Data Mining In EDA -
Basic Principles, Promises, and Constraints *

Li-C. Wang
University of California at Santa Barbara

ABSTRACT

This paper discusses the basic principles of applying data
mining in Electronic Design Automation. It begins by intro-
ducing several important concepts in statistical learning and
summarizes different types of learning algorithms. Then, the
experience of developing a practical data mining applica-
tion is described, including promises that are demonstrated
through positive results based on industrial settings and con-
straints explained in their respective application contexts.

Categories and Subject Descriptors

B.7 [Integrated Circuits]: Miscellaneous; H.2.8 [Database
Management]: Database Applications—Data mining

General Terms
Design

Keywords
Computer-Aided Design, Data Mining, Test, Verification

1. INTRODUCTION

Electronic Design Automation (EDA) has become a major
application area for data mining in recent years. In design
and test processes, tremendous amounts of simulation and
measurement data are generated and collected. These data
present opportunities for applying data mining.

Many EDA problems have complexity that is NP-hard or
beyond (e.g. #P). In theory, data mining does not make an
NP-hard problem easier. For example, the power of ”learn-
ing” is limited that "learning” a 3-term DNF formulae by
itself is NP-hard [1]. This raises the fundamental question:
If not for solving a difficult EDA problem, what problems is
data mining good for in EDA?

*

This work is supported in part by Semiconductor Research Corpo-
ration projects 2012-TJ-2268, 2013-TJ-2466, and by National Science
Foundation Grant No. 1255818

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

DAC’14 June 01 - 05, 2014San Francisco, CA, USA.

Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00
http://dx.doi.org/10.1145/2593069.2596675.

Magdy S. Abadir

Freescale Semiconductor

Before jumping into an answer, we should first consider a
more fundamental question: What is learning? The NP-
hard learnability result for 3-term DNF is based on the
Probable Approximately Correct (PAC) learning model [2],
which was intended to define the concept of learnability in
supervised learning. In a PAC learning, the learning result
is guaranteed by two parameters (1) 0 < § < %: that the
learning algorithm with 1 — § probability will output the de-
sired result (Probable) and (2) 0 < e < 3: that the desired
result has an error bounded by € (Approximately Correct).

In other words, if one desires to simultaneously guarantee
the success rate and the result quality of the learning, then
the learning problem can be hard.

In practice, one basic principle for avoiding this hardness
can be to formulate a problem such that the simultaneous
guarantee is not required. For example, the work in [3] shows
that if one only seeks for good results without guarantee,
learning a Boolean function with a high percentage of accu-
racy can be quite feasible.

While the computational learning theory addresses learn-
ing from the computational complexity perspective [1], the
statistical learning theory developed by V. Vapnik [4] pro-
vides the necessary and sufficient conditions for a learning
process to asymptotically guarantee its performance.

In almost all EDA applications, one has to assume that
the data is somewhat limited. With limited data, it is likely
that the data has not yet reflected the total complexity of
the underlying behavior one seeks to model. In this case,
the learning problem can be viewed as choosing the best
model for the given data [1]. However, due to incomplete
information, the best model may not be good enough.

To provide the missing information to a learning machine,
domain knowledge is required. In fact, the learning theories
tell us that some knowledge is always required for learning,
i.e. "Learning = Data + Knowledge.” The question is how
much. In learning theories, one desires to use as little knowl-
edge as possible - to make the theories as general as possible.
In a practical EDA application, however, the question for a
learning task is often about finding an optimal tradeoff be-
tween the need for the data and the need for the knowledge.

Data availability and knowledge availability are therefore
key considerations that impact the formulation of a data
mining application in EDA. Data availability concerns the
information content of the data for the learning result to
show some statistical significance. Almost all applications
in EDA demand time-sensitive solutions. Hence, one may
not have the time to wait for more data. In some cases,
collecting more data can also be expensive or prohibited.

In an application, domain knowledge can be applied in:
(1) formulating a learning task simple enough for the learn-
ing to be effective and (2) judging the quality of the learning
result. The first relaxes the demand for more data and the
second relaxes the need for guaranteed learning result.

