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Abstract—Localization has many important applications in wireless
sensor networks (WSNs). A variety of technologies, such as acoustic,
infrared, and UWB (ultra-wide band) media have been utilized for
localization purposes. In this paper, we propose a holistic, bottom-
up design of a UWB-based communication architecture and related
protocols for localization in WSNs. A new UWB coding method, called
U-BOTH (UWB based on Orthogonal Variable Spreading Factor and
Time Hopping), is utilized for minimum interference communication,
and an ALOHA-type channel access method and a message exchange
protocol are used to collect distance information in WSNs. We derive
the corresponding UWB path loss model in order to apply the maximum
likelihood estimation (MLE) method to compute the distances between
neighbor nodes using the RSSI information. Then, we propose NMDS-
MLE (Non-metric Multidimensional Scaling and Maximum Likelihood
Estimation) localization algorithms based on the two types of distance
information: estimated distance and Euclidean distance. The performance
of the system is validated using theoretic analysis and simulations.

I. INTRODUCTION

Large-scale economic wireless sensor networks (WSNs) are widely
deployed for environmental monitoring and control operations. Object
tracking and localization are two important capabilities in many WSN
applications [3]. The basic approach to a WSN localization is to infer
distances to anchor locations, then to derive the location of a node
by trilateration or other estimation algorithms. The first step is called
“ranging”, and the second step is called “localization”.

So far, various ranging solutions have been proposed based on two
major ranging techniques: 1) time of arrival (ToA) [16], time differ-
ence of arrival (TDOA) and angle of arrival (AOA) based ranging
techniques, as used by GPS systems, 2) the path loss model based
on radio RSSI signal strength [4] or acoustic signal strength [22]
attenuation models. Other range-free techniques were also proposed
for localization purposes, such as hop count or centroid methods [9].
We adopt the path loss model to derive range information because
it is an efficient method in low-cost WSNs, in contrast to expensive
synchronization requirements in the former approach [8].

Ranging algorithms based on path loss model depend on the
wireless medium and signal transmission methods. In order to provide
precision ranging, we utilize the UWB (ultra-wide band) transmission
and coding technologies in both indoor and outdoor environments.
Beside providing high data bandwidth, UWB exhibits excellent
resistance to co-channel interference. IEEE 802.15.4a has appeared
as the de facto standard to provide low power long distant low data-
rate service for real-time communication and precise ranging and
localization applications [1], [14].

Of the different UWB transmission techniques, Impulse Radio
Ultra-wideband (IR-UWB) is most attractive for localization purposes
in WSNs [23]. However, existing coding algorithms for IR-UWB
communication systems, such as DS-UWB (Direct Sequence UWB)
and TH-UWB (Time Hopping UWB) [13] have failed to guarantee
high quality localization due to multipath and multi-user interference.
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In this paper, we apply the Orthogonal Variable Spread Factor
(OVSF) coding algorithm in IR-UWB networks to solve the multi-
user interference problem in data transmissions.

Once the approximate distances between a node and a subset of
anchor points are derived in the WSNs, the coordinates of the node
can be derive by localization algorithms. Savarese et al. presented a
trilateration algorithm based on least squares (LS) method in large-
scale WSNs [19]. Caplun et al. [7] proposed a GPS-free positioning
system for mobile ad hoc networks, by first establishing the local
coordinates of two-hop neighbors with each node as the origin, then
tuning these local coordinates to the global coordinates of the entire
system. The DV-coordinate algorithm [15] used similar idea.

Different from trilateration algorithms, the MDS (Multidimensional
Scaling) method uses two types of maps — the relative map and
the absolute map to derive locations using statistical techniques [5].
The relative map reflects partial and relative inter-nodal relationships
in lower dimension space, whereas the absolute map is generated
relative to the anchor nodes using the relative map. MDS requires
less information and configuration overhead than other localization
algorithms in WSNs, and provides strong resilience to measurement
errors.

Several variants of MDS were proposed so far. MDS-MAP uses
connectivity information (whether or not two devices are in range)
for localization [21]. MDS-MAP(P) improved the basic MDS-MAP
on anisotropic topologies [20] by building a local relative map of a
small sub-network for each node using MDS, then merging them to
form a global relative map. However, most of MDS algorithms were
based on the assumption that proximity data between objects should
be proportional to Euclidean distances by underlying quantitative
transformation function, which is not flexible or robust.

