2010 39th International Conference on Parallel Processing Workshops

Optimizing Service Level Agreements for Autonomic Cloud Bursting Schedulers

Sriram Kailasam! Nathan Gnanasambandam?
! Distributed and Object Systems Lab
Dept. of Comp. Sci. and Engg., IIT Madras
Chennai, India 600036
{ksriram@cse, djram@}.iitm.ac.in

Abstract—The practice of computing across two or more
data centers separated by the Internet is growing in popularity
due to an explosion in scalable computing demands and pay-
as-you-go schemes offered on the cloud. While cloud-bursting
is addressing this process of scaling up and down across data
centers (i.e. between private and public clouds), offering service
level guarantees, is a challenge for inter-cloud computation,
particularly for best-effort traffic and large files. The parallel
workload we address is real-time and involves inter-cloud pro-
cessing and analysis of images and documents. In our produc-
tion printing domain, dedicated processing/metwork resources
are cost-prohibitive. Further, the problem is exacerbated by
data intensive computing - we encounter huge file sizes atypical
of intercloud parallel processing. To address these problems we
propose three flavors of autonomic cloud-bursting schedulers
that offer probabilistic guarantees on service levels required by
customers (such as speed-up and queue sequence preservation)
by adapting to changing workload characteristics, variation in
bandwidth and available resources. In particular, these op-
portunistic schedulers use a quadratic response surface model
for processing time in concert with a time-of-day dependent
bandwidth predictor to increase the throughput and utilization
while simultaneously reducing out-of-sequence completions for
a document processing workload.

I. INTRODUCTION

Cloud Bursting integrates a private cloud (existing cor-
porate infrastructure) with a public cloud to create a highly
scalable computing platform (see Figure 1). This practice of
computing across two or more data centers (internal plus
external) has been growing in popularity because of the
scalability and pay-as-you-go benefits it offers with respect
to data intensive computing (see [1]). In particular, using
cloud bursting for overflow parallel processing has also
been possible more recently through preconfigured instances
on public clouds [2]. These practices have tremendous
advantages for large and small organizations alike as they
need to provision only for average demand with the cloud
fulfilling the remainder of the workload. Usually, the data
center resources inside the production facility is referred as
internal cloud (IC) while those outside the facility (accessed
through Internet) are referred as external cloud (EC) [3].

We shall now briefly discuss some of the interesting sce-
narios for cloud bursting and get to our problem. Typically,
the capacity in the IC is fixed (static) while it may be

1530-2016/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPPW.2010.54

285

Janakiram Dharanipragada’ Naveen Sharma?
2Xerox Research Center Webster
Xerox Corporation
Webster, NY, USA 14580
{nathang, naveen.sharma}@xerox.com

varied in the EC (elastic). In future (with the increasing
number of cloud providers), one could possibly choose from
a pool of Cloud Providers at run-time depending on the input
job’s service level agreements (SLAs). Thus the possible
interesting scenarios are a combination of Static/Elastic IC
with Single/Multiple EC having Static/Elastic nature. In
this paper, we consider scheduling across Static IC and
Single Static EC, for applications with heavy bandwidth and
processing requirements. For such applications, transferring
the inputs (and outputs) across clouds becomes comparable
to the processing time and hence splitting the workload
across clouds becomes a non-trivial task. Unlike our domain,
certain kinds of scientific computing (e.g. [1] [4]), business
analytics and software-as-a-service applications may involve
relatively light-weight inputs followed by a lengthy cloud-
appropriate computation.

We are focussing on a domain that needs a certain
resident computational capacity (internal cloud) in addition
to overflow computational capacity on a public cloud (such
as Amazon EC2, Rackspace etc.). This notion is also known
as hybrid clouds (see [3] [5]) where performing suitable
proportions of computation remotely and locally (i.e. within
a private cloud, enterprise or small business) may be for
reasons of redundancy, security and reliability (see [6]). But
a more important reason for the purposes of our investigation
is that our workloads are real-time production workloads
whose transfer time to the external cloud, is comparable to
their computational time. Therefore, if the local resources
remain idle while transferring inputs to a remote cloud,
it adversely affects the throughput and hence service level
agreements. This means that some computation must ideally
be carried out continuously at both ends while transfers
(and subsequent processing) are optimally scheduled with
respect to deadlines or chronological priority. To this end, we
propose three variants of inter-cloud scheduling heuristics
that optimize various guarantees on service while catering
to a parallelizable workload.

Another advantage of considering hybrid clouds is that
remote computation can completely be scaled down during
periods of low demand without incurring processing or
more importantly, bandwidth costs. This feature is of value
to workloads that are real-time, time-varying/seasonal and

@) CO‘ pute
1(!) I
& SOCIety

External Cloud

Compute Zones

— 1I@® T >
InputQueue scheduler Result Queue
Internal Cloud
Figure 1. Cloud Bursting Conceptual Diagram

consisting of large datasets such as high-resolution images,
reconnaissance imaging or medical documents. During such
lean periods, it may be optimal to carry out all the processing
on the private cloud with a small set of resources while
respecting service level agreements. To this end, the second
objective of this paper, is to demonstrate the viability of real-
time processing of bandwidth-intensive datasets opportunis-
tically on the hybrid cloud while respecting service level
agreements.