For a data mining application in EDA to be useful, it has
to provide added value to the existing tools and method-
ologies. This does not mean that a data mining approach
has to out-perform an existing approach to be useful. This
more often means that a data mining approach has a clear
complementary value to the existing approach. This also
often means that data mining is not used as a sole approach
to solve a problem, but more as an approach to assist other
tools or to assist an engineer to solve the problem.

Introduction of a data mining flow should make a target
task easier for its user, not harder. For example, a user
should not be spending more time and effort on preparing
the data and interpreting the mining results than solving the
problem using an existing flow. From this end, designing an
effective usage model is crucial. This includes effective pre-
sentation of the mining results to facilitate user interaction
and decision making.

Applying data mining to an EDA problem begins with
a proper problem formulation. This often means develop-
ing a novel methodology such that data mining tools can be
applied effectively. The problem formulation and method-
ology development determine what specific problems are to
be solved by the data mining tools and hence, determine the
overall effectiveness of the data mining approach.

In summary, a data mining methodology can be designed
by considering several principles: (1) It does not always re-
quire guaranteed results from a data mining tool for the
methodology to be useful and effective, (2) The required
data is either readily available or the time and effort to col-
lect the data are acceptable, (3) It provides added value to
the existing tools and methodologies, and (4) It does not
impose more engineering effort for solving the problem than
that required without taking the data mining approach.

2. LEARNING ALGORITHMS

Features > f[fz fn Vectors
- e -
- \
X ¥ X Xin AV
, |
1 bvs H ! \
X X X X '
X &|* 21 2 2n)7__;': Y2 :
\ i H
1 ! 1
\ \

\
\
=
T
1

I
1 1
]

Samples‘\)‘c’ Colx

K 1

' 1
ml i X e X AV ., Labels
3 s

Figure 1: Dataset seen by a learning algorithm

Figure 1 illustrates a typical dataset seen by a learning
algorithm. When ¢ is present and there is a label for ev-
ery sample, it is called supervised learning. In supervised
learning, if each y; is a categorized value, it is a classifica-
tion problem. If each y; is modeled as a continuous value, it
becomes a regression problem.

When 7 is not present and only X is present, it is called
unsupervised learning. When some (usually much fewer)
samples are with labels and others have no label, the learn-
ing is then called semi-supervised.

A typical assumption to the z’s values is that they are
continuous values. If x’s are binary, for example, then the
learning is closer to that studied in computational learning
[1] than that in statistical learning [4].

Note that in some learning problem, the y can be mul-
tivariate as well. Hence, instead of g, the right hand side
can be a matrix Y. For example, the partial least square
regression is designed for regression between two matrices.
Canonical correlation analysis is a multivariate correlation
analysis applied to a dataset of X and Y (see, e.g. [5]).

2.1 Basic ideas in learning

Take classification as an example. There can be four ba-
sic ideas to design a learning algorithm: (1) Nearest neigh-
bor (2) Model estimation (3) Density estimation and (4)
Bayesian inference.

ee o Linear model

Figure 2: Nearest neighbor vs. model based

For example, Figure 2 depicts a simple classification prob-
lem in a two-dimensional space. The basic principle for near-
est neighbor is that the category of a point (red or blue) can
be inferred by the "majority” of data points surrounding it.
Then, the trick is in how to define "majority” (see, e.g. [6]).

In a model based approach, one begins with assuming a
model. For example, in binary classification one can as-
sume a linear hyperplane to separate the two classes. A
linear hyperplane in an n-dimensional space can be mod-
eled as a linear equation with n 4+ 1 parameters. For ex-
ample, in the figure the linear model can be modeled as
M(f1, f2) = w1 f1 + w2 f2+b where w1, w2, b are parameters
to be estimated based on the data.

The assumed model can be complex. For example, a neu-
ral network model may contain multiple hidden layers where
the parameters are based on a collection of linear equations.
The assumed model does not have to be an equation. For
example, the model can be a tree [7], a collection of trees
[8], or a collection of rules [9]. In a model based approach,
the learning algorithm is specific to the underlying model
structure it assumes.