In this paper, we present the NMDS-MLE (Non-metric MDS
and Maximum Likelihood Estimation) localization algorithm, based
on IR-UWB model and RSSI (Received Signal Strength Indica-
tion) information. Non-metric MDS is different from previous MDS
variants in that the proximity data are only assumed to be related
to Euclidean distances according to same ordinal level by some
monotone transformation.

Overall, the contribution of this work is the following:
1) A new UWB coding method, called U-BOTH (UWB based on

Orthogonal Variable Spreading Factor and Time Hopping), is
proposed for minimum interference communication.

2) An ALOHA-type channel access protocol and a message ex-
change protocol are used to collect distance information in
WSNs.

3) The UWB path loss model in U-BOTH is derived and applied in
the maximum likelihood estimation (MLE) method to compute
the distances between neighbor nodes using the RSSI informa-
tion.

4) The NMDS-MLE (Non-metric Multidimensional Scaling and
Maximum Likelihood Estimation) localization algorithm is
proposed using two types of distance information: estimated
distance and Euclidean distance.



The rest of the paper is organized as follows. Section II de-
scribes the basic assumptions of the localization system, and the
notation used in this paper. Section III presents a new IR-UWB
coding method, called U-BOTH (UWB based on Orthogonal Variable
Spreading Factor and Time Hopping), and provides the signal pro-
cessing model. Section IV specified a WSN communication protocol
to localization using U-BOTH. According to the path loss model and
the RSSI information gathered by the target nodes, Section V and
Section VI present the ranging and localization algorithms using the
MLE and NMDS methods, respectively. Section VII evaluates the
system using simulations. Section VIII concludes the paper.

II. ASSUMPTIONS AND NOTATION

Our ranging and localization in mainly based on the RSSI infor-
mation. In order to collect the distance information as quickly as
possible and avoid interference of multi-users, we assume that each
node in the WSN is able to communicate through U-BOTH, proposed
in this paper.

For convenience, the notation in Table I is used in this paper.

TABLE I
NOTATION AND MEANING

Notation Meaning
Tf The frame time.
Tc The chip time.
Tb The bit time.
Ns The number of pulses for every bit.
Nc The number of chips for every frame.
dnj The OVSF code of transmitter n.
SF The spreading factor of OVSF codes.
Ns The period of OVSF code.
EnTX The transmission energy of transmitter n.
EnRX The received energy of transmitter n.
p0(t) The energy normalized pulse waveform.
cnj The time-hopping code with period Ns.

anbj/Nsc
The indication of information bit b.

ru(t) The input useful signal of the receiver.
rmui(t) The input multiple users interference signal of the receiver.
n(t) The input additive white Gaussian noise of the receiver.
m(t) The correlation template of the receiver.
Zu The output useful signal of the receiver.

Zmui(t) The output multiple users interference of the receiver.
Zn The output additive white Gaussian noise of the receiver.
N0 The noise spectral density.
τ The delay of the other transmitter’s interfering pulse.
µx The mean value of variable x.
σx The standard deviation of a random variable x.

erfc(x) The complementary error function of value x.
Prb The bit error rate (BER).

III. PHYSICAL LAYER MODEL

A. UWB Signal Spreading and Modulation

In order to achieve accurate localization, we need a reliable physi-
cal layer communication technique that reduces bit error rate (BER),
while mitigating the multi-users-interference (MUI) and Gaussian
noise interference. Our physical layer is a UWB system based on
time-hopping (TH) signal transmission as well as OVSF (orthogonal
variable spread factor) for spreading out the symbols.

OVSF (Orthogonal Variable Spread Factor) was extensively used
in CDMA systems to provide variable spreading codes [2]. Shorter
OVSF code lengths are usually optimized for short-distance and
high-data-rate transmission in less crowed environments due to its
smaller spreading factor. TH (time hopping) is one of many signal
modulation methods used by UWB. We describe a system, called

U-BOTH (UWB modulation Based on OVSF and Time Hopping),
which applies the time-hopping pulse position modulation (TH-PPM)
algorithm to encode UWB pulse streams, and OVSF direct sequence
to spread the user data bit stream.
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OVSF Chip Sequence
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Fig. 1. U-BOTH: Interference Resistant UWB Modulation Using Time
Hopping and OVSF.