To adhere to the SLAs, the schedulers must be able
to learn the round trip latencies including processing time
on the other cloud for different job sizes and bandwidth
availability. We learn the processing and transmission times
using a quadratic response surface model and a time-of-
day dependent bandwidth predictor, and subsequently use
the estimates to decide which job in the queue needs to be
bursted out. Chief among SLAs we consider for these long-
running (relative to, say, HTTP workload) jobs are the Out-
of-Order (OO) metric and makespan (we elaborate further on
SLAs in Section 2). Minimizing out-of-order jobs guarantees
that the jobs preserve their slot in the result queue. Jobs
are given a ticket that they will finish a certain number of
seconds from their submission point. Thus the OO metric is
directly correlated to whether or not the expectation of the
ticket-holder (human or machine) will be met. However, in
this distributed inter-cloud setting, minimizing out-of-order
jobs imposes a constraint that adversely affects makespan.

The remainder of the paper is organized as follows. We
first examine the domain characteristics and the properties of
the datasets we deal with and outline the salient contributions
of this work. In the next section, we elaborate on the concept
of slackness constraints (or expected time cushions) of jobs
in a queue that have to be bursted out to an external compute
cloud. In light of these conditions, we discuss how cloud-
bursting is carried out opportunistically in Section 3 and
reiterate the need for resident local computational capacity
in domains where large file transfers are involved. In Section
4, we discuss three variants of cloud bursting schedulers. We
describe our empirical evaluation using real workload from
a document processing domain in Section 5 and contrast
our work with the literature in Section 6. We conclude with
ideas for future work in Section 7.

Domain characteristics

We consider a production facility (or factory) that handles
large volumes of document workload namely newspapers,

286

books, marketing material, mail campaigns, credit card state-
ments, image personalization, variable data promotional ma-
terial etc. The computational workload of such document or-
ganizations may be image processing, image enhancements,
raster processing, text/image optimizations for enhancing the
quality of printed outputs and several business processes
that naturally lend themselves to parallel processing. Given
the volume of the workload these computational processes
are time consuming. Typically, these are carried out on
private clouds (small/medium businesses) but these local
data centers are not provisioned for peak workload owing to
cost. The workloads also wildly fluctuate and are periodical
(weekly, monthly, yearly etc.) closely following the seasonal
consumption patterns of a consumer economy. The overall
length of image processing per job could depend on the
input document sizes, quality requirements, workflow stages,
output formats and so on. Subsequent to computation, phys-
ical production activities follow where penalties for under-
utilization are heavy. This mandates that the computational
workload performed upstream should strictly adhere to the
SLAs dictated at every stage.

Contributions

One of the contributions of this paper is that we offer
evidence to support the viability of real-time cloud-bursting
while transferring extremely large sizes of workload back
and forth over the best-effort transport structure of the
regular Internet. In addition, we focus on techniques for
delivering service level guarantees during cloud-bursting
for a computational workload on documents and images.
While there has been some work on efficient brokering
strategies across clusters (see [7]), scheduling techniques
and learning models for inter-cloud processing needs further
research. The proposed slackness constraints with respect to
the workload queues offer a new way to balance chronolog-
ical priority with other traditional service level agreements
(such as speed-up, make-span, utilization etc.) in support of
small/medium organizations that are interested in utilizing
cloud bursting effectively. The cloud-bursting techniques and
results presented in this paper are applicable to a number of
domains including academic computing environments with
multiple types of jobs. To this end, one of the questions
that prominently features in this paper is given a workload,
how do we determine when (a scheduler decision under
resource variation), where (to which cloud) and how much
(the quantum of work) to burst out for optimizing certain
downstream service level attributes. We discuss these, and
the opportunistic and autonomic nature of our schedulers in
the sections below.

II. CONSTRAINTS AND SLA FOR JOB QUEUE

A. Slackness Constraint

A key consideration in the design of our inter-cloud
scheduling mechanisms is the notion of slackness associated

Burst to EC

A

II el

Slackness constraint satisfied for job 4
=
G

te(4) + rtt(4) < t9(3) +t°(2) +t5(1)
S
i job I
£ Head of queue
Sufficient quantum of IC workload

—
te(i) + rtt(i) < Ti<it®(k) — Zjepcy,j<it®
r’d

Burst to EC

Figure 2. Slackness constraint for Single Resource in IC

with jobs waiting in a central queue for processing. Infor-
mally, slackness refers to time cushions available to certain
jobs to make a round trip to an external compute cloud
(EC) before their turn for local processing arrives (FCFS
queue). These slackness values are a function of current
job’s characteristics and position in the queue, as well as
the attributes of jobs preceding it. As shown in figure 2,
the fourth job (j4) can complete processing in the external
cloud before it is required (by the downstream production
stages that assume task arrival chronology) and hence j4
can be bursted out. The jobs are all assumed to originate
from the internal cloud. The input and output sizes of jobs
are substantial — often hundreds of megabytes even upon
data compression. So on the regular Internet these would
consume a significant amount of transfer time back and forth
from the external cloud.

The slackness considerations we outline herein provide a
general framework to model the tolerances associated with a
scheduling decision and their subsequent impact on service
level attributes. In particular, these considerations are critical
when transfer overheads are significant (due to file sizes
or bandwidth variations) - how we burst out to an external
cloud from an internal cloud is influenced by the huge sizes
of jobs we deal with. We now formally define the slackness
constraints. Let there be a list of jobs J in the queue where
the i*" job is denoted j;. We define the following:

tO (2)7 tc(i)
te()

start time, end time of j;

estimated computation time of j; on
a standard machine

input (output) size of j;

data transfer rate to/fro the external
cloud at time ¢ (for asymmetric links
define upload and download rates)

8; (07)

1)

ftec(4, S) finish time estimate of j7; in EC (IC)