The third basic idea is to estimate the probability distri-
bution of a class. For example, for each class of data points
shown in Figure 2, one can estimate its probability distribu-
tion as a two-dimensional normal distribution, i.e. the red
samples with mean p1 and covariance 31 as N (u1,%1) and
the blue samples as N (u2,32). Then, the decision function
for a new sample x can be stated as:

B Prob(z based on N (u1,%1))
D(z) = log Prob(x based on N (u2,%2)) (1)

Equation 1 is the basic idea of discriminant analysis [6].
Of course, the probability density estimation can be more
general than assuming a normal distribution (e.g. [11]).

The fourth idea is following the Bayes’ rule. Let & =
(z1,...,zn) be an input sample to be predicted. The Bayes’

rule states that:
-\ __ Prob(class)Prob(Z|class) __ priorxlikelihood
Prob(class|%) = Prob(@) = evidence

Assume that sample occurrence is uniformly distributed.
Then, Prob(Z) is a constant. Prob(class) can be estimated
by counting the number of samples in each class. Hence, the
only term left to be estimated is the likelihood.

In naive Bayes classifier, it is assumed that all features are
mutually independent. Hence, Prob(#|class)=Prob(z1|class)
Prob(xz|class) --- Prob(zy|class). Each Prob(z;|class) is
estimated using the f; column of the dataset in Figure 1.

In practical application, the mutual independence assump-
tion rarely holds. Hence, more sophisticated algorithms are
designed to explore the mutual dependence among the fea-
tures (see, e.g. [10]).

2.2 Learning space and kernel methods

A learning algorithm design can be based on more than
one of the basic ideas discussed above. Nevertheless, there
is one important issue that is not yet covered in the basic
ideas - the space for carrying out the learning.

In Figure 2, the space is defined with two features fi and
f2. Typically, these are the input features provided with the
dataset like Figure 1. However the fact that they are given
as inputs does not mean that the space they define is neces-
sarily good for applying a particular learning algorithm.

In kernel based learning (see, e.g. [11][12]), the learning
algorithm and the learning space definition are separated. In
the learning, a kernel function k() is used which measures
the similarity between any pair of samples 7,7’ as k(Z,Z’).
A kernel function implicitly defines the learning space. This
is called the "kernel trick.”

To see how the kernel trick works, consider the simple
binary classification example shown in Figure 3. In the input
space where the data samples are provided, the two classes
of samples are not linearly separable. However, one can
define a kernel as k(Z, &) = (&, Z')> where (,) denotes the
dot-product of the two vectors.

Let ® be a mapping function that for a sample Z, (& =
(z1,22)) — (J21)?, |22|?, v/2|21||22|). In other words, ® maps
a two-dimensional vector Z into a new three-dimensional vec-
tor. We call the space defined by ® the feature space.

Input space Feature space
° 4 0
° fi’ L4 o 22 ° °
. ® . °
© PR S
e ° o o -fI
° ‘\ [® /‘ <
o0 | 2 \
. r ° °
o ° . ° Z3

FEF) =(3.5) «———> (¢(3).4(¥)
where ¢(T) = (‘x1
#(¥)=

Figure 3: Illustration of kernel method

SREN
:,\E\x'l X

= (xl""ﬁ'x:x'z)2

5

2 a|~‘f'3

K
Xy

)

Figure 3 shows that while the two classes of samples are
not linearly separable in the input space, they are in the fea-
ture space. In other words, if one desires to apply a learning
algorithm that only assumes a linear model, one still can do
that in the feature space and obtain a model that completely
separates the two classes of samples.

The kernel trick is then based on two observations: (1)
k(Z,3) = (®(Z), ®(Z')), i.e. the dot-product of two vectors
in the feature space is the same as the kernel computation in
the input space. (2) Learning a linear model in the feature
space requires only the dot-product operator.

Based on the two observations, learning a linear model in
the feature space does not have to be explicitly carried out
with the mapping function ®. All computations are based

on the kernel k(). This is why with the kernel trick, the
feature space exists only implicitly.