Fig. 1 illustrates the utilization of time hopping (TH) pulse position
modulation and OVSF spreading to encode a single bit in the user
data stream. First, U-BOTH sends each bit in the bit time, denoted
by Tb. Then it modulates the bit 1 using a TH code, 12110021, in
which each digit denotes a chip slot position within a frame time, Tf ,
to send a broadband radio pulse. The number of pulses is denoted
by Ns. Therefore, each bit duration is Tb = Tf ×Ns. Each chip slot
lasts for Tc, sufficient to send a short UWB pulse signal.

After the initial pulse position modulation using UWB signals, the
pulse sequence is again applied with OVSF code so that the phases
are shifted by π to provide orthogonality between multiple users. The
length of the OVSF code is called the spread factor SF , which is
equal to NS .

In U-BOTH, the TH code is a pseudo-random sequence generated
from foreknown seeds, such as node IDs. While the OVSF codes are
selected from a well-defined set of orthogonal spreading codes.

To formally analyze the system in this paper, we represent the
transmitted signal by the nth transmitter in Eq. (1):

sn(t) =

+∞X
j=−∞

dnj a
n
bj/Nsc

p
EnTXp0(t− jTf − cnj Tc), (1)

in which, dnj = ±1 is the OVSF code with the period Ns, EnTX
is the energy of the nth transmitter, p0(t) is the energy normalized
pulse waveform, cnj ∈ [0, Nc−1] is the TH code with period Ns and
anbj/Nsc indicates the data stream bit. If the data bit is 1, anbj/Nsc =
+1. Otherwise, anbj/Nsc = −1.

At the receiver side, the received signal consists three source of
information:

r(t) = ru(t) + rmui(t) + n(t),

in which, ru(t) is the desired user signal, rmui(t) is co-channel
interference from multiple users, and n(t) is the additive white
Gaussian noise (AWGN).

Denote the pulse energy of the n-th transmitter as EnRX . Without
loss of generality, we assume that the first user’s transmission is the
desired signal at the receiver for simplicity, then Eq. (2) provides the
desired signal function at the receiver:

ru(t) =

+∞X
j=−∞

d1
ja

1
bj/Nsc

q
E1
RXp0(t− jTf − c1jTc). (2)



We define the correlation template of the receiver:

m(t) =

(i+1)Ns−1X
j=iNs

d1
jp0(t− jTf − c1jTc); i ∈ (−∞,+∞). (3)

B. Single User System Analysis

As the first step, we assume that the channel is AWGN multipath-
free channel, and that the transmitter and the receiver are synchro-
nized. In a single user signal processing system, the input of the
receiver has two parts: ru(t) and n(t), and the output of the receiver
in time interval [0, Tb] is represented by:

Z = Zu + Zn =

Z Tb

0

(ru(t) + n(t))m(t)dt. (4)

In Eq. (4), the useful output signal is:

Zu =

Ns−1X
j=0

Z jTf+c1jTc+Tc

jTf+c1jTc

d1
jd

1
ja

1
bj/Nsc

q
E1
RXω(t)dt,

where ω(t) = p0(t− jTf − c1jTc)p0(t− jTf − c1jTc).
Because d1

jd
1
j = 1, p0(t) is the energy normalized pulse waveform,

we have

Zu =
PNs−1
j=0

R Tc
0
a1
bj/Nsc

p
E1
RXp0(t)p0(t)dt

= Nsa
1
bj/Nsc

p
E1
RX

R Tc
0
p0(t)p0(t)dt

= a1
bj/NscNs

p
E1
RX

In Eq. (4), the output noise signal is:

Zn =

Ns−1X
j=0

Z Tc

0

d1
jp0(t)n(t)dt =

Ns−1X
j=0

d1
jnj ,

where nj is Gaussian random variable with mean 0 and variance
N0/2. Because d1

j is not a random variable, the variance of Zn is:

D(Zn) = D(

Ns−1X
j=0

d1
jnj) = Ns

N0

2
,

Zn ∼ N(0, N0Ns/2).

Suppose that the statistical probabilities of data bit b = 0 and
b = 1 are equal, we obtain the BER (bit error rate) of the single user
system in AWGN channel as follows:

Prb =
1

2
P (Z > 0|b = 0)+

1

2
P (Z < 0|b = 1) = P (Z > 0|b = 0).

Because a1
bj/Nsc = −1 if b = 0, then the useful output is Zu =

a1
bj/NscNs

p
E1
RX = −Ns

p
E1
RX . Using Eq. (4), the BER become:

Prb = P (Z > 0|b = 0) = P (−Ns
p
E1
RX + Zn > 0)

= P (Zn > Ns
p
E1
RX)

It can be rewritten by complementary error function erfc(x) as
follow:

Prb =
1

2
erfc

0@sNsE1
RX

N0

1A .

