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ABSTRACT

Recently, Luo, et al. in a series of papers [17, 14, 13, 18, 15]
proposed a set of protocols for providing ubiquitous and ro-
bust access control [URSA] in mobile ad hoc networks with-
out relying on a centralized authority. The URSA protocol
relies on the new proactive RSA signature scheme, which
allows members in an ad hoc group to make access control
decisions in a distributed manner. The proposed proactive
RSA signature scheme is assumed secure as long as no more
than an allowed threshold of participating members is si-
multaneously corrupted at any point in the lifetime of the
scheme.

In this paper we show an attack on this proposed proactive
RSA scheme, in which an admissible threshold of malicious
group members can completely recover the group RSA secret
key in the course of the lifetime of this scheme. Our attack
stems from the fact that the threshold signature protocol
which is a part of this proactive RSA scheme leaks some
seemingly innocuous information about the secret signature
key. We show how the corrupted members can influence the
execution of the scheme in such a way so that the slowly
leaked information is used to reconstruct the entire shared
secret.

Categories and Subject Descriptors

C.2 [Computer-Communications Networks|: Security
and Protection; C.2.2 [Network Protocols]: Applications

General Terms
Security

Keywords

proactive cryptosystems, threshold cryptosystems, RSA,
peer-to-peer, mobile ad-hoc networks, group membership,
admission control

Permission to make digital or hard copies of all or part o tvwork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

SASN' 04, October 25, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-972-1/04/0010$5.00.

1. INTRODUCTION: BACKGROUND AND
MOTIVATION

Threshold and Proactive Signature Schemes. A (¢,n)
threshold signature scheme [6] enables any subgroup of ¢+ 1
members in a group consisting of n > t members, to col-
laboratively sign a message on behalf of that group. This is
achieved by secret-sharing the signature key, e.g. the RSA
secret key, among the group members, and allowing them
to compute a signature on some message via a distributed
protocol in which the members use the shares of the sig-
nature key instead of the key itself. The scheme is said to
be t-secure if any coalition of at most ¢ corrupt members
is unable to forge a valid threshold signature on any mes-
sage which honest members would not sign, and t-robust if
honest group members can efficiently produce a valid signa-
ture even in the presence of at most ¢ malicious members.
To achieve t-security, a threshold signature scheme must in
particular protect the secrecy of the signature key as long
as no more than t of the group members are corrupt.

A proactive signature scheme [10], based on techniques
of proactive secret sharing [20, 11], is a threshold signature
scheme which remains secure and robust even if in every
time period, called “share update interval”, a possibly dif-
ferent set of ¢ group members is corrupted. This is achieved
by the members periodically updating their shares of the
secret signature key via a distributed share update proto-
col. Such an update protocol should destroy the correla-
tion between secret shares learned by corrupted members
in different time periods, so that the scheme can tolerate
any number of corruptions throughout its lifetime as long
as in any single time period the number of simultaneously
corrupted members does not exceed t.

Application of Proactive Signatures to Peer-to-Peer
Group Security. As pointed out by Zhou and Haas [25],
proactive signature schemes can be used to implement group
access control decisions without relying on a trusted and al-
ways accessible group “manager”, who makes all admission
and revocation decisions on behalf of the group. In many
mobile group settings, such manager may be often inaccessi-
ble to some subgroup of members. Moreover, in many appli-
cations placing all trust in a single entity creates a security
liability.

In contrast, the idea of the proactive signature based ac-
cess control mechanism for groups is that any large enough
set of members can admit a new group member by using the
threshold signature protocol to compute the new member’s



certificate, and by using a slight variation of the proactive
update protocol to give this member his share of the sig-
nature key. Similarly, once any large enough set of mem-
bers agrees to revoke some existing member, the members
collectively sign the revocation statement, and trigger the
proactive share update protocol to leave the just revoked
member without the current share of the signature secret.
Motivated by this idea and by the proposals of Luo, et al.
(see below), Saxena et al. [22] implemented such access con-
trol protocol for ad hoc networks using the proactive DSS
signature scheme of Gennaro et al. [9]. Recently, the same
authors [23] examined the performance of a more efficient ac-
cess control protocol based on the proactive BLS signature
scheme [4] of Boldyreva [2], which relies on elliptic curve
cryptography.

However, the common operation of signature verification
in DSS, BLS, and in all other discrete-log based signature
schemes, is orders of magnitude more computationally in-
tensive than the verification of RSA signatures. Therefore,
an efficient provably secure proactive RSA signature scheme
would offer an attractive alternative to the above systems.

Problems with Currently Known Provably Secure
RSA Proactive Signature Schemes. Unfortunately, the
most efficient currently known provably secure proactive
RSA signature schemes, two schemes by Frankel et al. [7,
8] and a scheme by Rabin [21], are not easily applicable
to securing access control in ad hoc mobile groups by the
methods described above. The fundamental reason is that
the arithmetic operations involved in the RSA signatures
seem more difficult to securely distribute than the DSS or
the BLS cryptosystems.? In particular, the proactive RSA
scheme of [7] is practical only for small groups, while in the
other two provably secure proactive RSA schemes known
today [8, 21], the members participating in the threshold
signature protocol need to reconstruct the secret shares of
the group members that are currently inaccessible to them.
In this way both protocols essentially equate a temporarily
inaccessible group member with a corrupt one, whose secrets
might just as well be reconstructed. This is not a desirable
feature for a proactive signature scheme, but it can be toler-
ated in one of the main applications of such schemes, which
is a fault-tolerant on-line certification authority.
Unfortunately, such proactive signature schemes cannot
be applied to groups whose members are not always active
and/or are not always connected with all other members.

