AA′λ = 0 and
therefore of γ̄ ρ0b+ AA′λ = 0. Moreover, by the assumptions n > m and
rank(A) = m, we have det[AA′] �= 0. So we can determine the vector of
Lagrange multipliers by

λ = −γ̄ ρ0[AA′]−1b;

consequently, denoting by λi the ith component of the vector λ, the reaction
of the ith constraint is given by ωi = −aiλi. This in turns yields

ωi = γ̄ ρ0ai

(
[AA′]−1b

)
i .

Hence, recalling that the overall reaction of the constraints is ω =∑m
i=1 ωi,

the solution to the Euler-Lagrange equations 3.2 is given by

f̄ = γ̄−1g ∗ ω =
(

ρ0

∫
X

g(ζ )dζ

)
A′[AA′]−1b.

By Lg= δ, we get
∑k

κ=0(−1)κρκ∇2κg= δ. In terms of the Fourier transform
ĝ(ξ ) of g, we have ρ0ĝ(ξ )+∑k

κ=1 ρκ (2π‖ξ‖)2κ ĝ(ξ ) = 1. For ξ = 0 we obtain
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ρ0ĝ(0) = ρ0

∫
X g(ζ )dζ = 1. Finally,

f̄ = A′[AA′]−1b. (4.9)

Now, we check that the function f̄ defined by equation 4.9 is not an optimal
solution to the problem of learning from hard constraints, for which we
have just solved the associated Euler-Lagrange equations. First, since f̄ is a
constant, each nonzero component f̄ j of f̄ does not belong to the Sobolev
space Wk,2(Rd), so f̄ does not belong to the ambient space F . At first look,
this may be considered a minor point, since we may still replace the ambient
space by a different one, for which the same form of the Euler-Lagrange
equations still holds. The real issue is that for the obtained f̄ , the value
E( f̄ ) = ‖ f̄‖2

P,γ assumed by the objective functional of the learning problem
with hard constraints, is not even finite,31 so such a function f̄ cannot be an
optimal solution even for other choices of the ambient space.

We now consider the case ρ0 = 0. In such a situation, we can easily verify
that f̄ = A′[AA′]−1b solves the associated Euler-Lagrange equations with
the constant choice λ = 0. Although such f̄ does not belong to F (so it is not
an optimal solution to the original problem of learning from hard constraints
when this is set on F), its components f̄ j belong to the generalized Sobolev
space HP(Rd) (Fasshauer & Ye, 2011)—the set of functions f j : R

d → R for
which ‖ f j‖2

P is finite. Finally, since E( f ) = ‖ f‖2
P,γ ≥ 0 for any admissible f

and E( f̄ ) = ‖ f̄‖2
P,γ = 0, we can conclude a posteriori that f̄ is indeed an

optimal solution f � to the problem of learning from hard constraints above
when this is set on

F̄ = HP(Rd)× . . .×HP(Rd)︸ ︷︷ ︸
n times

instead of simply on F .

31Note that this is not in contrast with theorem 1 about the existence of a global
solution to the learning problem under hard constraints. Indeed, such a theorem cannot
be applied here since the set FC is empty: any function f (x) that satisfies the set of hard
bilateral holonomic constraints A f (x) = b for a constant vector b �= 0 cannot belong to
the ambient space W . A possible way to solve this issue is to reformulate the learning
problem in a different ambient space and with a different functional. More precisely, we
can consider the problem of finding (c, u)� ∈ arg min

(c,u)∈F̃C
‖u‖2

P,γ
, where F̃C := {(c, u) :

c is a constant vector in R
n, u ∈Wk,2(X )× . . .×Wk,2(X )︸ ︷︷ ︸

n times

and A(c+ u(x)) = b for all x ∈

X }, which has the optimal solution (c, u)� = ( f̄ , 0) = (A′[AA′]−1b, 0). Another possible
way to attack the problem is illustrated in the section 4.3.2 and is obtained by replacing
the constant vector b by a function b(·). To approximate the original problem, the function
b(·) may be chosen “nearly constant” in some portion of interest of the domain.
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4.3.2 Linear Constraints and Supervised Examples. Here we discuss the
relevant case, which a generalization of the previously discussed linear
constraints is combined with classical learning from supervised examples
and the constant vector b is replaced by a function b(·). A preliminary
version of these results has been presented without proofs in Gori and
Melacci (2010). As a particular case, when no supervised examples are
present, one also obtains an extension of the case discussed in section 4.3.1
to the one of a vector-valued function b(·).

We carry out the analysis by assuming, as before, that one has γi =
γ̄ > 0 for all i in Nm. We suppose also that ρ0, ρk > 0. We are now given a
supervised learning set L := {(xκ , yκ ), xκ ∈ R

d, yκ ∈ R
n, κ ∈ Nls

} and the
linear constraint A f (x) = b(x), where b ∈ C2k

0 (X , R
m) is a smooth vector-

valued function with compact support. Such a constraint is intended in
the hard sense, whereas the given supervised pairs induce soft constraints
expressed in terms of the quadratic loss.32

Since this is a problem with mixed hard and soft constraints, we search
for a solution f̄ to the Euler-Lagrange equations,

γ̄ L f̄ (x)+ A′λ+ 1
ls

ls∑
κ=1

( f̄ (x)− yκ )δ(x− xκ ) = 0 (4.10)

(see theorem 7, with c = 1). Let us determine the vector of distributional
Lagrange multipliers λ. We have

AL f̄ =A
k∑

κ=0

(−1)κρκ∇2κ f̄ =
k∑

κ=0

(−1)κρκA∇2κ f̄

=
k∑

κ=0

(−1)κρκ∇2κA f̄ =
k∑

κ=0

(−1)κρκ∇2κb = Lb,

where Lb ∈ C0
0 (X , R

m) has compact support. Hence, from equation 4.10 we
get

γ̄ Lb(x)+ A

⎡
⎣A′λ+ 1

ls

ls∑
κ=1

( f̄ (x)− yκ )δ(x− xκ )

⎤
⎦ = 0,

32This is reasonable in practice. For example, in the task of Table 2 v, whereas the single
asset functions can be learned in a soft way from supervised examples, a constraint on
the assets, like the overall money available, must be intended in a hard sense.
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from which we find that the Lagrange multiplier distribution λ is given by
(see equation 3.28)33

λ = −[AA′]−1

⎛
⎝γ̄ Lb(x)+ 1

ls

ls∑
κ=1

A( f̄ (x)− yκ )δ(x− xκ )

⎞
⎠ .

Now, if we plug this expression for λ into the Euler-Lagrange equations,
4.10, we get

γ̄ L f̄ (x) = c(x)+ 1
ls

ls∑
κ=1

Qmixed(yκ − f̄ (x))δ(x− xκ ),

where c(x) := γ̄ A′(AA′)−1Lb(x), and Qmixed := In − A′[AA′]−1A. Let α
(ql)
κ :=

1
ls
γ̄−1(yκ − f̄ (xκ )). By inverting the operator L, we obtain

f̄ (x) = γ̄−1
∫
X

g(ζ )c(x− ζ )dζ +
ls∑

κ=1

Qmixedα(ql)
κ g(x− xκ ). (4.11)

Note that in the absence of supervised examples and in the limit case b(x) =
b “nearly” constant (e.g., such that each of its components is a rectangular
pulse of sufficiently large width), we get equation 4.9 as an approximation
for ‖x‖ not too large, since in that case, Lb � ρ0 D0 b � ρ0b. So the overall
constraint reaction (of both hard and soft constraints) is

ωmixed(x) = c(x)+ γ̄

ls∑
κ=1

Qmixedα(ql)
κ δ(x− xκ ).

The coefficients α
(ql)
κ can be determined by following the same scheme as

the one used for equation 4.2. Let y = [y1, . . . , yls
] ∈ R

n,ls be the matrix of
targets, where the κth column is associated with the corresponding sample
xκ and α(ql) := [α(ql)

1 , . . . , α
(ql)
ls

] ∈ R
n,ls . By the definition of α(ql), we have

γ̄ lsα
(ql) +Qmixedα(ql)G = y− γ̄−1

∫
X

g(ζ )H(ζ ) dζ ,

where G is the Gram matrix of the input data and g, and H : X → R
n,ls is the

matrix-valued function whose κth column is given by the function c(xκ − ·).