Where erfc(x) = 2√
Π

R∞
x

exp(−t2)dt.
Because U-BOTH is a rate variable system using OVSF, we

analyze the relation between BER and the bit rate. Suppose the
system’s OVSF code is a code tree of 6 layers [6], and the spreading
factor is 2, 4, 8, 16, 32, 64, respectively. Further suppose the basic
rate of our system is R0, then the corresponding bit rate of U-BOTH
is Rb = iR0 (i= 32, 16, 8, 4, 2, 1, respectively).

Denote the bit rate as Rb, where Rb = iR0, i = 1, 2, · · · , 32, we
can get the relation between BER and the bit rate:

Prb = 1
2

erfc

„q
SF ·E1

RX
N0

«
= 1

2
erfc

„q
64R0·E1

RX
RbN0

« (5)

Eq. (5) shows that the BER decrease when the spreading factor
SF increases or when the bit rate decreases. Therefore, we can adjust
SF to adapt different environments with various noise levels while
maintaining the same bandwidth of the signal. This is the main reason
we adjust OVSF codes in our system.

C. Multi-User Interference Analysis

In multi-user communication system, the received signal includes
multi-user interference Zmui and noises. The Zu + Zn part is the
same as Eq. (4), but the multi-user interference Zmui is additional.
Because the phase and delay τ of interfering pulses is random as
shown in Fig. 2, we have to compute the interference’s variance.

 
 

Fig. 2. The Interference to User 1 by The n-th User.

Suppose that τn is uniformly distributed over [0, Tf ), then the
interference variance of the desired signal, i.e. the signal from the
1st user, caused by transmitter n is [13]:

σ2
bit =

Ns
Tf

Z Tf

0

„p
EnRX

Z Tc

0

d1
jd
n
i p0(t− τn)p0(t)dt)

«2

dτn.

Therefore, the total interference variance σ2
mui from all other

transmitters is:

NuX
n=2

 
NsE

n
RX

Tf

Z Tf

0

„Z Tc

0

d1
jd
n
i p0(t− τn)p0(t)dt

«2

dτn
!
.

Because the delay τ for all transmitters has the same distribution,
we get the following formula:

σ2
mui =
Ns
Tf

PNu
n=2 E

n
RX

“R Tf
0

(
R Tc

0
d1
jd
n
i p0(t− τn)p0(t)dt)

2dτn
”

= σ2
M
Ns
Tf

PNu
n=2 E

n
RX

in which,

σ2
M =

R Tf
0

“R Tc
0
d1
jd
n
i p0(t− τn)p0(t)dt

”2

dτ

=
R Tf

0
R2(τ)dτ.

According to [13], and noticing that Rb = 1
NsNf

and Ns = SF =



64R0
Rb

, Eq. (6) gives the BER in multi-user interference environments.

Prb =

1
2

erfc

0B@
vuut 1

2

 “
2NsE

1
RX

N0

”−1

+

 
NsE

1
RX

σ2
M

1
Tf

PNu
n=2 E

n
RX

!−1!−1
1CA =

1
2

erfc

0@
vuut 1

2

 “
128R0E

1
RX

RbN0

”−1

+

„
E1
RX

σ2
M
Rb

PNu
n=2 E

n
RX

«−1
!−1

1A .

(6)

IV. NETWORK PROTOCOL OPERATIONS

Our localization algorithms depend on a two-step process —
the first step is for the target node to acquire the signal strength
information from neighbor nodes in the network using U-BOTH
based communication protocols, and the second step is for the target
node to calculate the distances to the neighbor nodes, and infer its
own coordinate.

In ad hoc networks, code assignments are categorized into
transmitter-oriented, receiver-oriented or a per-link-oriented code
assignment schemes (also known as TOCA, ROCA and POCA, re-
spectively) [10], [12]. Depending on the ways of assigning the OVSF-
TH codes and encoding the MAC data frames for transmissions, we
propose two different ways to implement multiple access protocols
using U-BOTH.

a) ROCA-Based Protocol Operations: The first approach is
based on the receiver-oriented code assignment (ROCA), in which
case the data packet transmissions are encoded using the unique
OVSF-TH code assigned to the receiver. Beside ROCA, there is a
common OVSF-TH code for bootstrapping and coordination pur-
poses.