(ft*°(i,S)) when the system state is S

d; decision variable indicating place-
ment of j; (0 means IC; 1 means EC)

te(i) estimated completion time of j; (de-

pending on where it was scheduled)
= d; x ftee(i) + (1 — di) » f£°°(i)
estimated completion times of the
first ¢ jobs {x|z = t5(¢') and ¢ < i}
The slack time for j; is given as:

slack(j;) = max(T;) (1

287

In other words, slack is the time cushion of the first job
from the head of queue or a previously identified position
whose estimated completion time in the external cloud could
be greater or equal to the completion times of the jobs
preceding it in the internal cloud. Further, these slackness
conditions allow for a quantum of work to be available
locally in the IC, so that the job that gets bursted out has
enough lead-time to make the round trip in addition to
getting remotely processed. The constraint, therefore, is that
the

slack(jz) Z te(i) + Sl/l(tl) + Ol/l(tz + t/) (2)

where ¢; indicates the time at which upload to EC begins
and ¢’ is the time at which the job result gets downloaded.
In practice, slackness constraints are checked for every pair
of resources across clouds.

B. Out-of-Order Constraints

Even though there is a single queue, jobs and portions
thereof may execute in parallel. As a result, the jobs that
are processed internally or externally may complete ahead
of their natural position in the queue. This could violate a
first-come first served (FCFS) policy that customers would
value, particularly when the total processing time may be of
the order of tens of minutes. Therefore we define the Out-of-
Order (OO) metric by considering the position at which jobs
complete along with their output sizes (the operational rate
of the subsequent production stages like printer or workflow

processing depends on the size of the job output). Let
ordered sequence of sampling times

s tt" sampling time

Cy the subset of jobs that completed before s,

J; the subset of jobs in Cy; whose id is less than
or equal to ¢

t tolerance limit for the out-of-order comple-
tion of jobs

my max id of the job in C, satisfying out-of-
order constraints

04 size of ordered data (within tolerable order-

ing limit ¢;) available at time s
Further define

Cy
Ji

{z|re Nt.(x) < st}
{z|zeCy A x.id < i}

3
“

Now we are interested in finding the highest value of job
td (say 7) in the result queue (at time s;) upto which the
results (ordered according to job id) can be consumed by the
next stage without violating the tolerable limits of processing
in order. For example, a tolerable limit of O (strict order)
means that every job whose id is less than ¢+ must have been
processed. Formally, the max job id satisfying out-of-order
constraints is given as

my = find max; s.t. jiECt Nt — t < |J7,t| (5)

The cumulative size of ordered data available for the next
stage following processing at time s; is given as

>

zeJi Ni=my

0 = x.size (6)

If we were to consider that the next stage after document
processing is a printer, then the above value would indicate
the amount of data (ordered) ready to be consumed by the
printer at time s; while maintaining the ordering constraints.
Thus the OO metric (see equation 6) captures the out-of-
order completion of jobs by computing a function (sum of
the output size of the result) over the jobs that complete in
order (within tolerable limits).

C. Other Service Level Agreements

Some other SLA definitions from our domain are as
under:

1) Makespan: Makespan is defined as the total time
taken to run the entire set of jobs. Let arr(J) denote
the arrival time. Therefore makespan C'

C =max([t.(i)]) — arr(J) @)

Note that jobs may complete in any order, requiring
the max operator. The objective is to minimize the
makespan.

Utilization: Let M denote the set of machines used
during the job run and let ru,,(J) denote the running
time of a particular machine (m) during the total run
time of the job set. Then the utilization (u,,(J)) of a
particular machine (m) during the execution of the job
set (J) is defined as

i|jieJ

2)

U (J)
&
and the average utilization over a set of machines M

(belonging to IC or EC) is defined as

run(J)
wil) = 31w
Speedup: Given a set of jobs, speedup (s) is defined
as the ratio of the total time taken to run the set of jobs
sequentially on a standard (set of) machine(s) to the
time taken to run it using the cloud bursting approach.
Speedup for the entire run:

U (J) = ®)

€))

3)

_c
tseq(J)

The speedup measures how fast the jobs completed ex-
ecution. So the objective is to maximize the speedup.
Improving the utilization of the system (homogeneous)
has a direct bearing on the speedup.

Burst ratio: The burst ratio (bu(J)) is the ratio of the
number of jobs in the job set J that were bursted out
to the total number of jobs in J.

(10)

S =

4)

288

Burst ratio j** batch (B;):

ien, Qi
bu(B;) = z:”?’/iBJ (11)
b
Burst ratio for entire run:
1 5.cg(bu(Bj) * b;

n

This ratio gives the proportion of jobs that are bursted out
(with time) for different schedulers and is an indicator of
the resource utilization in EC.

These metrics are used to compare the performance of
different schedulers. With respect to real-time processing,
we assume that we need to choose jobs to burst out from as
near the head of the queue as possible (note that just bursting
out from the head of the queue violates several SLAs). This
constraint on bursting not-only respects the FCFS discipline,
it also minimizes the OO metric defined above. In other
words, we cannot resort to the option of jobs near the head
of the queue being computed locally while the tail region is
processed by the external cloud (because it will compromise
speed-up of the initial batches as well as other SLAs).

III. OPPORTUNISTIC BURSTING

Due to the huge size characteristics of our workload,
EC resources should be opportunistically used along with
the locally resident computation capability. Some amount
of processing must be carried out on the IC at all times
because — (a) with transfer times being of the order of
processing time, it is possible to perform a quantum of
work at the head of the queue while the transfers are
happening. (Precisely which job is chosen is decided by
the slackness conditions.) (b) continuously using bandwidth
and resources on the external cloud is not cost-efficient
at times of low workload. Therefore opportunistic bursting
requires the use of learned models, dynamic calibration
and benchmarking for effectively utilizing the processing
capacity of the inter-cloud system and the offered bandwidth.
While these estimation models may frequently have accuracy
shortfalls, even imprecise estimates of remaining (long-
tailed) workload have been shown to have merit in grid
scheduling relative to a random scheduler (see [8]).