33Here, for uniformity of notation with this section, a column vector is considered.
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The existence of a solution α(ql) to the linear system above follows by a slight
modification of theorem 1 (since for ρ0, ρk > 0, ‖ · ‖P,γ is a Hilbert space norm
on Wk,2(Rd) by Gnecco, Gori, and Sanguineti (2013), and the square loss is
convex and continuous with respect to ‖ · ‖P,γ , because under the stated
conditions ‖ · ‖P,γ is a norm equivalent to the standard Hilbert space norm
of Wk,2(Rd), which for k > d/2 is a RKHS) and the nonsingularity of the
Jacobian matrix, equation 3.27, associated with the set of hard constraints
A f (x) = b(x).

We conclude by discussing the admissibility of the obtained solution,
equation 4.11. By an application of Gnecco, Gori, and Sanguineti (2013)
about the smoothness properties of Green functions, it follows that g ∈
Wk,2(Rd). This implies that f̄ ∈ F , Emixed

C ( f̄ (see equation 3.26) is finite
and f̄ is both a local and global minimizer (thanks to the convexity of the
problem).

Finally, as a unilateral variation of this example, we mention the remark-
able case of a unilateral constraint f (x) ≥ 0 (componentwise), which makes
sense when the components of f represent, for example, mass or probability
densities.

4.4 Quadratic Constraints. Let us consider the case of soft fulfillment
of a holonomic quadratic constraint,

∀x ∈ X1 = X = R
d, φ1( f (x)) = ( f (x)− υ(x))′Q( f (x)− υ(x)),

(4.12)

where Q ∈ R
n,n is a positive semidefinite matrix and υ(·) is a given function.

For simplicity, we take υ(x) := 0, ∀x ∈ X1. This corresponds to a degree of
mismatch μφ1

( f ) = ∫X1
f ′(x)Q f (x)dx. We are also given a set (xκ , yκ ), κ =

1, . . . , m of supervised examples, which are dealt with in a soft way through
the quadratic loss. We assume that the belief of the holonomic constraint is
uniform over X1 (e.g., including it in p(x), we set p(x) ≡ p̄ > 0).34 Recall that
in the following, we use the symbol ◦ to denote the Hadamard (entrywise)
product.

Proposition 2. Let us consider the quadratic soft constraints, equation 4.12, along
with a collection of m supervised examples, dealt with in a soft way through the
quadratic loss. Assume that:

i. p(x) ≡ p̄ > 0 , ∀x ∈ X1 = X = R
d

34Although this p(x) is not a probability density because it does not belong to L1(X1),
it still provides a way to weigh the soft constraint uniformly on the whole domain (see
also the concept of improper prior in Bayesian statistics).
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ii. Q ∈ R
n,n is a symmetric positive definite matrix, for which we denote by

Q̃ := diag[q̃1, . . . , q̃n] ∈ R
n,n the full-rank diagonal matrix of its eigenval-

ues and by T ∈ R
n,n an invertible matrix such that T Q̃T−1 = Q

iii. (a) L is invertible on Wk,2(X ) and (b) it has a free-space Green function
g ∈Wk,2(X )

iv. The operator Lω := L + pγ ◦ Q̃I is invertible35 on F , where pγ := γ−1 p̄ :=
[γ−1

1 p̄, . . . , γ−1
n p̄]′ and I is the identity operator, and for every j ∈ Nn the

operator Lω
j := L + pγ j

q̃ j I (where pγ j
:= γ−1

j p̄) is invertible on Wk,2(X )

and has a free-space Green function gω
j ∈Wk,2(X )

Then, for the components of any locally optimal solution f o of this instance of
the problem of learning with soft constraints, one has

∀ j ∈ Nn : f o
j (x) =

m∑
κ=1

n∑
l=1

αω
κ, j,l g

ω
l (x − xκ ), (4.13)

and gω := [gω
1 , . . . , gω

n ]′ is the unique solution to

∀ j ∈ Nn : gω
j + q̆ j · g ∗ gω

j = g, (4.14)

where q̆ j := pγ j
q̃ j . When Q is diagonal, αω

κ, j,l = 0 for l �= j ; hence, equation 4.13

reduces to the form

∀ j ∈ Nn : f o
j (x) =

m∑
κ=1

αω
κ, j g

ω
j (x − xκ ). (4.15)

Proof. By a slight extension of theorem 6, following the arguments of section
4.1, we have36

L f o(x) = −pγ ◦Q f o(x)+
m∑

κ=1

ακδ(x− xκ ),

where ακ ∈ R
n, and ακ, j = 1

m (yκ, j − f o
j (x)). By hypothesis, there exists

an invertible matrix T ∈ R
n,n such that TQ̃T−1 = Q, so L f o(x) = −pγ ◦

TQ̃T−1 f o(x)+∑m
κ=1 ακδ(x− xκ ). Let f̃ o(x) := T−1 f o(x) and α̃κ = T−1ακ be.

35Here, again, an overloaded notation is used for L and also for I, since we use the
same notation for such operators when on F and when on Wk,2(X ).

36 The theorem can be extended straightforwardly to the case, considered here, of a
function p(·) that does not belong to L1(X1).
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We have LT f̃ o(x) = TL f̃ o(x). Thus, L f̃ o(x)+ pγ ◦ Q̃ f̃ o(x) =∑m
κ=1 α̃κδ(x−

xκ ). By introducing the linear differential operators Lω := L+ pγ ◦ Q̃I and
Lω

j := L+ pγ j
q̃ jI, we can compactly write

Lω f̃ o(x) =
m∑

κ=1

α̃κδ(x− xκ ) (4.16)

and

Lω
j f̃ o

j (x) =
m∑

κ=1

α̃κ, jδ(x− xκ ).

Then, for every j ∈ Nn, a Green function gω
j for the operator Lω

j satisfies the
equation

Lω
j gω

j = Lgω
j + pγ j

q̃ jg
ω
j = δ. (4.17)

Now we prove by contradiction the uniqueness of gω
j . Let gω

j be another
Green function such that gω

j �= gω
j . Then L(gω

j − gω
j )+ pγ j

q̃ j(g
ω
j − gω

j ) = 0. By

hypothesis iv, we get gω
j − gω

j = 0 and, therefore, we end up with a contra-
diction. So, gω

j and also gω are unique. By hypothesis iii, L is invertible, so
if we apply g∗ to both sides of equation 4.17, we get equation 4.14. Finally,
from equation 4.16, one obtains

f̃ o(x) =
m∑

κ=1

α̃κ ◦ gω(x− xκ )

and, from f o(x) = T f̃ o(x),

f o(x) = T

(
m∑

κ=1

α̃κ ◦ gω(x− xκ )

)
,

from which we get equation 4.13, for some coefficients αω
κ, j,l . In the particular

case in which Q is diagonal, T can also be chosen to be diagonal, hence, one
obtains equation 4.15, for other coefficients αω

κ, j.

Let us consider the linear operator T := g∗ and define λ j := −q̆−1
j =

(pγ j
q̃ j)

−1. We can promptly see that equation 4.14 can be rewritten as

(T − λ jI)g
ω
j = −λ jg.



454 G. Gnecco, M. Gori, S. Melacci, and M. Sanguineti

Hence, for every j ∈ Nn the Green function gω
j solves a classical Fredholm

equation of the II kind (Kreyszig, 1989). For this reason, the kernels gω
j and gω

derived from g and satisfying equation 4.14 are referred to as the Fredholm
kernels. They are addressed in section 5.1.4.

5 Algorithmic Framework and Applications

The analysis carried out so far has focused on functional representations of
local or global optimal solutions to constrained learning problems. How-
ever, in order to have an experimental impact, the proposed investigation
must be paired with a consequent algorithmic framework for the actual
computation of such optimal solutions. In this section, we show that our
approach is well suited to exploit constraints deriving from the availability
of huge amounts of unsupervised data. Basically, since supervised data rep-
resent just special constraints, the viewpoint that emerges from our analysis
is that of dismissing the difference between supervised and unsupervised
data. While in principle, the case of hard constraints can be attacked even
without unsupervised data, the development of algorithms for soft con-
straints does rely on their massive availability. Intuitively, it is their avail-
ability that allows the constructions of penalties to check the satisfaction of
each constraint.