It is interesting to note that in kernel based learning, a
learning algorithm (for the most part of its operation) no
longer directly accesses the data matrix X shown in Fig-
ure 1. The information in X is accessed through the kernel
function. This is illustrated in Figure 4.

'i'l

’ Kernel 1 Learning
X evaluation > algorithm

= is X
X

m

X

X=

Figure 4: Kernel function vs. learning algorithm

A kernel based learning algorithm relies on the relative
information provided by a kernel function to compute its
learning model. Because X is not directly used, the samples
do not have to be represented as vectors like that shown in
Figure 1. As long as the kernel function k() can be defined,
the samples can be represented in any form.

Kernel based learning provides great flexibility to enable
the application of data mining in EDA, especially when the
data to be learned is not provided in matrix form like Fig-
ure 1. For example, in assessing the variability of a layout,
each sample exists simply as a piece of layout image (see, e.g
[13]). With a proper kernel, one does not need to explicitly
convert a layout piece into a vector. As another example, in
assessing the effectiveness of a functional test for processor
verification, each sample (functional test) exists as an as-
sembly program. To apply a learning algorithm to identify
novel programs, one defines a kernel to measure the similar-
ity between two assembly programs [14].

2.3 Overfitting, model complexity and SVM

In plain terms, overfitting is the situation where a learning
model performs very well on the training data (data used
to build the model) but not as well on the future data (or
validation data - data not used in the learning).

In statistical learning theory [4], the concept of overfitting
can be understood in view of the model complexity. This is
depicted in Figure 5.

Consider the example in Figure 3 again. Suppose the
learning algorithm is fixed and assumes a linear model. A
linear model cannot separate the two classes in the input
space. Hence, such a model would mis-classify many training
samples. In the feature space, however, a linear model can
perfectly separate the two classes, resulting in no error.

>

Error on the validation samples

Prediction error

Over-fitting

Error on the training samples

low Model Complexity high
Figure 5: Overfitting in view of model complexity

The linear model in the feature space is more “complex”
than the linear model in the input space because the feature
space has a higher dimensionality and also each feature is
more complex (to compute). From this simple example, we
see that by increasing the complexity of a model, the error
on the training samples can be reduced.

Figure 5 illustrates that by employing a more complex
model, the training error can always be reduced, i.e. a more
complex model fits the training data better.

The performance on the validation samples is different.
At some point when the model complexity is too high, even
though the training error can continue to improve, the vali-
dation error will start to increase. When this happens, the
model has overfitted the training data.

Given Figure 5, there are two fundamental ideas to avoid
the overfitting [6]. The first idea is to predefine a model
structure with a limited complexity and then try to mini-
mize the training error. A model based learning discussed
in Section 2.1 like Neural Networks follows this basic idea.
The second idea is to make no assumption to limit the model
complexity (e.g. VC dimension [4]) and try to find the min-
imal complexity model to fit the data.

The popular Support Vector Machine (SVM) family of
learning algorithms follow the second idea [6][11]. An SVM
learning model is of the form:

M(&) = > cuk(E,3:)] +b. (2)
i=1
where Z1,...,Zn are the training samples. Each k(Z, Z;)

is the similarity between the new input Z (to be predicted)
and the training sample &;. Each «; > 0 denotes the im-
portance of the sample Z; in the computation of the model.
The model M () can be seen as a weighted average similarity
between & and all training samples where the weights are
determined by the a’s. In SVM, the model complexity can
be measured as C' = > /" .

Let E denote the training error. An SVM algorithm tries
to minimize the objective of the form E+ A\C'. This is called
reqularization and X is a regularization constant [11]. Hence,
in Figure 5 the overfitting is avoided by controlling the com-
plexity of the model with A. Regularization is not specific
to SVM. In many modern learning algorithms, the regular-
ization is applied to avoid overfitting [11].

2.4 Types of learning algorithms

SVM algorithm [11], tree based algorithms [7][8] and neu-
ral networks [6] are popular choices for classification prob-
lems. In practice, one may encounter the issue of imbalance
dataset where there are much more samples from one class
than from the other. Techniques were proposed to rebalance
a dataset [15]. However, if the imbalance is quite extreme,
rebalancing will not solve the problem. In those cases, it is
no longer a typical classification problem.