A. System Models

The capability of a scheduler to honor slackness con-
straints while making assessments based on learned models
differentiates this work from the literature (e.g. [1] [7]).
Thus, the system estimates the finish times in IC and EC
considering the current load, the expected run times of the
jobs (processing time estimates) and the expected bandwidth
usages for upload/download of the job/result.

Quadratic RSH for Total Priting Time

Quadiatic RSM for Total Pining Tine

Figure 3. Quadratic Response Surface Models for Processing Time

1) Processing time model: A quadratic response surface
model (QRSM) (see [9]) was used and subsequently tuned
by observing data from the actual system. We start with
an initial best estimate model based on a standard set of
production data observed across a variety of locations and
subsequently learn and tune the model depending on the
specific conditions and resources available. A quadratic
response surface model would assume that a quadratic
polynomial f would relate y to the IV independent variables
considered i.e.

Y= f($179027~-7$N)

More specifically,

N N

Z CijT;T5 + Z dll‘?
i,j=15i#] i=1

The coefficients (a, b;, ¢;j;,d;) fori,j =1to N and i # j
are learnt as the solution to a linear programming model.
The variable y corresponds to processing time on a given
resource. The dimensions z; are the important features of
documents and images — namely document size, number of
images, the size of the images, number of images per page,
resolution, color and monochrome elements, image features,
number of pages, ratio of text to pages, coverage, specific
job type etc. From the above, a relevant set of features
are extracted and utilized for every job type. We show in
Figure 3 the QRSM model for processing time from our
experiments. Without loss of generality we can add or delete
dimensions to our model as may be required by the specific
job class. Learning and tuning of the model depending on
the job class is part of future work.

2) Transit time model: The autonomic system also cap-
tures network conditions, calibrates its settings and modu-
lates the cloud-burst engine’s network activities. The upload
and the download bandwidth from an arbitrary internal cloud
to the external cloud vary sporadically because of factors
such as last-hop latency, time-of-day variations, bandwidth
throttling, unavailability of higher capacity/bandwidth lines
etc. Since the application we consider is extremely data
intensive, we particularly adapt to Internet conditions by
estimating the effective bandwidth.

Figure 4(a) shows the variation of bandwidth across
different times of a day. This is calibrated automatically and

N
y:a—I—Zbixi—&—
i=1

289

Bandwidth (KB/s)
No of Download Threads

1

20

1|

(] 5 10 15 0 10 15
Time Of Day

Time Of Day

20

Figure 4. (a) Time of day model for bandwidth variation (b) number of
threads used for keeping the upload/download pipes fully utilized

learned for every location and the time of day they operate.
This can further depend on the seasonality of the particular
IC’s demand. We experimentally determine a certain number
of threads for downloading/uploading a file in parallel at
a given point of time that can maximize the bandwidth
utilization. Figure 4(b) shows the number of threads that
were used to maximize the bandwidth utilization.

The effective bandwidth is measured at different times of
the day by periodic test uploads/downloads of size 1MB
from the internal to the external cloud. This is used in
conjunction with the actual values of the upload/download
times observed during the experiment. The network estima-
tion model is updated according to the following equation:

Sp=aY,+(1-a).S,—1

where,
S, = weighted moving average for the network
speed after the n*" file upload / download
Y, = network speed during the n‘" measurement
a = weight

B. Cloud Bursting Architecture

The cloud-bursting architecture is pipelined and event-
based. Pipelining helps to squeeze out more throughput from
the system because every stage of the pipeline is executed in
parallel, as opposed to only processing in parallel. The event-
based nature of the model keeps the different stages loosely
coupled. The overall architecture is explained in Figure 5
— (1) The user submits the job through a web interface to
the system; (2) The web-server then places these jobs into a
job queue; (3, 4) The job queue is continuously monitored
and the job gets picked by the Controller (scheduler). The
controller parses the job and invokes the scheduler. The
scheduler may decide to split the job and hence portions
of the job may be migrated to the EC. (5) Individual cloud
controllers take charge (internal or external) (6) Dispatches
to either cloud (7) Job gets processed in either internal
cloud and/or external cloud (8) Job is retrieved and the user
collects the output. The pipelined architecture can be thought
of as a network of asynchronous queues - upload, execution,
download queues and job moves from one queue to other.

As part of opportunistic decision making, the scheduler
estimates the different parameters of the job using the esti-
mation models. The aforementioned models for processing

Amazon 53
Y

Elastic
ap-Reduce

GWT-Visualizer

)
Apache Web Server ‘
o o [°

2 e —H

Configuration
Management

PDF Utils

Processor
Flops Est.

S
3

Cloud Bursting Architecture

.
@ Bandwidth
/

Controller

Job Store

Figure 5.

time and offered bandwidth are utilized to estimate the
parameters required for bursting (such as the number of
threads, round-trip-time or processing time on a resource).