In ROCA scheme, when a target node needs to find out its
coordinate, it sends a location request message using the common
OVSF-TH code to the neighbor nodes. The request message includes
the request command, and the receiver’s OVSF-TH code. Upon
receiving the request message, neighbor nodes sends back a response
message using the receiver’s OVSF-TH code using a random backoff
mechanism. The distance information could be derived from the
response message.

b) TOCA-Based Protocol Operations: The second approach is
based on transmitter-oriented code assignment (TOCA), in which case
each packet transmission is encoded using two OVSF-TH codes —
one is a common OVSF-TH code to encode the common physical
layer frame header, and the other transmitter-specific code is to
encode the physical layer frame payload. The frame head includes the
transmitter-oriented OVSF-TH code for encoding the frame payload.

Because the physical layer headers are sent on a common OVSF-
TH code, the physical layer header transmissions resemble those
of ALOHA networks with regard to packet collision. Because the
headers are usually short, the collision probability is low.

On the other hand, because the data frame payload is transmitted
on unique OVSF-TH codes, the interference between the payload and
other frame headers and payloads is dramatically reduced.

In both ROCA- and TOCA-based systems, packets from the
neighbor nodes can be lost. However, this does not affect the overall
performance of our localization algorithms because they tolerate such
losses.

After getting the respective signal strength information from neigh-
bor nodes, a target node calculates its coordinate in two steps —
ranging and localization.

V. RANGING ALGORITHM

As mentioned before, ranging is to estimate the approximate
distance between the target node and neighbor nodes. We use the
MLE (maximum likelihood estimation) method for such calculations.
First of all, we need to establish the path loss model of the UWB
channel in order to inversely derive the distance information from
received signal qualities.

A. The Path Loss Model

It is well-known that the path loss model can be expressed by the
log-distance path loss law in many indoor or outdoor environments,
as shown by Eq. (7).

PL(d) =

„
PL0 + 10γ log10(

d

d0
)

«
+ S; d ≥ d0, (7)

in which
• d0 is the reference distance (e.g. 1 meter in UWB medium),
• PL0 means the path loss in dB at d0,
• d is the distance between the transmitter (Tx) and receiver (Rx),
• γ refers to the path loss exponent which depends on channel

and environment,
• S is the log-normal shadow fading in dB. Usually, S is a

Gaussian-distributed random variable with zero mean and stan-
dard deviation σS .

Eq. (7) could construct a statistical path loss model for UWB
propagation in different environments. The path loss PL(d) can be
expressed as a Gaussian-distributed random variable with:

S ∼ N(0, σ2
S),

PL(d) ∼ N(PL0 + 10γ log10 d, σ
2
S).

The probability density function (pdf) of path loss PL(d) is:

p(PL) =
e
− [PL−(PL0+10γ log10 d)]

2

2σ2
Sp

2πσ2
S

. (8)

IEEE 802.15.4a Task Group provided Channel Model 1-9 by taking
limited real measurements to determine the values of γ, σS and other
variables in different situations. When deploying real UWB networks,
people could approximately choose the corresponding channel model
with the parameters specified in IEEE 802.15.4a.

B. Ranging Algorithm based on Maximum Likelihood Estimation

The distance between the transmitter Tx and the receiver Rx in
Eq. (7) can be calculated by the general ranging method between two
nodes using the RSSI information:

d̂ = 10
PL(d)−PL0−S

10γ .

Receiver computes the distance between the transmitter Tx and the
receiver Rx using random values S. However, in above single random
ranging, the random variables S selected by the sensor nodes are not
exactly those in the real time-variant channel. In order to avoid the
ranging errors caused by the large deviation between the estimated
S values and the real S values in each round of ranging estimation,
we propose an iterative ranging based on MLE (maximum likelihood
estimation) in UWB wireless sensor networks.

Suppose PLi is the ith observation value, we get the joint
conditional pdf p(PL|d) using Eq. (9).

p(PL|d) =

NY
i=1

e
− [PLi−(PL0+10γ log10 d)]

2

2σ2
Sp

2πσ2
S

. (9)



The necessary condition to compute the MLE of d is:

∂ ln p(PL|d)
∂d

= 10Nγ

σ2
S
d ln 10

“
1
N

PN
i=1 PLi − PL0 − 10γ log10 d

”
= 0.