For example, to learn a model to predict customer returns,
one usually encounters a dataset where there are only a few
customer returns and millions of passing parts [16]. Given an
extremely imbalanced dataset, the problem becomes more
like a feature selection problem [17][18] than a traditional
classification problem.

For regression, there are many types of algorithms, in-
cluding the straightforward nearest neighbor algorithm [6],
the least square fit (LSF) [6], the regularized LSF [6], SVM
regression (SVR) [11] and Gaussian Process (GP) [19]. For
example, the work in [20] studied these five types of regres-
sion algorithms in the context of learning a model to predict
the maximum frequency (Fmax) of a chip.

Clustering is among the most widely used unsupervised
learning methods in data mining. Popular algorithms for
clustering include, K-means, Affinity propagation, Mean-

shift, Spectral clustering, Hierarchical clustering, DBSCAN,
etc. (see, e.g. [21]). Clustering is easy to apply but the
result may not be robust. The performance of a clustering
algorithm largely depends on the definition of the learning
space in which the samples are clustered.

Novelty detection is another widely applied unsupervised
learning method. Novelty detection looks for outliers in a set
of samples. The one-class SVM is a popular choice for nov-
elty detection [11]. However, the performance of the method
can largely depend on the kernel function in use.

Principal Component Analysis (PCA) [22] and Indepen-
dent Component Analysis (ICA) [23] are popular data trans-
formation methods. For example, PCA can be useful for
reducing the dimensionality of a dataset by transforming a
high-dimensional X matrix into a low-dimensional X’ ma-
trix. PCA explores correlations among the input features
to extract uncorrelated new features called principal compo-
nents. ICA is similar to PCA except that instead of looking
for uncorrelated components, ICA looks for (statistically)
independent components. Both PCA and ICA have found
applications in test data analysis [24][25].

Classification rule learning such as the CN2-SD algorithm
[9] is applied for supervised learning. A rule learning algo-
rithm uncovers rules where each rule tries to model a subset
of samples in a given class. Rule learning in unsupervised
context is called association rule mining [26]. In those ap-
plications, an algorithm tries to uncover frequent patterns
(represented as rules) in the dataset.

3. APPLICATION EXAMPLES

In a design process, the design evolves over time. Conse-
quently, functional verification is an iterative process where
extensive simulation is run on a few relatively stable design
versions. In this context, data mining can be applied to re-
duce simulation time and improve coverage. For example,
Figure 6 shows two places that data mining can be applied
in a constrained random processor verification environment.
Here a test is a sequence of instructions.

Test N) tests | Novel test | novel ;)
> Randomizer . ————=| Simulation
template i selection | tests

| [T traces
rules | Classification i I Novelty
. €
—: Rule ! IL\earmng
‘ . L e
L learning .

Figure 6: Two places to apply data mining

The work in [14] implemented the novel test selection idea
proposed in [27] in a processor verification environment. The
idea is to learn a novelty detection model based on the tests
that have been simulated and use the model to filer out re-
dundant tests coming from the constrained-random test gen-
erator ("randomizer”). The work in [14] uses the one-class
SVM algorithm [11] for novelty detection model building.
However, the real challenge in the implementation is not in
the learning algorithm, but in developing a proper kernel
evaluation software module [14].

Figure 7 shows a typical result observed in this applica-
tion. Without the novel test selection, all tests coming out
of the randomizer would be simulated. In this case, it took
more than 6K tests to reach the maximum coverage for the
unit under test (this was for the load-store unit; see [14]).
With the novel test selection, only 310 tests would be sim-
ulated to reach the same coverage. The saving is 95%, or

19+ hours in server farm simulation (or multi-day if using
only one server).