The overall analysis carried out in the letter shows that learning from
constraints is generally reduced to finding the constraint reactions. Whereas
for both hard and soft constraints we get the same structure for the Euler-
Lagrange equations, there is a strong difference since in the first case, we
need to determine the Lagrange multipliers. Figure 5, which gives an overall
view of algorithmic approaches for holonomic, pointwise, and isoperimet-
ric constraints, shows that the hard (hr) and soft (sf) cases require different
treatments. Moreover, whereas hard isoperimetric and hard pointwise con-
straints share a structure that is similar to the one obtained for hard holo-
nomic ones, their Lagrange multipliers are constants instead of functions or
distributions. Therefore, compared to the representation provided in the-
orem 3ii, the ones given in theorems 4ii and 5ii still give rise to nonlinear
forms of the Fredholm equation of the II kind, but the constraint reactions
are easier to compute. The last row of blocks in Figure 5 indicates that
the infinite-dimensional functional representation of the optimal solution
collapses to finite dimension in a number of relevant cases, which are dis-
cussed in detail in section 5.1. While it is always possible to come up with
the approximation of sampling the constraints (thus, obtaining pointwise
constraints), the finite-dimensional representations obtained in such cases
and presented in sections 3 and 4 (see also the blocks associated with the
pointwise constraints in Figure 5) make it possible to determine the opti-
mal solution, thanks to proper kernels induced by the constraints. A similar
remark holds for isoperimetric constraints (see the last block in Figure 5).
Finally, Figure 5 shows also that we might go beyond algorithmic schemes
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focusing on reduction to classical kernel machines and directly face the
posed learning problem in the original ambient space (see section 5.2).

5.1 Reduction to Kernel Machines. A straightforward way to apply
the proposed approach is to explore the reduction to classical kernel ma-
chines. Under certain assumptions, the search for an optimal solution to
the problem of learning from hard or soft constraints can be restricted to
finite-dimensional spaces. We call this phenomenon the collapse of the di-
mensionality. The next proposition investigates cases for which it occurs.
For simplicity of exposition, it refers to a globally optimal solution, although
some results can be extended to locally optimal ones.

Proposition 3. Suppose that a globally optimal solution f � to a problem of learning
from hard or soft constraints takes on the structure

f � =
m∑

i=1

γ−1g ∗ ωi , (5.1)

where each jth component ωi, j of ωi ( j = 1, . . . , n) is of the form

ωi, j (·) = αi, jβi, j (·) (5.2)

for a given function βi, j : R
d → R and the coefficients αi, j are to be determined.

Then the following hold:

i. ‖ f �‖2
P,γ depends on the αi, j ’s only, since it has the expression

‖ f �‖2
P,γ =

n∑
j1, j2=1

m∑
i1,i2=1

γ−1
j1

γ−1
j2

αi1, j1
αi2, j2

〈P(g ∗ βi1, j1
), P(g ∗ βi2, j2

)〉.

(5.3)
ii. For the case of a problem with hard constraints, the optimal coefficients

α�
i, j s are determined by minimizing equation 5.3 while imposing the hard

satisfaction of the constraints.
iii. For the case of a problem with soft constraints, the optimal coefficients α�

i, j s
are determined by substituting expressions 5.1 and 5.2 into the penalty
term μC(·), then minimizing the sum of equation 5.3 and the resulting
penalty term.

Proof. The proof of equation 5.3 is immediate. Items ii and iii follow directly
from the structural properties of f � and ωi expressed by equation 5.1 and
5.2, respectively, and the optimality of f �.

It is also worth remarking that when the collapse of the dimensionality
occurs, standard finite-dimensional convex optimization algorithms (Boyd
& Vandenberghe, 2004) can be used to find the reactions of the constraints
(hence, to determine the support constraints) for the case of convex instances
of the constrained learning problems.
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5.1.1 Plain Kernels. In the following discussion, we refer to soft pointwise
constraints. Whereas theorem 6 gives a general representation of an optimal
solution, in the special case of supervised learning, equation 4.2 for the
quadratic loss and its analogous equation 4.5 for the hinge loss directly
provide the structural representation of the optimal body of the agent,
which turns out to be defined by a finite number of parameters. More
precisely, the representation of the optimal solution given by theorem 6
collapses to the finite space of the coefficients α

(ql)
i, j for the quadratic loss

and α
(hl)
i, j for the hinge loss. A crucial consequence is that we are now ready

to convert the infinite-dimensional problem attacked by theorem 6 into
the finite dimension simply by plugging equation 4.2 for the quadratic
loss (respectively, equation 4.5 for the hinge loss) into Esoft(·) and then by
searching for the optimal parameters. In the case of quadratic loss with
equal probabilities, this plugging leads directly to solving the linear system
of equations 4.4, but with other loss functions, we end up with nonlinear
equations. More generally, from φ≥i ( f (xi)) =

∫
X φ≥i ( f (x))δ(x− xi)dx, we get

the identity Esoft
C ( f ) = 1

2‖ f‖2
P,γ +

∑m
i=1 φ≥i ( f (xi)), which can be combined

with the representation of the optimal solution to obtain its coefficients.
For instance, in the case of the hinge loss, any function f that satisfies the
structural property for an optimal solution determined by equation 4.5
provides the following expression for ‖ f‖2

P,γ :

‖ f‖2
P,γ =

n∑
j=1

γ j

〈
P

m∑
i=1

yi, jα
(hl)
i, j · g(x− xi), P

m∑
i=1

yi, jα
(hl)
i, j · g(x− xi)

〉

=
n∑

j=1

γ j

〈
m∑

i=1

yi, jα
(hl)
i, j · g(x− xi), (P�)′P

m∑
i=1

yi, jα
(hl)
i, j · g(x− xi)

〉

=
n∑

j=1

γ j

〈
m∑

i=1

yi, jα
(hl)
i, j · g(x− xi), L

m∑
i=1

yi, jα
(hl)
i, j · g(x− xi)

〉

=
n∑

j=1

γ j

〈
m∑

h=1

yh, jα
(hl)
h, j · g(x− xh),

m∑
κ=1

yκ, jα
(hl)
κ, j · Lg(x− xκ )

〉

=
n∑

j=1

γ j

〈
m∑

h=1

yh, jα
(hl)
h, j · g(x− xh),

m∑
κ=1

yκ, jα
(hl)
κ, j · δ(x− xκ )

〉

=
n∑

j=1

γ j

m∑
h=1

m∑
κ=1

g(xκ − xh)yh, jα
(hl)
h, j yκ, jα

(hl)
κ, j

=
n∑

j=1

γ j(y·, j ◦ α
(hl)
·, j )′ G (y·, j ◦ α

(hl)
·, j ),
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where G is the Gram matrix associated with the input data and g, and ◦
denote the Hadamard product. Hence, we get

Esoft
C ( f ) = 1

2

n∑
j=1

γ j

(
y·, j ◦ α

(hl)
·, j

)′
G
(
y·, j ◦ α

(hl)
·, j

)+ m∑
i=1

φ≥i ( f (xi)).

Finally, when considering that the penalty term
∑m

i=1 φ≥i ( f (xi)) depends
only on the vector of parameters α(hl), we end up with the optimization of
an objective function of the form Êsoft(α(hl)) in the finite-dimensional space
of the parameters α(hl). This is a classic scheme used in kernel machines,
and the perfect match arises when the Green function g of L is the kernel of
a RKHS (Gnecco, Gori, & Sanguineti, 2013). As already mentioned, we call
g plain kernel.

In cases of both quadratic and hinge losses, it is clear that there can be
a nonzero reaction of a soft constraint whenever the associated hard con-
straint is not satisfied. In the case of quadratic loss, it happens iff yi, j �= f o

j (xi)

for at least one index j. This corresponds to the well-known fact that usually
all the examples are support vectors (apart from the case of an interpolating
solution).37 When the hinge loss is used, the constraint reactions associated
with some significantly large number of examples can be zero; this corre-
sponds to the presence of support (nonsupport) constraints, of which the
classical support (nonsupport, respectively) vectors are special cases.

5.1.2 Sampling-Induced Kernels. There is a straightforward approach to
collapse the dimensionality for the general case of holonomic constraints.
The idea is to sample the constraints over a set of (unsupervised) examples
U := {x̃κ ∈ R

d, κ = 1, . . . , �u}, so as to replace the original problem based on
holonomic constraints into one based on pointwise constraints. When the
constraints are sampled and dealt with in a soft way, we can promptly see
that we end up with exactly the same scheme of dimensionality reduction
discussed for supervised learning in section 5.1.1, the only difference being
that the accumulation of the loss is now overU instead of on the set of super-
vised pairs. Because the corresponding plain kernel is obtained via a sam-
pling process, we call it sampling-induced kernel. The consequent reduction
nicely matches the analysis carried out in Diligenti et al. (2012), where the
parsimony principle is imposed using the classical norm in a RKHS, ex-
pressed through its kernel. As we remarked in section 1.5, this approach
is exploited by the software simulator available at https://sites.google
.com/site/semanticbasedregularization/home/software, which considers
pointwise soft constraints and the classic plain kernel. Again, the plain ker-
nel corresponds to the Green function of the operator L considered in this

37Of course, the set S defined in section 4.1.2 for the hinge loss can be also defined for
the quadratic loss considered in section 4.1.1.

https://sites.google.com/site/semanticbasedregularization/home/software
https://sites.google.com/site/semanticbasedregularization/home/software
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letter, and the learning problem is now framed into a finite-dimensional
space of dimension n · |U |.