In the prototype, the internal cloud uses a Hadoop Map-
Reduce ([10]) cluster formed by the printer controllers,
whereas the external cloud uses Amazon S3 as the job store
and the Elastic Map-Reduce for computation. The compute
intensive tasks are expressed using the map-reduce paradigm
to exploit the Hadoop Map-Reduce cluster available in the
internal and the external clouds. The jobs are embarrassingly
parallel and hence splitting them and scheduling them in
different clouds does not introduce any inter-cloud commu-
nication (while the computation is going on) apart from the
final merge of the results. After computation, the job output
is compressed and downloaded. And finally it is added to
the result queue.

IV. BURST SCHEDULER DESIGN

As mentioned earlier, one of the questions that promi-
nently features in this paper is given a workload, how do
we determine, when, where and how much to burst out for
optimizing certain downstream service level attributes. Here,
”when” refers to the precise time the scheduler makes the
decision, "where” refers to the choice of one or more public
clouds, and how much” refers to the quantum of workload
bursted out. The goal of the scheduler is to recursively pick
the right job from the head of the queue or the previously
chosen job, that if cloud-bursted (sent externally) would not
delay the rest of the jobs in the queue i.e. the output of a
job that is bursted would be required only a small time 7
before the jobs preceding it complete in the internal cloud.
In practice this is hard to achieve given the uncertainties
in resource availability, Internet congestion and estimation
errors. In this section we discuss designs of three schedulers.
These schedulers only look at the current state of the system
to make decisions on splitting and placement of jobs. Hence
they are traffic oblivious (the estimation models are used to
predict the job execution time and transfer time given the
current load in the system).

290

A. Greedy Scheduler

This scheduler makes a job-level greedy decision — sched-
ules the job (in IC or EC) where it is expected to complete
earliest. The aforementioned decision factors the expected
execution time/bandwidth requirements for the job using
the estimation models, the current transit bandwidth and the
resource availability in both the clouds. The pseudo-code is
shown in Algorithm 1.

Algorithm 1: Greedy Scheduler

Data: J: list of jobs in a given batch
Result: j;, — (EC or IC) Vi: assignment decision
1 fori=1to|J| do
tic «— ft'° (i)
teec «—— ftcc (7;)
if t;c < te. then
Schedule j; in IC
else
Schedule j; in EC
end
1+— 1+ 1
end

2
3
4
5
6
7
8
9
0

1

B. Order Preserving Scheduler

The motivation for this scheduler is that the jobs must
complete more or less in the order of arrival with the
added constraint that no internal job waits for the results
from the bursted out job. Recall from Section II, if the
scheduling decision respects slackness constraints, then the
jobs scheduled in EC are never on the critical path. Thus
the slackness criteria automatically reduces the probability
of waiting for results of bursted jobs for later positions in
the queue and makes it more robust under network variation.
The pseudo-code is shown in Algorithm 2. This algorithm
tries to minimize out-of-order completion of jobs as follows:
First, it reduces the variation in the job sizes by chunking
the large job into smaller jobs and adding them as new jobs
in the job-list(lines 3-10). Next, those jobs that satisfy the
slack condition are bursted out and the rest are scheduled in
IC.

C. Scheduler Optimizations

We now propose some enhancements to the above men-
tioned schedulers that are needed with large file transfers
and long-tailed workload. These optimizations aid queue
sequence preservation, resource utilization and/or scalability
for the inter-cloud parallel computation.

Size-interval based Bandwidth Splitting: The workload
consists of jobs whose sizes are highly variable. So the
upload of a large job can block several smaller jobs thereby
decreasing the utilization and throughput of jobs in the EC.
Therefore we hypothesize that - size-interval based splitting
(see [8]) for available bandwidth would improve the utiliza-
tion of EC by moving jobs faster to EC. Instead of simply
increasing the number of queues we partition the upload
tasks into size intervals — namely small, medium and large

Algorithm 2: Order Preserving Scheduler

Data: J: list of jobs in a given batch
Result: j; — (EC or IC) Vi: assignment decision

1 size — |J|

2 1+— 1

3 while ¢ < size do

4 ve—o(i:i+x)

5 if v > th then

6 C «——pdfchunk (j;, v)
7 J.remove (1)

8 J.insert (i, C)

9 size «—— size + |C| — 1
10 end

U teo — ft°° (i)

12 if te. < slack(J,i) then
13 Schedule j; in EC

14 else

15 Schedule j; in IC

16 end

17 i—1+1

18 end

buckets. This effectively isolates the small jobs from the
large jobs and decreases the variance in each bucket, thereby
improving the utilization of the EC. We determine the upper
bounds of each of the upload queues as detailed in Algorithm
3. Here lines 3-12 identify the potential jobs that can be
bursted out (jobs that may satisfy the slack condition) and
stores them in list L. Line 13 computes the normalized left-
over capacity for the upload queues. Next, the sorted list L
is partitioned according to the ratio of the left-over capacity
thereby equalizing the network load across the different
queues (lines 15-17). In practice, some of the potential jobs
that are identified as large/medium may not be bursted out
as the upload queue fills up. Therefore, our policy is to allow
jobs in the lower queue to get uploaded via higher queues
as well, to maximize the bandwidth usage.

Algorithm 3: Size-interval based Bandwidth Splitting

Data: B: ordered list of jobs in a given batch, ¢load: initial compute load in
IC, sup, Mup, lup: size of data to be uploaded in the small, medium
and large queues, n: number of processors in IC

Result: spound;, Mbound: size-interval bounds for small and medium queues

1 L +—
2 rload «— 0
3 for i — 1to |B| do
4 job «—— B.get (1)
// Completion time in EC under no load
5 tee e job.tup + job.coc + j0b-taown
6 if tee < iload + 1224 then
7 L «—— L U job.size
8 else
9 rload «—— rload + job.e;.
10 end
11 ie—i+1
12 end
Sup Myp
1B s - o o ™ LT st
le—1—m—s
14 L.sort ()
15 [Ls,L,,, L;] «— L.partition(s,m,l)
16 spouna +— Ls.last ()
17 mpound <— Lm.last ()

291

D. Discussion

We now contrast the design principles of the different
schedulers.