19+ hours simulation (server farm)
K A

% of coverage

=> Require only 310 tests => Require 6010 tests
1
I
|/
10 1510 3010 4510 6010 7510 9010
of applied tests
Figure 7: Simulation run time saving example

1
1
|
1
|
With novelty detection : Without novelty detection
1
I
1
1

The work in [28] applied a rule learning methodology in
the same processor verification environment. The idea is to
learn the properties of a special test (e.g. a test hitting a
coverage point of interest) and feedback those properties to
the verification engineer for improving the test template.

Table 1: Coverage improvement after learning
Stage # of tests||Ag|A1|A2|As|As|As|As|A7
Original 400 10|17{0|0[O0O[0]|O|O
1st learning 100 3 (11(10(10(4 |2 (1|1
2nd learning 50 72159|71|83|79|97|96 |87

Table 1 depicts a typical result. In this case, the original
test template provided by the engineer was instantiated to
400 tests by the randomizer. On coverage points Ao to Az,
only Ag and A; received some coverage (# of cycles the
coverage point was hit). Learning from the special tests
hitting Ao and A; resulted in rules used to improve the
test template. The new test template was instantiated to
100 tests to achieve the coverage result shown in the row
”1st learning.” The new tests were added to the data for
learning again. Then, the further improved test template
was instantiated to 50 more tests. As we see in the row ”2nd
learning,” all points were covered with high frequencies.

Figure 8 depicts the setup in [13] to apply data mining in
layout variability prediction. Using lithography simulation
as golden reference, the data comprises a set of good layout
samples and a set of bad layout samples. The work applied
both SVM binary classification and one-class SVM to learn
from the data. The goal is to construct a model M that can
be used for fast layout variability prediction. Similar to the
work in [14], the real challenge in this implementation was
developing an effective kernel. The work in [13] used the the
Histogram Intersection (HI) kernel.

Good |
Layout Litho Samples | Image HI » ‘
> SVM M
Samples * Sim. —| Encoding | Kernel 0
Bad
Samples

Figure 8: Data mining in litho. sim. context

Figure 9 shows a result to compare the prediction accu-
racy of the model M to the lithography simulation. Most of
the high variability areas identified by the simulation were
correctly identified by the learning model M.

Design-silicon timing correlation (DSTC) is another appli-
cation area where data mining techniques were used [29][30].
In DSTC, the objective is to understand why the timing of a
path observed on silicon is different from that predicted by a
timer. The work in [31] applied a feature-based rule learning
framework to analyze the speed-limiting paths that were not

)

Simulated b pl Clrmiy
; 3 Wl

Predicted

Figure 9: Fast prediction of variability

predicted by the timer as the top (12K) critical paths. It
was shown that the learning approach could uncover design
features causing the design-silicon mismatch [31].

Figure 10 shows a result of applying a similar data mining
methodology. The left plot shows two clusters of paths:
those whose silicon timing is faster than the predicted timing
and those whose silicon timing is slower. These paths belong
to the same design block and the mismatch result was totally
unexpected. The right shows a learning rule uncovered by
the methodology. This rule basically says that if the path
contains a large number of layers-4-5 and layers-5-6 vias it
would be a slow path. Later it was confirmed that the issue
causing the slow paths occurred on metal layer 5.

« Fast Paths e ol
* Betw Lay 4/5)
s |+ Slow Paths * e Cgews® =
b TN < A
Diagonal R Wy

<13

Learning

>14
Y
» Count of Mult Via Fast Path
Between Layers
>70 s69

Figure 10: Diagnose unexpected timing paths

e

Normalized Measured Slack
5 o B . &
s

25 3 35
Normalized Expected Slack

In test, large amounts of test data are available for mining.
Test data mining has been an active research area for more
than a decade. In a recent work [16], we applied data mining
in predicting customer returns. For automotive products,
the goal is to have zero customer return. Hence, whenever
there is a return sent back from the customer, it is analyzed
thoroughly to avoid similar returns from happening.

° _ 3returns
& 1

| mnil Eein

; P 1 2\ =

| ﬁ Return » 1\ ‘ ! » ! ; “
> 1

New return_ 1 New product
2 2

|
|
v

[

Figure 11: Modeling customer returns

Figure 11 shows a latest result based on the data mining
methodologies suggested in [16][32]. Plot (1) shows how a re-
turn is learned and projected as an outlier in a 3-dimensional
test space. Plot (2) shows how the outlier model, when
applied, could have captured another return manufactured
several months later. Plot (3) shows how the same model,
when applied, could have identified three returns as outliers
from a sister product line manufactured one year later.