(10)
We solve Eq. (10) and have:

dlog10 d =
1

10Nγ

NX
i=1

PLi −
PL0

10γ

Therefore, the MLE based RSSI UWB ranging is:

d̂ = 10
1

10Nγ
PN
i=1 PLi−

PL0
10γ . (11)

VI. LOCALIZATION ALGORITHM

A. Multi-Dimensional Scaling (MDS)

MDS (Multidimensional Scaling) is a statistical technique for
exploratory data analysis or information visualization. MDS collects
the proximity data between each pair of spatial objects as reference.
Then it visualizes objects as points in a low dimensional Euclidean
space and represents these proximity data as distances between points.
In order to derive accurate results, MDS has to find some solutions
that relate distance information to proximity information as closely
as possible.

Suppose that n denotes the number of different objects, and the
proximity for objects i and j is denoted by pij . Thus, we derive a
proximity matrix Pn×n = pij . The coordinates of mapping points
are represented by a matrix Xn×m, where m is the dimensions of
the solution, e.g. 2D or 3D.

Now, let dij(X) be the Euclidean distance between points i and j
with coordinates in Xn×m, respectively. The objective of MDS is to
find a matrix X so that dij(X) proportionally matches pij as closely
as possible, which is presented by f(pij) ∼ dij(X). The closeness
is measured by metric STRESS as follows:

STRESS =
X

[f(pij)− dij(X)]2.

MDS algorithms are taxonomized into several types, depending
on whether the similarity data is quantitative or qualitative, and are
called metric MDS and non-metric MDS, respectively.

Classical metric MDS formulates the relationship between prox-
imity data of objects and distances in the Euclidean space by
transformation functions. In order to find a perfect fitness between
proximity data and Euclidean distance, the transformation formula
dij(X) = f(pij) is pursued, such as a linear model: dij(X) =
a+ bpij . Because dij(X) represents the Euclidean distance between
points i and j in coordinate matrix X, MDS rests on the fact that
the coordinate matrix X can be derived by double centering and
eigenvalue decomposition from the proximity matrix P with the least
error.

The relationship between the proximity of objects and the Eu-
clidean distances of points in Non-metric MDS is not as strict as
metric MDS. Non-metric MDS only requires a monotonic relation-
ship between them.

When Non-metric MDS takes proximity data of different objects
to construct corresponding spatial coordinates, it only requires that
the rank order of the proximity pij have to keep the same ordinal
level as the distances dij . That is,

∀i, j, k, l : pij < pkl ⇒ dij(X) < dkl(X).

Compared with metric MDS, the monotonic assumption that the
data is measured at the ordinal level in Non-metric MDS makes
it more flexible and applicable for localization in wireless sensor
networks.

B. The NMDS-MLE Localization Algorithm

NMDS-MLE localization algorithm combines the ranging and
localization processes. Ranging is based on the iterative RSSI in-
formation collected by above U-BOTH UWB system and refined by
the MLE method. Localization is based on the NMDS algorithm. As
a whole, NMDS-MLE localization consist of 5 steps:

1 Gather iterative RSSI from neighbors by U-BOTH system in the
network, and form a sparse matrix R, which is derived from the
estimated distances denoted by rij . rij is estimated by iterative
ranging based on RSSI information and MLE method. For the
nodes that is out of the communication range, rij is zero.

2 Construct the proximity data matrix P based on sparse matrix
R. The estimated distance pij between every pair of nodes in
the network is computed by the shortest path algorithm, such
as Dijkstra’s or Floyd’s algorithm.

3 Construct the coordinate system to plot the objects in the
Euclidean space and obtained the distance matrix D composed
by the Euclidean distance dij .

4 Compare the ordinal level between aforementioned two types
of distance information: estimated distance pij and Euclidean
distance dij , and refine the relative coordinate X of nodes in
Non-metric MDS.

5 Transform relative coordinate into global absolute coordinate
by the anchor nodes in the network.

In Step 3 and Step 4, localization is executed by NMDS-MLE as
Algorithm 1.