Interestingly, while the collapse of dimensionality with the correspon-
dent reduction to the plain kernel comes out from sampling of the con-
straints, in general this is no longer true if soft holonomic constraints are
used, even when one exploits the approximation of the probability density
that leads to equation 3.25. This means that the collapse of dimensionality
based on proposition 3 is not always possible, since the reaction of the con-
straints might not be reducible to the structure expressed by equation 5.2.
However, such a reduction is still possible when the approximation of the
probability density is combined with soft pointwise constraints.

A final remark about sampling-induced kernels concerns the case in
which the dimension of the input domain is high. In such a case, a large
number of unsupervised examples may be needed to approximate the prob-
ability density satisfactorily. A similar problem may arise when the exam-
ples are generated from a probability density concentrated on an unknown
manifold (this typically occurs, e.g., in machine-learning problems involv-
ing images). In such a case, the proposed approach can be complemented
with tools and methods from manifold regularization (see Belkin, Niyogi,
& Sindhwani, 2006, and Melacci & Belkin, 2011).

5.1.3 Constraint-Induced Kernels. The collapse of dimensionality is not
limited to pointwise constraints derived from supervised learning and con-
straint sampling. While in the discussion presented in section 5.1.2 we
restricted the attention to holonomic constraints, related results can be de-
rived for isoperimetric constraints. We also note that for the case of linear
constraints discussed in section 4.3 there exists a kernel-based representa-
tion theorem (theorem 7) that is still based on the plain kernel. Hence, the
analysis carried out in sections 5.1.1 and 5.1.2 can be reused so as to endup
into a finite-dimensional optimization problem. A finite-dimensional rep-
resentation of the optimal solution is obtained also in section 4.2 for the case
of learning with propositional descriptions. Interestingly, such a representa-
tion is not expressed in terms of the plain kernel g but via constraint-induced
kernels. Moreover, the finite-dimensional representational structure that
arises from the case studies presented in section 4.2 can be plugged into
L f �, ‖ f �‖2

P,γ and the corresponding loss terms, exactly as shown in section
5.1.1. So also in this case, learning with constraints is framed as a finite-
dimensional optimization problem. (The details of this computation, along
with experimental analysis, can be found in Melacci & Gori, 2013.) In the
next section we show how the same idea can be used for the case of quadratic
constraints addressed in section 4.4, which are associated with a particular
class of constraint-induced kernels, that is, the so-called Fredholm kernels.

5.1.4 Fredholm Kernels. In order to derive algorithms for the problem
of learning under soft quadratic constraints and supervised examples (see
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section 4.4), we need algorithms to compute gω (see equation 4.14) and
〈L f o, f o〉 when f o is expanded according to equation 4.13. The following
proposition indicates a method to compute gω. It is based on a classic itera-
tion in normed spaces that in this case yields the Neumann series:

Proposition 4. Let the hypotheses of proposition 2 be satisfied, T := g∗, and
assume that T : Wk,2(Rd ) →Wk,2(Rd ). Consider the sequence {u(κ)}∞κ=0 defined
as u(0) := g and u(κ+1) := T (u(κ)) and assume that ∀ j ∈ Nn, |q̆ j | < 1/‖T ‖. Then
∀ j ∈ Nn, one has

gω
j =

∞∑
κ=0

(−1)κ q̆ κ
j · u(κ), (5.4)

where the series converges in Wk,2(Rd ).

Proof. We have

‖u(κ+1)‖= ‖T (u(κ))‖
‖u(κ)‖ ‖u(κ)‖

≤ sup
u∈Wk,2(Rd ),u�=0

(‖T (u)‖
‖u‖

)
‖u(κ)‖ = ‖T ‖ · ‖u(κ)‖.

Since by assumption, ∀ j ∈ Nn one has |q̆ j| < 1/‖T ‖, there exists 0 < α < 1
such that ∀ j ∈ Nn and the inequalities ‖T ‖ · |q̆ j| < α < 1 hold. For every
κ ∈ N, let Mκ := ‖(−1)κ q̆κ

j · u(κ)‖. Then

Mκ+1= |q̆ j|κ+1 · ‖u(κ+1)‖ ≤ |q̆ j|κ+1 · ‖T ‖ · ‖u(κ)‖
≤ ‖T ‖ · |q̆ j|(|q̆ j|κ‖u(κ)‖) < αMκ .

As
∑∞

κ=0 Mκ < M0/(1− α), by the Weierstrass M-test and the completeness
of Wk,2(Rd), we conclude that the series 5.4 converges in Wk,2(Rd).

Finally, we can promptly check that the right-hand side of equation 5.4
satisfies equation 4.14 (hence, it coincides with gω

j , due to the uniqueness of
the solution of equation 4.14). Indeed, one has

−q̆ jg ∗
( ∞∑

κ=0

(−1)κ q̆κ
j u

(κ)

)
=
( ∞∑

κ=1

(−1)κ q̆κ
j u

(κ)

)
=
( ∞∑

κ=0

(−1)κ q̆κ
j u

(κ)

)
− g.

Notice that the condition ∀ j ∈ Nn, |q̆ j| < 1/‖T ‖ in proposition 4 is merely
sufficient for the convergence of the series.
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To illustrate the result stated in proposition 4, we consider the operator T
obtained with the gaussian kernel, which corresponds to the infinite-order
linear differential operator L :=∑∞

i=0(−1)i σ 2i

i!2i∇2i. Although our theory has
been developed only for the finite-order case, the operator above can still
be dealt with as outlined in section 3.6. For the case d = 1, the eigenvalues
and eigenfunctions of the operator T corresponding to a gaussian kernel
are given by (Gradshteyn & Ryzhik, 1980)

ρκ,T =
√

2a
A

Bκ ,

ψκ,T (x)= exp(−(c− a)x2) ·Hκ (
√

2c · x),

respectively, where κ = 0, 1 . . . , a−1 = 4σ 2, c = √a2 + a, A = 1/2+ a+ c,
B = 1/(2A), and Hκ denotes the Hermite polynomial of order κ . The set
of the eigenvalues is countable and its unique accumulation point is 0
(Kreyszig, 1989). Moreover,

‖T ‖ = sup
κ=0,1,...

ρκ,T =
√

4a

1+ 2a+ 2
√

a2 + a
.

In the case shown in Figure 6 (d = 1, n = 1, and σ = 1), one has ‖T ‖ =
2/(
√

3+ 2
√

3), which guarantees the convergence of the Neumann series,
equation 5.4, for q̆ j < (

√
3+ 2

√
3)/2 � 1.271, whereas the simulation of that

series indicates that the convergence also holds for larger values of q̆ j. No-
tice that in general, the application of the operator T is not feasible at high
dimension. However, for most common plain kernels (i.e., Green functions
of the operators L), we need not use expensive numerical algorithms for
computing the convolution. For instance, in the case of gaussian plain ker-
nels, the following proposition turns out to be useful:

Proposition 5. Let d = 1 (i.e., X = R), g1(x) = c1e
− (x−μ1 )2

2σ2
1 , g2(x) = c2e

− (x−μ2 )2

2σ2
2

and consider their convolution g1∗2(x) = c1∗2e
− (x−μ1∗2 )2

2σ1∗2 and their product g1×2(x) =

c1×2e
− (x−μ1×2 )2

2σ1×2 . Then

i. μ1∗2 = μ1 + μ2, σ 2
1∗2 = σ 2

1 + σ 2
2 , c1∗2 =

√
2π

c1c2√
(σ 2

1 )−1+(σ 2
2 )−1

,

ii. μ1×2 =
(σ 2

1 )−1μ1+(σ 2
2 )−1μ2

(σ 2
1 )−1+(σ 2

2 )−1 , σ 2
1×2 = 1

(σ 2
1 )−1+(σ 2

2 )−1 , c1×2 = c1c2e
− (μ2−μ1 )2

2(σ2
1 +σ2

2 )

Proof. See Bromiley (2003).
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Figure 6: The Fredholm kernels corresponding to the gaussian plain kernel
g (with d = 1, n = 1, and σ = 1) for values of q̆ j ranging from −4 to 6. The
plots have been obtained by using the Neumann series, equation 5.4, and have
been normalized to better assess the dependencies on q̆ j. Although q̆ j has been
defined in section 4.4 as a nonnegative real number, the series 5.4 can be formally
defined also for negative values of q̆ j; hence, such values are also reported in
the figure.