1Such an execution of the proactive share update protocol is
necessary to disable the revoked member from participating
in future access control decisions of the group. However, to
improve the efficiency (although at a cost of decreased re-
silience to simultaneous corruptions), the members can defer
the proactive update protocol and execute it to simultane-
ously revoke up to t members.

2The difficulty in distributing RSA signatures is caused by
the seeming necessity to perform computations on the secret
shares modulo ¢(N) = (p — 1)(¢ — 1), where N = pq is the
RSA modulus. Performing operations modulo ¢(N) is diffi-
cult because this number must stay secret for the distributed
RSA scheme to be secure. Note that that revealing ¢(N) en-
ables anyone to immediately compute the RSA private key
d = e * (mod #(N)) from the RSA public key (e, N). In
contrast, both the standard DSS signatures and BLS signa-
tures of [4] are based on variants of the discrete logarithm
problem where all the moduli used in computations involv-
ing secret shares can be made public.

This is the case in peer-to-peer on-line communities, in mo-
bile ad-hoc networks, in sensor networks, and in many other
applications. In such settings we need to enable isolated
but large enough subgroups of members to operate with-
out reconstructing everyone else’s secrets, because such re-
construction would be insecure in the presence of just two
corrupted players, each one a member of a different discon-
nected subgroup.

Insecurity of the Proactive RSA Scheme Proposed
in the URSA Ad-Hoc Network Access Control Pro-
tocol. In an effort to mitigate the above problem of the
known proactive RSA signatures, Luo, et al. [17, 14, 13, 18,
15] proposed a new proactive RSA scheme, geared towards
providing a security service, called “URSA”, to mobile ad
hoc networks (MANETSs). The original description of this
proactive RSA scheme and the URSA application can be
found in [17]. Subsequently both the proactive RSA scheme
and URSA were described in [14, 13, 18], and most recently
in a journal version [15]. The URSA proactive RSA scheme
can be applicable to MANETSs because it avoids the need
to access all shares during the threshold signature protocol.
This is because it relies solely on Shamir’s polynomial secret
sharing scheme [24], as opposed to resorting to an additional
layer of additive secret sharing, as is done by the two most
efficient provably secure proactive RSA schemes [8, 21] dis-
cussed above. The core of the URSA proactive RSA scheme
is the so-called t-bounded offsetting algorithm which is used
to reconstruct the RSA signature m® (mod N) from ¢ 4 1
signature shares produced individually by the t+ 1 members
participating in the signing protocol.

The first problem with this scheme was pointed out in
[19]. Namely, contrary to what the authors of the proposal
claimed, their scheme does not provide robustness in sig-
nature generation in the presence of ¢ malicious members.
Simply speaking, the robustness mechanisms proposed by
the authors are faulty because they require certain verifi-
cation equations to hold even though they in fact do not
hold, because the equations involve computation in two dif-
ferent groups (see [19] for more details). Hence, the set of
t malicious members can prevent the honest members from
efficiently creating a valid signature. However, this robust-
ness problem in the t-bounded proactive RSA scheme can
be solved, for example if the scheme is amended by special-
purpose zero-knowledge proof protocols for proving equality
of discrete logarithms in two different groups, e.g. the proofs
of Camenish and Michels [5]. Such proof protocols are not
very fast, but their expense can be tolerated because they
would need to be executed only in the (rare) case of a cor-
rupted member providing an incorrect partial signature to
other members.?

Since the t-robustness of this scheme can be ensured by
the above modifications, there remains a question if the
(modified) URSA proactive RSA scheme is secure against
a coalition of corrupt ¢ members whose goal is not to pre-
vent members from issuing signatures but to learn the secret-
shared RSA signature key and to be thus able to forge signa-
tures on the group’s behalf. The question is interesting be-
cause the proposed URSA proactive RSA scheme, amended

3This will be a rare occurrence because a malicious member
behaving in such a manner would be detected by the honest
players, and therefore would be subsequently revoked from
the group.



as described above, would provide efficiency and functional-
ity advantages over the best known provably secure proac-
tive RSA schemes [7, 8, 21]. However, the answer turns out
to be negative.?

Our Contribution: Explicit Attack on the Proactive
RSA Scheme in the URSA Protocol. We demonstrate
the insecurity of the URSA proactive RSA signature scheme
by constructing an explicit attack in which the admissible
group of ¢ corrupted members colludes in the proactive pro-
tocol in such a way so that they reconstruct the whole RSA
secret key d after a realistic number of runs of the proactive
update protocol and the threshold signature protocol.

Our attack exploits the fact that the t-bounded offsetting
threshold RSA signature protocol, which is employed in the
URSA proactive RSA scheme, leaks certain seemingly in-
nocuous information about the secret signature key. The
information that the adversary learns about the secret key
in a run of the signature protocol depends on the current
sharing of the secret key and on which group of members
participates in the protocol. While it is not clear how dan-
gerous this released information is for a single secret shar-
ing, in a proactive signature scheme the secret sharing is
refreshed with every proactive update, and therefore the re-
leased information about the secret key can be different in
each update interval. It turns out that the corrupted mem-
bers can influence an execution of the update protocol in
such a way that the executions of the signature protocol
during the subsequent update interval will release informa-
tion which is both new and correlated with the information
the adversary has gained so far. Thus our attack can be seen
as a simple search algorithm, where the information learned
in a signature protocol tells the adversary which branch to
pick next, and the proactive update protocol allows the ad-
versary to pick that branch.