Greedy Scheduler: This scheduler makes a simple job-
level greedy choice that can cause bursted out jobs to end up
in the critical path. This makes the schedule vulnerable to
estimation errors and fluctuations in the network bandwidth.
Some of the undesirable outcomes are listed below:

« Job order in result queue is shuffled (sometimes highly
out-of-order)

Making a greedy decision to push out and pull jobs
in, based on the transient value of bandwidth, imposes
the risk that at download time the bandwidth in reality
is lower than the initial estimate. This may cause poor
performance.

Order Preserving Scheduler: Though in principle this
scheduler is more robust to network fluctuations due to the
slackness criteria, the errors in the estimation of the job
execution time can affect the schedule. For instance, an
overestimation of the job’s execution time that takes max
time in IC (refer Equation 1 used to compute slack) or an
underestimation of the bursted out job can cause out-of-
order completions. The former case can cause extra jobs
to be bursted to the External Cloud. If this were to happen
towards the end of the run, it will increase the makespan
(due to jobs that are scheduled in EC). The latter case would
result in EC completing the jobs much before hand and
remaining idle while IC is still executing. The current QRSM
model occasionally overestimates the execution time of jobs.
Improvements to these models is part of future work. Despite
improvements, errors are common in this domain wherein
the multitude of features within a document contribute to
the total processing time.

Therefore, we need periodic rescheduling strategies to be
triggered when the IC or EC becomes idle. For instance,
when a resource in IC becomes free it picks up a job from
the head of the EC queue such that the remaining time for
it to complete is greater than the time it would take to re-
execute the same in the internal cloud. Similarly, when the
EC upload queue is idle and IC has jobs waiting to execute,
then we scan the IC wait queue from the last and check if
there is any job that satisfies the slack criteria. Then that job
is pulled from IC and scheduled in EC. These strategies can
mitigate the estimation errors and are part of future work.

Order Preserving Scheduler with Size-interval Band-
width Splitting: The finer points of Size-interval Bandwidth
Splitting are described below:

it improves the utilization of the upload bandwidth by
using parallel threads for upload (as detected by the
network model to be optimum)

it equalizes the load across the different upload queues

it isolates the small jobs from the large jobs thereby
increasing the job arrival rate in EC

it allows a lower sized job to travel through an upper
sized job queue to EC

When the variability in the job sizes is high, size-interval
splitting is the most useful as discussed in [8]. Our approach
is slightly different from them. We allow lower sized jobs
to travel through higher sized job queue to EC. But we do
not allow higher sized jobs to travel through lower sized job
queue. While this approach maintains isolation of small jobs
from large ones, it favors smaller jobs to move faster to EC
thereby facilitating better utilization of EC. When the job
size variability is low, the behavior of size-interval splitting
defaults to that of having a single interval.

V. EXPERIMENTAL EVALUATION

We compared the schedulers against each other and
observed the relative performance in terms of completion
times, ordered data output availability, speed-up, resource
utilization and burst ratio by using three samplings (ex-
plained below) from real production workload. The experi-
mental observations suggested a few potential optimizations
to the aforementioned schedulers which we summarize to-
wards the end of this section.

A. Experiment Set-up

The experiments were carried out using a test-bed that
consisted of 8 virtual machines forming the internal cloud
and a maximum of 2 virtual machines forming the exter-
nal cloud (i.e. Amazon EMR [2]). The process varies the
number of download/upload threads and converges upon the
optimum number of threads to be used for that time-period.
Thus the different portions of the job(s) and result(s) are
downloaded in parallel, using multiple threads to maximize
the bandwidth utilization to/from the external cloud. Next,
we created three buckets from the production jobs that were
considered. These jobs were production quality documents
consisting of images and text varying in size from 1MB to
300MB. The first bucket was biased towards small jobs; the
second one had a uniform distribution of job sizes, while the
last one was biased towards large jobs. In the experiment, a
batch of jobs from a particular bucket would arrive every 3
minutes according to a poisson process with mean arrival
rate A 15 per batch. The schedulers then attempt to
complete as many as possible in the least time (maintaining
other SLAS).

B. Empirical Evaluation

1) Performance improvement with Cloud Bursting: Fig-
ure 6 shows that Cloudbursting improves the performance
by 10 percent over IC-only scheduler (average network
speed=250kbps, EC instances = 2). While the makespan
for the greedy and the order-preserving scheduler is almost
same, the difference between the two schedulers is illustrated

292

Make span
6000
]
5000 Ionltll:;'nal Cloud
4000 B Greedy Schedul
3000 Order Preserving
Scheduler

2000
Ilm
[
"F3b Distribation
Figure 6. Comparison of Makespan for different schedulers

120 L —

T
——OplLarge

GreedyLarge
——OpUniform
~—— GreedyUniform
Opsmall
GreedySmall

80

60

Endtime (in min)

40

20

L
100 120

Figure 7.
distribution

T
| ——OpLarge
| GreedyLarge|

T
20

Completion Times for Large Uniform and Small Job-size

o a
83
T

@

CR-]

= -
10 30

- —— OpLarge
r_* Jobs bursted

150
100

a
-]

c

of

10

T
L] GreedyLarge
||~ * -Jobs bursted

L P -

20 30

150
100

Endtime (in min) Endtime (in min) Endtime (in min)
@
-]