Proposition 5 can be extended to the case d > 1. It allows one to avoid
the numerical computation of the convolution in the Neumann series and
makes the computations feasible in high-dimensional spaces for the case
of the gaussian kernel. The example clearly indicates that gω can be sig-
nificantly different from the corresponding plain kernel g. In this case, as
shown in Figure 6, the values of q̆ j dramatically affect the structure of the
kernel. Interestingly, gω

j is associated with the operator

Lω
j = q̆ jI +

∞∑
κ=0

(−1)κ
σ 2κ

κ!2κ
∇2κ = (1+ q̆ j)I +

∞∑
κ=1

(−1)κ
σ 2κ

κ!2κ
∇2κ ,

which differs from the above-considered infinite-order linear differential
operator L :=∑∞

i=0(−1)i σ 2i

i!2i∇2i only in the first term.
Now, recalling the form of an optimal solution for the case described by

proposition 1 when the matrix Q is diagonal, we show how to convert the
infinite-dimensional optimization problem into a finite-dimensional one.
We follow the scheme indicated in section 5.1.1. From gω

j + q̆ jg ∗ gω
j = g, we

get Lgω
j = −q̆ jg

ω
j + δ. Then, for any f that satisfies the structural property for
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an optimal solution determined by equation 4.15, we get

‖ f‖2
P,γ =

n∑
j=1

γ j〈P f j, P f j〉 =
n∑

j=1

γ j〈 f j, L f j〉

=
n∑

j=1

γ j

〈
m∑

i=1

αω
i, jg

ω
j (· − xi), L

m∑
κ=1

αω
κ, jg

ω
j (· − xκ )

〉

=
n∑

j=1

m∑
i=1

m∑
κ=1

γ jα
ω
i, jα

ω
κ, j〈gω

j (· − xi), Lgω
j (· − xκ )〉

=
n∑

j=1

m∑
i=1

m∑
κ=1

γ jα
ω
i, jα

ω
κ, j〈gω

j (· − xi),−q̆ jg
ω
j (· − xκ )+ δ(· − xκ )〉

=−
n∑

j=1

m∑
i=1

m∑
κ=1

γ jα
ω
i, jα

ω
κ, j q̆ j〈gω

j (· − xi), gω
j (· − xκ )〉

+
n∑

j=1

m∑
i=1

m∑
κ=1

γ jα
ω
i, jα

ω
κ, jg

ω
j (xκ − xi). (5.5)

To finalize the reduction to finite dimension, we need to express Gj
i,κ :=

〈gω
j (· − xi), gω

j (· − xκ )〉. By the Neumann series, we get

Gj
i,κ =〈gω

j (· − xi), gω
j (· − xκ )〉 =

〈 ∞∑
h=0

(−1)hq̆h
ju

h,

∞∑
κ=0

(−1)κ q̆κ
j u

κ

〉

=
∞∑

h=0

∞∑
κ=0

(−1)h+κ q̆h+κ
j 〈uh, uκ〉.

Whereas, in general, this is hard to compute at high dimension, there is a
dramatic simplification with some plain kernels g. Again, we consider here
the case of the gaussian—for simplicity, for d = 1. Then, from proposition
5, we can directly express the product uhuκ needed to compute 〈uh, uκ〉
by a gaussian term with mean 0, variance σu(h, κ ) = σ 2 · hκ/(h+ κ), and
constant multiplicative factor 1

(
√

2πσ )h+κ−2
√

hκ
. Then we get

Gj
i,κ =

∞∑
h=0

∞∑
κ=0

(−1)h+κ q̆h+κ
j 〈uh, uκ〉
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=
∞∑

h=0

∞∑
κ=0

(−1)h+κ q̆h+κ
j

∫
Rd

e
− x2

2σ2
u (h,κ )

(
√

2πσ )h+κ−2
√

hκ
dx

=
∞∑

h=0

∞∑
κ=0

(−1)h+κ q̆h+κ
j

√
2πσu(h, κ )

(
√

2πσ )h+κ−2
√

hκ

∫
Rd

e
− x2

2σ2
u (h,κ )

√
2πσu(h, κ )

dx

= (2π)
3
2 σ 4

∞∑
h=0

∞∑
κ=0

(−1)h+κ q̆h+κ
j

√
hκ

(h+ κ)(
√

2πσ )h+κ

= (2π)
3
2 σ 4

∞∑
h=0

∞∑
κ=0

(−1)h+κ

√
hκ

h+ κ

(
q̆ j√
2πσ

)h+κ

.

Now, we can promptly see that if there exists β ∈ (0, 1) such that, ∀ j ∈
Nn : |q̆ j| < β

√
2πσ , then the series above converges. Indeed,

(2π)
3
2 σ 4

∣∣∣∣∣∣
∞∑

h=0

∞∑
κ=0

(−1)h+κ

√
hκ

h+ κ

(
q̆ j√
2πσ

)h+κ
∣∣∣∣∣∣

≤ (2π)
3
2 σ 4

∣∣∣∣∣∣
∞∑

h=0

∞∑
κ=0

(−1)h+κ

(
q̆ j√
2πσ

)h+κ
∣∣∣∣∣∣

= (2π)
3
2 σ 4

∣∣∣∣∣∣
∞∑

h=0

(−1)h

(
q̆ j√
2πσ

)h ∞∑
κ=0

(−1)κ

(
q̆ j√
2πσ

)κ
∣∣∣∣∣∣

≤ (2π)
3
2 σ 4 1

(1− β)2 .

Finally, from equation 5.5, we can compute ‖ f‖2
P,γ since Gj

i,κ , likewise
gω

j , is the limit of a convergent series. Then if we plug equation 4.15 into
the overall penalty loss, we end up with a finite-dimensional optimization
problem, which fits the classic approach used for kernel machines.

5.2 Fixed-Point Algorithms. The constraint-induced kernels allow us
to better represent the optimal solutions to certain problems of learning from
constraints and, in some cases, the methodology perfectly fits the mathe-
matical and algorithmic framework of kernel machines. For example, in the
case of simple geometry, constraint-induced kernels can be determined di-
rectly from the associated plain kernel. This is the case, for example, of box
kernels (see Figure 2). For soft quadratic constraints, the computation of the
constraint-induced kernel can be based on the Neumann-series recurrent
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Figure 7: Structure of a support constraint machine. Depending on hard or
soft constraints, the reaction of each constraint is computed by using the La-
grange multiplier or the (possibly generalized) probability density, which is
often expressed in terms of the unsupervised data U . The constraint reactions
are then used to express the optimal solution f � to the constrained learning
problem. Finally, for any point x, the machine determines f �(x) and checks the
constraints.

scheme. In the general case, when looking at the representer theorems ob-
tained for both hard and soft constraints, one can see that the computation
of an optimal solution requires the associated constraint reaction ω, which
depends on the optimal solution itself. This circular dependence is depicted
in Figure 7 (where we refer, without loss of generality, to a global optimal
solution f �). Indeed we have to expect its emergence, which seems to be a
sign of the inherent complexity of the problem at hand. For example, the
representation given by theorem 3ii (see equation 3.3) is a nonlinear version
of the classic functional equation known as the Fredholm equation of the
II kind.38 The fact that classical supervised learning, learning from propo-
sitional descriptions, and other constraints yield to finite-dimensional opti-
mization problems based on constraint-induced kernels that can be directly
or efficiently determined by the plain kernel reveals a specific property of
those simple constraints. However, in general, the Lagrange multipliers are
not merely constants but functions or distributions; this makes the recurring
computation hard.

Based on these premises, whereas the reduction to classic kernel ma-
chines is a desirable link with existing approaches to machine learning, the

38There are a number of theoretical and numerical studies on this equation (see Lishan,
1996; Ivaz & Mostahkam, 2006), and particular attention has been devoted to the linear
case (Kreyszig, 1989).
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given framework of SCMs seems to be well suited also for a truly new way
of computing an optimal solution to the learning problem that is not based
on discovering the weights of a certain kernel expansion. More precisely,
in the case of soft constraints, we propose to attack directly the functional
equations that have to be satisfied by an optimal solution by discovering
a fixed point of the corresponding operator. Indeed, in the case of soft
holonomic constraints, an optimal solution f o can be written as f o = V( f o),
where

V : F → F : f →−
m∑

i=1

γ−1g(·) ∗ p(·)1Xi
∇ f φ

≥
i (·, ·).