The attack poses a realistic threat. For example, for the
threshold size ¢t = 7 and for the RSA public key of e = 65537
(utilized in the implementation of URSA [14]) and 1024-bit
RSA modulus N, our attack needs 163 executions of the
proactive update protocol and 1148 runs of the signature
protocol to succeed. The attack succeeds assuming that
throughout these 163 update periods, the t corrupted players
belong to the so-called “update group” of players which play
an active role in the proactive update protocol.

However, the vulnerability of the URSA proactive RSA
protocol is stronger than what is immediately implied by
the above attack. First, our attack does not make use of
all the information leaked in the signature protocol, thus it
is quite possible that another attack, which does utilize all
the available information succeeds in recovering the private
RSA key even faster and/or succeeds in recovering the key
even if, say, only a smaller subset of the special “update
group” of players is corrupted. Moreover, even if the attack
we describe is slowed down, for example by slowing down
the rate of the proactive updates, it recovers 512 + (r —
logi+1(e)) * loga(t + 1) most significant bits of d after r >
log¢+1(e) update rounds, which gives 512+ 3(r—5) MSB bits
of d for the above e = 65537 and ¢t = 7. Therefore our attack
raises doubts about the security of the URSA proactive RSA
scheme even for smaller number of rounds. It is hard to say

“In particular, although Luo, et al. claim that their scheme
is provably secure, the security proofs that appear in [17]
are incorrect.

much about the security of this protocol, for example after
r = 34 rounds, because while it is not currently known how
to recover the whole RSA key knowing 600 of the MSBs of
d, we also do not know any arguments that RSA remains
secure with this side information about d revealed, and it
would be rather surprising if such arguments existed.

Positive Results in a Related Work. Recently, two
authors of this paper examined a related question of whether
the URSA proactive RSA signature scheme can be fixed, and
at what cost, to make a provably secure signature scheme
[12]. It turns out that if polynomial secret-sharing in the
URSA scheme is replaced with additive sharing in the first
layer (with a second layer of polynomial sharing, as in the
provably secure RSA schemes of Frankel et al. [8] and Tal
Rabin [21]), the resulting scheme is actually provably secure,
and it is factor of two or four more efficient for the signing
players than the most efficient previously known scheme of
Tal Rabin as analyzed in the original Tal Rabin’s paper [21].
However, in the same paper the authors also improved the
security analysis of the [21] scheme by the same factors, and
thus the two schemes appear now to be almost equivalent
from efficiency point of view, although the new scheme is
arguably simpler and more elegant [12].

However, it is important to note that because of the ad-
ditive sharing, while the new scheme is applicable to on-
line certification authorities or on-line time-stamping ser-
vices, it is not applicable to group access control for groups
like MANETS, on-line peer-to-peer groups, sensor nets, etc.
Thus the efficient provably secure proactive RSA signature
which would avoid additive sharing and be applicable in such
contexts, remains an open problem.

Paper Organization. The rest of this paper is organized
as follows: Section 2 summarizes the notation and intro-
duces some definitions. Section 3 describes the URSA proac-
tive RSA signature scheme. We then present an attack on
this scheme in Section 4. Finally, we elaborate on the impli-
cations of our attack for the security of the URSA scheme
in Section 5.

2. NOTATION AND SETTING

An Adversary: We assume the worst case where all cor-
rupted members collude, and in fact all corruptions are sim-
ply scheduled and controlled by a single entity, called an
“adversary”. An adversary against a proactive signature
scheme, and thus also against a MANET group access con-
trol mechanism like URSA which utilizes a proactive sig-
nature scheme, is able to compromise any set of at most ¢
members in the group in every update round (see below).
After compromising a member, the adversary learns its cor-
responding secret share and can force this member to behave
arbitrarily in the protocol.

Share Update “Round”, or “Interval”: The time pe-
riod between any two consecutive share update procedures.
In the URSA design, the share update protocols occur pe-
riodically, for example twice a day. The reason for period
execution of this procedure is to re-randomize the secret
sharing in such a way that all the currently non-revoked
players receive new random shares of the same RSA secret
key d. (We describe this protocol in detail in Section 3.3.)°

®We note that if the update protocol is triggered only peri-



We will assume that in every share update round, there is
a significant amount of signature requests. Our attack re-
quires just ¢ such signature requests per update round to
recover the key at a maximum speed.

Table 1: Notation

M; | group member with unique index ¢
ss; | secret share of M;
t | “adversarial threshold”, i.e.
the number of tolerated corruptions
n | total number of members M;
(N,e) | RSA public key
TD | trusted dealer
A | the adversary
|z| | number of bits in a binary representation of x

lg(x) | logz(x)

3. THE PROACTIVE RSA SIGNATURE
SCHEME IN URSA

In this section we describe the proactive RSA signature
scheme of [17, 14, 13, 18, 15] used in the URSA ad hoc net-
work access control protocol. We will refer to this scheme as
an “URSA proactive RSA signature scheme”. The descrip-
tion includes the system set-up, the “t-bounded offsetting”
threshold signature generation protocol, and the proactive
share update protocol.