. N A [
e N Ay Y R S ST T VI A A T R S I

10

c

L L
100 110

of

120

Figure 8. Completion Times for Large Job-size distribution

in the order of completion of jobs (see Figure 7). We have
abbreviated Order Preserving Scheduler as Op in the legend
for the graphs. A general observation from Figure 7 is that
the Greedy scheduler shows more number of high peaks (in
magnitude as well) while there are more number of valleys
in the Order Preserving scheduler. This effect is amplified
in the case of distribution biased towards large jobs (see
Figure 8). A high peak means that the job is not available
for processing when it is required (or in other words it
induces a wait period due to the requirement of in-order
processing) and its magnitude indicates the amount of wait
time. A valley means that the job output is available before it
is consumed and is not a problem. From Figure 7 and 8, we
conclude that scheduling according to the slackness criteria
reduces the chance of an internal job waiting for the results
from an external job and hence is more robust to network
variations/errors.

2) Comparing OO related metrics: Figure 9 shows that
the OO metric (sampling interval is 2min) for large jobs
(bucket) under high network variation in case of Order
Preserving scheduler is greater than the Greedy scheduler.

o
@

—— OpLarge (tol_limit=1)
- - -OpLarge (tol_limit=4)

@
T

GreedyLarge (tol_limit=1)
GreedyLarge (tol_limit=4)

DataOutput (in KB)
- N
- o [N o
T T T T

[
@

0 - ‘ 10‘30 ‘ ‘ 21‘60 ‘ 32‘40 4320 54‘00 ‘ ‘ 64‘00 75‘50
Time (in sec)
Figure 9. Data Output Size available at different time intervals for large

distribution under high network variation

6510

OpLarge
—— GreedyLarge v
—— BandWidthSplitting ‘
- - -1COnly Baseline

5-

Difference in available data (in KB)

1200

2400

L
3600

gl L L
4200 4800

0 600

L L Ly
1800 3000 5400 6000
Time (in sec)

Figure 10. Comparison of relative difference of OO metric w.r.t. ICOnly
Scheduler with tol_limit = 4, job distribution= large

This implies that the future downstream activities that expect
data in chronological order can operate at higher rates for
the Order Preserving scheduler. Basically, more the number
of high peaks, more is the wait period and therefore it
follows from figure 8 as to why the Greedy scheduler
suffers. Now, increasing the tolerance limit increases the
data output availability, but at the cost of more out of order
completions. Thus the tolerance limit can be considered as
a tradeoff parameter between data output availability and
ordering requirement, and may be specified according to the
application requirements.

Figure 10 plots the relative difference of the OO metric
for a given scheduler w.r.t. IC-only scheduler (treated as
baseline). We observe that the Order Preserving scheduler
and the Size Interval Bandwidth Splitting scheduler show
higher OO metric w.r.t. the Greedy scheduler (almost at
all points of time). The Bandwidth Splitting scheduler is
baised towards smaller jobs while pushing to the EC. Hence,
the OO metric suffers if many small jobs are scheduled to
EC followed by a large job. Favoring smaller jobs however
improves the EC utilization thereby reducing the makespan.
Hence, we see a sharp increase in the data availability for
the Bandwidth splitting scheduler towards the end of the
execution time (This happens upon completion of the large
job).

3) Comparing Makespan, Speed-up, Utilization and Burst
ratio: From Table I, we observe that the speedup depends
on the system utilization as well as the computation to
communication overhead. In case of large jobs the average
computation time is higher than the network delivery time.

293

‘ ‘ IC-Util ‘ EC-Util ‘ Burst-ratio ‘ Speedup ‘
Greedy Op Greedy Op Greedy Op Greedy Op
Large 78.6 81 45.8 44 0.19 0.17 6.73 6.76
Uniform 82.42 74.42 17.71 46.57 0.17 0.26 5.6 5.6
Table 1

PERFORMANCE METRICS

Hence the execution unit is more utilized. Whereas in the
other two cases the average computation time drops down
and the network delay assumes more significance (affecting
the rate at which jobs can be delivered to the cloud for
processing). Hence, we obtain a higher speedup in the
case of large jobs. We also observe that a slight decrease
in the IC utilization (look at Op-uniform) along with an
improvement in the burst ratio (higher EC utilization), keeps
the speedup intact. Thus better bursting decisions could
potentially improve the utilization of EC and IC thereby
increasing the speedup.

4) Potential Optimizations: The coefficient of variation
in the job sizes for the bursted jobs (per batch) is close
to 1. This suggests that size-interval based splitting (see
[8]) of bandwidth can improve the rate of delivery of jobs
to EC, thereby improving the EC utilization. Indeed this
was confirmed when the size-interval bandwidth splitting
optimization was applied to the Order Preserving scheduler.
The EC utilization increased to 58%, IC utilization was
about 81% for the large job size distribution, and the speedup
increased by 2% over the Order Preserving scheduler.

The Cloud Bursting efficiency can be improved by keep-
ing the pipeline full. Due to the data intensive nature of
the jobs, the scaling (at EC) must be just enough to ensure
saturation of the download bandwidth. Such scaling policies
forms part of future work.

VI. RELATED WORK

While cloud-bursting is emerging as an active research
area for computing on a hybrid cloud (as defined in [3]),
the focus has been on computational needs being effectively
outsourced or balanced by an elastic cloud that could be
rented on demand. To this end, industry vendors have various
product offerings ranging from out-sourced email or storage
[11] to elastic parallel computing [2]. These offerings make
the assumption that workload is light or incremental in
nature - load (storage and/or processing) accrues slowly
over time while most functionalities could take advantage
of batch processing. While certain kinds of document pro-
duction can leverage batch processing, we study the viability
of real-time processing for file-sizes that are atypical to the
aforementioned workload (100s of megabytes).