Related operators can be introduced for other types of soft constraints. A
possible computational scheme to find f o is the classical iteration u(κ+1) =
V(u(κ)), initialized by a given u(0) ∈ F .

An in-depth analysis of algorithms based on this scheme is outside the
scope of this letter, but the following example of soft quadratic constraints,
already addressed in section 4.4 with the purpose of reduction to kernel
machines, clearly shows the power of the direct computation of a fixed
point of V . For instance, it follows from the proof of proposition 2 that the
optimal solution f o is a fixed point of the operator V defined by

V(u) j :=−pγ j

n∑
h=1

g ∗Qj,huh +
1
m

m∑
κ=1

yi, j − uj(xi)

γ j
g(x− xi).

Then, in order to find f o, one may apply, for such an operator, the iterative
scheme u(κ+1) = V(u(κ)) with the initialization u(0)

j :=∑m
i=1 α

(0)

i, j g(x− xi) for
some coefficients α

(0)

i, j . We can easily see that we can export to this case the
proof technique applied to derive proposition 4, and conclude that such
an iterative scheme leads to the (unique) fixed point of V , provided that V
is a contraction operator. Moreover, the rate of convergence is linear, as it
typically happens for iterative schemes based on contraction operators. As
already noticed, the possible intractability of applying the operator T := g∗
to a generic function can be faced by appropriate plain kernels, like the
gaussian, for which one obtains the structural properties of convolution
stated by proposition 5. In that case, it easy to see that if the iterative scheme
above is initialized with gaussian functions u(0)

j , then at each iteration κ , the
functions u(κ)

j have Gaussian expansions, centered at {xi, i = 1, . . . , m}.

5.3 Applications. The theory of SCMs presented in this letter provides
a foundation for applications to, among others, text categorization, face
recognition, computer vision, medical diagnosis, and bioinformatics (see
Table 4, second column). In the past few years, different types of constraints
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Table 4: Examples of Applications That Are Instances of the Theory Proposed
in This Letter.

Learning from Constraints: Applications

Application
Context Type of Constraints

Results
without/with

Additional
Constraints on
the Learning
Environment Source Instance of

i Text
classification

First-order logic
(class-relationships)

F1 score
0.569/0.672

Frandina
et al., 2012

Section 3.2
Section 4.1.2
Section 5.1.2

ii Text
classification

Coherence over the
data manifold

Error rate
20.04%/9.34%

Melacci and
Belkin, 2011

Section 3.2
Section 4.1.1
Section 5.1.2

iii Tagging biblio-
graphical
entries

First-order logic
(semantic relationships
among tags)

F1 score
0.140/0.155

Diligenti
et al., 2012

Section 3.2
Section 4.1.2
Section 5.1.2

iv Image tagging First-order logic
descriptions

− Saccà et al.,
2011a

Section 3.2
Section 4.1.2
Section 4.2

v Handwritten
digit
recognition

Propositional
descriptions (rules
defined by observing
digits)

Accuracy
89.78%/92.55%

Melacci and
Gori, 2013

Section 4.1.2
Section 4.2

vi Computer
vision

Coherence on four
views of the same object

Accuracy
92.53%/94.67%

Melacci
et al., 2009

Section 3.2
Section 4.1.1
Section 5.1.2

vii Face
recognition

Probabilistic constraints Error Rate
41.36%/39.32%

Melacci and
Gori, 2011

Section 3.2
Section 4.1.1
Section 5.1.2

viii Computer
vision

Mutual information
penalty

− Gori,
Melacci,
Lippi, and
Maggini,
2012

Section 3.2
Section 4.1.1
Section 5.1.2

ix Breast cancer
prognosis

Propositional
descriptions (rules
provided by a
physician)

Accuracy
82.58%/90.97%

Melacci and
Gori, 2013

Section 4.1.2
Section 4.2

x Bioinformatics First-order logic
constraints

AUCa

p: 0.808/0.820
d: 0.605/0.937
r: 0.591/0.676

Saccà, Teso,
Diligenti,
and
Passerini,
2014

Section 3.2
Section 4.1.1
Section 5.1.2

Notes: Most of the experimental results are related to soft pointwise constraints. Cases
i, ii, iii, iv, vi, vii, viii, and x can be regarded as instances of soft holonomic constraints.
Such constraints are then sampled onto a set of unsupervised points, obtaining soft
pointwise constraints. The optimal solutions to the corresponding learning problems are
described by the sampling-induced kernels presented in section 5.1.2. Differently, v and
ix are instances of learning from propositional descriptions, described in section 4.2. The
experimental results provide clear evidence on the beneficial effect of adding constraints
to supervised examples.
a p = protein; d = domain; r = residuals.
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have been the subject of investigation, which motivates the overall view of
learning from constraints given in this letter. Most emphasis has been given
to holonomic constraints and propositional descriptions, but the applica-
tions based on isoperimetric constraints (see Table 2) are clearly of interest.
The applicative studies with holonomic constraints have primarily made
use of the reduction to kernel machines (see section 5.1), which arises when
sampling the constraints on unsupervised data. Relevant applications have
been published using propositional descriptions, which we analyzed in
section 4.2. In this case, the corresponding representation of the learning
tasks, given in equation 4.6, indicates that one goes beyond solutions based
on plain kernels, thus showing the relevance of the case studies treated in
section 4.2. Only the case of box kernels has been concretely applied, but
the remaining analysis of the section indicates other important contexts in
which the proposed theory dictates the adoption of proper kernels.

The adoption of the methodology investigated in this letter requires
going beyond learning from examples only to modeling learning tasks in
term of constraints. This guideline has already been followed in a number of
remarkable different applications. Some of them are summarized in Table 4.

In i (Frandina et al., 2012), a large set of scientific papers is classified by
exploiting relationships between the classes, which are expressed in terms
of first-order logic (FOL) formulas. They are translated into real-valued con-
straints by means of T-norms (Klement et al., 2000) so as to gain a uniform
real-valued representation of the constraints, which is the basic represen-
tational assumption of this letter. A subset of the CORA data set39 is then
used to evaluate the impact of those additional constraints. The applica-
tion faced in item ii (Melacci & Belkin, 2011) exploits the popular manifold
assumption applied to classification. It refers to a text classification task
on newsgroups data40 (see Melacci & Belkin, 2011, for other examples and
experiments). A constraint on the classifier output between each pair of
data points is defined, which is weighted by a measure related to their
distance. This constraint enforces smooth changes on the classifier output
over the (estimated) manifold of the data distribution. Interestingly, this
category of constraints can be simply regarded as an instance of the learn-
ing framework proposed in this letter. In item iii (Diligenti et al., 2012),
a set of bibliographical entries (from the Bibtex data set)41 is paired with
semantic relationships between their categories, for the purpose of tagging.
The approach followed there is similar to the one adopted in i, but instead
of a precoordinate classification scheme, the intelligent agent deals with a
post coordinate scheme (tagging), which allows users to attach keywords
to documents without the constraint of placing them in a unique location.

39http://people.cs.umass.edu/∼mccallum/data.html.
40http://qwone.com/∼jason/20Newsgroups/.
41http://mulan.sourceforge.net/datasets.html.

http://people.cs.umass.edu/~mccallum/data.html
http://qwone.com/~jason/20Newsgroups/
http://mulan.sourceforge.net/datasets.html
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In item iv (Saccà et al., 2011a), related studies are carried out, where prior
logic knowledge and graph regularization are integrated for an interesting
application to image tagging. In item v (Melacci & Gori, 2013), a classic
pattern recognition problem is attacked using propositional descriptions. It
is shown that handwritten digits (USPS data set; Hull, 1994) are better dis-
criminated when adding constraints on the digit portions that are known
to be critical to the recognition process, thus dramatically reducing the
need for large databases of supervised point-wise examples. The problem
of object recognition is the topic of the experiments carried out in item vi
(Melacci et al., 2009). One is given there 100 distinct objects and considers
four classifiers operating on multiple views of the same object, which are
constrained to produce a coherent decision (COIL-100 data set, Columbia
University).42 The experiments cited in item vii (Melacci & Gori, 2011) are
based on constraining 295 classifiers to fulfill a probabilistic normalization,
which is expressed by a linear constraint. This yields remarkable improve-
ments in the face recognition benchmark XM2VTS database, University of
Surrey.43 In item viii (Gori et al., 2012), an extraction of computer vision fea-
tures is proposed, which is based on maximizing the mutual information
between the video stream and a set of codes. The solution can be regarded
as learning under a soft constraint related to mutual information. In item ix
(Melacci & Gori, 2013), the task consists of predicting whether a patient will
remain cancer free for at least 24 months, given the results of some medical
tests (Wisconsin Breast Cancer Prognosis; Bache & Lichman, 2013). Two
basic rules provided by a physician are considered, in the form of propo-
sitional descriptions, and two constraints on open sets are defined and
exploited to improve the prediction accuracy. In item x (Saccà et al., 2014),
it is shown that adopting of the theory of learning from FOL constraints,
properly translated into real-valued constraints as mentioned in items i and
iii, leads to a substantial improvement of performance over competitors in
several experimental settings for problems of protein-protein interactions.
In particular, in the fourth column of row x, the improvement with respect
to learning from examples with plain kernels is shown for three levels of
interactions (p: protein, d: domain, r: residuals).