3.1 The Setup Procedure

A trusted dealer T'D is involved in a one-time setup to
bootstrap the system. The dealer is not required hereafter
and in fact is assumed to vanish from the scene, or, equiv-
alently, to erase his memory. TD generates the standard
RSA private/public key pair, i.e. it picks two random primes
p and ¢, sets N = pq, sets (e, N) as a public key where
ged(e, N) =1, and as a private key it sets a number d < N
s.t. ed = 1 mod ¢(N).

Once the standard RSA key pair is chosen, T'D secret-
shares the RSA secret key d using a slight modification of
Shamir secret sharing [24]. Namely, T'D selects a random
polynomial f(z) over Zn of degree t, such that the group
secret is f(0) = d (mod N). Next, T'D gives to each member
M;, for ¢ = 1,--- ,n, a secret share ss; = f(i) (mod N).
Notice that the secret d is shared over a composite modulus
N as opposed to a prime modulus as in the original scheme
of Shamir, but our attack does not depend on what modulus
is used in the secret sharing.

3.2 The Threshold Signature Protocol

The goal of the threshold RSA signature protocol is to
generate in a distributed manner an RSA signature s = m?

odically as in the URSA design, this has a consequence that
only up to ¢ members can be meaningfully revoked from the
group within an update interval, because a player is fully
revoked only when his share of the secret key d becomes
invalid, and that happens only when all the remaining non-
revoked players perform a share update protocol. Alterna-
tively, as suggested by [23], an update protocol can also be
triggered reactively, as an immediate response in the case of
revocation of an unusually large number of players.

(mod N) under the secret-shared key d. The URSA thresh-
old RSA signature protocol consists of two phases: First
each participating member creates its partial signature on
the intended message and sends it to the signature recip-
ient, and then the recipient locally reconstructs the RSA
signature from these partial signatures.

Partial Signature Generation: Let G denote the set of
identifiers of the ¢ + 1 members in the group who partici-
pate in the threshold signature protocol. Using polynomial
interpolation we can write the secret key d as

d= Z 88 Z;G) (mod N)
JjEG
where Z;G) =[licciz; % (mod N) Notice that N = pg has
only two very large factors, and therefore all the elements

(j — ) for 4,j € G will have inverses modulo N. Each

member Mj, for j € G, outputs his partial signature s;G) on

m as

(@)
SEG) =m% ~ (mod N) , where dg.G) = s8; l;G) (mod N)
(1)
Signature Reconstruction: On receiving ¢ + 1 partial

signatures SEG) from the ¢ + 1 group members M; in G, the
signature recipient reconstructs the RSA signature s using
the “t-bounded-offsetting” algorithm which works as follows.

Since Y, d\” = d (mod N) and 0 < di” < N —1 for all
j’s, therefore
d= Z d;c) —a'“'N (over the integers) (2)
JjEG

for some integer o!®) € [0,¢]. Equation (2) implies that

—_a(®
szmdz(H S;G))m “N (mod N)
JEG

for some integer a(®) € [0,¢]. Since there can be at most
t + 1 possible values of a(G), the signature recipient can re-
cover s =m? (mod N) by trying each of the ¢t 4+ 1 possible
values Y, = Y(m™N)® (mod N) for Y = [Lice sEG) and
a =0,..,t, and returning s = Y, if (Ya)® = m (mod N).
The most significant cost factor in this procedure in an expo-
nentiation m ™" (mod N), and therefore the computational
cost of the URSA threshold RSA signature protocol for each
of the signers and for the recipient is about one full (1024
bit) exponentiation modulo N.

Remark: It is important to note that the above t-bounded
offsetting threshold RSA signature algorithm reveals the
value of a(%), which, as will be described in section 4, leaks
some information about the secret-shared private key d to
an adversary who corrupts ¢ of the players participating in
group G. This information leakage in fact exposes the whole
proactive RSA scheme to a key-recovery attack.

3.3 The Proactive Share Update Protocol

The goal of the proactive share update protocol is to re-
randomize the secret sharing of the private RSA key d held
by the group members. This protocol was first proposes for
both proactive secret sharing and for proactive cryptosys-
tems and signature schemes by Herzberg et al. [11, 10]. The
URSA proactive share update protocol is a variant of this
protocol which is more efficient, especially in settings where



some players can be inactive or temporarily disconnected
from others, as in MANETS.

The “Classic” Share Update Protocol. The proactive
share update protocol of [11, 10] proceeds as follows (when
sharing is done modulo N): Every member M; chooses a
random partial update polynomial d;(z) over Zn of degree t
with the constant term being zero. The sum of these partial
update polynomials defines the wupdate polynomial §(z) =
> =1 0i(2) (mod N). Note that §(0) = 0. For each pair
of members (M;, M;), player M; gives a share §;(¢) of his
partial update polynomial to M;. Each member M; then
computes his new secret share (to be used in the threshold
signature protocol in the subsequent update interval) as

ssi = ss;+ »_ 0;(i) = ss; +0(i) (mod N)
j=1

where ss; is M;’s existing share, i.e. a share this player used
in the previous interval. All the information pertaining to
this protocol except of the new share ss; is then erased.
Note that if ss’ = f’(i) (mod N) for all i then the new
secret-sharing polynomial f(z) is defined as f(z) = f'(2) +
d(z) (mod N), and it is therefore a ¢-degree polynomial s.t.
£(0) = f'(0) = d (mod N). The scheme can be made robust
against malicious participants using verifiable secret sharing
techniques (see [11] for details).