4. DIFFICULT CASE FOR DATA MINING

In contrast to the promising results discussed above, Fig-
ure 12 depicts a scenario where data mining might not help.
This is in the context of removing tests for test cost reduc-
tion [33]. In the two plots, our primary interest was to ask
the question: could we drop test A and test B?

The left plot shows, based on test data from 1M chips, that
all chips that failed test A were outside the test limit bound-
ing box defined by tests 1 and 2 - i.e. all test A fails were

TestEscape @ fall @ pass |-—r TestEscope fail T pas
[1
= o | o | .
] Test A Fails * 2 I r |
- = L |
= . ==
e L I
] . Rl S
‘a '] E
b= A — g L. .. i
8 1 2 Tl Test Limits
1 e .
:“" Test Limits <9 - Test B Fails

Covered Test 1
On data of 1M chips,
Corr(test A, test 1)=0.97,
Corr(test A, test 2)=0.96

Covered Test 3
On data of 1M chips,
Corr(test B, test 3)=0.98,
Corr(test B, test 4)=0.99

Figure 12: Difficult cases for data mining

also captured by test 1 or test 2. Moreover, the measured
values of test A across the 1M chip are 0.97 correlated to
those of test 1 and 0.96 correlated to those of test 2. Hence,
based on the data of 1M chip, a data mining method would
suggest to drop test A ”safely.” Similar situation applied to
test B on the right. Both were reasonable results.

It turned out that in the next 0.5M chips, there were chips
(vellow dots) that failed test A, but not test 1 nor test 2.
Same situation occurred for test B. Therefore, if one de-
mands to learn a model from the 1M chip data with a guar-
antee of, say, < 1 test escape (escapes as the yellow dots) in
the next 0.5M chips, the problem becomes very difficult.

5. KNOWLEDGE DISCOVERY

In practice, data mining is often used for knowledge dis-
covery to uncover interpretable and/or actionable knowledge
[34]. For knowledge discovery, the involvement of domain
knowledge is almost always necessary. Further, the data
mining process is iterative, where results from each iteration
are (manually) evaluated to adjust the mining in the next
iteration. In a data mining methodology, domain knowl-
edge can be incorporated in two places: (1) In kernel based
learning, the domain knowledge can be incorporated into the
kernel module (e.g. [13][14]). (2) In feature-based learning,
the domain knowledge is incorporated into the definition of
the features (e.g. [31]). Our experiences show that the chal-
lenges in practical implementation are often related to the
kernel or feature development, while choosing an existing
learning algorithm to apply is relatively easy.

Our experiences also show that for practical success it is
essential to develop a methodology to define mining prob-
lems where data mining techniques can be applied effec-
tively. As illustrated in Section 4, if a problem formula-
tion demands a stringent and guaranteed result, data mining
might no longer be suitable for the application.

6. REFERENCES

[1] Michael J. Kearns and Umesh V. Vazirani. An Introduction
to Computational Learning Theory, MIT Press, 1994.

[2] L. G. Valiant. A theory of learnable. Communications of
ACM, 27 (11), pp. 1134-1142, 1984.

(3] Onur Guzey, et. al. Extracting a Simplified View of Design
Functionality Based on Vector Simulation. Lecture Note in
Computer Science, LNCS, Vol 4383, 2007, pp. 34-49.

[4] V. Vapnik, The nature of Statistical Learning Theory. 2nd
ed., Springer, 1999.

[5] David R. Hardoon, Sandor Szedmak, John Shawe-Taylor.
Canonical correlation analysis; An overview with
application to learning methods Neural Computation, 16
(12), pp. 2639-2664, 2004.