Overall, inspection of the fourth column of Table 4 clearly shows the
remarkable improvements of performances that have been reached by in-
volving constraints. While these applications indicate that the interest in
the field covered in this letter is growing, as discussed in sections 5.1 and
5.2 there is also room for a significant follow-up of other ideas, along with
their formalizations and corresponding algorithmic frameworks, possibly
inspired by our work presented here.

42http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php.
43http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
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6 Conclusion and Open Issues

In this letter, we have developed the mathematical foundations of a learn-
ing paradigm that is driven by a tight link of the parsimony principle with
constraint-based representations of the environment.44 These two ingredi-
ents lead to a variational framework that very much resembles the one used
in other fields, such as physics, biology, and economics. A major appeal of
the proposed approach is its capability of providing functional representa-
tions of the optimal solutions, which are prescribing the laws that govern
learning in the given environment. While there are close connections with
related studies especially in kernel machines, a substantial novelty is the
requirement of also satisfying constraints expressed by quantifiers acting
on continuous infinite subsets of the perceptual space. The representation
theorems, along with the emergence of their collapsed finite-dimensional
versions, advocate for a call for novel approaches to learning that go be-
yond sampling of concepts. Just as support vectors are the only points in
charge to support the decision in kernel machines, when shifting to more
general constraints, we have shown that the same mechanism holds true for
support constraints. Interestingly, the focus on constraints leads to dismiss-
ing the classic distinction between supervised and unsupervised learning,
since agents interact only with constraints that in case of soft fulfillment
need (unsupervised) data to perform the check, while a supervised pair is
just one of the simplest instances of a constraint.

We have provided the foundation for a number of experimental stud-
ies and have reviewed most of them (see, e.g., those based on the soft-
ware https://sites.google.com/site/semanticbasedregularization/home/
software) in the light of the general theory proposed here. To emphasize this,
we have reported a summary of the experimental improvements achieved
in a number of machine learning tasks, like text classification and tagging,
handwritten character recognition, computer vision, face recognition, and
applications to medicine and bioinformatics. By introducing of constraint-
induced kernels, we have analyzed a number of remarkable cases and have
shown how to construct the corresponding semantic kernel. While this
seems to be a promising research direction (see, e.g., Melacci & Gori, 2013,
for box kernels), the perspective of fixed-point learning algorithms might
lead to more remarkable advances. As we pointed out in section 5.2, the
iterative approach appears to be a natural computational scheme to take
into account the inherent circular dependence of representer theorems. Such
dependence cannot be overcome in most interesting real-world problems.

A possible extension of our theory concerns the application of tools from
statistical learning theory (SLT), such as Rademacher’s complexity (Mendel-
son, 2003; Gnecco & Sanguineti, 2008a, 2008b), to investigate how the

44“Simplicity is the ultimate sophistication” (Leonardo da Vinci).

https://sites.google.com/site/semanticbasedregularization/home/software
https://sites.google.com/site/semanticbasedregularization/home/software
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presence of constraints influences the generalization capability of the
learned model. As an example, we mention that in the case of hard con-
straints, the set of admissible functions is restricted by the presence of
the latter, so one expects a smaller upper bound on the corresponding
Rademacher’s complexity, hence better bounds from SLT. However, this
kind of investigation is outside the scope of the work we present in this
letter. We mention that tools from SLT were applied in Gnecco, Gori, and
Sanguineti (2013) to investigate the case of learning from supervised exam-
ples in the presence of additional boundary conditions.

While the results given in this letter might open the door to a number of
quite straightforward extensions and applications, significant issues remain
open.

First, we have assumed that the constraints are given, but in many real-
world problems, this might be quite difficult. We expect an enormous impact
from the removal of the distinction between functions to be learned and
constraints. Basically, this is equivalent to stating that the constraints can be
learned exactly like the functions. We conjecture that while the distinction
can be profitably removed, in order to face complexity issues, it is necessary
to introduce stages of learning in which some functions that are kept fixed
at some stage, so as to play the role of constraints, evolve at a later stage.
There are some intriguing connections of this idea with developmental
psychology (Inhelder & Piaget, 1958; Piaget, 1961) and recent studies in
developmental AI (Guerin, 2008; Sloman, 2009), which might be sources of
inspiration for further research.

Second, in some cases, the optimization task related to the learning prob-
lem is nonconvex. This triggers a natural question related to the existence
of locally optimal solutions and also to the choice of a good starting point
for the solver. Issues related to bad local minima deserve attention in fu-
ture studies. In this respect, one might think about the use of a multistart
technique and also about the development of annealing strategies for the
vector parameter γ . Indeed, large values of its components γ j make the
optimization problem nearly convex. By gradually reducing them, one can
hope to end up with an easier way to good local minima of problems with
smaller values of the components γ j, compared to the case in which such
an optimization problem is addressed directly, without using annealing.
Strategies that start the optimization from the optimal solution to a simpler
optimization problem involving only a subset of the constraints could be
considered as well. In some sense, this would prevent the agent from being
overloaded with information (constraints) during the early stages of the
learning process, and thus becoming trapped in bad local solutions.

Third, a possible direction of evolution of this theory might come from
noticing that, unlike what happens in other fields of science, the variational
approach used in this letter to provide foundations of learning and inference
neglects the major role of time. We foresee an extension based on overcom-
ing the distinction between learning and testing, based on the introduction
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of temporal regularization mechanisms, leading to online learning. A cou-
ple of papers (Frandina, Gori, Lippi, Maggini, & Melacci, 2013a, 2013b) give
insights into this view, which follows the growing interest for models of life-
long learning (see the AAAI 2013 Spring Symposium “Lifelong Machine
Learning”: http://www.seas.upenn.edu/∼eeaton/AAAI-SSS13-LML).

Finally, a further direction of improvement is represented by the ex-
ploration of the logic structure induced by a set of constraints and the
mechanisms of inference of new constraints, somewhat related to classic
notions of logic. In particular, a notion of parsimonious inference might be
investigated, which is supported only by a subset of a given set of premises.
In terms of constraints, when parsimony is invoked, a parsimonious infer-
ential mechanism should emerge that is based only on relevant constraints,
while disregarding the rest.

Appendix

A.1 Technical Lemmas. Recall that for a Hilbert space H with inner
product 〈·, ·〉H, a sequence { f (i)} in H converges weakly to f̄ ∈ H iff for
every f ∈ H one has 〈 f (i), f 〉H → 〈 f̄ , f 〉H. A subset S of H is weakly closed
iff the weak limit f̄ of each weakly convergent sequence { f (i)} ⊆ S belongs
to S. A set S ⊂ H is weakly compact iff each sequence { f (i)} ⊆ S has a
subsequence that converges weakly to some f̄ ∈ S. A functional F on a
nonempty and weakly closed subset S of a Hilbert space H is weakly lower
semicontinuous iff for every f ∈ S and every sequence { f (i)} ⊆ S weakly
convergent to f one has F( f ) ≤ lim infi→∞F( f (i)) .

The following lemma summarizes elementary properties of weakly
lower semicontinuous functionals (see Evans, 2000, appendix D). It is ex-
ploited in the proofs of theorems 1 and 2.