However, it is important to notice that the new secret-
sharing polynomial f(z) is not necessarily a random t-degree
polynomial s.t. f(0) = d (mod N). This is because a cor-
rupt player M; can distribute its update polynomial §;(z)
only after all the other corrupt players M; see their shares
of all the other update polynomials. In this way, the corrupt
players can control the new secret-sharing polynomial f(z)
to some degree, by controlling the shares of f(z) held by
the corrupted players. In provably-secure proactive schemes
that employ this proactive share update protocol, like the
proactive DSS or BLS signatures [9, 2], this adversarial abil-
ity does not pose any harm. However, as we will see in
section 4, this control ability means trouble for the URSA
proactive RSA scheme since the information about shared
secret d leaked in the threshold signature protocol depends
precisely on the shares held by the corrupted players.

The URSA Two-Stage Modification of this Protocol.
The URSA proactive RSA scheme utilizes a simple modifica-
tion of the above share update protocol which improves the
protocol’s efficiency. This modification can indeed be used
to speed up all proactive cryptosystems that use the [11] pro-
tocol, as the above mentioned schemes of [9, 2]. The URSA
proactive share update protocol consists of two stages. The
protocol relies on an existence of a designated group of play-
ers ), which we will call an “update group”, consisting of ¢
group members.® The first stage of the protocol proceeds ex-
actly like the above protocol of Herzberg et al., except that
only the players Q) participate in it. In other words, players
M; € Q create their update polynomials §;(z), send their
shares 0; () to other members M; € €, and thus the players
in Q can be said to hold in secret-shared form the update

5In some URSA descriptions it seems that the  group needs
to have t+1 and not ¢t members. We believe that ¢ members
is enough, and that the issue does not have a significant
bearing on anything considered in this paper.

polynomial §(z) defined as 6(z) = >, , 6,;(2) (mod N). In
the second stage of the URSA proactive share update pro-
tocol, the members of the update group 2 provide shares
of this update polynomial 6(7) to all remaining (and non-
revoked) group members M; ¢ €. In this way all group
members M; will get their update share and can compute
the new share f(i) = f'(z) + (i) (mod N) as before.

The URSA papers describe two protocols for how these
0(i) update shares are transferred from the Q players to
their final destinations. Even though the details of the sec-
ond version of this protocol are a little unclear, these details
do not affect the attack we describe in this paper. For com-
pleteness, we sketch the two variants as follows: In the first
version, each M; gets its §(i) share by communicating with
each of the players M; € Q directly. The players in 2 jointly
reconstruct the 0(i) value by first sharing masking random
values among themselves. In the second version, either the
0(i) update shares or the whole d(z) polynomial (this ver-
sion is not very clear to us), appear to be distributed to the
rest of the group members encrypted under the group public
key (e, N). Presumably, each member M; reconstructs his
share of this update polynomial §(¢) by contacting her ¢ + 1
neighbors who either decrypt her encrypted share or decrypt
the whole polynomial §(z) and evaluate it at point 4 at the
same time. It is not clear how this second version can be
implemented securely, but the first version is standard and
we see no vulnerabilities in it.

Choosing the 2 Update Group. We need to note here
that the attack on the URSA proactive RSA scheme pre-
sented in this paper depends crucially on all of the ¢ players
in the above update group €2 to be the corrupted players.
It is therefore important for the practical feasibility of the
attack how this 2 group is decided. From the initial reply of
the URSA authors to the attack presented in this paper [16],
it appears that the details of how the Q group is decided are
not set in stone in the design of the URSA scheme. This is
not surprising since the idea of modifying the Herzberg et
al. protocol by delegating the update work to a smaller set
of players 2 was introduced for the reasons of efficiency, not
security.

The fixes proposed in [16], e.g. choosing the Q group as the
t players with smallest IDs, seem problematic: First, such
players would need to be identified in some distributed pro-
tocol, and second, the resulting protocol would now be still
under the attack, but only if the ¢ players with lowest IDs
are corrupted. Moreover, the resulting protocol would then
need all these () players to be always present and connected,
which goes against the URSA philosophy of providing group
access control in environments where some players can be-
come inactive and disconnected. Possibly, the tweak that
would slow the attack we describe in this paper the most
would choose the Q group differently in every round. This
tweak, however, has similar problems: It is not clear how to
make sure that the {2 membership rotates without the global
knowledge of the current membership list, which would re-
duce the applicability of the resulting protocol, and (2) the
resulting protocol would again need the scheduled players to
be up and connected at the right times. In our understand-
ing, the attractive idea of the original philosophy of URSA
was that the  group can be formed by any t players, and
moreover that several such groups can be independently cre-
ated in disconnected fragments of the network.



Unfortunately, while the ability for any group of ¢ cur-
rently active and connected players to form the 2 update
group would make the URSA scheme most reliable and at-
tractive, because of the security vulnerability of this scheme
which we describe in this paper, such freedom in choosing
Q would also lead to the fastest key-recovery attack on the
resulting scheme. While it is still possible that there ex-
ists a smart tweak of the (2-choosing process which would
both slow down in practice the attack we describe here, and
would not impact the applicability of the URSA scheme to
the “on/off presence, on/off communication links” setting it
targets, we believe that what is really needed is a replace-
ment of the URSA proactive RSA scheme with a provably
secure proactive signature scheme.