[6] Trevor Hastie, et al. The Elements of Statistical Learning -

[7]

(8]

(9]

(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]
20]

(21]
[22]
23]
24]
25]
[26]
27]
(28]

29]

[30]
[31]
[32]

(33]

(34]

Date Mining, Inference, and Prediction. Springer Series in
Statistics, 2001

Leo Preiman, et al. Classification and Regression Trees.
Wadsworth, 1984.

Leo Breiman, Random Forests Machine Learning Journal
(45), 2001, pp. 5-32.

N. Lavra¢, B. Kavsek, P. Flach, and L. Todorovski. Rule
induction for subgroup discovery with CN2-SD Journal of
Machine Learning Research, 5:153-188, Dec. 2004.

David MacKay, Information Theory, Inference, and
Learning Algorithms. Cambridge Univ. Press, 2003.
Bernhard Schélkopf, and Alexander J. Smola. Learning
with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. The MIT Press, 2001.

J. Shawe-Taylor, N. Cristianini, Kernel Methods for
Pattern Analysis. Cambridge University Press 2004.
Dragoljub (Gagi) Drmanac, Frank Liu, Li-C. Wang.
Predicting Variability in Nanoscale Lithography Processes.
ACM/IEEE DAC, 2009, pp. 545-550.

Wen Chen, et. al. Novel Test Detection to Improve
Simulation Efficiency A Commercial Experiment.
ACM/IEEE ICCAD, 2012.

G. Batista. A Study of the Behavior of Several Methods for
Balancing Machine Learning Training Data. Sigkdd
Explorations, 6(1), pp. 20-29, 2004.

Nik Sumikawa, et. al. Screening Customer Returns With
Multivariate Test Analysis. IEEE ITC, 2012.

Nik Sumikawa, et. al. Important Test Selection For
Screening Potential Customer Returns. IEEE VLSI Design
Automation and Test Symposium, 2011, pp. 171-174.

Z. Zheng, X. Wu, and R. Srihari. Feature Selection for Text
Categorization on Imbalanced Data. Sigkdd Ezplorations, 6
(1), pp. 80-89, 2004.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning. MIT Press, 2006.

Janine Chen, et al. Data learning techniques and
methodology for Fmax prediction. IEEE ITC, 2009.
http://scikit-learn.org/stable/modules/clustering.html

I.T. Jolliffe, Principal Component Analysis. Springer, 1986.
A. Hyvarinen, et. al. Independent Component Analysis.
Wiley Series on Adaptive and Learning Systems, 2001
Peter M. O’Neill. Production Multivariate Outlier
Detection Using Principal Components. IEEE
International Test Conference, 2008.

Ritesh Turakhia, et al. Defect Screening Using Independent
Component Analysis on IDDQ. IEEE VLSI Test
Symposium, 2005, pp. 427-432.

Chengqi Zhang and Shichao Zhang. Association Rule
Mining, Models and Algorithms. Lecture Notes in
Computer Science Vol. 2307, Springer 2002.

Onur Guzey, et al. Functional test selection based on
unsupervised support vector analysis. ACM/IEEE Design
Automation Conference, 2008, pp. 262-267.

Wen Chen, et al., Simulation knowledge extraction and
reuse in constrained random processor verification. In
ACM/IEEE Design Automation Conference, 2013.

Li-C. Wang, Pouria Bastani, Magdy S. Abadir.
Design-silicon timing correlation — a data mining
perspective. In ACM/IEEE DAC 2007, pp. 384-389.

P. Bastani, et. al. Statistical Diagnosis of Unmodeled
Timing Effect. ACM/IEEE DAC, 2008, pp. 355-360.
Janine Chen, et. al. Mining AC Delay Measurements for
Understanding Speed-limiting Paths. IEEE ITC, 2010.
Nik Sumikawa, et al. A Pattern Mining Framework for
Inter-Wafer Abnormality Analysis. IEEE ITC, 2013
Dragoljub (Gagi) Drmanac, et al., Wafer Probe Test Cost
Reduction of an RF/A Device by Automatic Testset
Minimization: A Case Study. IEEE ITC, 2011.

Krzysztof J. Cios, et. al., Data Mining - A Knowledge
Discovery Approach, Springer, 2007.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140421094700
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 28.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 28.8000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