Lemma 1. The following hold:

i. Every closed and convex subset of a Hilbert space is weakly closed (Mazur’s
theorem; Evans, 2000).

ii. Every closed and bounded set of a Hilbert space is weakly relatively compact
(i.e., its closure in the weak topology is compact). A weakly closed and
bounded subset of a Hilbert space is weakly compact.45

iii. By i and ii, every convex bounded closed set of a Hilbert space is weakly
compact.

iv. Every convex and continuous functional on a Hilbert space is weakly lower
semicontinuous.

45In general, closed and bounded sets are not weakly compact in Hilbert spaces (e.g.,
the set consisting of an orthonormal basis in an infinitely dimensional Hilbert space is
closed and bounded but not weakly compact, as it does not contain 0).

http://www.seas.upenn.edu/~eeaton/AAAI-SSS13-LML
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v. Let H be a Hilbert space, S its nonempty and weakly closed subset, and
F : S → R a functional. If F is weakly lower semicontinuous and there exists
M ∈ R such that the set { f ∈ S | F ( f ) ≤ M} is nonempty and weakly
compact, then the problem inf f ∈S F ( f ) has a global minimizer, which is
unique when F is strictly convex.

The next lemma, which is a consequence of the implicit function theo-
rem, is exploited in the proof of theorem 3. For a scalar-valued function u
of various vector arguments, we denote by ∇iu the column vector of par-
tial derivatives of u with respect to all the components of the ith vector
argument. For a vector-valued function u of various vector arguments, ∇iu
denotes the matrix whose hth row is the transpose of the column vector
∇iuh.

Lemma 2. Let Ω ⊆ R
d , Y ⊆ R

n1 , Z ⊆ R
n2 be open subsets and φ : Ω × Y ×

Z → R
n2 a given function. Let y : Ω → Y and z : Ω → Z be given functions

that satisfy the (vector-valued) holonomic and bilateral constraint

φ(x, y(x), z(x)) = 0,∀x ∈ Ω.

Suppose also that φ ∈ Ck+1(Ω × Y × Z, R
n2 ) for some positive integer k ≥ 1 and

that for every x ∈ Ω , the Jacobian matrix

∇3φ(x, y(x), z(x)) :=

⎛
⎜⎜⎜⎜⎝

∂φ1(x,y(x),z(x))
∂z1

. . .
∂φ1(x,y(x),z(x))

∂zn2

. . . . . . . . .

∂φn2
(x,y(x),z(x))

∂z1
. . .

∂φn2
(x,y(x),z(x))

∂zn2

⎞
⎟⎟⎟⎟⎠ (A.1)

is nonsingular (possibly after interchanging locally some components of y(x) by an
equal number of components of z(x) and redefining the function φ and the vectors
y(x) and z(x) according to such a replacement). Let ηy be an arbitrary function
in Ck

0 (Ω, R
n1 ) with compact support ΩC contained in an open ball of sufficiently

small radius, and consider a perturbation Δy(x) := εηy(x) of the function y(x),
where ε ∈ R is sufficiently small.

Then there exists a unique function ηz ∈ Ck
0 (Ω, R

n2 ) with compact support ΩC ,
such that the perturbed holonomic and bilateral constraint

φ(x, y(x) + Δy(x), z(x) + Δz(x)) = 0,∀x ∈ Ω

is satisfied for Δz(x) of the form

Δz(x) = εηz(x) + O(ε2), (A.2)
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where the “hidden constant” inside the “big O” notation above does not depend46

on x, and ηz(x) has the expression

ηz(x) = −(∇3φ(x, y(x), z(x)))−1(∇2φ(x, y(x), z(x)))ηy(x).

Moreover, for each h ∈ {1, . . . , k} and i ∈ {1, . . . , n2}, one has, for the ith compo-
nent Δzi of Δz,

∂h

∂xj1
. . . ∂xjh

Δzi (x) = ε
∂h

∂xj1
. . . ∂xjh

ηzi
(x) + O(ε2), (A.3)

where, again, the hidden constant inside the “bigO” notation above does not depend
on x.

Proof. Fix x = x0 ∈ �. Since φ ∈ Ck+1(�× Y × Z, R
n2 ) for k ≥ 1 and the

Jacobian matrix, equation A.1, is nonsingular, we can apply the implicit
function theorem, according to which, on a suitable open ball B centered in
(0, 0) and of sufficiently small radius ε > 0, there exists a unique function
u ∈ Ck+1(B, R

n2 ) such that u(0, 0) = 0 and

φ(x+�x, y(x)+�y, z(x)+ u(�x,�y)) = 0,∀(�x,�y) ∈ B.

Moreover, since k+ 1 ≥ 2, each component ui(�x,�y) of the function
u(�x,�y) has the multivariate Taylor expansion47

ui(�x,�y) =
∑
|α|=1

Dαui(0, 0)(�x,�y)α +O(‖(�x,�y)‖2), (A.4)

46 Instead, in equations A.2 and A.3, there is a dependence of the “hidden constants” on
the specific choice of ηy, which may be removed by further assuming ‖ηy‖Ck

0(Ω,R
n1 )
≤ My

for some given positive constant My.
47 In the lemma, we have made the assumption φ ∈ Ck+1(�× Y ×Z, R

n2 ) instead
of the weaker one φ ∈ Ck(�× Y ×Z, R

n2 ) in order to be able to express the remainder in
Taylor polynomial, equation A.4, by the integral Lagrange form, instead of, for example,
the Peano form. To avoid cumbersome notations, in equation A.4, we have not reported the
explicit expression of the remainder in the integral Lagrange’s form. Considering for
simplicity the case of a scalar valued function u(x) of class C2 depending on a scalar
argument x, we recall that one has

f (x+�x) = f (x)+ f ′(x)�x−
∫ �x

0
(t −�x) f ′′(x+ t)dt,

where the last term is the remainder in the integral Lagrange form. This formula can be
generalized to the multivariate case, and such an extension is used to obtain terms of
order O(ε2) in equation A.3.
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where (�x,�y)α :=∏d
j=1(�x j)

α j
∏n1

j=1(�y j)
αd+ j and the term O(‖(�x,

�y)‖2) denotes a function of class Ck+1(B), infinitesimal at (0, 0) with or-
der at least 2. The hidden constant inside the “big O” notation above de-
pends on only the local behavior of φ on a neighborhood of (x, y(x), z(x)),
and is independent of x itself, provided that after the initial choice x0
for x, x varies inside a compact subset �C of the projection of the set
B + (x0, y(x0)) on �. Now, let ηy ∈ Ck

0(�C, R
n1 ) ⊆ Ck

0(�, R
n1 ) and set �x := 0

and �y = �y(x) := εηy(x).48 Then we define each component �zi(x) of the
function �z(x) as

�zi(x) := ui(0, εηy(x))=
∑
|α|=1

Dαui(0, 0)(0, εηy(x))α+O(‖(0, εηy(x))‖2)

= ε
∑
|α|=1

Dαui(0, 0)(0, ηy(x))α +O(ε2),

where the replacement of the term O(‖(0, εηy(x))‖2) by O(ε2) follows by
the fact that ηy(x) is fixed and uniformly bounded. Then we get equation
A.2 by setting

ηz,i(x) :=
∑
|α|=1

Dαui(0, 0)(0, ηy(x))α,

which shows that the function ηz,i is in Ck
0(�C, R) ⊆ Ck

0(�, R); likewise ηy is
in Ck

0(�C, R
n1 ) ⊆ Ck

0(�, R
n1 ). An application of the implicit function theorem

shows also that the vector ηz(x) with components ηz,i(x) has the expression

ηz(x) = −(∇3φ(x, y(x), z(x)))−1(∇2φ(x, y(x), z(x)))ηy(x).

Finally, equation A.3 is derived directly by equation A.2, by computing
its partial derivatives of order h (i.e., by exploiting the expression of the
remainder of Taylor polynomial, equation A.4, in Lagrange integral form,
the rule of differentiation under the integral’s sign, the chain rule, and the
fact that each component of the function ηy is bounded on �C, together with
its partial derivatives up to the order k with respect to the components of x).

The meaning of lemma 2 is the following. In order to be able to satisfy
the holonomic and bilateral constraint, a perturbation �y(x) := εηy(x) of
the function y(x) implies a perturbation �z(x) := εηz(x) (apart from an
infinitesimal of order greater than ε) of the function z(x), where ηz depends
only on ηy and suitable partial derivatives of φ evaluated at the current

48 Here, we denote by B + (x0, y(x0)) the translation of the set B by (x0, y(x0)).
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solution (x, y(x), z(x)), but does not depend on ε. Equation A.3 shows that
the partial derivatives of �z(x) up to the order k have similar expressions.
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