4. ANATTACKONTHEURSAPROACTIVE
RSA SCHEME

In this section we present an efficient key-recovery attack
on the URSA proactive RSA signature scheme summarized
in the previous section. The roots of this attack lie in the
t-bounded offsetting algorithm which is the core of the URSA
threshold signature protocol.

4.1 Overview of the Attack

The goal of the adversary in our attack is to recover the
secret-shared private RSA key d. Consider an adversary
A who compromises ¢ members. The full attack holds as
long as these ¢ members form the “update group” Q (see
section 3.3 above), and it holds regardless of what indices
these players hold. However, for the sake of simplicity in
the exposition, we will assume that the adversary corrupts
members M1, ..., M; throughout the lifetime of the scheme,
and that these players also always form the 2 update group.
We note, however, that our attack does not depend on the
ability of the adversary to corrupt a different set of members
every update period. This means that for example, as long
as the €2 group is allowed not to change between the updates,
the adversary can recover the private RSA key quite quickly
if only he corrupts that subset and otherwise follows the
protocol so that to avoid detection and revocation of these
corrupted members from the group.

Information Leakage in the Signature Protocol. As-
sume that A participates in the threshold signature protocol
on some message in which the set of participating members
G (see section 3.2 above) is made of all the corrupted mem-
bers M, ..., M; and a single honest member M), for some
p € [t+1,..,2t]. (Here too, the attack works for other
players My, but we fix the above ¢ values of p to simplify
the presentation.) Let G, represent the set of identifiers
{1,...,¢,p} corresponding to the members participating in
this run of the threshold signature protocol. By equation
(2), the secret key d satisfies the following equation for some
integer o) € [0,1]:

d= S d\ 4
jer,jip

—a'®?)N (over the integers)

Let us denote S, = Zjer itp d;cp) (over integers) and

D, =S, (mod N). Note that since A knows ss1, ss2,- -,
sst, he can compute S, and D).

By employing the reconstruction using the t-bounded off-
setting algorithm, A learns the value of a!®?) corresponding

to this signing group Gp. Now, note that from values o(¢r)
and Sp, the adversary also learns whether the shared secret
d € [0,...,N — 1] is less than or greater than D,. This is
because S, < a®?)N if and only if d < D,; and therefore
S, > o¢?) N if and only if d > D,.

Utilizing the Information Leakage to Recover the
Key. At first sight, the information of whether the secret
RSA key d is left or right of some value D), in the [0, ..., N]
range seems to provide only information on the few most
significant bits of d. However, recall that over the lifespan
of the system, the members update their secret shares by
performing the proactive share update procedure. As we will
see below, it turns out that during this procedure, as long
as the “update group” € is formed by the corrupted players
{Mx, ..., My}, the adversary can choose the values of his new
shares ssi1,ss2, -+, $St, which gives him complete freedom
in specifying the resulting values D, for p = ¢t + 1,...,2t,
to be any values that he wants (we describe this process
in subsections 4.2 and 4.3 below). Since in any subsequent
run of the threshold signature protocol involving members
My, ..., My, M, the adversary learns whether the secret d lies
to the left or to the right of the corresponding value D, (for
p=t+1,..,2t), the adversary can learn most about d if the
chosen values Dy 1, ..., Do divide the range [0, N — 1] into
t + 1 equally spaced intervals {[0, D¢y1 — 1], [Des1, Diy2 —
1], , [Da2s, N — 1]}.

In this case, A learns from ¢ instances of the threshold
signature protocol, for ¢ different values p = t + 1,...,2¢,
whether d lies to the left or to the right of each of these
D,’s. Consequently A shrinks the search interval for the
secret d from [0, N —1] to some interval [Dy,, Dp41 — 1] which
is smaller that the original interval by the factor of ¢ + 1.
If the adversary repeats this attack recursively, then with
every share update protocol his search range narrows by the
factor of ¢ + 1. This is equivalent to saying that in every
update interval, the adversary learns the lg(t 4+ 1) new most
significant bits (MSBs) of the secret d. Therefore, this search
procedure will end and the secret key d will be completely
recovered after [%] share update rounds. We refer to

this search procedure as a “(t+1)-ary search”.

Example with t=1: Consider a simple example with ¢t =
1. Assume that the adversary A compromises member Mj.
Assume also that M; collaborates with member Ms in a
threshold signature protocol. The signing group is therefore
G2 = {1, 2}, which yields the following equation:

d— d§G2) + déG2) _ a(Gz)N

Here Sy = Dy = d§G2). A now employs the t-bounded
offsetting algorithm and learns the value of a(®2). If o(F2) =
0, A learns that d > dng) (mod N); otherwise if (%2) =1,
he learns that d < d5G2) (mod N). Assuming that in the
share update procedure A can pick his secret share ss; so
that the resulting D2 = dgG2) is whatever A wants, A can
set Dy = | % 1. Then, with every share update round,
A halves the search interval, and thus he performs a binary

search which recovers the secret d completely in lg(N)[=
[N]

7or2y] rounds.

Attack Speed-ups: Since in many cases the RSA secret
key d can be efficiently recovered once some number of the



most significant bits are recovered, the number of rounds in
the attack can be further reduced. Moreover, for the com-
monly used small values of e, like e = 3, 17, or 65537, the
attack can be sped-up by the factor of two because the first
few MSB bits of d enable A to efficiently compute the first
half of the MSBs of d. We describe such speed-up mecha-
nisms in subsection 4.4 below.