Algorithm 1: NMDS-MLE

Input: node set N , initial coordinate matrix X(0), proximity
data matrix P , threshold ε, iteration number k ←− 0

Output: relative coordinate X(n)

for each i, j ∈ N do1

dkij ←−
q

(xki − xkj )2 + (yki − ykj )2
2

construct the Euclidean distance matrix D(k)3
end4
while STRESS ≥ ε do5

for each i, j, u, v ∈ N do6
if pij < puv and dij > duv then7

d̂kij ←− (dkij + dkuv)/28

d̂kuv ←− (dkij + dkuv)/29
else if pij < puv and dij ≤ duv then10

d̂kij ←− dkij11

d̂kuv ←− dkuv12
end13

end14
k ←− k + 115

update the coordinate matrix X(k)16

update the distance matrix D(k)17
end18

In Algorithm 1, a monotonic transformation between proximity
data and Euclidean distance is calculated in line 6 to 14, which
yields an intermediate distance value d̂ij . By performing a monotone
regression with the current distances dij as targets and proximity pij
as inputs, NMDS-MLE generates d̂ij to reflect the ordinal level of
pij in each iteration, where d̂ij should be subjected to:

∀i, j, k, l : pij < pkl ⇒ d̂ij(X) < d̂kl(X).

Because of above relation between pij and d̂ij , NMDS-MLE takes
following STRESS applied in line 5 to evaluate the accuracy of the



fitting:

STRESS =

sX
ij,i 6=j

(d̂ij − dij)2/
X
ij,i 6=j

d2
ij . (12)

A small STRESS indicates a good fit, whereas a high value
indicates a bad fit. Kruskal [11] provide some guide lines of stress
value with respect to the goodness of fit of the solution, shown in
Table II.

TABLE II
STRESS AND GOODNESS OF FIT

Stress Goodness of fit

>.20 poor
.10 fair
.05 good
.025 excellent
.00 perfect

Note in line 16 and line 17 in Algorithm 1, NMDS-MLE updates
spatial coordinate matrix Xk−1 to Xk according to dk−1

ij and d̂k−1
ij ,

and then obtains a new Euclidean distance dij(X)k. The spatial
coordinate (xki , y

k
i ) is updated as follows:

xki = xk−1
i + α

n−1

P
j∈M,j 6=i(1−

d̂k−1
ij

dk−1
ij

)(xk−1
j − xk−1

i ),

yki = yk−1
i + α

n−1

P
j∈M,j 6=i(1−

d̂k−1
ij

dk−1
ij

)(yk−1
j − yk−1

i ).
(13)

Where n is the number of target nodes, α is the iteration step
length, which is set to be 0.2 in the paper.

In Step 4, the estimated location matrix X represents the relative
coordinates of nodes, which have a different orientation and scaling
than the original coordinates. And in Step 5, the transformation
from relative coordinate X into absolute coordinates usually includes
shift, rotation, scaling, and reflection of coordinates, which are
implemented by some transformation to minimize the errors between
the absolute coordinates of anchor nodes and their relative locations
in the NMDS map. Suppose there are m anchor nodes whose
relative locations are XR = (XR1 ,XR2 , · · · ,XRm), and real
locations are XT = (XT1 ,XT2 , · · · ,XTm). We need firstly derive
optimal transformation function Q, and then transfer all the relative
coordinates of nodes to the absolute coordinates by the optimal
transformation function Q.

VII. SIMULATION EVALUATIONS

In order to verify our localization algorithms based on U-BOTH
system for WSNs, we simulated the following scenarios:

1) With regard to the BER (bit error rate), we evaluate U-BOTH
system performance in single and multi-user scenarios.

2) Using NMDS-MLE localization algorithm, we evaluate our
localization model both in random network and grid network.

A. U-BOTH System Performance

We assume the channel is AWGN multipath-free single user
channel, the transmitter and the receiver are synchronized perfectly.
Then we randomly generate 2000 bits, every bit uses 4 pulses to
repeat coding (Ns = 4).

Fig. 3 illustrates the BER of the received signal using U-BOTH sys-
tem, in contrast to DS-UWB that only uses direct sequence spreading,
and TH-UWB that uses time-hopping pulse position modulation alone
for UWB transmissions. We can see that the BER of U-BOTH and
the DS-UWB system which use the π-phase shift keying modulation
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Fig. 3. Bit Error Rate in A Single User System with Additive White Gaussian
Noise (AWGN).

are lower than TH-UWB. This is because the distance of two signals
in binary phase shift keying (BPSK) modulation is 2

p
Epulse, butp

2Epulse in TH-UWB [17].
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Fig. 4. Bit Error Rate and The Variance of The Number of Error Bits of
2000 Generated Bits.