Multi-cluster systems (e.g. [12] et al.) and aggregated
grids (e.g. [13]), do not support dynamic scalability pre-
vailing in the current pay-as-you-go model of cloud com-
puting. Further, the need to transmit large files over clouds
separated by a low bandwidth Internet pipe, results in the
transit time being of the order of processing time, thereby

making the cloud bursting approach more challenging. Meta-
brokering strategies (e.g. [7]) are also used to aggregate
resources while respecting constraints of various types —
the strategies are complementary to our approach in the
sense that domains which have slackness and out-of-order
requirements could benefit from the proposed schedulers
while our domain could use meta-brokering strategies while
bursting to multiple clouds. Policy-based techniques could
also be used for balancing workloads across clouds (see [1]
[6]). The difference in our work is that there are specific
queue dynamics that have to be respected (slackness and
out-of-order constraints) in addition to quality of service
optimizations (speed-up, utilization etc.). Another difference
is that in our system processing and transit times are of the
same order of magnitude - causing severe bandwidth related
bottlenecks. Novel to our work is the use of learned models
(quadratic response surface model for processing time and
a time-of-day model for bandwidth) that drive autonomic
behavior continuously. Furthermore, our workload comprises
of documents and images whose characteristics if gleaned
could prove very effective in association with the models.
While predicting with a high degree of accuracy may still
involve more work, prior work on long-tailed workload
(which is normal in our domain) has shown that utilizing a
guessed remaining workload is quite effective in scheduling
(see [8]) decisions.

VII. CONCLUSIONS AND FUTURE WORK

Recent work in Cloud Bursting has not considered work-
loads whose transit time to an external cloud is of the order
of processing in either cloud. This issue caused in part
by large file sizes and the disparities in the adoption of
high-speed bandwidth pipelines raises questions about the
viability of cloud-bursting, particularly for small/medium-
sized organizations. Our work demonstrates that small orga-
nizations could use cloud-bursting effectively but schedulers
have to be more sophisticated to understand the domain’s
dynamics. We have concentrated on inter-cloud distributed
analytics on workloads that are predominantly computations
on documents and images — an area that provides apriori
visibility into the features and characteristics of the jobs
in a queue. We have proposed three flavors of schedulers
that are not only effective in cloud-bursting of large jobs
but also honor various queue constraints (such as slackness)
and service level agreements. To this end, we have shown
the viability of optimizing and guaranteeing a multitude
of quality of service metrics on a hybrid cloud connected
by a thin pipe. The extension of the scheduler techniques
discussed in this paper to multiple job classes would make
the cloud bursting approach applicable to a multitude of
environments like academic computing domain. The usage
of more advanced models to mitigate the transient nature
of the Internet remains the subject of future investigation.
Among other optimizations that can be studied in future,

294

could be modulating the chunking of jobs as a function
of their position in the input queue. This non-uniform
chunking technique could impact utilization of the inter-
cloud resources. We also plan to conduct experiments with
larger number of resources in future.

REFERENCES

H. Kim, S. Chaudhari, M. Parashar, and C. Marty, “Online
risk analytics on the cloud,” in CCGRID ’09: Proceedings of
the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 484—489.

(1]

[2] Amazon, Elastic Map-Reduce, 2009. [Online]. Available:

http://aws.amazon.com/elasticmapreduce/
[3] P. Mell and T. Grance, “The nist definition of cloud comput-
ing,” National Institute of Standards and Technology, Tech.
Rep., October 2009.
[4] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “Seti@home: an experiment in public-resource
computing,” Commun. ACM, vol. 45, no. 11, pp. 56-61,
November 2002.
[5] C. Babcock, “Hybrid clouds,” pp. 15-18, September 2009.
[Online]. Available: www.informationWeekanalytics.com
[6] H. Kim, M. Parashar, D. J. Foran, and L. Yang, “Investigating
the use of autonomic cloudbursts for high-throughput medical
image registration,” in GRID ’09: Proceedings of the 2009
10th IEEE/ACM International Conference on Grid Comput-
ing. Banff, Alberta, Canada: IEEE Computer Society, 2009.
[7] L. Rodero, F. Guim, J. Corbalan, L. Fong, and S. M. Sadjadi,
“Grid broker selection strategies using aggregated resource
information,” Future Generation Computer Systems, vol. 26,
no. 1, pp. 72 — 86, 2010.
[8] M. Harchol-balter, “Task assignment with unknown duration,”
Journal of the ACM, vol. 49, pp. 260-288, 2000.
[9] R. H. Myers and D. C. Montgomery, Response Surface
Methodology: Process and Product Optimization Using De-
signed Experiments. Wiley, 2002.
[10] Amazon, Hadoop: Open source implementation of MapRe-
duce, 2009. [Online]. Available: http://hadoop.apache.org/
[11] IBM, CloudBurst, 2009. [Online].
http://www.ibm.com/ibm/cloud/cloudburst/

Available:

[12] H. Bal, “The distributed asci supercomputer project,” The
International Journal of Supercomputer Applications and
High Performance Computing 11(3), 212223, vol. 34, pp. 76—
96, 2000.

[13] I. Foster and C. Kesselman, “Globus: A metacomputing in-
frastructure toolkit,” International Journal of Supercomputer
Applications, vol. 11, pp. 115-128, 1996.