4.2 Optimal Choice of New Secret Shares

In each share update protocol the adversary’s goal is to
set the ¢ values D41, ..., D2 which will hold in the subse-
quent update period in a manner described above. In order
to do that, the adversary first solves for the optimal new
secret shares ssi,sss, -+ ,ss: which would result in values
Diy1, ..., Dot he desires, using the following system of ¢t mod-
ular linear equations:

551087 4 ssallO) 4o s, (Y = Dyt (mod N)

551087 4 ssall O 4o 465, = Dyt (mod N)

ssllgazt) + 552l§G2t) 4+ 4 sstlgcw) = Dy (mod N)

These equations are linearly independent if the following
matrix L is invertible:

l§Gt+1) lgcwrl) l£Gt+1)

l(Gt+2) l(Gt+2) l(Gt+2)
L 1 2 t
lgGm) léGm,) . ZEG%)
1 1
o
EVERIVE s AR S G ) s R 2
_( 1) Hi:l(n;:l,j;ﬁi(ifj))
1 1 1
2t—1 2t-2 t

Thus, by inverting the above matrix the adversary can
compute the optimal secret share values ssi, ..., ss: he needs
in the next update round, in order to achieve his optimal
values Si41, ..., S2: in the signature protocols performed in
that update round. The adversary is now left with the task
of forcing the proactive update protocol to actually arrive
at these optimal secret shares ssi, ..., ss;: for the corrupted
members My, ..., M;.

4.3 Adversarial Behavior in the Update

We show that as long as the adversary controls the players
in the update group (2, the adversary can easily influence
the proactive share update protocol to arrive at the optimal
shares ssi, ..., $s, he computed above. In the case of larger 2
groups, the attack succeeds as long as the adversary corrupts
t members in 2, and as long as some of these members can
“speak last” in the first phase of the URSA share update
protocol (see section 3.3).

Let us describe the attack assuming the most general case
that |©2] > t. Let B C Q denotes the subset of ¢ mem-
bers corrupted by the adversary, and let M, € B be the
corrupted member who “speaks last” in the first phase of

the share update protocol. Since there is no established se-
quence or order in which the members in 2 take part in the
secret share update procedure, the adversary can wait until
each member in € except of M, distributes their shares of
the random update polynomials d;, j € Q\{M,}, before dis-
tributing the shares of his polynomial ,(z) as the last one.
(If the order is somehow fixed, although it’s not clear how it
could be without heavy performance penalty for the proto-
col, the adversary would still win assuming that he corrupts
the player who is entitled to speak last.) Recall that the
update polynomial is equal to

d(z) = Z 0;(2) +d(2) (mod N)

JEQ\{ My}

and that the new shares of each members are computed as
ss; = ss; + (i) where ss) is the current share of M;.

To fix the resulting shares of the corrupted members to
come out as the optimal values ssi, ..., ss; specified above,
member M, chooses his partial update polynomial d;(z) in
such a way that the resulting update polynomial 6(z) satis-
fies §(i) = ss; — ss; (mod N) for i = 1,...,t. To do that, M,
sets values 8, (¢) for i = 1,...,t as

5y (i) = s8; — 855 — Z 0;(3) (mod N)

JEG\{ My}

The M, player then interpolates these values to recover the
0»(2) update polynomial he should use.

Importantly, note that this adversarial behavior is indis-
tinguishable to outside observers from prescribed behavior
an honest player exhibits in the protocol. The attack suc-
ceeds if M, picks his partial update protocol in the above
way instead of the proscribed way of picking this polynomial
at random, but the difference cannot be observed by the
honest players, and thus this attack would be undetected.

4.4 Speeding-up the Attack

By following the above attack procedure, in every update
round A learns new lg(t + 1) most significant bits (MSBs)
of d. Assuming that A needs to discover all the |N|-bits of

the RSA secret key d, A needs (%] update rounds, and
t signature protocol instances within each update interval
as described above, to complete the attack. However, there
are several ways in which A can speed up this search. First,
we can assume that at least the last 40-bits of the secret d
can be obtained by a brute-force search once all the other
bits are found, because the candidate d can be efficiently
tested given the public key (e, N). This reduces the num-
ber of rounds in the attack to ]—m (JN|—40)]. Secondly,
we can speed up this search by making a simple observa-
tion about half of the MSBs of d for small e values, and by
utilizing several known results regarding the security of the
RSA cryptosystem under partial key exposure [3, 1]. Below
we explain the speed up for small e’s, and we list the other
applicable results and explain how they speed up our search
algorithm. The graph in Figure (1) summarizes this discus-
sion by showing the number of rounds required in the attack
w.r.t the range of the public exponent e for 1024-bit RSA
modulus N, taking as an example a threshold value t = 7.

THEOREM 1. Given only the first loga(e) MSBs of d, the
first half of MSBs of d can be efficiently computed.