Secondly, we let Eb/N0 = 0 dB, Ns = 4 and generated 2000
bits randomly. Fig. 4 shows the relative performance of U-BOTH,
TH-UWB and DS-UWB systems in multiple access scenarios. In
this case, the received signal includes by noise and co-channel
interference. In Fig. 4, although both the BER and the variance of
error bits increase as the number of users increases, the performance
of our U-BOTH system is still better than DS-UWB and TH-UWB,
proving that the UWB coding based OVSF-TH effectively handle the
burst errors.

B. Evaluation of the Localization Algorithms

We evaluate the performance of localization algorithms with mean
estimation error, which is widely used in previous research works:

error =

Pn
i=m+1 ‖X

i
est −Xi

real‖2

(n−m)×R × 100% (14)

where n and m are the total number of sensors and the number of
anchor nodes in the WNS, respectively, R represents communication
range.

Based on the data in [18], we adopt values of UWB path loss
model in outdoor NLOS environments for simulations as shown in
Fig. 5.

1) Random Deployment: 100 nodes are deployed randomly in
a 100m × 100m square area as shown in Fig. 6(a), in which
points represent nodes and edges represent the connections between
neighbor nodes. The communication range is 12 m and the average
connectivity is 4.6.



Value 
Notation Meaning 

LOS NLOS

d0 The reference distance 1 m 1 m 

PL0 The path loss at reference distance 45.6 dB 73 dB 

γ The path loss exponent 1.76 2.5 

Sσ  The standard deviation of shadow fading 0.83 2 

 
Fig. 5. Portion of The Simulation Parameters.

Fig. 6(b) reflects the relative coordinate of every node generated by
NMDS-MLE. It shows that the relative coordinates have a different
orientation and scaling than the original network in Fig. 6(a). This
is because that relative coordinate is derived only based on the
distance relationship between every pair of nodes in the network.
Fig. 6(c) derives the absolute coordinates of all the nodes. Their
relative coordinates in Fig. 6(b) are transformed based on the location
information provided by 4 random anchor nodes denoted by ×. The
dots represent the real locations of the nodes, and the lines with
arrows indicate the errors of the estimated locations from the real
locations, the average localization error is about 5.3850%. The MDS-
MAP algorithm is also applied in the case and the average localization
error is about 18.4747%.

2) Grid Deployment: 100 nodes are deployed in a 45m × 45m
square area with grid deployment in Fig. 7(a). The communication
range is 12 m and the average connectivity is 16.8. With the same
symbol meaning in the figures, Fig. 7(b) represents the relative
coordinate map using NMDS-MLE algorithm and Fig. 7(c) depicts
the absolute coordinate map by transformation based on 4 random
anchor nodes. The average localization error in the grid case is about
1.2876%. For MDS-MAP algorithm, it is about 6.0543%.

3) Performance analysis: The localization performance of NMDS-
MLE in different scenarios under different degrees of connectivity
is analyzed by Fig. 8, compared with the MDS-MAP by the same
experimental settings. From the figure, we can see that localization
error of NMDS-MLE algorithm is much lower and more stable
than MDS-MAP in different scenarios. Furthermore, when NMDS-
RSSI and MDS-MAP are applied in grid deployment with varies of
connectivity. It shows that NMDS-RSSI obtain higher localization
accuracy in the grid layout than in the random layout for the same
connectivity level.
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Fig. 8. Relation between The Connectivity and The Localization Error.

Fig. 9 presents the relation between localization error and the
number of iteration N in NMDS-MLE algorithm. Because the
accuracy of ranging is improved by MLE method based on the

RSSI information provided by our U-BOTH system, it is obvious
that the localization error decreases dramatically when the number of
iterations in ranging increases in both random and grid deployment.
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Fig. 9. Relation between The Number of Iteration N and The Localization
Error.

VIII. CONCLUSION

In order to provide a localization algorithm using the NMDS-
MLE methods, we have proposed the communication protocols based
on a new UWB coding method, called U-BOTH (UWB based
on Orthogonal Variable Spreading Factor and Time Hopping), and
an ALOHA-type channel access method and a message exchange
protocol to collect distance information in WSNs. Then we specified
the NMDS-MLE algorithms using the UWB path loss model for
ranging and localization purposes. The performance of NMDS-MLE
algorithms in the U-BOTH based communication system are analyzed
using communication theories and simulations. Results show that U-
BOTH transmission technique can effectively reduce the bit error
rate under the path loss model, and the corresponding ranging and
localization algorithms can achieve comparable or better results than
previous localization methods.
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Fig. 6. Random Deployment.
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