PrOOF. Note that ed = 1 (mod ¢(NV)) implies that d =
1/e(1 4 k¢(N)) for some integer k = 1, ..., e — 1. Therefore,



350

300 [

200 [

Number of Rounds

150 Theorem 1 Theorem 4

100 [

Theorem 2 or 3

logy(e)

Figure 1: Currently required # of proactive update
rounds to recover d for a given value of logn(e), as-
suming |[N| =1024,t = 7.

since N — ¢(N) < \/N, it follows that 0 < cik —d < /N for
dr, = [1/e(1 + kN)| for one of the e — 1 choices of k. Note
that theAdAk values can be publicly computed, and note that
dk4+1 — di = N/e for every k, and therefore that the loga(e)
MSBs of d determine the appropriate k (and ozk) value, and
therefore, since |02k—d| < /N for that k, they also determine
the 512 MSBs of d. [

The import of the above observation for our attack is
very simple: Since the above choices of the e — 1 values
di,...,de_1, are neatly spread in the [0, N — 1] interval in
distances of N/e apart from each other, in our attack based
on the (¢ + 1)-ary search, the adversary can identify the ap-
propriate dj, (and k) value, and thus recover the first |N|/2
MSBs of d by the above theorem, after just [%l rounds
of the share update protocol. A

Therefore, for small e’s, the attack requires only

1 N
r> Wi+ 1) (lg(e) + % - 40) 3)
rounds of share updates for the adversary to learn the whole
secret d. This means that the current implementation of
URSA which uses the well-known value e = 65537 [14] can
be attacked in just 163 update rounds for a modest threshold
of t=1.
For larger values of e, the results of [3, 1] on the RSA

key security with partial key exposure imply the following
speed-ups in our RSA key recovery attack:

THEOREM 2. [3] Ife is a prime in the range 2™, 2],
with % <m < ‘—];H, then given m MSBs of d, there is a
polynomial time algorithm to compute d.

THEOREM 3. [3] Ife isin range 2™,2™ ] and is a prod-
uct of at most r primes, with % <m< %, then given the
factorization of e and m MSBs of d, there is a polynomial
time algorithm to compute all of d.

If e meets either of the above criteria, the number of
rounds r required in our attack reduces to within the range
[V |V
[ ]

e+ =7 e

THEOREM 4. [1] If e is in range [N°® NO725] then the
number of MSBs needed to completely recover d is given by

%(3 + 2a 4+ v36a? + 12a — 15) where o = logn (e).

If e meets the above criteria, the number of rounds re-
quired to recover the secret key d is given by

(st (3 + 20 + /3602 + 120 — 15)]

5. DISCUSSION: EFFICIENCY OF THE AT-
TACK AND INSECURITY OF THE URSA
SCHEME

While the above results for general e values are interest-
ing, in practice people want to use RSA with small e values,
like e = 3, 17, or 65537 (all of which are prime numbers
of the form 2 + 1 for a small value of 4, which makes the
exponentiation s¢ (mod N) involved in the RSA signature
verification take only ¢+ 1 modular multiplications), and for
these values our attack holds if (1) ¢ members of the up-
date group (2 are corrupted and one of the corrupted player
speaks last, (2) if in every update interval some ¢ chosen
honest players M, are coaxed into participating in a sig-
nature protocol (note that the adversary’s attack does not
depend on what message is used in this protocol!), and (3)
if the system lasts for » = 163 update rounds, which given
the twice a day rate of updates gives only two months.

We think that these are quite reasonable assumptions.
There’s certainly nothing in the adversarial model of a proac-
tive signature scheme and of the URSA group access control
scheme, which would disallow the adversary from satisfying
each of the above criteria.

As we discussed in the last subsection of section 3.3, the
attack can be probably slowed down in practice if some
modifications are employed in the process of choosing the
“update group” {2, to make it harder for the adversary to
corrupt this group, or, equivalently, to make it harder for
the adversary to have whatever players he does corrupt be
chosen as the 2 group. However, summing up the discussion
from that section, it is not clear how to modify the protocol
in order to make the adversary’s success significantly harder,
and at the same time not to severely limit the applicability
of the URSA scheme.

Perhaps more importantly, the attack we exhibit shows
that even if the adversary does not satisfy all the above
criteria, the adversary still learns meaningful information
about the RSA private key d, which makes the security of
the resulting system doubtful. For example, as we discussed
in the introduction, if the adversary successfully participates
in just r = 34 instead of r = 163 update rounds (for 1024-bit
N, e = 65537 and t = 7), the adversary will learn 600 most
significant bits of d. Given the steady progress in the ability
to recover the full d from partial knowledge [3, 1], there is
little hope that such partial information can be shown not
to weaken the RSA system. In other words, all bets are off.

Finally, our attack uses only very specific part of the infor-
mation leaked in the URSA threshold RSA signature proto-
col. We showed that if the adversary corrupts t of the sign-
ing t + 1 players, and if the remaining (¢ + 1)-st player M,
can be known beforehand, the leaked information is equiva-
lent to whether the shared secret d lies to the left or to the
right of some value D, which can be computed and in fact
controlled by the adversary. However, information about d
leaks also if (1) other players M,, p & [t + 1, ..., 2t] partici-



pate in the threshold signature protocol, and if (2) less than
t corrupted players participate in this protocol. The infor-
mation revealed about d in this cases is more complicated
that the d <> D, information we used in our attack, but it
is nevertheless easy to define as well, and it can very well be
used to either speed up the attack we propose even more, or
to extend it to adversaries who (1) corrupt less than ¢ of the
players participating in the threshold signature protocol, or
(2) corrupt less than ¢ players in the update group 2, or (3)
fail to predict which honest players will participate in the
threshold signature protocol.
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